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T, for trapped dilute Bose gases: A second-order result
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For some time, the theoretical result for the transition temperature of a dilute three-dimensional Bose gas in
an arbitrarily wide harmonic trap has been known to first order in the interaction strength. We extend that result
to second order. The first-order result for a gas trapped in a harmonic potential can be computed in mean-field
theory (in contrast to the first-order result for a uniform gas, which canie show that, at second order,
perturbation theory suffices for relating the transition temperature to the chemical potential at the transition, but
the chemical potential is nonperturbative at the desired order. The necessary information about the chemical
potential can be extracted, however, from recent lattice simulations of uniform Bose gases.
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[. INTRODUCTION teractions than just the scattering length. We'll find that
depends logarithmically oa/l; the actual expansion is of the
Consider a dilute three-dimensional gas of bosons, alform
identical, in an external harmonic trapping potential
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wherem is the mass of each boson. For this system to have
a sharp, well-defined phase transition, we need to formally
take the infinite volume limit ofw, ,w, ,©,—0 while keep-  and we shall calculate the constanfsandc’ . (The appear-
ing the central density of Bose particles finite and nonzero a&nce of a related logarithm femiformgases has been quali-
the transition. As we will briefly review below, the central tatively discussed in Ref[3]. For a calculation of the
densityﬁat the transition scales a_Ble’Z/aﬁo, whereN is second-order relationship betwe&pand the central density
the total number of Bose particles in the trap, and where n in an arbitrarily wide trap, which is also the relationship
T«(n) for a uniform gas, see Ref4].)

i\ R \Y2 o\ 12 Some aspects of the Bose-Einstein condensation phase

mo ) ( ) (mw ) (1.2 transitions are perturbatively calculable, and others are not.
X z . . . .

In a dilute Bose gas, the physics of fluctuations associated
with relatively short-distance scales is perturbative, while
that associated with critical behavior on relatively long-
distance scales is not. In the case of a uniform Bosdthas
ifs, a Bose gas in an infinite square-well potential rather than
a harmonic potentiatthe first-order shift ifl., is sensitive to
critical fluctuations and so is nonperturbative. That shift has
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is the volume scale of the ground-state wave functi@ee
also Ref.[1] for a review) The appropriate infinite volume
limit is wy,wy,0,—0 with No,w,w, held fixed.

At low energies, the relevant measure of the strength o
interactions is the two-body scattering lengthwe will as-
sume that interactions are repulsiv@>0). We will study . ; X .
the transition temperaturg, for Bose-Einstein condensation recently been calculated using lattice simulatiphs 7] and

(BEC) of a dilute single-species gas as a function of the tota[Ias previously been es_t|mated in a wide variety of ways
: . > L -~ .~ [8-14]. In contrast, the first-order shift for a gas trapped in a
number of particled in the trap, in the infinite volume limit harmonic potentialparametrized by,) is calculable usin
just discussed. One might naively anticipate there to be an P P X1 Y
. perturbation theory2]. As we shall see, the second-order
expansion of the form L 2 L . .
logarithmic coefficientc, is also calculable in perturbation
theory, but the constart; under the log is not. We shall
, (1.3)  calculatec) by relating it to measurements that have been
made in lattice simulations of the phase transition in three-
_ _ ~dimensional @) field theory[7].
WhereTO IS the |deal—gas result ands Sqme C_haracterlstlc We should emphasize that expansions of physica| quanti_
length of the ideal-gas system. As we will review below, theties ina/l cease to correspond perturbativeexpansions in
appropriate length scale for a trapped Bose gas is the typica)/|, once one reaches the orders we have asserted are non-
inter-particle separatioh~n~3~N~%6a, at the center of perturbative. The failure of perturbation theory in describing
the trap. The coefficiert; of the expansion foll . has been generic second-order transitions has been known for decades.
known for several yearf2]. In this paper, we calculate the This breakdown typically manifests in perturbation theory as
next correction. As we will discuss, this is the furthest onethe appearance of infrared infinities in the coefficients of the
can go in the expansion without more information about in-perturbative expansion beyond a certain order.
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There is a simple way to relate the problem of a Bose gagxample of how big the second-order effects might be in a
in an arbitrarily wide harmonic potential with that of a uni- particular experimental situation. Various details and diver-
form Bose gas. In the infinite volume limit, ,», ,0,—0 of  sions are saved for appendices, including a modern field-
the harmonic trap problem, the trapping potential becometheory rederivation and verification of the old perturbative
everywherdocally flat over any fixed distance scalguch as  result forn(T,u«) that we take from Huangt al.[15,16.
the typical interparticle spacinglLocally, the problem can
then be treated as a uniform gas in the presence of an Il. SCALES AND EFFECTIVE THEORIES
x-independent potential, and anindependent potential can
be absorbed into a redefinition of the chemical potential. For
example, if the original chemical potential was then the Before proceeding to a Bose gas in a harmonic trapping
effective chemical potential at a positionis ;_ V(x). For potential, IeF us first review the basic scales_ releva.n.t to the
arbitrarily wide traps, the total number of particles in the phase transition of a uniform gas. The generic condition that

system is then related to chemical potential and temperatuf@® 92s is dilute is that the two-particle scattering lergltie
by small compared to the typical interparticle separation

~n~Y3 wheren is the number density. The Bose-Einstein

A. The uniform gas

3 — condensation phase transition occurs when the typical de
NZJ d*xn(T, u—V(x)), (1.5  Broglie wavelength
wheren(T, ) is the uniform gas result for the number den- N=f2mp/m 2.1

sity at a chemical poten.t|aL. ) — . becomes of the order of the interparticle separatiofhen
In a trap, the effective chemical potentigl—V(x) is  gj<)—p-13
highest at the center, whe(x) =0, and this is where the A the phase transition, the interaction can be treated per-
condensate first forms as the system is coolédr a uni- turbatively for analyzing short-distance physics but, as with
form gas, letu (T) be the critical valugu of the chemical most second-order phase transitions, interactions cannot be
potential at a given temperatufle Then Eq.(1.5) becomes  treated perturbatively for analyzing long-distance physics. A
distance scale that will be of interest is the dividing line
_ 3 - _ between these two regimes. As we shall review below, this
N_f axXn(Te, el Te) = V). (1.8 scale isn?/a~n~%%a. At the transition, there is then a hi-
_ erarchy\?/a>\>a of physically relevant distance scales
If we knewn(T,u) and u(T) for a uniform gas, we could for a dilute Bose gas.
then use Eq(1.6) to solve forT, for a gas ofN particles in We will now briefly review the description of the dilute
an arbitrarily wide trap. Bose gas system in terms of effective-field theories, and we
In the next section, we review in more detail the physicalwill then turn to the effective-field theory description rel-
scales of the problem and explain why, for the purposes ogvant to the long-distance physics at the critical pirf].
applying Eq.(1.6) to second order, it is adequate to use per-This will provide a clean way to review the origin of the
turbation theory for the uniform gas resulfT,). We also  nonperturbative scale?/a, and we will need to make use of
explain why perturbation theory is inadequate to find thesuch effective theories later in our discussion of the critical
uniform gas resulu(T) at second order. The second-order chemical potentia(T) for a uniform gas.
perturbative result fon(T,u) can be extracted from the lit-
erature[15,16), and in Sec. Ill we step through the simple B. The action
exercise of applying that old result to determine the relation

I(\1/.6) betwl:aenN, '“ﬁ?' ?nch at slecond ofrder:. Then,hln Seﬁ' the scattering length, an appropriate effective theory for a
, We take on the less trivial step of s OW_'”Q ow the gijute Bose gas is the second-quantized Sdimger equa-

second-order value gf,(T) can be related to existing results tijon, together with a chemical potential that couples to

from lattice simulations of @) scalar field theory in three particle number density* i, and a||* contact interaction

final answer for the second-order term of the expanglof) | agrangian is

of T.. In Sec. VI, we discuss the nature of yet higher-order

It is well known that, at distance scales large compared to

corrections and explain why they require more knowledge of o h? ) wh2a . 2
two-body scattering than just the scattering lengtin Sec. L=¢7 | Thot 5V pu=V(X) |¢= ——— (4" §)"
VII, we briefly discuss parametrically how wide a trap must (2.2

be for our “arbitrarily wide trap limit” results to be valid at
second order. Finally, we conclude in Sec. VIII with a brief The identification of the coefficient of theyt ¢)? interac-
tion with 27r%a/m is technically only valid at leading order
in the interaction strength but, as we will review later, does
A reminder about signs: Recall that, for a uniform Bose gais not change at second order if one uses dimensional regular-
negative at high temperature and increasesves towards zejas  ization[17]. We'll also later discuss$in Sec. V) the size of
the system is cooled. corrections to the effective theory due, for instance, to energy
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dependence of the cross-section or three-body interactions.dtuse thep* ¢ interaction is associated with an ultraviolet
will turn out that such corrections can be ignored for the(UV) divergence of the three-dimensional theory that has to
purpose of computing . to second order. be renormalized. We will discuss this relationship in detalil

To study Eq/(2.2) at finite temperature, we apply the stan- when we analyzew(T) in Sec. IV. For the moment, these
dard imaginary time formalism, so thebecomes—i7 and  details are unimportant.

imaginary timer is periodic with periodi 8=#/kgT. The There will be a line in the ¢,T) plane that corresponds to
imaginary-time action is then the Bose-Einstein condensation phase transition. In the long-
2 distance effective theor§2.5), that line will correspond to a

zﬂ*(ﬁﬂ,— ﬁ—VZ—,u+V(x) y Iir_1e in the (,u) plane. If we think_of this Iine_ as determining
2m r in terms ofu, then the only physical scale in the problem of
studying this effective theory at the transitioruisBy dimen-
_ 2.3 sional analysis, the distance scale of nonperturbative physics
is therefore 1i~\?%/a, as asserted earlier.
It will be useful to understand how far away from the

transition one needs to go, as measuredQy-u at T
=T, in order for the physics oall scales to be perturba-
tive. This will happen when the correlation lengths small
compared to the scaleu+ A?/a of nonperturbative physics.
We will now specialize the above mentioned to the uni-We can determine this condition af with a perturbative
form gas case/(x)=0 and will discuss the system at or analysis. In fact, it is sufficient to consider a simple Gaussian
close to the critical point. For distances large compared tdi.e., tree-level approximation, whereuos in the effective
the thermal wavelengt(®.1) and sufficiently near the transi- three-dimensional theor§2.4) is naively taken to be, cor-
tion so that|u|<T, the nonzero Matsubara frequencies de-responding ta = —2mu/#? in the rescaled effective theory

couple from the dynamics, leaving behind an effective theory2.5). In Gaussian approximatiory?czo. The correlation
of only the zero-frequency modelg, with the action becom-  |ength, in the Gaussian approximation,ds-r~ %2 and so

hB
S|: J dTJ’ d3X
0

2mhila
m

+ (¢* ¥)?

As usual, the fieldy can be decomposed into imaginary-time
frequency modes with Matsubara frequencigs=2m7n/7% 3.

C. Nonperturbative physics in the uniform gas

Ing the conditioné<1/u becomes
h? 2,2 2.2
ﬁ_lslﬁﬁj‘dax wé(__VZ_Mﬁ)wo —_ >ﬁu Nﬁa
2m e Me™ H> = T (2.7)
2mhla

+ m (4§ ¥o)? | (2.4  (An equivalent condition was discussed in the original work

[2] on the first-order result foF . in a trap) We'll see later, in

up to corrections that again, as we will discuss ldterSec. ~ Our more thorough discussion of the relationship between

V1), do not affeciT. at second order. Equatid@.4) can be @ndu in Sec. IV, that corrections to the Gaussian approxi-
interpreted, if desired, as th@H of a classical three- Mation do not change this conclusion. _

dimensional field theory. Finally, note that, by dimensional analysis, the nonpertur-

Finally, it is convenient to rewritelo= ¢4/ so that bative contribution to the critical value aof in the three-

. . . 2
the effective action becomes a conventionally normalizedimensional O(2) effective theoi.5 must be of order.
The Gaussian approximation’s identification of with

U(1) field theory of a complex fieldp:
@ y P % —2mul/#? then suggests that the nonperturbative contribu-

(s . LU tion to the critical valueu, is of order#2u?/m, which is
S= | *X|(V)™ (Vo) +re™ ¢+ & (4" $)7), second order im. As we will see in Sec. 1V, this conclusion
where

(2.5 is correct. This is the reason that, in order to calculat¢o
second order, we must account for nonperturbative physics in

the determination of.

u=—7z— (2.6 D. Gas in a harmonic trap

Now we turn to reviewing scales in a harmonic trap. One
We will henceforth refer to this effective theory as the of the main points of this exercise will be to determine the
“three-dimensional” effective theory, while referring to the sjze of the region(at the transition where the physics is
original imaginary time theory (2.3 as the “3+1-  nonperturbative, relative to the size of the trapped gas cloud
dimensional theory’(for three space plus one time dimen- as a whole. This will allow us to determine to what order one
sion). By writing ¢=(¢,+i¢$,)/\2, the three-dimensional can use perturbative calculations to reliitel, andy via Eq.
effective theory may equivalently be interpreted as 48)O (1.5).
theory of two real fields with interactionu(4!) (2 + ¢3)2. For simplicity, we’ll assume in this discussion tha,
The relationship of to the chemical potentigk and other ~w,~w,. The relevant distance scales for a dilute Bose gas
parameters of the original theory is a litle more subtle, bein an arbitrarily wide harmonic trap, at the transition, are
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TABLE I. Distance scales for a dilute Bose gas in an arbitrarily wide harmonic trap at the phase transition.
The scales are ranked in ascending order. Entries should be interpreted as representing orders of magnitude
(parametric dependencand not as precise definitions and equalities. The first column gives our notation for
each scale. The third column shows how the scales depend on the “experimental” paraetdisandw,
whereay,= (%/mw)*2. The last column shows a simple rewriting that makes the ordering of scales clear,
given that our assumed limits can be phrased fised, a<<| (dilutenesy andl fixed with N—co (arbitrarily

wide trap.
a Scattering length a a
[~n~ 8oy interparticle separation at trap center;
thermal wavelength N~Y6a,, [

1u smallest wavelength of nonperturbative

fluctuations near center of trap N~%a2 ja 1%/a
ano size of the ground stat@ondensate ano N4
Rop size of nonperturbative region NY3a N33
Reioud size of entire gas cloud NY8a,, NES

summarized in Table | in ascending order. Most of this is justhe conclusion is that there is no obstacle at second order in
review of simple, standard resu[ts], except for the scales of a/l to using perturbation theory to derive the relationship
nonperturbative physics in a harmonic trap, which we haveyetweenN, T, and x.

not seen clearly discussed before.

First, Ie_t us review the size an_d_ density of t_he cloud of}, n(T, 1) FOR A UNIFORM GAS AND ITS APPLICATION
Bose particles at the phase transition. As we will reproduce

below, mostof the particles in the trap are in the classical The second-order perturbative result fofT,«) can be
regime, and we can use the classical equipartition theorem teasily extracted from an old second-order result of Huang
find the width Ryo,q Of the cloud; smw?x?~3kgT yields et al.[15,16 for the pressure of a uniform hard-sphere gas:
Reoud™ (Bmw?) ~ Y2, The central density of particles is then

of qrder n~N/R3.,~N(Bmw?)%7?, a'nd the separaﬂ?n of P:k_B; Li5,2(z)—2—a[Li3,2(z)]2

particles at the center of the trap is of order lofn™ 13 A A

~N~Y3(Bmw?) "2 The phase transition occurs when this
separation is of order the thermal wavelen¢@hl), giving
ksT~N"3hw, and sd~n"Y3~\~N", as claimed in
Table I. The fact thakgT~NY34w>7%w in our wide trap

a2
+ 8( X) ( [Liza(2)1°Liyx(2)

limit (which hasN— ) justifies the previous assertion that, N i i i Z itk N
at the phase transition, most particles in the cloud can be SIS E 1+ +R) (k) Y2 T
treated classically.

Now let us analyze the size of the region in which physics 3.1

is nonperturbative at the transition. In our review of the uni- h
form gas, we saw that physics becomes completely perturbd!"€"¢

tive whenu.— u>#2a%/ma%. In an arbitrarily wide trap, the 7= ebu 3.2

effective value ofu is u— 3mw?x?. The condition for the
existence of nonperturbative physics at the transition is theis the fugacity. Lj is the polylogarithm function, which for
Imw?x?<#%a’/mr?4, and the width of the nonperturbative our purposes can be considered as defined in terms of its
region isR,,~%a/mwh?~N3a. Note that, even within this  series representation,
“nonperturbative” region, fluctuations with small wave-
lengths &1/u) are still perturbative. ] e

The relative volume of the nonperturbative region to the '—'n(z):gl Pk 33
volume of the entire gas cloud iRf,/Reioud *~ (a/1)°. This

means that nonperturbative contributions to the relalibn \ve have independently rederived and verified this result for
=[d3 n(T,u—V(x)) betweenN, T, and u are suppressed the pressure. For the sake of any readers who might find a
by more than three powers oél). It is morethan three derivation in the language of field theofpased on the La-
powers because, even in the relatively small nonperturbativgrangian(2.2)] a useful supplement to the original, we give
regime, the dominant contribution to the density comes fronthe derivation in Appendix A. In the language of the
typical particles, whose wavelengths are of the order of thémaginary-time field theory2.3), the perturbative Feynman
thermal wavelength\>1/u, which can be treated perturba- diagrams, which correspond to the first- and second-order
tively. This makes the total suppressica/l)®. In any case, terms in the pressur@.1) are shown in Fig. 1.
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(@ (b) © (a (by) (b) ©

FIG. 1. Perturbative Feynman diagrams contributing to the pres-  F|G. 2. Perturbative Feynman diagrams contributing to the num-
sureP at (a) first ordgr andb) and.(c) second order: Diagrartb) ber densityn=(4* ¢ at (a) first order and (b, b,, and(c) second
corresponds to the firsa(\)? term in Eq.(3.1) and diagran{c) to  order. The cross corresponds to an insertion of the operétar,

the second. whose expectation is being taken.
We now obtainn asdP/du 2
the= [;70” . um( : - |keT 3.7

1 Z 2a i+j)z ] a\?
=l 3 220y UE o 2)°S G
N ™32 N 4 (”)3/2 N R - _ '
of the critical value ofu in powers ofa. The ideal-gas result
1 1 is u.=0. Recall from previous discussions that the second-
(ij)3/2k1/2+ (I+k)(]+k)(|jk)1/2 + order term;&) is not perturbatively CalculabFEWe will

later see that the second-order coefficigif) contains a
logarithm,

Xzi+j+k{
(3.9

Here and henceforth, indices of sumsj(k) implicitly run
from 1 to infinity. (Most of the terms above could be written
in terms of polylogarithms, but the form shown is more con-
venient for the next stepWe emphasize that this is a per-
turbative expansion and is valid only in contexts where per-
turbation theory is applicabfeln field theory language, the
above result fon corresponds to the diagrams of Fig. 2.

Now, useu=u—V(x) and integrate ovek, as in Eq.
(1.5. For the harmonic potentiall.1), the integrals are
simple Gaussian integrals, giving

ZO=an2 g
M n)\+ , (3.9

and that the coefficienA of the logarithm is perturbatively
calculable, whileB is not.

3For those readers who like to think in terms of Feynman dia-
grams, there is a hand-waving, heuristic argument to see why there
— . is a nonperturbativé(a?) contribution tou. The first-order con-
( ) 2 Z 2a Z'" tribution, given by the first diagram of Fig. 3, contribut®$a) to
fiwn ™ i3 7 (i )3/2(| +j )1/2 w. Since this diagram is momentum independent, it can be absorbed
into a renormalization ofx, so that one need not consider higher-
Stk [ 1 order diagrams that contain it as a subdiagfanpoint relevant to

the discussion of divergencies at higher orglefd the transition,
(i )3/2k1/2 the second diagram of Fig. 3 contribut@éa?) times a logarithmic
infrared (IR) divergence, arising from the contribution where both
" 1 L., 3.5 loop frequencies are zero and the two loop momenta simultaneously
(i+K)(j+ k)(ijk)llz ) approach zero. Three-loop contributions turn out to prodi¢e®)
times linear IR divergencies, four loops produce quadratic divergen-
cies, and so forth. Suppose we heuristically cut off these infrared

& (i+]+k)2

wherez=e"* and divergencies at a momentum scalgs. The perturbation series
B s then turns out to look like Bu.=0(a/\)+0O(a%\?)
Wpo= (Wx0y®;) 3.6 0@\ AR) +0(a*/\®A%) + - - -, where we have ignored loga-
rithms such as IlNAR). Imagine startingA g at some high value
is the geometric mean of the trap frequencies. and then lowering it. The usefulness of the perturbative expansion
In Sec. IV, we will discuss the expansion will break down once we get td ,g~a/\?, which is just the non-

perturbative scale discussed earlier. For thisz, all the terms in
the series after the first become the same order, whi€i{(a€/\?).
>The same expansion was incorrectly applied in R&8] to the ~ This suggests that this is the order of a nonperturbative contribution
problem of thefirst-order correction toT. for a uniform gas—a  to Bu.. For a clean argument, however, one should instead refer to
problem where perturbation theory breaks down. the analysis in the text.
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In any case, we would like to insert the expansiBty) 4

for ;c into the expansioii3.5) for N. The problem is a little Co= %C%JF 3(3)
more complicated than simply Taylor seLies expanding the

(I +j)1/2_i1/2_j1/2

§(§)2+2§(§)% 32312

individual terms of the sums of E¢3.5) in u, because such 1 1
a procedure would lead to unregulated infrared logarithmic —22 el T 7
. . . — ik (1)) (i+]+k)
divergencies at second order. We derive the smadixpan-
sion of Eq.(3.5) in detail in Appendix B, with the result i 1
+ ——||=214, (3.1
T |3 a 1 (i+k)(j+k)(i+]j+k)2 kl’z) (312
B _
N=|-— )+ L2 uV-2> ————
(ﬁwho) {g( N> 192921+ )| \where
a 2 3 _ _ N l/3h
+ =] |7+ 2)u® = @ho
()\) 4 To 7(3) kg (3.13
. i i) jl2_ 1 o . . )
Y ( J)_S/z_ - i _ag(3aW is the ideal-gas result and
! a 1/6
[27h?2 N \~
1 1 No= ka_I_0= N2 @ ano (3.19

ik (ij)3/2k1/2 (i+j+k)1/2
is the corresponding thermal wavelength. The first-order re-
ij 1 H sult is the same as that found in RE2].* Results for the

+ (K +K) (i + ] +k)1’2_ K2 individual sums appearing above are listed in Appendix C.

1/a\? — uBa a\® m
B Rl O PR I a IV. u(T) FOR A UNIFORM GAS
5 A) (M=4L(3)) m( —]+0|5 |
A. Overview
(3.9 We’'ll now address how to relate the chemical potential

o ) ) ) appearing in the original3+1)-dimensional theory2.2) to
The logarithmic term at the end is the manifestation of thgpe parameter of the effective three-dimensional theory
infrared logarithm just mentioned. In fact, at the critical (2.5). The critical valuer . of r can be extracted from lattice
point, the coefficient of this logarithm vanishes because  gimuylations of the latter theof7], which will then allow us

—) . to determine the critical valug(T) of w.
e’ =4(3). (3.10 Effective theories, such as the three-dimension&?)O
model, have long been used to describe long-distance phys-
A diagrammatic interpretation of why the logarithm vanishesics at second-order phase transitions. Such use of effective
is given at the end of Appendix B. The first-order resulttheories is often restricted to studies of universal quantities,
(3.10 for 1! can be derived using mean-field theory, and asuch as critical exponents, because the relationship between
discussion in the context of trapped Bose gases may b€ parameters of the effective theory and a more fundamen-
found in the original first-order derivation df, [2]. We will  t&l description of the system cannot be computed systemati-
rederive it in the next section, along with the second-ordef@lly: The situation is quite different for dilute Bose gases
coefficient z® . For the moment, though, let us use the near the phase transition; the short distance scatewhich
e o ' L the long-distance three-dimensional effective theory descrip-
H(lgwn f|rst?order resul(3..1® to solve for T in terms of tion (2.5 breaks down is a scale at which the physics is
ug” - Inverting Eq.(3.9) gives perturbative (since A<1/u). One may therefore perform a
perturbative calculation to relate to w, even though the
2 a\® long-distance physics at the transition is nonperturbative.
+0 )\_o ., (3113 Such perturbative matching of the parameters of effective
theories with underlying physics has a long history in field
theory. It has been applied in a number of problems, includ-

a a
1+cl)\—+cz
0

TC: TO )\—O

2 1
C,= —22(2)¢(3)
173¢(3) ; 32312 + )12 {2)8G
“The sum in Eq(3.11h is expressed in a slightly different form
=—3.426 032, (3.11b than in Ref[2]. The relation is that
1 G(i+j) 1
= =2 ,
CZ:CZ— é’(Z) ;5:2), (3110 ; i3l2j3/2(i +j)1/2. iz!..i3l2j3/2(i+j)3/2 IEJ i3/2j1/2(i +j)3/2
34(3) where we have useid— | in the last step.
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TABLE II. Feynman rules, appropriate for a matching calculation in a uniform Bose gas, for the original
3+1 dimensional theory2.3) of ¢ and the effective three-dimensional thedg/5) of ¢. We have set
=kg=1. The variablek, represent the Matsubara frequency of the field, while=k?/2m. At finite tem-
perature, loop frequencidg are summed over the discrete vallgs 27nT with n any integer. In dimen-
sional regularization with th&1S renormalization scheme, a factor MF:(eVE’ZI\W/ J4m)€ should also be
associated with each four-point vertex but has not been explicitly shown above.

(3+1)-dimensional theory of ¢ 3-dimensional theory of ¢
1 1
ikot oy ©
—>——> +u —r

>< 8ma 2u
m_ 3

ing lattice field theory{19], Bose condensates at zero tem-jzed to the case of a uniform gas by takikix) =0, and
perature] 20], relativistic corrections to nonrelativistic QED we've introduced the shorthand
[21], heavy quark physid®2], ultrarelativistic plasmal23],

and nonrelativistic plasma physi4]. For a general discus- _ k?
sion, see also Ref25]. The basic idea is to formally com- “%=om-
pute, in perturbation theory, some number of infrared physi-

cal quantities in both the effective theory and the morewe will use the notatiorky, lg, po, ... to designate the
fundamental theory. By equating the results from the twoyiatsubara (imaginary time frequencies associated with
theories, one can then solve for the parameters of the eﬁe‘b‘ropagators with momentg, |, p, ... .
tive theory(to the order desirgd _ In our case, the short-distance length scile! at which

The perturbative computations are performed using anyhe three-dimensional theory breaks down is of ondet®
convenient infrared regulatdthough it must be the same _, 55 we have discussed before. In principal, a long-
regulator'm both thgonésjhe perturbation series for vari- gistance effective theory can correctly describe physics at an
ous_physmal guantities _W|II bg badly behaved if one remoVesnfrared wavelength scale<A to any desired order ik/A.
the infrared regulator since, in our case at least, the infraregl5\vever as one pushes the description to higher and higher
physics is nonperturbative. But this bad infrared behaviog,qyers ofk/A, one must add more and more corrections to
will cancel out in the perturbation series derived for the paspe action of the effective theory, in the form of interactions
rameters of the effective theory, and so one may safely reqat are more and more infrared irrelevéintthe sense of the
move the infrared regulator at the end of the matching caltenormalization group—that is, interactions with higher
culation. This is a reflection of the fact that the dlﬁerencesca"ng dimension. In our case, the long-distance physics
bgtween the, effective theqry and underlymg theory has o CI_gcale of interest is the nonperturbative scale dhd powers
with short-distance physics, and short-distance physics i§¢ ;A transiate into powers of our expansion parameter
perturbative(in the cases where perturbative matching is apy,, — 4/ <1. We shall discuss later why including such cor-

plicablg. rections, such as gp* V ¢|? term in the effective Lagrang-

The releyant distance §cale of physics for the matchingan' would in particular not affecT, at second ordefWe
calculation is the short-distance scalewhere the three- ., also give a similar discussion ofd* ¢)3, which is a

dimensional @) theory breaks down. The corresponding marginal operator in three dimensiohBor now, though, we

. 2,\, . -
energy scale s therefore of Oméfz’m KgT, Wh.'Ch IS shall simply ignore the issue and push ahead with the match-
simply the typical energy of particles in the gas. This scale 'Slng calculation

large compared to the size of the chemical potential at the The action for a gi . . .
o L given effective theory can be written in a
transition (3.7), which is of order @/\kgT. Therefore, for \jiety of equivalent ways by making field redefinitions,
the purpose of doing a matching calculation, the chemic uch asp—ce or d— (1+eV2+--.)¢, etc. Our conven-

potential may be treated as a perturbation. In combinationy;,, shail be to insist that the fields of the three-dimensional

with the use of _dlmen5|onal r_egularlzatlon, this turns out 10.nd 3+1 dimensional theories match up, to whatever order
be very convenient computationally.

in k/A Ki
With w treated perturbatively, the imaginary-time Feyn- in kIA we are working, as
man rules for the original 81 dimensional actiori2.3) are ST
Y(0k) =\ (k).

4.9

shown, for reference, in Table Il. The analogous rules for the
three-dimensional ) effective theory are also shown.
When discussing the evaluation of Feynman diagrams, we
will always setZi=kg=1 in order to avoid cluttering up This was our definition ot in the more cavalier discussion
equations and discussions of conventions. We have specidh the introduction. The frequencly, of ¥(ky,k) denotes

4.2
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FIG. 4. The two-particle scattering amplitude at second- order in
the interaction strengti{Note that there is no t-channel analog of

_FIG. 3. Fundamental UV-divergent diagrams in the three-y,q socond diagram, since such a diagram vanishes in a nonrelativ-
dimensional theory2.5). Dimensional regularization automatically jqyic theory)

removes the linear divergence of the first diagram and regulates the

logarithmic divergence of the second diagram as 1/ 1 u\ 2
o . . _ e Vi _2_(_> (4.6
imaginary-time frequency. So one of our matching condi- e (4m)%€\3

tions will be that the inverse Green functions match up as . .
P between the bare coupling,,e and the renormalized cou-

G, (k) pling rys(M), and where
G, (0k)=—5— 4.3
2m o2
M= M. 4.
to the relevant order ilk/A. In the presence of interaction, \/E @9

B. UV regularization

this definition of ¢ might fix the normalization of the

schemes amounts to nothing more than a multiplicative re-

S= J d® x

we will again use dimensional regularization. At second or-
principle, we need to determine the paramem&gs r o, and which can be absorbed into a redefinition of the coefficient

two-particle cross-sectiofat zero temperature and density
long-distance @) theory (2.5) is superrenormalizeable, but density, and so there is no second-order correction(t).
well-defined meaning, we need to specify a regularizatiorzonsequence of dimensional analysis. At zero enéigy,
d=3 of spatial dimensions bgt=3— ¢, taking e—0 at the f - dlod® €l 48

(V¢)*(V ¢) term in the actior(2.5) to be different from 1.  [The factor_O_feyE’Z/ V4 in Eq. (4.7) is what distinguishes
Our three-dimensional effective theory should therefore bénodified minimal subtractionMS) from unmodified mini-
. . Ueft ., .o definition of the renormalization scale.
Zy(V$)* - (V) +red™ p+ ?((/5 ) The original (3+1)-dimensional effective theor{2.2) is
+ (higher-dimensional operators (44 der in the interaction strengtithe order relevant to our cal-
culation, the only UV divergence is a well-known linear
Ugrr (and any higher-dimensional operators, if they were re9f the (4* ¢)? interaction. To relate this coefficient to the
quired at a desired Ordkby matching_ phyS|CaI Scatterlng Iengtia, one needs to regularlze the
_ _ _ _ sincea is defined by 8ra?=c(0) for identical particles. In
Before starting on matching, we must first unambiguouslydimensional regularization, however, the loop integral for the
there are UV divergences associated with #tep interac-  The coefficient of the quartic interaction therefore remains at
tion. Diagrammatically, these divergencies are associatefis tree-level value 2#%2a/m, as in Eq.(2.2) [17].
and renormalization scheme. By far the most Convenieniero external momen):ahe second diagram in F|g 4is pro-
regularization scheme for perturbative matching calculationgortional to the loop integral
end of the day. ot w)(—ilg+tw)
To define a finite, renormalized value pfwe will use the

written in the somewhat more general form mal subtraction (MS); the difference between the two
not renormalizeable and also requires UV regularization, and

where Z,, can deviate from one beyond leading order. Indivergence associated with the second diagram of Fig. 4,
theory and then compute the zero-energy lim{0) of the

define the parameters of our theories. The three-dimensiongkcond diagram in Fig. 4 vanishes at zero temperature and

with the graphs of Fig. 3. In order to give the coefficiera This property of dimensional regularization is a simple

is dimensional regularization. We shall replace the number

modified minimal subtraction\|S) scheme with a renormal- All of the parameter dependence of this integral can be fac-

ization scaleM . The theory is then ftored out by rescaling, by a factor of Zn. The rescaled
integral
S= [ @ A2V (Vo) +rrat* & | dlod s
! (il o+ 12) (=il g+1?) '
e_eﬁ * 2
M 6 (¢ ¢) } (4.5 has dimensions of (length} "€ but no dimensional param-
eters to make up that dimension. The only dimensionally
with the relation consistent answer is zero. In most regularization schemes
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other than dimensional regularization, thare still dimen- q
sionful parameters in the integral associated with cutoff
scales, and the integral would not be zero. For example, if ’

we regulated with a UV cutoff\ on I, the integral would

; . i *——@
give a nonzero result proportional to in d=3.
C. Matching of Z,

We want to calculate the critical valug. to next-to- l+q
leading ordefi.e., »® in the expansior(3.7)]. One might
expect this to require knowing the parametégs, r¢, and
U Of the effective theory to next-to-leading order. In fact, as
we shall see, dimensional regularization organizes the calcu- a3
lation in such a way that we only need to computg, f d>“ld*" g 413
which is the three-dimensional analoggof But let us briefly 1%g2[1+q|? " '
discuss the matching &, anyway, as a simple warm up.

_The matching o is trivial because the first-order con- \yhich must vanish because there are no dimensionful param-
tribution to the inverse propagator, given by the first diagramsiers to make up the dimensions of the result. It is crucial
of Fig. 3, does not have any momentum dependence. That i§ere that there are no external momenta, thahay be
equating the inverse propagators of the two theories as in Egeated as a perturbation for the purpose of matching calcu-

FIG. 5. A two-loop example of a diagram contributing to
—1II4(0) for a matching calculatiom. is treated perturbatively.

(4.3 gives lations, and that loop integrals are never dimensionless in
K2 dimensional regularization. The upshot is that the matching
2—+(k independent+ O(a?) condition (4.12 becomes simply

m
Mbare= 2M[ — w+11,(0,0)]. (4.14

1
= %[Z¢k2+ (k independentt O(a?)],

(4.10 Another convenience of the vanishing, in dimensional
regularization, of loop diagrams in the three-dimensional
where O(a?) indicates corrections that are formally secondtheory is that we need not keep track of the matchingi of

order in perturbation theory. So andZ, if we are only interested in the matching nf For
) instance, the one-loop contribution of the first diagram in
Zy=1+0(a%). (4.1)  Fig. 3 gives a contribution proportional toin three dimen-

_ o ) ) sions, and so a second-order calculatiohlgfwould require
In this paper, we will writeO( . . . ) when displaying the 3 second-order determination afif it were not for the fact
full parameter dependence of a correcti@xcept possibly that this diagram vanishes.
for logarithmic factorg and writeO( . . . ) when just show- Returning to the 31 dimensional theory, the diagrams,
ing the dependence on a particular parameter. S6/32  which contribute td1,, up to second order, are shown in Fig.
=0(a’/A%)=0(a%). In matching calculations, where we 6, and all diagrams are to be evaluated at finite temperature.
are formally doing perturbation theory with IR regulariza- piagram(a) gives the first-order contribution td,,. It gives
tion, O(a") will just meannth order in perturbation theory.
. H(a)_STI'a 1
D. Matching of r Y " m

To matchr, take thek=0 case of matchind4.3) the
inverse Green functions:

ipo“‘(l)p, (413

where we introduce the shorthand notations

1
_M+Hz//(ovo):ﬁ[rbare+n¢(o)]’ (4'12 — = € ddp
L3 oEv g o

wherell is the proper self-energy.
We will use dimensional regularization to regulate the in-

frared divergencies of perturbation theory, as well as the UV

divergencies already discussed. A well-known advantage of y

such use of dimensional regularization for matching calcula- Q Q

tions is that every loop diagram contributing Itb,(0) van-

ishes by dimensional analysis arguments similar to the one (a) (b) (©) (d)

given in Sec. IV B. Consider, for example, the contribution
of Fig. 5. In the three-dimensional effective theory, this dia-  FIG. 6. Diagrams contributing te-II,,. x has been treated
gram is proportional to the loop integrals perturbatively.
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o=yx'=_K& + @ + 0@

FIG. 7. The vanishing of the inverse susceptibility at the phase
transition, expressed in terms of diagrams at first order {(nlike
Fig. 14, these diagrams are evaluated at the center of the trap and
not integrated ovexk.)

whered=3— € is the number of spatial dimensions. Thg FIG. 8. Time-ordered perturbation theory diagrams correspond-

sum can be performed by standard contour trﬁy'ﬂalding ing to the three tgrms of Eq4.22. Time flows from left to right,
and the dashed line represents the zero external momefatuich

8ma zero frequencyin diagram(d) of Fig. 6 for —II,(0,0). Each in-
H(a)—— [n(wp) +17, (4.17 coming momentun{other than the zero ohés associated with a
m Bose distribution facton.
wheren(w) is the Bose distribution function Il C, perturbation theory breaks down in the calculatioruof
at second order, but the first-order relation of Fig. 7 is, there-

n(w)= . (4.18 l‘oreZ reliable® This relation implies that diagrantb) and(c)
efo—1 of Fig. 6 cancel at second order:
The integral of a constant vanishes in dimensional regular- nP+0P=0% at u=puc. (4.20
ization (again by dimensional analysiand the integral of The sunset diagramWe now turn to diagrantd) in Fig.
n(wp) can be carried out in three dimensions to yield 6, the sunset diagram:
4aT
NP==—¢(3)+0(e). (419 [ 0)= 8ma)? i i
At the critical point, diagramgh) and (c) cancel each X — _ 1 _ _

other and so need not be computed individually. The cancel- (ido+ wq)(iko+ @[ (do+Ko) + wq ]
lation arises because the inverse SUSCGptiwa:_M (4.21)

+11,(0,0) will vanish at a second-order phase transition.
This condition is shown diagrammatically in Fig. 7 at first We review in Appendix D how the loop frequency sums can
order in perturbation theory. As we have discussed in Sede done with standard contour tricks, with the result

ma

p- (2m)95@(1-qg-k). (4.22

ZJ P[n(wq)n(wk)—2n(wk)n(w|)— N(w)]
gkl

w|—wq—wk

(d) —__
n{0)=-

The symbol P indicates the principal-value prescription turbation theory(in real time the three terms of Eq4.22
correspond to the three diagrams of Fig. 8.

1 1 It is easy to see that the first term of Eg.22) vanishes,
P; = Rem, (4.23

where 0 is an infinitesimal. This prescription removes the °You may wonder why we have discussed the reliability of per-
spurious divergence associated with— w,— w,—0 (but turbation theory here when we have already asserted that perturba-
not alsol ~q~k—0), which is an artifact of this form of tion theory is valid for the matching calculation. The reason is that
writing TI(9(0). (See Appendix D.We will not bother to ~ Wé are jumping ahead a little in order to streamline the calculation.
explicitly write the principle value in what follows. We note, The matching calculation can be done perturbatively because it in-

as a side remark, that, in the language of time-ordered peyolves only physics at the perturbatlve scalebut the subsequent
solution forr (and therefore,uc) cannot, since it involves phyS|cs at

the nonperturbative scaleul/Since we are using a result abqr.g
SFor example, see Sec. 25 of REZ6]. to simplify our matching calculation at., we need to be careful.
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because it is proportional to o 8ma\? [ no(wy) No(w)) 4
o m Jkl W]~ k- @k 439
f n(wq)n(wk) ch n(wq)n(a’k)
ok @qik~ ©q~ @k Jak |g+k|?—g?—k?
N(wg)N(w) As discussed before, infrared physics is dominated, in imagi-
:j q—k’ (4.24  nary time, by the zero-frequency mode of the field I,
ak  29-K turns out to be thegy=ky=0 piece of the original frequency

sums (4.2 representing diagrartd). A quick way to see
this is to note that the integrand i above is the high-
temperature limit —0) of the original integrand in Eq.
(4.25. But, if one goes all the way back to the original
imaginary-time frequency suntd.21), the integrand there is
proportional to

which vanishes byg— —q (for any reasonable choice of
regularization schemeln Appendix D, we show that the last
term of Eq.(4.22 vanishes ag— 0 in dimensional regular-
ization. Only the second term of E1.22) remains, giving

8ma)\? n(wy) N(w))
@0)=
IT;°(0) - fkl wl_wkfl_wk—i_O(E). (4.25
Subtracting divergences of the sunset diagrdBecause 2 2 1
n(wp)—>(l8wp)*1mp*2 as p—0, the above integral4.25 < 2 (iQo+ wg) ikt @[1(GotKo) + g ]’
has a logarithmic infrared divergence associated With (4.3

—0. Unfortunately, the full integral in Eq4.25 is too com-

plicated for us to do in arbitrary dimensions, which would be

the most straightforward way to apply our chosen regularizawith q, andk, of the form 27nT. Only theqy,=Kk,=0 piece
tion scheme, dimensional regularization. It is convenient tasurvives in theB—0 limit of this integrand, and this estab-
instead explicitly isolate the divergent IR behavior by rewrit- lishes the correspondence.

ing It is important to note that nonzero frequency modes
contribute to diagram(d) even in the infinitely high-

&0)= 8ma)? f N(wn(w;) —No(w)Ng(w) temperature limit, because the limit does not commute with
W 1 m " W — Op_|— Wk the integration over spatial momengaand k. However, in

our analysis so far, we have not yet performed ghand k

No(wy) No(w)) integrations, and it is okay to take limits of integrands to see
+ y w,—wk,|—wk+0(6) ' (420 the correspondence df with the go=ky=0 piece of dia-
gram(d).
where The upshot is that the infrared pietg that we isolated

from diagram(d) is proportional to the same diagram evalu-

1 ated in a purely three-dimensional theory:
no(w)= ﬁ_(z) (427)
The second integral vanishes in dimensional regularization 5 )
for the usual reason: it is proportional to | = T_ 8ma f 1
0 21 m gk @q@KOqtK
1
, (4.28 2
fk. k21212 = k=112~ k) - amir? 272 f wr oz (432
m ak g°k?|gq+K|

which contains no dimensionful parameter to make up its
dimensions. So
This diagram is logarithmically divergent in both the infrared
8ma Zf N(w)N(w;) —No( @) No( ;) and ultraviolet, just as the original expressi@n30 for |,
ki

m

1 0)= +0(e).

®— Wg_|— Wy and it vanishes in dimensional regularization. The UV diver-
(4.29 gence of our current expressioh.29 for diagram(d) came
from the UV divergence offy. To isolate this UV divergence,
The above integral is infrared convergent and, if it were notwe’d like to isolate a term thaf) has the same UV diver-
for the fact that we have now introduced a UV divergencegence ad,, (ii) is analytically computable in dimensional
associated wittkk~I—o0, we would be able to set=3 in regularization, andiii) is infrared convergentsince other-
that integral and ignore regularization issues. wise we'll just reintroduce an infrared divergence when we
To continue, it is useful to understand another way toisolate ij. Something that satisfies all these requirements is
interpret the infrared behavior represented by the last term dhe same integra(4.32 of a three-dimensional theory as
Eq. (4.26): above, but with mass terms to cut off the infrared:
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2 1
o Am3T2
qu (0t M) (@t N (wgret A 0T

T2
I/\/E_7

8ma
m

2 1
qu (G%+ M2)(K2+ M?)(|q+k[2+M?)’
(4.33

where N= M ?/2m is an arbitrary frequency scale. Our strategy will then be to rewrite our current expré4é2dnas

ZJ N(wy) N(w;) —Ng(wy) no(‘l’l)Jr
kI W~ Wy |~ Wk

m

8ma
m

Hsf)(o):

|N—|N'+O(€). (434)

To put the firstl , term in a form similar to the integral shown explicitly in E@-..34), one may replace by o+ in our
early discussion oﬂfﬁd)(O) and take thgs— 0 limit in all integrands to get the following analogy to Ed.22):

B 1/8wa 2 [no(wq+N) no(Q)k+N)_2nO(wk+N)nO(wl+N)] d o (d)
v==3"n " (0 +N)—(0q+N) = (0 +N) (@2m750(1-a=k)+0(e).  (4.39
[
We then obtain 1—In(36mN)
Ci=—p—
8ma)? N(w)N(w) —No(w)No(w))
O e A e 2 (- X 1) Jke
+?fo dkdl (ekz—l)(elz—l)_ﬂ |nm
No(w+N)Ng(w + ) _
M — v P N+ 2k(k=1)
2 2
—Ef ol NNt A)| o (KRR+N)(12+N) | N+2k(k+1)]
2Ju om o o= N v ' 1 (= ak /\_f+2qk‘
+—2qude_ >—=In|= )
(4.36 7 Jo @2+ N)(R+N) | N-2qK]
(4.393

The first integral(with its implicit principal-value prescrip- o . . .
tion) is now both infrared and ultraviolet convergent and canWhICh is_independent of the choice of the dimensionless

now be evaluated in exactiy=3 dimensions. The second numberN= BN. Numerical evaluation of the integrals gives
integral is convergent as well. So fik=3 in these integrals, C,~—0.54410. (4.39H
scale out the parameters, and do the angular integrations us-

ing the principal-value prescription. This puts the integrals in(Since completion of this work, a somewhat more compact
a form appropriate for straightforward numerical evaluation formula for C; has been derived in Ref4].)

The result for the dimensionally regulated integraB3 for We should mention that it is possible, at a formal level, to

|\ is turn the original unregulated integral of E(.29 into a
double sum, similar to the sums appearing in the earlier for-
mula (3.4) for the density, by using methods similar to those

f 1 revie(\g/)ed in Appendix A. However, the infrared divergence
> PN > > > of IT},”(0) would manifest as,j—« divergencies of these
ak (9" + M) (K*+ MZ)([q+k[*+ M%) sums. We found it easier to handle the infrared issues in the
1 1 voo1 integral form than in the summation form. This is the only
=— | —+Ins—+=[+0O(e), (4.37)  reason why our treatment df,(0) superficially looks so
(4m)°|2¢  3IM 2 dissimilar, in final form, to our treatment of pressure and
density in Sec. Ill.

which can be extracted from the genedaksult of Ref[27] 1. Final result for r

ort';]her ¢—0 analysis in Ref[28]. Putting everything to- Combining our results for the pieces bf,(0) with the

gether, matching formula4.14) for r, we obtain

4a 32ma?| 1 _
32ma’T [ 1 — I pare= — 2M +2mT(— H+ —+In(M\
5 0)=—7— 2—6+In(M)\)+C1}, (4.3 bare g N LT g T INMY
+Cy | +0(@%)+O0(p— po)- (4.40
whereC, is the numerical constant
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Comparing this to the expressiof.6) for the MS definition c,=—3.426 032, (5.1b
of r, and using the leading-order res(t6) for u,
) 32m¢(2)
_ 4a_, 32ma  _ Ch=— (5.10
rws(M)=—2mu+2mT Té(z)+7[ln(M>\)+Cﬂ 3{(3)
— 32w{(2
+0(a%) + O = o). (4.41 ch=C,— %é))[ln(32772)+cl—727727€]2—155.0,

o 5.1
E. Final result for (5.10

We can now solve Eq(4.41) for the coefficients in the and withTg, Ao the ideal-gas quantities given at the end of
expansion Sec. lll. The constants,, C,, C,, andR are given by Egs.

, (3.11h, (3.12, (4.39, and(4.44), respectively. All have been

— _|—ma 2 computed perturbatively, except f&, which is the nonper-
Me=| eyt me ] T KT (4428 yrbative information extracted from lattice simulations.
of . The first-order result, well known in the literature, is VI. YET HIGHER-ORDER CORRECTIONS
uV=47(3), (4.42H We have based our discussion on {Be-1)-dimensional

theory(2.2) of s and the effective 3-dimensional thedB:5)
and is a simple consequence of the vanishing susceptibilitgf the zero-frequency Matsubara modes. Both of these theo-
as depicted in Fig. 7. The second-order coefficient is ries are approximate and have corrections that we have ig-
nored, claiming them to be higher order than the order of
interest. In this section, we will briefly discuss the nature of
' those corrections.
(4.429 Let us begin with the original3+1)-dimensional theory
(2.2 of . Among other things, this theory ignoré€a) the
WhererC,M—S(l\W,u) is the critical value ofrys for a given  energy dependence of the low-energy atomic scattering cross

choice of couplings and renormalization scald. The only section, andb) the effects of three-body collisions. Braaten

dimensionful scale of the three-dimensional theory at itSt @l-[29), give a nice discussion of how to systematize the

critical point isu, and so one should pick the renormalization COTTections to the low-energ+1)-dimensional theory, dis-

leM of ord Note that the critical value. —= is th cussing interactions that are progressively more and more
scalell of oraeru. Note that the crilical valu€c s IS then —;ajevant at low energies. The most important of such cor-

proportional tou” by dimensional analysis. Takinl=u/3  rections are to supplement the Lagrangiar®) by the addi-
for definiteness, and because that was the choice made {ynal interactions

presenting lattice simulation results in RE?], we have

h2a’r
| (327723. SL=— ™
n

+cl—72w27z}, (4.43 2m
where the dimensionless constant

In(M\)+C,— 7272 .
u

wP=327

D= 327 IV p)P-By* )% (6.

B parametrizes the amplitude for three-body collisianss
the effective range of the two-body scattering problem and

remis(M=u/3u) parametrizes the linear term in the energy dependence of the
R= —2 (4.443 cross section at low energy. The importance of theéerm
u grows with energy, which turns out to mean that its leading

otfaffect on the critical temperature or the chemical potential is
not infrared dominated and can be treated perturbatively.

The parametric size of the leading-order effects of these

corrections can be estimated in a very simple way by com-

is nonperturbative and must be extracted from simulations
the three-dimensional effective theof®.5). The simulation
result is, from Eq(1.5) of Ref.[7],

R=0.0019202). (4.44p  paring them to the usual quartic terny()°. At leading
order, the effects of ¢* ¢)? on the quantities computed in
V. FINAL RESULT FOR T, this paper[ . for a homogeneous gas aidi(T,) for a

trapped gakwere dominated by momentum scales of order

_We can now combine the second-order redld3 for 1)\ (as opposed to the infrared scaip Relative to the
e With our earlier expressio(8.11) for T to obtain a(y* ¢)? interaction, one would expect that the leading-

order effects of the’r{V(y* ¢)|* interaction of Eq.(6.1)

2 3

a a a
T=Tol+ci—+|cyln —+c5 || —| +O| — should therefore be suppresseddrk?~ar/\?. Near the
Mo Mo Mo Mo transition, this is down by two powers of the typical inter-
(5.18  particle separatioh~n~13~N~8a,  discussed in the intro-
with duction(sincex~I at T;), whereas the second-order effects
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e

(@) (b)
FIG. 9. Leading-order corrections to tfik,(0) (and hence the
determination ofﬁc) due to (a) the effective range anc¢b) the (a) b)
three-body scattering terms of E@.1). The dotted line represents

the momentum flovk in the |V (4* 1) |2 vertex. FIG. 10. As in Fig. 9 but showing corrections to the density

n(T,u).
computed in this paper are down only by one power, com-

pared to the leading-order effect of interactions. Again relafective 3-dimensional theory2.5) of the zero modes. One

. - . * 3 . . _
ive 10 he )2 meracton. one would expect hat he 511 5T 1 Parteuar vt o) mercton b
three-body (¢ ¢)° interaction of Eq.(6.1) is down by a three dimensions Sucr’1 an effective intgraction can be in-
factor of Bm/#2a)y* y~(Bm/A2a)n, which is down by ; : i : : :
. e . . duced by diagrams such as Fig. 11 in {Be-1)-dimensional
three powers of sincen~I1~°. The moral is that corrections

L . . . theory, where the external lines are zero modes and the in-
to the original 3+1 dimensional Lagrangiaf2.2) do not .
- . ternal lines are nonzero modes. However, the nonzero modes
matter for a second-order calculation @f for a dilute

trapped gas, that the result at third order would depend oare infrared insensitive and are dominated by fr(iquenues of

the effective range, and not just the scattering lengthand ~ the order ofkgT/A and momenta of the order &~ 1/A.
that the result at fourth order would depend on the threePOWer counting Fig. 11 then gives an interaction in the ef-

body scattering rate as well. fective 3-dimensional theory of order
One can also verify the above analysis by a consideration 5 3 .
of the leading-order diagrams involving a given correction OL y~U N (¢* ¢)", (6.4

from Eq. (6.1). Figure 9 shows diagrams contributing/i_g
and Fig. 10 thosecontributing ton(T,«). As an example,
the diagram of Fig. @) gives a contribution to the chemical
potential proportional to

where theu® can be understood as arising from the 3 vertices
in Fig. 11 and the\® from dimensional analysis based on the
dominant momentum scale.

Now consider the effect of the verté&.4) on the infrared
a’r K2 physics at momentum scalep~1/u, to which the
S~ m i (6.2 3-dimensional effective theory is intended to be applied. At
that scale, the ¢* ¢)? interaction can no longer be treated

. . . . erturbatively and, by dimensional analysis, the fluctuations
The diagram is not dominated by infrared momenta, and s ¢ are of the order ofi’2. The relative importance of the

the perturbative treatment is justified. The dominant Wave(¢* )3 term at the infrared scale~1/u is then
numbers ard&~ 1/\, as claimed above, corresponding to en-

ik0+ (O] ’

ergieskgT and frequencies~kgT/%. The result is that u\3(¢* @) as
W’VUB)\BNF. (65)
a’rgkgTk® a2rSk
oM™ Tm o A3 el 63 The contributions of the effectived(* ¢)3 operator is there-

fore down by three powers d¢f 1~\ "1 compared to those
contributions we have included in this paper. Other correc-
tions to the three-dimensional theory are similarly sup-
pressed.

where thek® comes from thek?d3k in the integral. Com-
pared to the leading-order res@i(kgTa/\) for the chemi-
cal potential, Eq(6.3) is down by O(ar/\?), just as we
argued more simply above.

Finally, even ignoring corrections to the origin@+ 1)-
dimensional theory, there will still be corrections to the ef-

"The effect ofrg represented by Fig. 18 has been considered
historically in discussions ak T for a homogeneous Bose ga&9)].
Those discussions completely missed the dominant contributions to
AT.. They also did not use the more general language of effective
ranges but implicitly used the Born approximation to expiress FIG. 11. An effective ¢* ¢)° interaction of zero modes gener-
terms of the two-body potential. ated by a loop of nonzero modes.
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FIG. 13. An additional perturbative diagram contributing to the
pressure at second order. The fat black dot represents the one-loop
(* )? renormalization counterterm, which vanishes in dimen-
sional regularization.

condensate fraction

T
ST,
’ 6_TC~__§(2) iN*1/3 (7.3
FIG. 12. A schematic depiction of finite-size effects on the BEC To 2§(3)2/3 Who '
phase transition in the ideal-gas limit. The dashed curve indicates
the infinite-volume transition. from the infinite-volume valugin the ideal-gas approxima-

tion) as depicted in the figure. Here,is the arithmetic mean
VIl. HOW WIDE IS A WIDE TRAP?

— wytowyto
We have assumed throughout this paper that the trap is W= % (7.9
arbitrarily wide LWy, 0 with N fixed). We . e .
will now)f[ake a r(rL;)c))(ma:aynta;é_e)xplain pa?;xr;)ésr)izcally i)ow wide The condition that this finite-size effect on the transition be
“wide enough” is for our second-order results to be valid. Small compared to the relativ®(a®/\g) correction toT,

— . that we have presented in E&.1) happens to be the same,
Our second-order result fqu, depends on nonperturbative arametrically, as the right-hand condition in E2.2).

physics near the center of the trap, and we treated the trap R§
flat over the wavelength @/of such physics. The trap must,
therefore, be wide enough that this wavelength fits comfort- Viil. CONCLUSION

ably inside the region of the trapped gas that is nearly criti-  The relative size of the second-order effect in our final

cal, whose size we labeldg,, in Sec. IID. result(5.1) for T, obviously depends on the diluteness of the
First consider the case,~ wy~w,. U3|n(i;/6TabIe l, the  gas and the value of the scattering length, which will vary
condition 1L<Ry, can be translated infio<N*"a. Combin-  from experiment to experiment. However, just for fun, let us

ing this with the basic diluteness assumptiarkl of our  put numbers to the size of the effect for one specific experi-

analysis, we then require mental study ofT, that has appeared in the literature. The
" 1996 experiment of Ensheetal. [32] found AT./T,
a<|<N™a. (7. =-0.06+0.05 for dilute gases of roughlj=40,000°’Rb

atoms in the F=2 hyperfine state, trapped with,

This shows only the parametric dependence, and we have 373 Hz, w,=27v,, and wxzwyzwzl\/§. The relevant
made no attempt to estimate numerical factors. scattering length isa=(103t5)a, [33], where a,

For a very anisotropic trap, the strongest constraint will=0.0529177 nm is the Bohr radiu€See also Ref[34].)
come from requiring the narrowest direction of the near-These parameters correspondaib.o=0.016. For an arbi-
critical region to be larger than W/ Let w,, be the largest trarily wide trap, this would translate into a first-order cor-
of oy, wy, andw,. Repeating the analysis of Sec. Il D then rection toT, of roughly —5.4% and a second-order correc-
gives the corresponding value &, in that direction as

falMo e >~ N30,/ wmay. SO the condition is
TABLE Ill. Feynman rules appropriate for standard perturbation

a<| <NY63 /ﬂ (7.2 theory in the(3+1)-dimensional theory.
Wmax
These constraints may be translated into other variables us-
ing l~n" Y2~ \~N"Y63,. 1
This condition on the size of the trap can also be summa- -
rized as a comparison of the uncertainty in the valud of iko + wi — p1

due to finite-size effects versus the resolution with which we
have computed . in our second-order formulé.1). Finite-
size effects round off the nonanalyticity of the infinite-size 8ma
transition, as depicted in Fig. 12. A standard result from the ><

literature is that, below the rounded transition, finite-size ef-

fects create the appearance of a transition temperature shifted

by [1,31]
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tion of roughly +0.9%. For the actual trap, however, the - k?

corrections (7.3) due to finite-size effects are roughly O O L= 50T M (A2)
—2.4%. The fact that this is larger in magnitude than the

second-order correction, leads us to suspect that this particand where the summation-integration sign is defined in Eq.
lar trap may not be wide enough for the second-order resuli4.16). We now use standard tricks to evaluate the frequency

to be trusted, as was discussed in Sec. VII. sums® Specifically, rewrite the frequency Kroneckéias an
integral of exponentials, and factorize the expression into
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xi. = }: ———(2m)%8®(p+q—k-1I).
APPENDIX A: FIELD THEORY REDERIVATION iko+ wy ilg+ o
OF P(T,p) : t
(A3)
The two diagrams that contribute to the pressure at second
order in perturbation theory were shown in Figgb)land  Then we use the standard frequency sums
1(c). Technically, there is also a third diagram, Fig. 13, which e lapg
involves the one-loop * )2 counterterm(represented by > T =n(w)e*”, (Ada)
the fat doj for renormalizing the linear UV divergence of Po _°
zero-temperature, zero-density-2 scattering at second or- e’ '*Po _
> =n(w)ef e, (A4b)

der. However, we shall use dimensional regularization, for
which this counter-term vanishes, as discussed in Sec. IV B.
The Feynman rules are given in Table Ill. They are the saméor 0<a< 8. The « integration is then trivial, yielding

Po |p0+(,()

as in Table Il except that we are not treating the chemical 87252 ~ B ~ ~
poFentiaI,u as a perturbation in this context. We work in PC:TJ N(wp)N(wg)N(w)N(w))
units whereh =kg=1. pakl

eﬁ(z’erz’q)_eB(Z’kJr:"I)
1. The basketball diagram X (2m) 36 (p+g—k—1).
Wyt wg— = o

Let us start with diagrantc) of Fig. 1. The corresponding

contribution to the pressufe=(BV) !lnz is? (A5)
1(—8ma)? Note that the zero of the denominatoraj+ w,= w,+ , is
< gl m canceled by a corresponding zero of the numerator. How-
ever, it will be useful to split the integral into pieces that
Bép0+q0,ko,,o(2w)35(3)(p+q— k—1) individually lack this cancellation, and so it is useful to first
X i : — — — —, introduce a redundant principal pdR) prescription in Eq.
pokL (1Po+ @p)(idot wg)(iko+ @) (i ot ) (A5). Making use of the identity
(A1) n(w)ef’=n(w)+1, (AB)
expanding terms, and permuting integration variables, we
where we have introduced the shorthand notation can rewrite Eq(A5) as

2 = (2m)35®) (p+q—k—1)

3277’ f o N(@N(@)n(w) — zn(wp)n(ay)
¢ pak Z)p"l':l)q_;k— )

(2m)28@(p+q—k—1). (A7)

32772a2J N(wg)N(@)N(w)) = 3N(wp)N(wg)
== P
m pakl

wptT wg— ko)

8P, corresponds t0Q'/Q(® of Ref. [15]. The contribution VP, from diagram (b) of Fig. 1 corresponds td Q"/Q (]
_%[Q(l)/Q(O)]Z_
9See, for example, Sec. 5.5.1 of RES5].
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The term telegraphic, we will present our own method. First, expand
~ ~ the distribution functionsn(w)=n(w— ) in powers of
2,2 _1 .
327%a 2N(wp)N(wq) 3 fugacity z= exp(Bu):
Peo=— P —— —(2m)
m* Jpok  @pt 0qT Wk~ @) v w
5 32m%a’
X 5@ (p+q—k—1), (A8) P.= E Z > zathre
a=1b=1c=1

involving just twon’s, has a linear UV divergence associated
with k,I — o, with p andq fixed. This is the divergence that

is canceled by the counterterm diagram of Fig. 13 for generic
regularization schemes and that dimensional regularization
will simply ignore. In fact, the entire ter® , simply van- X (2m)36 P (p+g—k-1). (A13)
ishes in dimensional regularization, which can be seen by

doing thek and! integrations explicitly ind spatial dimen- Rescaling all momenta by 8/m to make them dimension-

efaﬂqZ/Zmef bﬁk2/2mef CB' /2m
X f 2
pq y

WpT W~ W= O

sions. Definings=k—3(p+Q), less gives
(2m) 96D (p+g—k—1) 8a2T o
kaP 0t 05— O o) 5 2 E 2 220 e, (A14)
N° a=1b=1c=1
d’s 1
aP (A9) o-a?i2g—bk22g—ci22
m e Lo g lane=(2m2|  PS (2m)?
¢ gtk 1)

I's convenient to re-express the principal part in terms of
infinitesimals, using Eq(4.23, before doing thes integra- x 8@ (p+g—k—1). (A15)
tion. The integralA9) then yields
For the sake of justifying later manipulations, it is conve-
mF( 1— 9) nier_1t to intrc_>duce a red_ur_1dant epr*pZ_) convergence fac-
B R — |p—g2+i0* |22 tor into the integral definind,,.. We will evaluatel ,,,. by

(477)972 representing the energy denominator and éhfanction as
integrals of exponentials. Using the infinitesimal version
rl1 d (4.23 of the principal part prescription, we write
:_m—§[1| —ql2]@- 220 (d=2)m
(47)d2 71P—¢ 2 : |abc:(277)9/2Ref e~ 0P’ g—ad’i2g—bk?/2g—cl?/2
pakl
(A10) _
1o (24 a2 k212 i+ . e
Analytic continuation tod=3 vyields zero: Xfo dre” (PTraT-keITi0 sz d3xex (Prazk=h,
2m)96 D (p+q—k—I
f P( )76 (p+q ):O(e), (ALD) (A16)
K WpT wg— W= v

The p, g, k, and| integrations are now simple Gaussian
wheree=3—d. To conclude that the contributidA8) to the integFr)aLg yielding g P

pressure vanishes in dimensional regularization, one must
also check that the fingd and q integrals with theO(e) oo
integrand do not diverge, since divergencies could possibly |abC:(27T)*3/2Ref d)\e“’“f d3x(0" +\) %7
generate a & singularity to cancel th©(e) behavior of the 0

integrand. However, the UV is cut off by the distribution

=312/ _ =312/~ _ —3/2
functionsn(w,) andn(w,) in Eq. (A8), and so this is not an X(a+ M) b=M) e M)

issue X2 1 1 1 1
We are left with only the term of EqA7) with threen’s: e S ot an T arn TN T oo/ I
_ 327%a? J nn(qu)n(Z)k)n(Z),) (A17)
€ m? pakl ' wpt wg— W= )

The exp(0*\) prescription is now redundant and can be
X (2m)38 ) (p+q—k—1). (A12) dropped. It's also convenient to change integration variables
from X to A\+0" in order to remove the remaining"Opre-
This reproduces EqA15) of Huanget al. [15]. Since their  scription from the integrandnoting thata,b,c#0). Thex
subsequent discussion of evaluating this integral is somewhattegral is Gaussian and yields
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joo+07
IabczReJ+ d\[abc+2beh —(a+b+c)a?] %2
0
(A18)

The final integral is straightforward and gives

1
(a+b)(a+c)(abo)¥?’

(A19)

Iabc

The final result for this contribution to the pressure is

Za+b+c

4=16=1¢=1 (a+b)(a+c)(abo)l?’
(A20)

2. The three-circle diagram

The other second-order diagram, Figb)l is trivial in
comparison. It's contribution to the pressure is

b 1(—87-ra Zi 1 /i 1 \?
b=>5 - ~ - ~
2\ m . (|p0+wp)2\ 100t wq
(A21)
One of the summation integrals is
1 ~ . ~
[y +11- [ ny
100+ wq q q
Q
312
- m) L| 3/2( Z) . (AZZ)

PHYSICAL REVIEW A 64 053609

Because of the explicit factor @?, one might naively think

one could use the ordeP resultz=1 for z. But this would
give

1
K (ij)3/2k1/2(i+j+k)ll2'

(B2)

which has logarithmic divergencies associated vkith o,
with i andj fixed. We can isolate these divergencies by re-
writing the original sum as

Sit+jt+k Si+j+k
VA _2 VA
ik (ij)3/2kl/2(i+j+k)1/2 ik (ij)3/2k1/2(i+j+k)1/2
—k
z
-+ —.
(ij)3’2k] % (i) %%
(B3)

Z

We can now safely setto 1 in the first sum on the left-hand
side. The second sum is easy, givirg/(3)2In(1-2). The
small u result is then

Ftitk { 1

ik (ij)3/2k1/2(i+j+k)1/2:i]—2k (ij)3/2k1/2(i+j+k)1/2

1 _
_(ij)—3’zkl_§(%)2|n(_ﬁ )

+0(u). (B4)

The sum associated with tl@\ term of Eq.(3.5 must

The other is easily obtained by differentiating with respect tobe expanded to first order iﬁ, where it suffers a similar

u

1 m 3/2
i( ﬁ(%ﬁ) L.  (A23)

ipo+ wp)?
So,

8a°T

Pb:T[LiSIZ(Z)]ZLiUZ(Z)- (A24)

Putting P, and P, together gives the total second-order
contribution to the pressure, which appears in Bql). The
first-order contribution of Fig. (B) is easily evaluated in a

similar manner.

APPENDIX B: SMALL EEXPANSION OF N
1. The expansion

Consider the §/\)? term in the expansioii3.5) for N.
First consider the term proportional to

Z|+j+k

K (ij)3/2k1/2(i+j+k)l/2'

(B1)

problem. Naively,

zi+j B 1 - (i+j)1/2
i (ij)3/2(i+j)1/2_ i (ij)3/2(i+j)l/2 B,LL i (ij)3/2
T (B5)

The second term has logarithmic divergencies associated
with (i) i —oo with j fixed, and, symmetricall{ii) j — o with
i fixed. Proceeding as before, we can isolate the divergent
behavior by writing

Zi+j

o 7 7
TV T )i+ (23 972

zZ 7

R —
i2j3/2 i3/2j2

+2

i

. (B6)

In the first sum, we can now safely replazeby 1+ Bu
+0(u?), and the second sum gives

2¢(3)Liy(2)=2L(3){L(2)+[—In(— Br)+1]Bu}
+0(u?). (B7)
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The final result for the expansion is then The last thing we need is the expansion of the sum in the
— ordera® term of Eq.(1.5), which is just
z'" _
= +2¢(3
T D) )R Pk o _ R
_ Liz(2)=4(3)+ {(2)Butz[—In(=Bu)+31(Bu)
X[=In(=Bu)+1 _
[—In(=Bu)+1] +O(). 9)
(i+j)l/2—il/2—jl/2 -
> —7 0.
N (ij) Combining the expansion®4), (B8), and(B9) of the sums

(B8)  with the expansiori3.5 of N, we obtain

kgT |3 — 2a 1 3 . 2a (i+])2—iv2_jv2 45 _
Nz(ﬁwho) |§(3)+ g(z)BM_T; i3/2j3/2(i+j)1/2 + Z(BM)Z_TB@ i3/2j3/2 _Tﬁﬂg(%)
182 2 ! ( r . l —i> —1< i (9))2In(— M)
MO G (+j+K0Y2 0 ((+K)(+K)(+]+k)Y¥2 K2 | 2 Pr— G p
a _ 3
+O x’ﬁﬂ) : (B10)

If we now use the expansidf.?) of ;C, we obtain the result Where we now set =1 for convenience. The logarithms are
(3.9) presented in the main text. produced by the infrared behavior, near the center of the trap,

of the loops drawn large in the figure. Specifically, it is the

Po=0, p—0, x—0 behavior of these diagrams, wheyéds

o . ) the loop momentum of those loops. The small loops are UV
To understand the origins of the logarithms in the precedyominated and so, to this order in the expansiora,irare

ing analysis, consider a straight, naive, perturbative expannsensitive tox near the center of the trap. The infrared di-

sion in . Treating the— wy* ¢ term of the Lagrangian as a vergencies due to the large loops then produce the same

perturbation, the logarithms then arise from the diagrams ofommon factor for all diagrams:

Fig. 14. Each diagram should be understood as evaluated at

2. Cancellation of logarithms

fixed x, with effective chemical potentigk = —V(x), and j dng' &p[G(0 p)]3°<f ﬁzlog divergent

then the result of the diagram integrated oxey is treated ' q° '
perturbatively, whileV(x) is not. The imaginary-time propa- (B12)
gators in this perturbation theory, derived from the action . - .

(2.3, are where we've introduced the six-dimensional phase-space

vector
1

GolPo ) oM V) (B1Y q=( e By P \/wa \/Ewy \/sz
Po™P 2m'\2m’2m’ V27 V27T N 2

_ _ B13
m i (B13)
The cancellation of these logarithms at the phase transi-
tion occurs because, at the phase transition, the inverse sus-
n n

ceptibility vanishes at the center of the trap. This condition is
shown diagrammatically in Fig. 7, which implies that the

_ ) ) o logarithms generated by the diagrams of Fig. 14 cancel each
FIG. 14. Diagrams producing the infrared logarithm in the smallother at the order of under consideration.

; expansion ofN. Each diagram should be understood as being

evaluated with an effective chemical potenﬁa#M—V(_x) with w APPENDIX C: NUMERICAL RESULTS FOR SUMS
treated perturbatively. The dots represent the two-point vertex com-

ing from treating the— wy* ¢ term in the Lagrangian perturba- The following sums were computed numerically using the
tively. The crosses are as in Fig. 2. iterative application of the Euler-MacLaurin formula.
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T +j)1,2:2.416 942 200, (C1)
(I + J )1/2_ i 1/2__ J 1/2
- TR ~-8.215157561, (C2)
1
~2.2111, (C3)

iizk (k)Y + k) (j+k)(i+]+k)L?

1

ik (Ij )3/2k1/2

1
(i+j+k)¥2

1
- kT/z) ~—-16.70. (C4)

APPENDIX D: DERIVATION OF THE SUNSET DIAGRAM

Using the methods outlined in Appendix A, we will now
reduce the sunset diagra@.21) to the integral representa-
tion (4.22 in terms of distribution functions. Starting with

8ma\?

m

BB, g,k (2™ 6D (1—q—k)
(ilot+ @) (igo+ wg) (iko+ wy)

1
Woy=— =

¥
QKL

(D1)

and rewriting the Kroneckes$ function in(D1) as in Appen-
dix A, we obtain

PHYSICAL REVIEW A 64 053609

(d) 87Ta Ialo e+iaq0
+Iak0
i (2m)98@(1-q—k). (D2)
Wy

K

Using the frequency sum@\4) and then performing the
integration,

8ma\?

m

1
(d) —
n0)=-3

J N(w)N(wg)n(wy)
gkl

eﬁw| _ e,B(mq‘F wk)

X (2m)96@D(1—qg—k).

w|— wq— Wy
(D3)

The integrand is well behaved at= w4+ w (except for the
infrared divergence wheile g, andk all go to zero, which is
dealt with in the main text However, as in Appendix A, it is
convenient to introduce a spurious principal part prescription
at this stage. Then, using E@A6) and permuting integration
variables, one arrives at E¢.22).

The last term in Eq(4.22), involving just onen, is pro-
portional to

(o))

n
p—
gkl W] T WgT Wy

The gk part of this integration is just a special case of Eq.
(A11) with the momentum labels changed agmdet to zero.
As described in Appendix A, it therefore gives zero contri-
bution in dimensional regularization far=3

(2m)98D(1-q—k). (D4)
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