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Vortex bending and tightly packed vortex lattices in Bose-Einstein condensates

J. J. Garcı´a-Ripoll* and V. M. Pérez-Garcı´a†
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We study in detail the structure of the ground state of elongated rotating Bose-Einstein condensates. This
ground state is composed of one or more vortex lines which bend even in completely symmetric setups. This
symmetry breaking allows the condensate to smoothly adapt to rotation and to produce tightly packed arrays of
vortex lines. The dependence of vortex bending on the relevant parameters is studied.
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I. INTRODUCTION

A stirred coffee climbing up the cup walls, a whirl o
water spiraling down a drain, and a tornado moving over
earth are natural phenomena involving the rotation of a flu
let it be coffee, water, or dusty air. In all of them the fluid
subject to a balance between an external force and the
trifugal force, and this balance is responsible for a depres
of the density along the axis of rotation. These structu
have no trivial symmetries as is evident in the case of tor
dos, which have continuously changing bent shapes. Non
these structures have long lives because viscosity, impe
tions, and other dissipative mechanisms play such an im
tant role that rotation cannot be self-sustained.

This behavior contrasts with that of the so called sup
fluids, which represent a state of matter of negligible visc
ity or dry fluid @1#. The lack of viscosity allows a superflui
to host rotation for long times with little or no external in
tervention. In addition, when a superfluid rotates it follows
special type of flow that is irrotational,“3v50, except for
a finite number of extended singularities, which are cal
vortex lines. These vortex lines, first predicted for4He con-
densates, are the superfluid equivalent of robust whirls
tornados. However, due to centrifugal forces, the density
the superfluid@2# becomes zero along the vortex line, som
thing that is difficult to achieve in ordinary liquids.

Until recently only two examples of true superfluids we
known: the superfluid phases of4He and3He. In both cases
the strength of the many-body interactions obscures the
natures of superfluidity and makes their study difficult. T
search for superfluid-type weakly interacting systems has
to the experimental realizations of Bose-Einstein cond
sates~BECs! using dilute gases of alkali-metal atoms@3#.
These condensates are ruled at low temperature by a m
copic quantum wave functionc(r )5Ar(r )eiu(r ), whose
phase determines a velocity fieldv5\“u(r )/m that may
host vortices along the lines whereu is not well defined. The
existence of vortices in BECs has been directly confirmed
two sets of experiments. The first one is based on the
nipulation of the internal degrees of freedom of an alm
spherical condensate@4#. In the second one, vortices are pr
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duced by ‘‘mechanical means’’ in rotating elongated tra
with transverse asymmetries@5,6#, a geometry that leads to
intriguing effects on the vortex nucleation process.

In Ref. @7# we find several commonly accepted pred
tions about vortices in rotating traps, namely:~i! A rotating
trap leads to the production of one or more vortices of u
topological chargem, wherem5(2p)21r“u. ~ii ! Vortices
appear in finite numbers, with straight shapes, forming
tices with p-fold symmetries.~iii ! Certain critical rotation
speedsVp,Vp11 should be surpassed before each new v
tex is nucleated.~iv! Asymmetric states without rotationa
symmetry of any kind are found to be energetically unstab
which means that there are perturbations with no energ
cost that can destroy such states. However, Ref.@7# is based
on a variational ansatz for the weak coupling limit, whic
lacks longitudinal degrees of freedom and implicitly induc
the p-fold symmetry of the vortex lattice. Recent work
abandoned these constraints but either focused on infin
long condensates or studied almost spherically symme
traps@8#.

In this paper we study an elongated three-dimensio
Bose-Einstein condensate subject to rotation. Our main re
is that stationary vortex lines are bent even in complet
symmetric setups and that the bending depends on the
of trap and on the number of atoms of the experiment. T
fact that vortex lines may bend was mentioned in Ref.@9#,
where longitudinal excitation modes of a vortex line indu
vortex bending. However, the physics in that paper diff
drastically from our work, in which we consider theground
stateand the generation ofstable and stationarystructures.
Second, in a complementary paper@10# we have presented
some evidence in favor of that bending and how it could
related to the experimental results of Madisonet al. @5#. Here
we extend that work to the analysis of arrays of bent vorti
and their properties as well as the dependence of the ben
of the vortices on the geometry of the trap.

Our work consists of two parts. In Sec. II we provide t
mathematical foundations for the search for the most fav
able configurations of the rotating condensate. To do so
first introduce the mean-field model used to describe the c
densate together with some basic definitions and an en
functional whose minima are the possible ground states
the condensate. In this section we also develop an effic
minimization method for this functional.

All these tools are then applied in Sec. III to differe
©2001 The American Physical Society11-1
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configurations. We start with setups from current expe
ments@5# and show that in elongated traps with many boso
the vortex lines are bent and form Abrikosov lattices wh
are regular only in the core of the gas cloud and deform cl
to the boundaries. Next we study the dependence of the
tex bending on the free parameters in our theory. Finally
Sec. IV we offer our conclusions together with some op
questions.

II. MATHEMATICAL TOOLS

A. The mean-field model

For current experiments it is an accurate approximation
use the zero temperature mean-field theory of the cond
sate, in which the atomic cloud is described by a single w
function c(r ,t) ruled by a Gross-Pitaevskii equation. In th
case of rotating systems it is useful to consider the prob
in the mobile reference frame that moves with the trap@11#,
in which the equation reads

i
]c

]t
5F2

1

2
n1V0~r !1gucu22VLzGc. ~1!

Here Lz5 i (x]y2y]x) is the Hermitian operator that repre
sents the angular momentum along thez axis, and the effec-
tive trapping potential is given by

V0~r !5
1

2
v'

2 @~12«!x21~11«!y2#1
1

2
vz

2z2]. ~2!

In Eq. ~1! we have applied a convenient adimensionalizat
which uses the harmonic oscillator lengtha'5A\/mRbv'

and periodt5v'
21 . With these units the nonlinear param

eter becomesg54paS/a' .

B. Variational formulation

There are several conserved quantities associated with
~1!. The first one is the norm of the wave function,N@c#
5* ucu2dr , which is related to the number of bosons in t
condensate. The second conserved quantity is the energ
the gaseous condensate

E@c#5E c̄F2
1

2
n1V0~r !1

g

2
ucu22VLzGcdr

5E0~c!2VLz~c!. ~3!

In current experiments with stirred condensates@5,6,12#,
the gaseous cloud reaches certain long lived configurat
with one or more vortices. In this work we are not interes
in the precise dynamics of the nucleation process, but l
for the final stationary configurations. From thermodynam
cal considerations we expect the condensate to achieve
least energy for given experimental parameters$N,g,V%.
Such a configuration is called a ground state.

Within the framework of our mean-field model, a statio
ary state is represented by a wave function with the form

cm~r ,t !5e2 imtf~r !. ~4!
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The first way to find such solutions is to introduce Eq.~4!
into our mean-field model~1! and directly solve the resulting
partial differential equation. This method has several dis
vantages:~i! it is difficult due to the many degrees of free
dom that it involves;~ii ! the resulting equation is satisfie
not only by the ground state but also by excited states,
~iii ! there is no mathematical guarantee yet for the existe
of solutions of this problem.

The second way to characterize a stationary solution is
studying the energy functional and using the fact that e
stationary configuration is a critical point of the energy~3!
for given $N,g,V%:

]E

]c U
N

@cm#50. ~5!

Since we are indeed looking for the ground state, one sho
use a minimization procedure able to find the minima of
energy functional for given parameters.

C. Reshaping the energy functional

As we stated above, our objective is to find the solutio
cm that are the minima of the energy subject to the rest
tion * ucu2[N, for a fixed angular speed of the trap and for
given interaction. The existence of at least one minimum
ground state for this variational problem has been pro
elsewhere@13#; the solutions are guaranteed to be stable a
represent the energetically most favorable configurations
given N andV.

Such a problem is called a constrained optimization a
we will refer to the solutioncm as a constrained minimum
The existence of constraints in an optimization proble
poses serious difficulties for traditional descent metho
since it is difficult to design an efficient minimization algo
rithm that takes care of the constraints at each step@14#. To
take into account this restriction one should use Lagrang
multipliers, i.e., just add a fraction of the constraintv(m,N)
~also called a ‘‘penalizer’’! to the original functional:

F@c#5E@c#1v~m,N!. ~6!

It is not difficult to show thatF@c# andE@c# have the same
stationary states, and that any absolute or relative minim
of F@c# is also a constrained minimum ofE@c#.

One expects that a wise choice of the penalizer will
tablish a one-to-one correspondence between the value
the chemical potentialm, the absolute minima ofF@c#, and
the ground states of our condensate. The advantage ofF@c#
over E@c# is that inF@c# there is no need to be concerne
about constraints: the value ofN for the ground state is de
termined by the chemical potentialm, which is fixed
throughout the minimization process.

The traditional choice for a Lagrange multiplier leads
the definition of the free energy

F@c#5E@c#2mN@c#. ~7!

However, this functional is not bounded below and thuscm
is at most a local minimum ofF. Consequently, this func
1-2
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VORTEX BENDING AND TIGHTLY PACKED VORTEX . . . PHYSICAL REVIEW A64 053611
tional cannot be used to characterize the state of the con
sate. This is an interesting result, since one could be tem
to think that the traditional definitions of the thermodynam
cal potentials are suitable to characterize all physical s
tems. We must remember, however, that our condensa
being described by a mean-field model, a simplification o
more complex model, and as such what works for the
problem need not work for the simpler one.

In our search for suitable functionals we have found
simple one which we call thenonlinear free energy:

F@c#5E@c#1
1

2
~N@c#2l!2. ~8!

First and most important, it can be proved thatF@c# has at
least one finite norm absolute minimum for each value ol
@13#, and that each of those minima corresponds to a c
strained minimum of the energyE@c#. Second, there exists
simple and invertible relation between the usual thermo
namic variables, the chemical potential and the numbe
particles (m,N), and our variables, Lagrange’s constant a
the number of particles (l,N),

m5N@cm#2l. ~9!

An important feature of our functional~8! is that it is
highly nonlinear with respect toc. This poses no additiona
difficulty, since our original equations~1! were already non-
linear. Indeed Eq.~8! has proved to be the most natur
choice for many other problems, such as the propagatio
incoherently coupled laser beams through saturable m
@15#.

D. Optimal methods for minimization

To minimize the nonlinear free energy~8! we follow Ref.
@16#. First we choose the right function space, which in o
case is the Sobolev spaceH1(R3)[$c/c,“cPL2% of func-
tions that admit at least one spatial derivative. This spac
equipped with a scalar product

^c,f&[E @c̄~r !f~r !1“c̄~r !•“f~r !#dnr ~10!

and a normici5^c,c&. To obtain an explicit expression fo
the gradient of the functional inH1 we perform a first order
expansion ofF@c# around a trial statec:

F@c1ed#5F@c#12e ReE S d*
]E

]c̄
1“d*

]E

]“c D
1O~e2!. ~11!

We have to turn this expression into something that lo
like Frechet’s definition of a derivative. This means that
have to find somef such that

ReE F d̄
]E

]c̄
1“ d̄

]E

]~“c̄ !
G5ReE @ d̄f1“ d̄“f#. ~12!
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If we integrate by parts and impose the condition that t
equality be satisfied for all perturbationsd, the problem has a
formal solution which is given by a Lagrange equation,

~12n !f5
]E

]c̄
2“

]E

]~“c̄ !
. ~13!

In consequence, our formal expression for the Sobolev g
dient of F@c# finally reads “SF[(12n)21

“F, where
“SF stands for the Sobolev gradient,“F is the ordinary
one, and (12n)21 represents the inverse of a linear a
strictly positive definite operator.

We may now use the Sobolev gradient of our function
as the direction of descent for a minimization procedure:

]n

]t
~r ,t!5~12n !21F2

1

2
n1V1gunu22VLzGn.

~14!

The preceding equation converges to some stationary s
f(r )5 limt→`n(r ,t). To grant convergence to the tru
ground state one needs to improve the descent method
ing, for instance, the nonlinear conjugate gradient meth
instead of Eq.~14!, and introducing some type of relaxatio
that helps avoid saddle node points. In any case, the min
zation process must be performed on a suitable spac
functions that we built using a discrete Fourier basis w
643643128 modes.

III. RESULTS

A. Bent vortex lattices in current experiments

We have applied the numerical methods outlined abov
different setups. The family of numerical experiments in th
subsection resembles the experiments of Madisonet al.
@5,6#. For these experiments with87Rb condensates, th
bosonic interaction is ruled by the scattering lengthaS
.5.5 nm. For several pictures in this paper, the numbe
atoms was chosen to match,Ng59000, which corresponds
to a few times 105 Rb bosons, but our results remain qua
tatively valid for an ample range ofgN values as will be
shown below.

The geometry of the trap is a very elongated one,v'

.18.7vz , and for the small transverse deformation of t
trap we have tried«50.0 as well as«50.03, the latter being
the closest one to the actual experiment@5#. This means that
we have studied both axially symmetric setups and co
pletely asymmetric setups, and in both cases our study
provided essentially the same results. This is due to the
that an intense nonlinear interaction (Ng;104) effectively
prolongs the existence of all solutions from the symme
setup to the asymmetric setup@17#.

The first result is that an increase of the angular sp
causes the minimum of the energy to move from a node
ground state into states with one, two, three, and more
tices. Consequently, as was already predicted@7#, there exists
a cascade of increasing angular frequencies$V1,V2
,•••% for the nucleation of one, two, and more vortices
the larger the rotation frequency, the more vortices, and
1-3
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our setup,V1.0.4 (0), V2.0.5 (3), V3.0.5 (8), and
V4.0.6 (4).Figure 1 shows the structure of a ground st
hosting two vortices atV50.55.

The second and most important result, which is alrea
evident in Fig. 1, is that vortices are nucleated with a sta
and stationary bent shape even in axially symmetric traps
Fig. 2 we show three-dimensional pictures of a condens
with up to four bent vortex lines.

These contorted shapes are absolutely stable config
tions that lack rotational symmetry of any kind, even d
crete, something which was thought to be forbidden acco
ing to Ref. @7#. In that case asymmetric states were fou
only for discrete values of the angular speed, right on
transition between different numbers of vortices, and alw
exhibiting energetic instabilities. Furthermore, due to
bending, while the trunk of the condensate rotates, the c
remain almost still. This feature allows the gas to accomm
date a fractional value of the angular momentum which
between 0 and 1, and which never reaches 1, as was alr
conjectured in@10#. As the speed of the trap increases, t
angular momentum grows continuously by means of pull
the vortex line straighter and not only with discontinuo
jumps.

B. Regularity of the vortex lattice

From old studies with liquid helium and more recent wo
with condensates of simpler geometry, it has been expe
that vortices should form regular triangular lattices. On
other hand, our finding above seems to suggest that the
tex aggregate rather adopts an irregular shape. As we
show below, the condensate actually develops a med
range order, which is diluted in the vicinity of the clou
boundary.

FIG. 1. Ground state of a condensate in an asymmetric trap«
50.03) such as the one from current experiments for an ang
speed ofV50.55v' . Shown are the vortex cores and several tra
verse sections of the condensate. The gray scale indicates the m
lus of the wave function. We also indicate the axis of rotation of
trap.
05361
e

y
le
In
te

ra-
-
d-
d
e
s

e
ps
-

s
dy

g

ed
e
or-
ill
m

In Fig. 3 we use the solutions of our previous section
simulate the pictures that should be seen in experiments.
first row of two-dimensional plots@Figs. 3~a–d!# are views
of the condensate from above, and represent the column
sity of the bosonic cloud along the transverse directio
These pictures bear a close resemblance to the experim
photographs of Refs.@5,6#, showing blurred clouds where th
vortex cores seem partially filled.

In Figs. 3~i–l! we show the density of the condensate
seen at half the height of the condensate, i.e.,uc(x,y,z
50)u2. Very recently an experiment was made that obser
this type of transverse cut of a stirred sodium condens
@12#. In that experiment a thin slice of bosons is promoted
a different internal state and then imaged separately from
rest of the cloud. The resulting pictures are like those in F
3~i–l!, where the regularity of the Abrikosov vortex lattice
made evident. The blurring has disappeared and the hole
arranged along the expected triangular lattice. In the ab
mentioned paper the bending of the vortex lines is also
ported.

As further confirmation we suggest that using the setup
Ref. @5# and watching the condensate not from above,
from one side would allow a direct observation of bent vo
tex lines, leading to pictures such as those in Figs. 3~e–h!.

C. What is the ultimate cause of bending?

The fact that the bending of the vortex line takes place
only in the asymmetric trap of current experiments but a
in a radially symmetric trap«50 represents a surprising typ
of symmetry breaking in which the superfluid not on
chooses the sense of rotation, but also a plane for its bend

ar
-
du-
e

FIG. 2. Three-dimensional surface plots of one to four vor
lines for «50.03 andV/v'50.41,0.55,0.6,0.65. The walls of th
boxes reflect different integrated views of the gas cloud~i.e., as they
would look if imaged with high resolution!, and within each box we
show the lines of lowest density within the condensate. Each
represents a centered box (x,y,z)P@26,6#3@26,6#3@260,60#,
with sizes in adimensional units. Parameters are close to experim
tal values:Ng59000, «50.03, v' /vz5219/11.7.
1-4
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FIG. 3. Condensate shapes fo
the same states as in Fig. 2
V/v'50.41 ~a,e,i!, V/v'50.55
~b,f,j!, V/v'50.6 ~c,g,k!, and
V/v'50.65 ~d,h,l!. Shown are
top ~a–d! and side views~e–h!
and ~i–l! two-dimensional cuts of
the cloud at half its height.
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It is important to emphasize the counterintuitive nature
the vortex bending in the case of an isolated vortex li
First, in contrast to the case of4He, the BEC is not con-
strained by any recipient and there are no asymmetric bou
ary conditions which could easily explain the deformation
the fundamental solutions. Second, although qualitative
sons for such bending may be founda posteriori, they have
never been reported before. And even though physical a
ments may justify the bending of the vortex line, they c
hardly support the fact that the bent vortex line is a sta
stationary configuration. Both the stability and the station
ity can be demonstrated only with a direct study of the
ergy functional.

Nevertheless, it is legitimate to ask for the ultimate re
sons for this rupture of symmetry. Since our search for sta
was based on energetic considerations, we have studie
dependence of the bending on each of the free paramete
our problem:N, V, g, «, and the elongationg5v' /vz .
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First, the influence of« is discarded. As we mentione
above, bending exists in either symmetric or asymme
traps. Rather, the asymmetry seems to take part only in
dynamics of the nucleation process, by changing the va
of the critical frequencies and inducing a type of hystere
@10#.

A different role is played by the elongation of the trap,g,
and the effective interactionU5Ng. Starting with a configu-
ration and lowering either the elongation or the number
atoms, we see that the bending becomes smaller and ev
ally disappears@Figs. 4~a–c!#.

We have tried to measure the bending so as to determ
the minimal elongation and interaction that are required
induce this phenomenon. The problem is that, due to
small changes ofLz , the full minimization procedure doe
not allow us to bound this minimal elongation accurately. A
alternative procedure is to study the relation between
angular speed that is required to stabilize a straight vor
sions
FIG. 4. Side views of the condensate forN5105 atoms of 87Rb, and decreasing elongation. The trap parameters and plot dimen
(V,v'/2p,vz/2p,r max,zmax) are~a! (0.5v' , 219 Hz, 11.7 Hz, 2.63 nm, 49.09 nm!, ~b! (0.4v' , 96 Hz, 25 Hz, 5.00 nm, 19.23 nm!, and
~c! (0.3v' , 50 Hz, 50 Hz, 8.51 nm, 8.51 nm!. ~d! uses the same trap as in~a!, but with $N5104,V50.53,r max51.65,zmax530.98%.
1-5
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V̄1, and the angular speed at which the ground state acqu
some angular momentum,V1. The first value arises from th
study of normal modes around a straight vortex, while
second value is the energy difference between a straight
tex and a vortexless state@10#. WhenV̄1@V1 there are val-
ues of the angular speed where bending can be favora
This phenomenon has been referred to in the literature
‘‘anomalous modes’’@18#, and it is a signature of bending.

In Fig. 5 we plot the differenceV̄12V1 as a function of
the elongationg and of the effective interactionU5Ng for
an axially symmetric trap. According to this study, a lar
elongation of the trap is required to make a bent vortex
ergetically favorable over a straight one.

IV. CONCLUSIONS

In this work we have studied vortex lines in a very elo
gated Bose-Einstein condensate in a rotating trap. By de
oping both a customized energy functional~Sec. II C! and an
optimized descent method~Sec. II D! we have been able to
find the ground state of a condensate in a family of differ
experimental configurations.

The first part of our study~Sec. III A! focused on realistic
values of the experimental parameters, taken from the w
by Madisonet al. @5,6,19#. The main conclusion of this work
is that by increasing the rotation speed the conden
achieves states with one, two, three, and more bent vort
Such vortices form a regular Abrikosov lattice at half t
height of the condensate and deform not very far from
condensate core.

Appart from the observation reported in@12# and while
current experiments by Madisonet al. @5,6,19# are carried
out in a regime in which vortex lines should bend, this h
not yet been observed. The reason is that the imaging

FIG. 5. Gray scale plot and contour lines for the differen

V̄12V1 between the speed required to nucleate a vortex,V1, and

the speed required to stabilize a straight one,V̄1, as a function of
the elongation of the trap,g5v' /vz , and the effective interaction
U5Ng. A horizontal dash-dotted line marks the spherically sy

metric trap,g51. For V̄1.V1, i.e., above the thick solid line, the
bending of vortices becomes energetically favorable. All figures
adimensional.
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condensate which is a few micrometers in size large requ
a previous expansion in which the cloud becomes d
shaped and bending cannot be appreciated. Furthermore
study of the elongated cloud without vortices@10,20# shows
that the nucleation of vortices is subject to hysteresis and
must actually exceed some rotation frequencyVm , which is
rather large and makes it difficult to selectively produce o
two, or more vortices.

On the other hand the bending of vortex lines has sig
tures which are also observed in current experiments. F
the bending by itself can explain the apparent filling of vo
tex lines when seen from above@5# and the regular pictures
that appear in most recent observations with sliced sod
condensates@12#. Second, the bending also accounts for t
continuous growth of the angular momentum with respec
the rotation speed, and the fractional values of the ang
momentum 0, l ,1 that arise in the indirect measuremen
of @6# and@19#. Finally, the nucleation of many bent vortice
and their subsequent interaction during the expansion ph
may lead to turbulent structures that should explain the l
of regular pictures above a certain angular speed@5,6#.

The second part of this paper studied the dependenc
the bending on the parameters of the mean-field model~1!.
Here we conclude that it is both the elongation and inter
tions that induce the bending of the vortex line, while t
transverse asymmetry plays no important role.

Our results imply that past studies devoted to the qu
linear limit (U!1) would become of no applicability fo
elongated traps due to the lack of bending in the simplifi
models. Second, along this line it would be nice to findana-
lytically the geometry of the vortex line as a function of th
interactionU and the elongationg.

Our study also reveals that current experiments are be
developed in a regime which is qualitatively different fro
the setups that have been studied up to date@7,8#. Values of
the relevant parameters (g,U) in current experiments are s
far from most studies that new methods must be develo
to accurately describe these amazing systems.

As an example, let us pose one of the technically diffic
questions that arise in this work. From our numerical work
seems that the extremes of some of the vortex lines actu
reconnect not too far away from the core of the cloud, for
ing what is called a vortex ring. Although it is not possib
with current numerical methods to fully support this conje
ture, vortex rings have already been observed in BECs@21#.
The limits of zero and infinite radius of a vortex ring lead
a dimensionless zero and an isolated vortex line, resp
tively. Therefore vortex rings would be a nice tool for e
plaining the nucleation of vortices and they would allow i
terpretation of the states in this work as the result of
incomplete nucleation. The proof or refutation of this conje
ture remains a mathematically challenging problem.
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