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Damping of trapped Bose-Einstein condensate oscillations at zero temperature

Yu. Kagan and L. A. Maksimov
RRC Kurchatov Institute, Kurchatov Square 1, 123182 Moscow, Russia

~Received 24 November 2000; published 10 October 2001!

We provide evidence for the zero-temperatuture damping of condensate radial oscillations in the elongated
cylindrical trap. The origin of this damping is a parametric resonance leading to an energy transfer from the
coherent oscillations of condensate to longitudinal sound waves in certain frequency interval.
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The damping of the oscillations of the Bose-conden
gas in a trap isolated from environment is one of the mo
interesting problems of the physics of the Bose-Einstein c
densation. So far, the experimental@1–4# and the theoretica
@5–7# investigations have been reduced to the study of
damping due to the interaction of oscillations and therm
excitations. An ensemble of such excitations plays a role
heat bath. In all cases the relatively high temperatureT
@\v0 have been considered (v0 is the frequency of a para
bolic trap!. However, the principal question of the origin o
the irreversible damping in the oscillating-trapped cond
sate atT50 requires a special study.

In the present work it will be shown that such damping,
any case under definite conditions, does exist. We cons
the radial oscillations of the condensate caused by vary
frequencyv(t) of the transverse isotropic parabolic potent
in an elongated trap of the cylindrical symmetry at zero te
perature. The study of the problem under such conditions
a series of advantages. As is found in@8#, there exists an
exact scaling solution of the Gross-Pitaevskii equation for
isotropic two-dimensional parabolic potential with an ar
trary dependencev(t). This solution describes a space-tim
evolution of the condensate, based only on the solution in
initial static potential atv5v0. It is essential that this solu
tion holds for the quasi-two-dimensional case correspond
to the cylindrical symmetry of a trap. In particular, a rat
between interparticle interaction and kinetic energy rema
constant. As a result, if for the initial static trap the Thoma
Fermi approximation is applicable, it continues to be valid
all stages of the gas evolution.

If the change of radial potential is related with the tran
tion from the frequencyv0 to v1, then the condensate osci
lations with the frequency 2v1 arises@8#. The variation of
condensate density is accompanied by the oscillations of
sound velocityc. As will be shown below, the phenomeno
of parametric resonance~see e.g.,@9#!, appears under thes
conditions. The essence of the phenomenon is that the
plitude of the waves propagating along the axialz axis with
frequency close tov1 is undergone exponential enhanc
ment. At zero temperature the initial amplitudes, in fact,
due to zero-point oscillations. As a result, the dynamical
ergy of the coherently oscillating condensate decrea
transforming into the energy of the longitudinal oscillation

Considering cylindric configuration of the external fie
with the longitudinal sizeL@R and neglecting the edge e
fects, we can represent the general equation for the Hei
berg field operatorC(rW,z,t) as
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1

1

2
mv2~ t !r 2GĈ

1U0Ĉ1ĈĈ, ~1!

here U054pa\2/m where a is the scattering length. The
only simplification in this equation is an assumption of t
local character of the interparticle interaction.

Let us introduce the spatial scaling parameterb(t) and
define new variablerW 5rW/b. In addition, we introduce the
time variablet(t). The field operator can be represented

Ĉ~rW,t !5
1

b
x̂~rW ,t,z!exp@ iF#. ~2!

Inserting Eq.~2! into Eq. ~1! and using the results ob
tained in@8#, we find for the phaseF of the wave function

F~r ,t !5
mr2

2\b

db

dt
~3!

and the equation for the operatorx̂

i\
]x̂

]t
5F2

\2

2m
¹r

21
1

2
mv0

2r2G x̂1Ux̂1x̂x̂2
\2

2m
b2

]2x̂

]z2
.

~4!

This equation acquires such form provided that theb(t) and
t(t) satisfy equations

d2b

dt2
1v2~ t !b5v0

2b23, t~ t !5E
0

tdt8

b2
, ~5!

wherev05v(2`) is the initial frequency andb(2`)51.
For T50, employing the symmetry of the problem, w

can treat the condensate wave functionx0 as independent o
z. Making a standard substitution of operatorx̂ for the mac-
roscopic wave functionx0 in Eq. ~4!, we have

i\
]x0

]t
5F2

\2

2m
¹r

21
1

2
mv0

2r2Gx01Ux0* x0
250. ~6!

Equation~6! is formulated in terms of variablesr and t
for the condensate wave function in a static two-dimensio
parabolic potential with frequencyv0. In this casex0 has the
known-time behavior
©2001 The American Physical Society10-1
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x0~rW ,t!5x̃0~rW !e2 imt/\, ~7!

wherem is the initial chemical potential and a real functio
x̃0(rW ) is a solution of the equation

2
\2

2m
Drx̃01S 1

2
mv0

2r21U0x̃0
22m D x̃050. ~8!

We restrict ourselves by considering the case when the
equality m@\v0 is valid and, therefore, the Thomas-Ferm
approximation holds for. In this case Eq.~8! has the familiar
solution

x̃05S m

U0
D 1/2S 12

r2

R2D 1/2

, ~9!

whereR5A2m/mv0
2. Thus, to describe the space-time ev

lution of the condensate wave function~2! it is sufficient to
find a solution of Eqs.~5! and use derivedb(t) andt(t) for
the definition ofF(r ,t) @Eq. ~3!# andx0 ~7!, @Eq. ~9!#.

Let us assume a fast transition from the frequencyv0 to
v1. Then the solution of Eq.~5! yields

b2~ t !5
1

2
~b211!2

1

2
~b221!cos 2v1t, ~10!

whereb5v0 /v1.1.
Consider the excited states of the system at the ba

ground of the coherently oscillating condensate. These st
can be found as oscillations of the ‘‘classical’’ field of th
condensate~see, e.g.,@10#!. For this purpose we replace op
erator x̂ with the functionx5(x̃01x̃8)exp(2ımt/\) in Eq.
~4! and carry out a linearization inx̃8

i\
]x̃8

]t
5S 2

\2

2m
¹r

21
1

2
mv0

2r212G2m D x̃81Gx̃81

2
\2

2m
b2~t!

]2x̃8

]z2
, ~11!

where

G5U0x̃0
2 . ~12!

We are interested in the longitudinal excitations having
quasicontinuous spectrum atL@R. The solution of Eq.~11!,
corresponding to these excitations, is sought as~see, e.g.,
@10#!

x̃8~r,t!5u~r,t!eikz2v* ~r,t!e2 ikz. ~13!

The substitution of this expression into Eq.~11! yields

i\
]

]t
u5F2

\2

2m
¹r

21
1

2
mv0

2r212G2m1
b2\2k2

2m Gu2Gv,

~14!
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]

]t
v52Gu1F2

\2

2m
¹r

21
1

2
mv0

2r212G2m

1
b2\2k2

2m Gv. ~15!

At k→0, as is clear from the physical reasons, the low
branch of the longitudinal excitations is related to a unifo
shift along thez axis with the radial distribution of the den
sity determined by amplitudex̃0. Hence this branch is gap
less. For small but finite value ofk the transverse distribution
of the density in such wave changes weakly. This is cle
e.g., from results obtained for a static elongated trap in@11#
and @12#. Keeping it in mind, we put

u5U~r,t!x̃0~r!, v5V~r,t!x̃0~r!, ~16!

and assume that for longitudinal sound excitationsU(r,t)
and V(r,t) are weakly dependent onr. Neglecting deriva-
tives in r of U(r,t) andV(r,t) in Eqs. ~14! and ~15!, we
find for functionsf 5U1V andF5U2V

i\
]F

]t
5

b2\2k2

2m
f ,

i\
] f

]t
5S 2G1

b2\2k2

2m DF. ~17!

Let us average both equations overr, denoting the corre-
sponding average by a dash over the functions. The w
dependance ofF on r allows to find approximately

^GF&.ḠF̄.

In the Thomas-Fermi approximation, we have involved E
~9! and ~12!, Ḡ5m/2.

Next, we go over to variablet in a set of Eqs.~17!, taking
into account Eq.~5! after direct transformation we find

]2F̄

]t2
1Vk

2~ t !F̄50, ~18!

Vk
2~ t !5

k2

2m S 2Ḡ

b2~ t !
1

\2k2

2m D . ~19!

In the case of statical potential (b51) the quantityVk is
directly the frequency of the Bogoliubov excitation spectru
determined for the averaged value of the condensate den
In the problem under considerationb and thereforeVk de-
pend on time.

In what follows, longitudinal phonons ofVk'v1!m
prove to be involved into the general dynamics of the s
tem. In this caseVk(t) lies within the sound range

Vk~ t !5
c̄k

b~ t !
, c̄5S m

2mD 1/2

. ~20!
0-2
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Note that the value~20! for the velocity of the longitudi-
nal sound in an elongated trap was found for the first time
@11# and @12#.

We restrict ourselves by considering a relatively we
variation of the frequency of a trap, i.e.,g5b21!1. From
Eq. ~10! one has in this case

b22.12g1g cos~2v1t !. ~21!

Finally, Eq. ~18! acquires a form of the Mathieu equation

]2F̄

]t2
1vk

2@11g cos~2v1t !#F̄50, ~22!

where

vk5~12g/2!c̄k. ~23!

This equation determines actually the parametric re
nance connecting the coherent transverse oscillations o
condensate with longitudinal phonons of frequencyvk close
to v1. From the physical point of view the parametric res
nance originates due to a periodic variation of the conden
density and, therefore, variation of the sound velocity.

For g!1, one can employ the standard algorithm of so
ing the Mathieu equation~see, e.g.,@9#!. We seek for the
solution of the equation as

F̄5a~ t !cos~v1t !1b~ t !sin~v1t !. ~24!

Of course in an exact solution there are terms with
multiple harmonics but they correspond to the amplitudes
higher powers ing. The coefficientsa(t), b(t) are slowly
varying functions oft. So, on the substitution of Eq.~24! into
Eq. ~22! we retain only the terms of zero and first orders ing
and neglect second derivatives fora(t) and b(t), that are
;g2. As a result, we arrive at a set of two-linear different
equations with constant coefficients. This system has ex
nentially increasing solution@a(t),b(t);exp(gkt)# with the
increment

gk5
1

2 F S 1

2
gv1D 2

2«k
2G1/2

, «k52~vk2v1!. ~25!

Thus, the parametric resonance takes place within the na
range nearv1 with the width

dv5
1

2
gv1 . ~26!

Within this range there occurs a growth of the soun
wave amplitudes, leading to a reduction of the energy
coherent oscillations of the condensate.

A square of the modulus of the wave function~24! in-
creases as exp(2gkt).

Obviously, the energy grows similarly. AtT50, the initial
energy of the longitudinal mode is zero-point energy. Th
the total-energy transferred into the longitudinal modes a
result of the parametric resonance can be estimated as
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E~ t !.
L\

4pE dkvk~e2gkt21!uS 1

2
gv12«kD . ~27!

Let us rewrite this expression introducing instead ofk a
new variablex52«k /gv1. Then, with regard to Eq.~23! and
~25! we have

E~ t !.BmJ~ t !, J~ t !5E
21

1

dxH expF t

t1
~12x2!1/2G21J ,

~28!

where

B5
Lgv1

4p c̄

\v1

m
, t152/gv1 . ~29!

Let us compareE(t) @Eq. ~28!# with the energy of the coher
ent condensate oscillationsEc . Within the Thomas-Fermi
approximation the energy of the condensate in a trap of
quencyv readsE(v)5 2

3 m(v)N0. The chemical potentia
m(v) is connected with the number of particlesN0 in the
cylindrical trap by the relation

N05
L

a

m2~v!

4~\v!2
. ~30!

For a fixed number of particlesm(v);v.
At fast transition of the trap frequency fromv0 to v1 the

condensate keeps its space configuration at the first mom
being already in the new external field. Consequently,
condensate energy changes fromE05E(v0) to some value
E08 .

The oscillation energyEc is equal to the difference be
tweenE08 and the static condensate energy correspondin
the frequencyv1. Direct calculations give

Ec5E082E~v1!5
1

3
g2mN0 ~31!

@we have conserved a notationm(v0)5m#.
The damping of the condensate oscillations is charac

ized by a ratio

E~ t !

Ec
.

a

R S \v0

m D 3 1

g
J~ t !. ~32!

The factor in front of integralJ(t) for actual values ofg is
much smaller than unity. The damping becomes noticeab
times t@t1. Calculating integralJ(t) in this limit, we find

E~ t !

Ec
.

a

R S \v0

m D 3 1

g S 2pt1

t D 1/2

exp~ t/t1! . ~33!

Hence, within a logarithmic accuracy the characteris
damping time equals

t* 5t1 lnH R

a S m

\v0
D 3

gS t*
2pt1

D 1/2J . ~34!
0-3
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This time proves to be large compared with the per
2p/v1 of the condensate oscillations not only due to sm
ness ofg but also due to very-large factor in the argument
logarithm. Thus, the damping of the condensate oscillati
may be slow, though inevitably emerging atT50 for the
conditions concerned.

A continuous character of the consideration assumes
plicitly that at least several modes of the longitudinal sou
excitations fall within the energy bandwidth~26! of the para-
metric resonance. The spacing between the neighbor m
equalsDv52p c̄/L. SinceR'2c̄/v1, this condition holds
when an inequality

L.2pR/g ~35!

takes place.
Thus, obtained results demonstrate the existence of

damping atT50 for the radial condensate oscillation in c
lindrical trap. This damping is a result of the parametric re
nance that couples the coherent condensate oscillations
the longitudinal sound waves.

At finite temperatures\v1,T!m the same resonanc
amplification occurs, but now the initial number of phono
of energy\vk equalsT/\vk and the initial energy of reso
nance modes equals;\vk(T/\vk). In this case in Eq.~27!
the quantity\vk should be replaced withT. Such replace-
ment increases insignificantly the argument of logarithm
Eq. ~34!.

The parametric resonance is accompanied by a produc
of the large number of sound excitations;E(t)/\v1. This
leads to reducing the number of particles in the condens
In principle, for the times compared witht* @Eq. ~34!#, this
could require a solution of the self-consistent problem. Fr
the general considerations it is clear that the escape of
ticles from the condensate can be neglected if the vibratio
energy per particlegm is small compared with the tempera
ture of the Bose condensationTc .

Let us estimate the characteristic damping timet* for
quantum gases Rb and Na. We consider an elongated c
.A

n,
et

.A

s,

ys

05361
d
-
f
s

-
d

es

he

-
ith

n

on

te.

ar-
al

in-

drical trap with n05400 Hz ~Rb! or n05103 Hz ~Na!, L
5231022 cm, N0523105 and assume that the dimen
sionless parameterg'0.15. Then, from Eq.~30! we find Rb
gas m'90 nK. Accordingly, the Thomas-Fermi radiu
equalsR'1.731024 cm. For the parametert1 in Eq. ~29!
and taking into account the relationv15(12g)v0, we have
t1'6.231023 s. The direct calculation estimates the log
rithmic factor in Eq.~34! as 10. Thus, evaluating the dam
ing time we find t* <0.1 s. Being less than the ordinar
lifetime of the systems, this time is realistic for revealing t
damping.

Similar results can be obtained for sodium. In this ca
the estimations give:m'140 nK, R'1.631024 cm, t1
'2.531023 s. As a result,t* '0.03 s. It is important that
in both cases the condition~35! proves to be fulfilled. At the
same time,gm!Tc , and it means that after complete dam
ing the depletion of condensate is quite small.

The results obtained demonstrate the feasibility of obse
ing the damping atT!m when the interaction with the ther
mal excitations can be ignored.

In conclusion, it is worth while to make a remark co
cerning a relation between the damping under considera
and Beliaev mechanism of phonon decay in a unifo
weakly interacting Bose gas~see, e.g.,@13#! Beliaev had
studied the decay of a real phonon with the specific chara
of dispersion law. In the present paper, the coherent ev
tion of the condensate under conditions of complete abse
of real phonons is considered. The damping in our cas
caused by the parametric resonance as a result of the so
velocity oscillation. It is instructive that the parametric res
nance leads to the creation of the longitudinal sound wa
filling the finite-energy interval@see Eqs.~26! and~27!#, evi-
dencing the nonlinear origin of the phenomenon.
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