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Damping of trapped Bose-Einstein condensate oscillations at zero temperature
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We provide evidence for the zero-temperatuture damping of condensate radial oscillations in the elongated
cylindrical trap. The origin of this damping is a parametric resonance leading to an energy transfer from the
coherent oscillations of condensate to longitudinal sound waves in certain frequency interval.
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The damping of the oscillations of the Bose-condensed P 52 B2 92 1 A
gas in a trap isolated from environment is one of the most- ih——=|— 5=V — —+ —me?(t)r?|¥
interesting problems of the physics of the Bose-Einstein con- at 2m 2m gz2 2

densation. So far, the experimentat-4] and the theoretical A

[5—7] investigations have been reduced to the study of the +UW W, ()
damping due to the interaction of oscillations and thermal
excitations. An ensemble of such excitations plays a role of
heat bath. In all cases the relatively high temperatdres local character of the interparticle interaction
>hwy have been consideredy is the frequency of a para- Let introd th P tial i ’ diér d
bolic trap. However, the principal question of the origin of .e us intro .uce* € spatia scf';l.mg pargm €r) an
the irreversible damping in the oscillating-trapped condendefine new variablep=r/b. In addition, we introduce the

ereUy=4mah?/m wherea is the scattering length. The
only simplification in this equation is an assumption of the

sate afT =0 requires a special study. time variabler(t). The field operator can be represented as
In the present work it will be shown that such damping, in 1
any case under definite conditions, does exist. We consider W(rt)= B)}(ﬁ,r,z)exp[id)]. )

the radial oscillations of the condensate caused by varying
frequencyw(t) of the transverse isotropic parabolic potential

in an elongated trap of the cylindrical symmetry at zero tem-

perature. The study of the problem under such conditions had
a series of advantages. As is found[Bl, there exists an mr2 db
exact scaling solution of the Gross-Pitaevskii equation for an O(rt)=-—
isotropic two-dimensional parabolic potential with an arbi- 2hb dt
trary dependence(t). This solution describes a space-time
evolution of the condensate, based only on the solution in th
initial static potential ato= w,. It is essential that this solu-

Inserting Eq.(2) into Eq. (1) and using the results ob-
ined in[8], we find for the phasé of the wave function

()

gnd the equation for the operatf@r

° 2 2 27
tion holds for the quasi-two-dimensional case corresponding iﬁﬁ_X: _ ﬁ_vz+ }mwzpz Y+Uxt xx— ﬁ_bza_X_
to the cylindrical symmetry of a trap. In particular, a ratio ar 2m 20 2m- 572
between interparticle interaction and kinetic energy remains (4)

constant. As a result, if for the initial static trap the Thomas- _ ) _
Fermi approximation is applicable, it continues to be valid atThis equation acquires such form provided thathii§ and

all stages of the gas evolution. 7(t) satisfy equations

If the change of radial potential is related with the transi-
tion from the frequencyg to w4, then the condensate oscil- d?b 2(t\b= wlb~3 _ ftdt’ 5
lations with the frequency @, arises[8]. The variation of PR (Ob=web ™%, ()= OF’ ®)

condensate density is accompanied by the oscillations of the

sound velocityc. As will be shown below, the phenomenon where w,= w(— ) is the initial frequency antd(—«)=1.

of parametric resonandsee e.g.[9]), appears under these For T=0, employing the symmetry of the problem, we
conditions. The essence of the phenomenon is that the angan treat the condensate wave functignas independent of
plitude of the waves propagating along the azaixis with  ; \aking a standard substitution of operajofor the mac-

frequency close tav, is undergone exponential enhance- oscopic wave functiory, in Eq. (4), we have
ment. At zero temperature the initial amplitudes, in fact, are

due to zero-point oscillations. As a result, the dynamical en- X0 A . 2
ergy of the coherently oscillating condensate decreases, it ——=| =5V, +5mwop®xo+Uxoxo=0. (6)
transforming into the energy of the longitudinal oscillations.

Considering cylindric configuration of the external field  Equation(6) is formulated in terms of variablgs and 7
with the longitudinal sizd.>R and neglecting the edge ef- for the condensate wave function in a static two-dimensional
fects, we can represeint the general equation for the Heisefarabolic potential with frequenayy. In this casey, has the
berg field operato® (r,z,t) as known-time behavior
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- ~ - . 2
Xo(p,7)=xo(p)e ", (7) a9 IR S _
IﬁﬁTv Gu+ ZmVp+ meop +2G—pu
where u is the initial chemical potential and a real function 0, 202
}o(ﬁ) is a solution of the equation b" "k v (15)
2m '
h? o~ 1 55 ~2 ~
- ﬁApXO—’— Emwop +Uoxo— 4 | x0=0. 8 At k—0, as is clear from the physical reasons, the lowest

branch of the longitudinal excitations is related to a uniform

We restrict ourselves by considering the case when the irshift along thez axis with the~radial distribution of the den-
equality u>%w, is valid and, therefore, the Thomas-Fermi Sity determined by amplitudg,. Hence this branch is gap-
approximation holds for. In this case E&) has the familiar less. For small but finite value &fthe transverse distribution

solution of the density in such wave changes weakly. This is clear,
e.g., from results obtained for a static elongated trafiin
w |2 2 172 and[12]. Keeping it in mind, we put
Xo=|—] (1-=] , (9)
xo (Uo) R?

u=U(p,M)xo(p), v=V(p,7x0(p), (16)

whereR= y2u/mwg. Thus, to describe the space-time evo-anq assume that for longitudinal sound excitatith@, 7)

lution of the condensate wave functig®) it is sufficientto 54 V(p,7) are weakly dependent gn Neglecting deriva-
find a solution of Egs(5) and use deriveti(t) and 7(t) for  jyes inp of U(p,7) andV(p,7) in Egs.(14) and (15), we

the definition of®(r,t) [Eq. (3)] and xo (7), [Eq. (9)]. find for functionsf=U+V andF=U—-V
Let us assume a fast transition from the frequemgyto
w,. Then the solution of Eq5) yields OF  b2h2K?
M or T Tom
b?(t)= E([32+ 1)-— E(32—1)coszw t (10
2 2 L of b2ﬁ2k2
|ha—T= 2G+ o )F. ()

where8=wq/w,>1.
Consider the excited states of the system at the back-

ground of the coherently oscillating condensate. These states Le(';_us average b[;)th eguatrllons oylardefnotlng the crc])rre- K
can be found as oscillations of the “classical” field of the SP2NAINg average by a dash over the functions. The wea
condensatésee, e.g.[10]). For this purpose we replace op- dependance dF on p allows to find approximately

erator y with the functionx=(}ot}’)exp(—wﬁh) in Eq. (GF)~GF.
(4) and carry out a linearization iR’

In the Thomas-Fermi approximation, we have involved Egs.

X P P (9) and(12), G= /2.
oy = T am Vet gMeor T 26k X+ Gx Next, we go over to variablein a set of Eqs(17), taking
. . into account Eq(5) after direct transformation we find
h a7 x'
T p2) A _
om (N> (19 E
— +Qg(1)F=0, (18
at?
where
~ k? [ 2G %2
G=Upxs. 12 204)= — -
0X0 (12 Q=5 v 2m) (19
We are interested in the longitudinal excitations having a . . _ _
quasicontinuous spectrum lat>R. The solution of Eq(11),  In the case of statical potentiab€ 1) the quantity(), is
corresponding to these excitations, is sought(see, e.g., directly the frequency of the Bogoliubov excitation spectrum
[10]) determined for the averaged value of the condensate density.
In the problem under consideratidmand therefore), de-
X' (p,7)=u(p,7)e**—v*(p,7)e 13 pend on time.
X' (p.m)=ulp.7) (p.7) (13 In what follows, longitudinal phonons of),~w;<u
The substitution of this expression into Ha1) yields prove to be involved into the general dynamics of the sys-
tem. In this casé),(t) lies within the sound range
i s [ & V2+1 22, 5 +b2h2k2 G 3 12
HartTL T am e g ST - | L (20
(14) “ (v’ 2m/ -
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Note that the valu€20) for the velocity of the longitudi- L% 1
nal sound in an elongated trap was found for the first time in E(t)= Ej dkwk(ezykt_l)a(zgwl_sk)- 27
[11] and[12].

We restrict ourselves by considering a relatively weak | et ys rewrite this expression introducing insteackat
variation of the frequency of a trap, i.@=B8—-1<1. From  pew variablex=2¢,/gw,. Then, with regard to Eq23) and

Eqg. (10) one has in this case (25) we have
b 2=1—g+gcog2wt). (21 1 t
E(t)=BuJ(t), J(t)=f dx{ ex t—(l—xz)”2 —1],

Finally, Eq.(18) acquires a form of the Mathieu equation -1 1 (28)

J°F _

F+w§[1+g cog2w;t)JF=0, (22  Where

ngl ﬁwl
where B= e o t1=2gw;. (29
wi=(1-g/2)ck. (23) et us compar&(t) [Eq. (28)] with the energy of the coher-

ent condensate oscillatiorts;. Within the Thomas-Fermi
approximation the energy of the condensate in a trap of fre-
ency w readsE(w)=3u(w)Ny. The chemical potential

This equation determines actually the parametric reso
nance connecting the coherent transverse oscillations of t
condensate with Iong_ltudlna] phonqns of frequemqycllose (o) is connected with the number of particla in the
to w,. From the physical point of view the parametric reso- .viindrical trap b ;

- o L p by the relation
nance originates due to a periodic variation of the condensat@/

density and, therefore, variation of the sound velocity. L p2(w)
Forg<1, one can employ the standard algorithm of solv- No=— 5 (30
ing the Mathieu equatiortsee, e.g.[9]). We seek for the A 4(hw)

solution of the equation as i )
For a fixed number of particleg(w) ~ w.

[ a(t)cod wit) + b(t)sin(wit). (24) At fast transition of the trap frequency from, to w; the
condensate keeps its space configuration at the first moment,
Of course in an exact solution there are terms with theP€ing already in the new external field. Consequently, the

multiple harmonics but they correspond to the amplitudes ofondensate energy changes fréig=E(w) to some value

higher powers ing. The coefficientsa(t), b(t) are slowly Eo.

varying functions ot. So, on the substitution of E¢R4) into The oscillation energy, is equal to the difference be-

Eq. (22) we retain only the terms of zero and first ordergiin tweenEg and the static condensate energy corresponding to

and neglect second derivatives faft) and b(t), that are the frequencyw,. Direct calculations give

~g?. As a result, we arrive at a set of two-linear differential

equations with constant coefficients. This system has expo- - 1,
nentially increasing solutiofia(t),b(t) ~expyt)] with the Ee=Eo~Elw)=39"uNo 3D
increment
[we have conserved a notatig{ wg) = w].
1[(1 LS The damping of the condensate oscillations is character-
')’k:E ngl) —ei| &= 2(w— o). (25 ized by a ratio
Thus, the parametric resonance takes place within the narrow E() _a @) SEJ(U (32
range neamw, with the width E. Rl u/ g ’
1 The factor in front of integral(t) for actual values of is
dw= ngl- (26) much smaller than unity. The damping becomes noticeable at

timest>t,. Calculating integral(t) in this limit, we find
Within this range there occurs a growth of the sound-

3 1/2
wave amplitudes, leading to a reduction of the energy of E(V) :E f“"o) E(Zml) exp(t/ty) . (33)
coherent oscillations of the condensate. Ec RU u/ gl t
A square of the modulus of the wave functi¢?4) in- o o o
creases as exp{R). Hence, within a logarithmic accuracy the characteristic

Obviously, the energy grows similarly. At=0, the initial ~damping time equals
energy of the longitudinal mode is zero-point energy. Then R 3 [ 4 U2
the total-energy transferred into the longitudinal modes as a t, ztlln(—(L) g( * ) ] (34)
result of the parametric resonance can be estimated as a\fiwg 27ty
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This time proves to be large compared with the perioddrical trap with voy=400 Hz (Rb) or v,=10° Hz (Na), L
27l w, of the condensate oscillations not only due to small-=2x1072 cm, Ny=2X%10° and assume that the dimen-
ness ofg but also due to very-large factor in the argument ofsjonless parametey~0.15. Then, from Eq(30) we find Rb
logarithm. Thus, the damping of the condensate oscillationgas ;,~90 nK. Accordingly, the Thomas-Fermi radius
may be slow, though inevitably emerging &t=0 for the  equalsR~1.7x10"* cm. For the parametdy, in Eq. (29)
conditions concerned. and taking into account the relatias = (1—g) o, We have

A continuous character of the consideration assumes imy, ~6.2x 102 s. The direct calculation estimates the loga-
plicitly that at least several modes of the longitudinal soundithmic factor in Eq.(34) as 10. Thus, evaluating the damp-
excitations fall within the energy bandwid(B6) of the para-  jng time we findt,<0.1 s. Being less than the ordinary
metric resonance. The spacing between the neighbor modgfetime of the systems, this time is realistic for revealing the
equalsAw=2mc/L. SinceR~2c/w,, this condition holds damping.
when an inequality Similar results can be obtained for sodium. In this case
the estimations giveu~140 nK, R~1.6x10 % cm, t;
~2.5x10 % s. As a resultf, ~0.03 s. It is important that
in both cases the conditidi35) proves to be fulfilled. At the
Thus, obtained results demonstrate the existence of thgfme t|meg,u_<TC, and it means'that_after complete damp-

Ing the depletion of condensate is quite small.

damping aff=0 for the radial condensate oscillation in cy- The results obtained demonstrate the feasibility of observ-

lindrical trap. This damping is a result of the parametric reso- X . . .
nance that couples the coherent condensate oscillations with? the damping al < when the interaction with the ther-

the longitudinal sound waves. mal excitations can be ignored.

AL finte temperatresio, <7<y e same resonance 1 SOICUSoR LS WOIH Wi o e 8 ek con
amplification occurs, but now the initial number of phonons 9 ping

of energy% w, equalsT/fw, and the initial energy of reso and Beliaev mechanism of phonon decay in a uniform
k k - . . .
nance modes equalshay(T/%wy). In this case in Eq27) weakly interacting Bose gatsee, e.g.[13]) Beliaev had

. . studied the decay of a real phonon with the specific character
the qqantltyﬁwk _shpulgl_be replaced witfl. Such replace- - of dispersion law. In the present paper, the coherent evolu-
ment increases insignificantly the argument of logarithm in_ fth d d diti f | b
Eq. (34) tion of the condensate under conditions of complete absence

: ) Oof real phonons is considered. The damping in our case is
Gused by the parametric resonance as a result of the sound-
velocity oscillation. It is instructive that the parametric reso-

$iance leads to the creation of the longitudinal sound waves

L>27R/g (39

takes place.

The parametric resonance is accompanied by a producti
of the large number of sound excitatiorsE(t)/f w4. This
leads to reducing the number of particles in the condensat
In prlnC|pIe_, for the times compared W"@ [Eq. (34)], this filling the finite-energy intervalsee Eqs(26) and(27)], evi-
could require a S(_)Iutlor_u of the_self-consstent problem. Fro encing the nonlinear origin of the phenomenon.
the general considerations it is clear that the escape of par-
ticles from the condensate can be neglected if the vibrational This work was supported by the Russian Foundation for
energy per particlgu is small compared with the tempera- Basic Research and by the Grant Nos. INTAS-97-0972 and
ture of the Bose condensatidn . INTAS-97-11066. This work was partially performed when

Let us estimate the characteristic damping timefor  one of the authorgY.K.) was at Munich Technical Univer-
guantum gases Rb and Na. We consider an elongated cyliisity under the Humboldt Award program.
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