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Tc for trapped dilute Bose gases: A second-order result

Peter Arnold and Boris Toma´šik
Department of Physics, University of Virginia, P.O. Box 400714, Charlottesville, Virginia 22904-4714

~Received 7 May 2001; published 10 October 2001!

For some time, the theoretical result for the transition temperature of a dilute three-dimensional Bose gas in
an arbitrarily wide harmonic trap has been known to first order in the interaction strength. We extend that result
to second order. The first-order result for a gas trapped in a harmonic potential can be computed in mean-field
theory ~in contrast to the first-order result for a uniform gas, which cannot!. We show that, at second order,
perturbation theory suffices for relating the transition temperature to the chemical potential at the transition, but
the chemical potential is nonperturbative at the desired order. The necessary information about the chemical
potential can be extracted, however, from recent lattice simulations of uniform Bose gases.
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I. INTRODUCTION

Consider a dilute three-dimensional gas of bosons,
identical, in an external harmonic trapping potential

V~x!5 1
2 m~vx

2x21vy
2y21vz

2z2!, ~1.1!

wherem is the mass of each boson. For this system to h
a sharp, well-defined phase transition, we need to form
take the infinite volume limit ofvx ,vy ,vz→0 while keep-
ing the central density of Bose particles finite and nonzer
the transition. As we will briefly review below, the centr
densityn̄ at the transition scales asn̄;N1/2/aho

3 , whereN is
the total number of Bose particles in the trap, and where

aho
3 [S \

mvx
D 1/2S \

mvy
D 1/2S \

mvz
D 1/2

~1.2!

is the volume scale of the ground-state wave function.~See
also Ref.@1# for a review.! The appropriate infinite volume
limit is vx ,vy ,vz→0 with Nvxvyvz held fixed.

At low energies, the relevant measure of the strength
interactions is the two-body scattering lengtha. We will as-
sume that interactions are repulsive (a.0). We will study
the transition temperatureTc for Bose-Einstein condensatio
~BEC! of a dilute single-species gas as a function of the to
number of particlesN in the trap, in the infinite volume limit
just discussed. One might naively anticipate there to be
expansion of the form

Tc~N!5T0~N!F11c1

a

l
1c2S a

l D
2

1•••G , ~1.3!

whereT0 is the ideal-gas result andl is some characteristic
length of the ideal-gas system. As we will review below, t
appropriate length scale for a trapped Bose gas is the typ
inter-particle separationl;n̄21/3;N21/6aho at the center of
the trap. The coefficientc1 of the expansion forTc has been
known for several years@2#. In this paper, we calculate th
next correction. As we will discuss, this is the furthest o
can go in the expansion without more information about
1050-2947/2001/64~5!/053609~21!/$20.00 64 0536
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teractions than just the scattering length. We’ll find thatc2
depends logarithmically ona/ l ; the actual expansion is of th
form

Tc~N!5T0~N!F11c1

a

l
1S c28 ln

a

l
1c29D S a

l D
2

1•••G ,
~1.4!

and we shall calculate the constantsc28 andc29 . ~The appear-
ance of a related logarithm foruniformgases has been qual
tatively discussed in Ref.@3#. For a calculation of the
second-order relationship betweenTc and the central density
n̄ in an arbitrarily wide trap, which is also the relationsh
Tc(n) for a uniform gas, see Ref.@4#.!

Some aspects of the Bose-Einstein condensation p
transitions are perturbatively calculable, and others are
In a dilute Bose gas, the physics of fluctuations associa
with relatively short-distance scales is perturbative, wh
that associated with critical behavior on relatively lon
distance scales is not. In the case of a uniform Bose gas~that
is, a Bose gas in an infinite square-well potential rather th
a harmonic potential! the first-order shift inTc is sensitive to
critical fluctuations and so is nonperturbative. That shift h
recently been calculated using lattice simulations@5–7# and
has previously been estimated in a wide variety of wa
@8–14#. In contrast, the first-order shift for a gas trapped in
harmonic potential~parametrized byc1) is calculable using
perturbation theory@2#. As we shall see, the second-ord
logarithmic coefficientc28 is also calculable in perturbatio
theory, but the constantc29 under the log is not. We shal
calculatec29 by relating it to measurements that have be
made in lattice simulations of the phase transition in thr
dimensional O~2! field theory@7#.

We should emphasize that expansions of physical qua
ties in a/ l cease to correspond toperturbativeexpansions in
a/ l , once one reaches the orders we have asserted are
perturbative. The failure of perturbation theory in describi
generic second-order transitions has been known for deca
This breakdown typically manifests in perturbation theory
the appearance of infrared infinities in the coefficients of
perturbative expansion beyond a certain order.
©2001 The American Physical Society09-1
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There is a simple way to relate the problem of a Bose
in an arbitrarily wide harmonic potential with that of a un
form Bose gas. In the infinite volume limitvx ,vy ,vz→0 of
the harmonic trap problem, the trapping potential becom
everywherelocally flat over any fixed distance scale~such as
the typical interparticle spacing!. Locally, the problem can
then be treated as a uniform gas in the presence o
x-independent potential, and anx-independent potential ca
be absorbed into a redefinition of the chemical potential.
example, if the original chemical potential wasm̄, then the
effective chemical potential at a positionx is m̄2V(x). For
arbitrarily wide traps, the total number of particles in t
system is then related to chemical potential and tempera
by

N5E d3xn„T,m̄2V~x!…, ~1.5!

wheren(T,m) is the uniform gas result for the number de
sity at a chemical potentialm.

In a trap, the effective chemical potentialm̄2V(x) is
highest at the center, whereV(x)50, and this is where the
condensate first forms as the system is cooled.1 For a uni-
form gas, letm̄c(T) be the critical valuem of the chemical
potential at a given temperatureT. Then Eq.~1.5! becomes

N5E d3xn„Tc ,m̄c~Tc!2V~x!…. ~1.6!

If we knew n(T,m) and m̄c(T) for a uniform gas, we could
then use Eq.~1.6! to solve forTc for a gas ofN particles in
an arbitrarily wide trap.

In the next section, we review in more detail the physi
scales of the problem and explain why, for the purposes
applying Eq.~1.6! to second order, it is adequate to use p
turbation theory for the uniform gas resultn(T,m). We also
explain why perturbation theory is inadequate to find
uniform gas resultm̄c(T) at second order. The second-ord
perturbative result forn(T,m) can be extracted from the lit
erature@15,16#, and in Sec. III we step through the simp
exercise of applying that old result to determine the relat
~1.6! betweenN, m̄c , andTc at second order. Then, in Se
IV, we take on the less trivial step of showing how th
second-order value ofm̄c(T) can be related to existing resul
from lattice simulations of O~2! scalar field theory in three
dimensions. We put everything together in Sec. V, giving o
final answer for the second-order term of the expansion~1.4!
of Tc . In Sec. VI, we discuss the nature of yet higher-ord
corrections and explain why they require more knowledge
two-body scattering than just the scattering lengtha. In Sec.
VII, we briefly discuss parametrically how wide a trap mu
be for our ‘‘arbitrarily wide trap limit’’ results to be valid a
second order. Finally, we conclude in Sec. VIII with a bri

1A reminder about signs: Recall that, for a uniform Bose gas,m is
negative at high temperature and increases~moves towards zero! as
the system is cooled.
05360
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example of how big the second-order effects might be i
particular experimental situation. Various details and div
sions are saved for appendices, including a modern fi
theory rederivation and verification of the old perturbati
result forn(T,m) that we take from Huanget al. @15,16#.

II. SCALES AND EFFECTIVE THEORIES

A. The uniform gas

Before proceeding to a Bose gas in a harmonic trapp
potential, let us first review the basic scales relevant to
phase transition of a uniform gas. The generic condition t
the gas is dilute is that the two-particle scattering lengtha be
small compared to the typical interparticle separationl
;n21/3, wheren is the number density. The Bose-Einste
condensation phase transition occurs when the typica
Broglie wavelength

l[\A2pb/m ~2.1!

becomes of the order of the interparticle separationl. Then
a!l;n21/3.

At the phase transition, the interaction can be treated
turbatively for analyzing short-distance physics but, as w
most second-order phase transitions, interactions canno
treated perturbatively for analyzing long-distance physics
distance scale that will be of interest is the dividing lin
between these two regimes. As we shall review below,
scale isl2/a;n22/3/a. At the transition, there is then a h
erarchyl2/a@l@a of physically relevant distance scale
for a dilute Bose gas.

We will now briefly review the description of the dilut
Bose gas system in terms of effective-field theories, and
will then turn to the effective-field theory description re
evant to the long-distance physics at the critical point@12#.
This will provide a clean way to review the origin of th
nonperturbative scalel2/a, and we will need to make use o
such effective theories later in our discussion of the criti
chemical potentialm̄c(T) for a uniform gas.

B. The action

It is well known that, at distance scales large compared
the scattering lengtha, an appropriate effective theory for
dilute Bose gas is the second-quantized Schro¨dinger equa-
tion, together with a chemical potentialm that couples to
particle number densityc* c, and aucu4 contact interaction
that reproduces low-energy scattering@1#. The corresponding
Lagrangian is

L5c* S i\] t1
\2

2m
“

21m2V~x! Dc2
2p\2a

m
~c* c!2.

~2.2!

The identification of the coefficient of the (c* c)2 interac-
tion with 2p\2a/m is technically only valid at leading orde
in the interaction strength but, as we will review later, do
not change at second order if one uses dimensional reg
ization @17#. We’ll also later discuss~in Sec. VI! the size of
corrections to the effective theory due, for instance, to ene
9-2
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Tc FOR TRAPPED DILUTE BOSE GASES: A . . . PHYSICAL REVIEW A 64 053609
dependence of the cross-section or three-body interaction
will turn out that such corrections can be ignored for t
purpose of computingTc to second order.

To study Eq.~2.2! at finite temperature, we apply the sta
dard imaginary time formalism, so thatt becomes2 i t and
imaginary timet is periodic with period\b5\/kBT. The
imaginary-time action is then

SI5E
0

\b

dtE d3xFc* S \]t2
\2

2m
“

22m1V~x! Dc

1
2p\2a

m
~c* c!2G . ~2.3!

As usual, the fieldc can be decomposed into imaginary-tim
frequency modes with Matsubara frequenciesvn52pn/\b.

C. Nonperturbative physics in the uniform gas

We will now specialize the above mentioned to the u
form gas caseV(x)50 and will discuss the system at o
close to the critical point. For distances large compared
the thermal wavelength~2.1! and sufficiently near the trans
tion so thatumu!T, the nonzero Matsubara frequencies d
couple from the dynamics, leaving behind an effective the
of only the zero-frequency modesc0, with the action becom-
ing

\21SI→bE d3xFc0* S 2
\2

2m
¹22meffDc0

1
2p\2a

m
~c0* c0!2G , ~2.4!

up to corrections that again, as we will discuss later~in Sec.
VI !, do not affectTc at second order. Equation~2.4! can be
interpreted, if desired, as thebH of a classical three-
dimensional field theory.

Finally, it is convenient to rewritec05fA4p/l so that
the effective action becomes a conventionally normaliz
U~1! field theory of a complex fieldf:

S5E d3xF ~“f!* •~“f!1rf* f1
u

6
~f* f!2G ,

~2.5!

where

u5
96p2a

l2 . ~2.6!

We will henceforth refer to this effective theory as th
‘‘three-dimensional’’ effective theory, while referring to th
original imaginary time theory ~2.3! as the ‘‘311-
dimensional theory’’~for three space plus one time dime
sion!. By writing f5(f11 if2)/A2, the three-dimensiona
effective theory may equivalently be interpreted as an O~2!
theory of two real fields with interaction (u/4!)(f1

21f2
2)2.

The relationship ofr to the chemical potentialm and other
parameters of the original theory is a little more subtle,
05360
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cause thef* f interaction is associated with an ultraviol
~UV! divergence of the three-dimensional theory that has
be renormalized. We will discuss this relationship in det
when we analyzem̄c(T) in Sec. IV. For the moment, thes
details are unimportant.

There will be a line in the (m,T) plane that corresponds t
the Bose-Einstein condensation phase transition. In the lo
distance effective theory~2.5!, that line will correspond to a
line in the (r ,u) plane. If we think of this line as determinin
r in terms ofu, then the only physical scale in the problem
studying this effective theory at the transition isu. By dimen-
sional analysis, the distance scale of nonperturbative phy
is therefore 1/u;l2/a, as asserted earlier.

It will be useful to understand how far away from th
transition one needs to go, as measured bym̄c2m at T
5Tc , in order for the physics onall scales to be perturba
tive. This will happen when the correlation lengthj is small
compared to the scale 1/u;l2/a of nonperturbative physics
We can determine this condition onj with a perturbative
analysis. In fact, it is sufficient to consider a simple Gauss
~i.e., tree-level! approximation, wheremeff in the effective
three-dimensional theory~2.4! is naively taken to bem, cor-
responding tor 522mm/\2 in the rescaled effective theor
~2.5!. In Gaussian approximation,m̄c50. The correlation
length, in the Gaussian approximation, isj;r 21/2, and so
the conditionj!1/u becomes

m̄c2m@
\2u2

m
;

\2a2

ml4 . ~2.7!

~An equivalent condition was discussed in the original wo
@2# on the first-order result forTc in a trap.! We’ll see later, in
our more thorough discussion of the relationship betweer
and m in Sec. IV, that corrections to the Gaussian appro
mation do not change this conclusion.

Finally, note that, by dimensional analysis, the nonpert
bative contribution to the critical value ofr in the three-
dimensional O(2) effective theory~2.5! must be of orderu2.
The Gaussian approximation’s identification ofr with
22mm/\2 then suggests that the nonperturbative contri
tion to the critical valuem̄c is of order \2u2/m, which is
second order ina. As we will see in Sec. IV, this conclusion
is correct. This is the reason that, in order to calculateTc to
second order, we must account for nonperturbative physic
the determination ofm̄c .

D. Gas in a harmonic trap

Now we turn to reviewing scales in a harmonic trap. O
of the main points of this exercise will be to determine t
size of the region~at the transition! where the physics is
nonperturbative, relative to the size of the trapped gas cl
as a whole. This will allow us to determine to what order o
can use perturbative calculations to relateN, T, andm via Eq.
~1.5!.

For simplicity, we’ll assume in this discussion thatvx
;vy;vz . The relevant distance scales for a dilute Bose
in an arbitrarily wide harmonic trap, at the transition, a
9-3
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TABLE I. Distance scales for a dilute Bose gas in an arbitrarily wide harmonic trap at the phase tran
The scales are ranked in ascending order. Entries should be interpreted as representing orders of m
~parametric dependence! and not as precise definitions and equalities. The first column gives our notatio
each scale. The third column shows how the scales depend on the ‘‘experimental’’ parametersa, m, N, andv,
whereaho[(\/mv)1/2. The last column shows a simple rewriting that makes the ordering of scales
given that our assumed limits can be phrased asa fixed, a! l ~diluteness!, andl fixed with N→` ~arbitrarily
wide trap!.

a Scattering length a a

l;n̄21/3;l interparticle separation at trap center;

thermal wavelength N21/6aho l
1/u smallest wavelength of nonperturbative

fluctuations near center of trap N21/3aho
2 /a l 2/a

aho size of the ground state~condensate! aho N1/6l
Rnp size of nonperturbative region N1/3a N1/3a
Rcloud size of entire gas cloud N1/6aho N1/3l
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summarized in Table I in ascending order. Most of this is j
review of simple, standard results@1#, except for the scales o
nonperturbative physics in a harmonic trap, which we ha
not seen clearly discussed before.

First, let us review the size and density of the cloud
Bose particles at the phase transition. As we will reprod
below, mostof the particles in the trap are in the classic
regime, and we can use the classical equipartition theore
find the width Rcloud of the cloud; 1

2 mv2x2; 1
2 kBT yields

Rcloud;(bmv2)21/2. The central density of particles is the
of order n̄;N/Rcloud

3 ;N(bmv2)3/2, and the separation o

particles at the center of the trap is of order ofl;n̄21/3

;N21/3(bmv2)21/2. The phase transition occurs when th
separation is of order the thermal wavelength~2.1!, giving
kBT;N1/3\v, and sol;n̄21/3;l;N21/6aho, as claimed in
Table I. The fact thatkBT;N1/3\v@\v in our wide trap
limit ~which hasN→`) justifies the previous assertion tha
at the phase transition, most particles in the cloud can
treated classically.

Now let us analyze the size of the region in which phys
is nonperturbative at the transition. In our review of the u
form gas, we saw that physics becomes completely pertu
tive whenm̄c2m@\2a2/ml4. In an arbitrarily wide trap, the
effective value ofm is m̄2 1

2mv2x2. The condition for the
existence of nonperturbative physics at the transition is t
1
2 mv2x2&\2a2/ml4, and the width of the nonperturbativ
region isRnp;\a/mvl2;N1/3a. Note that, even within this
‘‘nonperturbative’’ region, fluctuations with small wave
lengths (!1/u) are still perturbative.

The relative volume of the nonperturbative region to t
volume of the entire gas cloud is (Rnp/Rcloud)

3;(a/ l )3. This
means that nonperturbative contributions to the relationN

5*d3x n„T,m̄2V(x)… betweenN, T, and m̄ are suppressed
by more than three powers of (a/ l )3. It is more than three
powers because, even in the relatively small nonperturba
regime, the dominant contribution to the density comes fr
typical particles, whose wavelengths are of the order of
thermal wavelengthl@1/u, which can be treated perturba
tively. This makes the total suppression (a/ l )4. In any case,
05360
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the conclusion is that there is no obstacle at second orde
a/ l to using perturbation theory to derive the relationsh
betweenN, T, andm̄.

III. n„T, µ… FOR A UNIFORM GAS AND ITS APPLICATION

The second-order perturbative result forn(T,m) can be
easily extracted from an old second-order result of Hua
et al. @15,16# for the pressure of a uniform hard-sphere ga

P5
kBT

l3 H Li5/2~z!2
2a

l
@Li3/2~z!#2

18S a

l D 2S @Li3/2~z!#2Li 1/2~z!

1(
i 51

`

(
j 51

`

(
k51

`
zi 1 j 1k

~ i 1k!~ j 1k!~ i jk !1/2D 1•••J ,

~3.1!

where

z5ebm ~3.2!

is the fugacity. Lin is the polylogarithm function, which for
our purposes can be considered as defined in terms o
series representation,

Lin~z!5(
s51

`
zs

sn . ~3.3!

We have independently rederived and verified this result
the pressure. For the sake of any readers who might fin
derivation in the language of field theory@based on the La-
grangian~2.2!# a useful supplement to the original, we giv
the derivation in Appendix A. In the language of th
imaginary-time field theory~2.3!, the perturbative Feynman
diagrams, which correspond to the first- and second-or
terms in the pressure~3.1! are shown in Fig. 1.
9-4
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We now obtainn as]P/]m

n5
1

l3 H (
i

zi

i 3/2
2

2a

l (
i j

~ i 1 j !zi 1 j

~ i j !3/2
18S a

l D 2

(
i jk

~ i 1 j 1k!

3zi 1 j 1kF 1

~ i j !3/2k1/2
1

1

~ i 1k!~ j 1k!~ i jk !1/2G1•••J .

~3.4!

Here and henceforth, indices of sums (i , j ,k) implicitly run
from 1 to infinity. ~Most of the terms above could be writte
in terms of polylogarithms, but the form shown is more co
venient for the next step.! We emphasize that this is a pe
turbative expansion and is valid only in contexts where p
turbation theory is applicable.2 In field theory language, the
above result forn corresponds to the diagrams of Fig. 2.

Now, usem5m̄2V(x) and integrate overx, as in Eq.
~1.5!. For the harmonic potential~1.1!, the integrals are
simple Gaussian integrals, giving

N5S kBT

\vho
D 3H (

i

z̄i

i 3
2

2a

l (
i j

z̄i 1 j

~ i j !3/2~ i 1 j !1/2

18S a

l D 2

(
i jk

z̄i 1 j 1k

~ i 1 j 1k!1/2F 1

~ i j !3/2k1/2

1
1

~ i 1k!~ j 1k!~ i jk !1/2G1•••J , ~3.5!

wherez̄[ebm̄ and

vho[~vxvyvz!
1/3 ~3.6!

is the geometric mean of the trap frequencies.
In Sec. IV, we will discuss the expansion

2The same expansion was incorrectly applied in Ref.@18# to the
problem of thefirst-order correction toTc for a uniform gas—a
problem where perturbation theory breaks down.

FIG. 1. Perturbative Feynman diagrams contributing to the p
sureP at ~a! first order and~b! and ~c! second order. Diagram~b!
corresponds to the first (a/l)2 term in Eq.~3.1! and diagram~c! to
the second.
05360
-

r-

m̄c5F m̄c
(1) a

l
1m̄c

(2)S a

l D 2

1•••GkBT ~3.7!

of the critical value ofm̄ in powers ofa. The ideal-gas resul
is m̄c50. Recall from previous discussions that the seco
order termm̄c

(2) is not perturbatively calculable.3 We will

later see that the second-order coefficientm̄c
(2) contains a

logarithm,

m̄c
(2)5A ln

a

l
1B, ~3.8!

and that the coefficientA of the logarithm is perturbatively
calculable, whileB is not.

3For those readers who like to think in terms of Feynman d
grams, there is a hand-waving, heuristic argument to see why t

is a nonperturbativeO(a2) contribution tom̄c . The first-order con-
tribution, given by the first diagram of Fig. 3, contributesO(a) to
m. Since this diagram is momentum independent, it can be abso
into a renormalization ofm, so that one need not consider highe
order diagrams that contain it as a subdiagram~a point relevant to
the discussion of divergencies at higher orders!. At the transition,
the second diagram of Fig. 3 contributesO(a2) times a logarithmic
infrared ~IR! divergence, arising from the contribution where bo
loop frequencies are zero and the two loop momenta simultaneo
approach zero. Three-loop contributions turn out to produceO(a3)
times linear IR divergencies, four loops produce quadratic diverg
cies, and so forth. Suppose we heuristically cut off these infra
divergencies at a momentum scaleL IR . The perturbation series

then turns out to look like bm̄c5O(a/l)1O(a2/l2)
1O(a3/l4L IR)1O(a4/l6L IR

2 )1•••, where we have ignored loga
rithms such as ln(lLIR). Imagine startingL IR at some high value
and then lowering it. The usefulness of the perturbative expan
will break down once we get toL IR;a/l2, which is just the non-
perturbative scaleu discussed earlier. For thisL IR , all the terms in
the series after the first become the same order, which isO(a2/l2).
This suggests that this is the order of a nonperturbative contribu

to bm̄c . For a clean argument, however, one should instead refe
the analysis in the text.

FIG. 2. Perturbative Feynman diagrams contributing to the nu
ber densityn5^c* c& at ~a! first order and (b1 , b2, and~c! second
order. The cross corresponds to an insertion of the operatorc* c,
whose expectation is being taken.

s-
9-5
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In any case, we would like to insert the expansion~3.7!
for m̄c into the expansion~3.5! for N. The problem is a little
more complicated than simply Taylor series expanding
individual terms of the sums of Eq.~3.5! in m̄, because such
a procedure would lead to unregulated infrared logarithm
divergencies at second order. We derive the smallm̄ expan-
sion of Eq.~3.5! in detail in Appendix B, with the result

N5S kBT

\vho
D 3H z~3!1

a

l F z~2! m̄ (1)22(
i j

1

i 3/2j 3/2~ i 1 j !1/2G
1S a

l D 2F3

4
@m̄ (1)#21z~2!m̄ (2)

22m̄ (1)(
i j

~ i 1 j !1/22 i 1/22 j 1/2

i 3/2j 3/2
24z~ 3

2 !m̄ (1)

18(
i jk

1

~ i j !3/2k1/2S 1

~ i 1 j 1k!1/2

1
i j

~ i 1k!~ j 1k!~ i 1 j 1k!1/2
2

1

k1/2D G
2

1

2 S a

l D 2

„m̄ (1)24z~ 3
2 !…2 lnS 2

m̄ (1)a

l
D 1OS a

l D 3J .

~3.9!

The logarithmic term at the end is the manifestation of
infrared logarithm just mentioned. In fact, at the critic
point, the coefficient of this logarithm vanishes because

m̄c
(1)54 z~ 3

2 !. ~3.10!

A diagrammatic interpretation of why the logarithm vanish
is given at the end of Appendix B. The first-order res
~3.10! for m̄c

(1) can be derived using mean-field theory, and
discussion in the context of trapped Bose gases may
found in the original first-order derivation ofTc @2#. We will
rederive it in the next section, along with the second-or
coefficient m̄c

(2) . For the moment, though, let us use t
known first-order result~3.10! to solve for Tc in terms of
m̄c

(2) . Inverting Eq.~3.9! gives

Tc5T0F11c1

a

l0
1c2S a

l0
D 2

1OS a

l0
D 3G , ~3.11a!

c15
2

3z~3! F(i j 1

i 3/2j 3/2~ i 1 j !1/2
22z~2!z~ 3

2 !G
.23.426 032, ~3.11b!

c25C22
z~2!

3z~3!
m̄c

(2) , ~3.11c!
05360
e

c

e

s
t
a
be

r

C25 5
2 c1

21
4

3z~3! F z~ 3
2 !212z~ 3

2 !(
i j

~ i 1 j !1/22 i 1/22 j 1/2

i 3/2j 3/2

22(
i jk

1

~ i j !3/2k1/2S 1

~ i 1 j 1k!1/2

1
i j

~ i 1k!~ j 1k!~ i 1 j 1k!1/2
2

1

k1/2D G.21.4, ~3.12!

where

T05S N

z~3! D
1/3\vho

kB
~3.13!

is the ideal-gas result and

l05A 2p\2

mkBT0
5A2pS N

z~3! D
21/6

aho ~3.14!

is the corresponding thermal wavelength. The first-order
sult is the same as that found in Ref.@2#.4 Results for the
individual sums appearing above are listed in Appendix C

IV. µ̄c„T… FOR A UNIFORM GAS

A. Overview

We’ll now address how to relate the chemical potentialm
appearing in the original~311!-dimensional theory~2.2! to
the parameterr of the effective three-dimensional theor
~2.5!. The critical valuer c of r can be extracted from lattice
simulations of the latter theory@7#, which will then allow us
to determine the critical valuem̄c(T) of m.

Effective theories, such as the three-dimensional O~2!
model, have long been used to describe long-distance p
ics at second-order phase transitions. Such use of effec
theories is often restricted to studies of universal quantit
such as critical exponents, because the relationship betw
the parameters of the effective theory and a more fundam
tal description of the system cannot be computed system
cally. The situation is quite different for dilute Bose gas
near the phase transition; the short distance scalel at which
the long-distance three-dimensional effective theory desc
tion ~2.5! breaks down is a scale at which the physics
perturbative~since l!1/u). One may therefore perform
perturbative calculation to relater to m, even though the
long-distance physics at the transition is nonperturbative

Such perturbative matching of the parameters of effec
theories with underlying physics has a long history in fie
theory. It has been applied in a number of problems, incl

4The sum in Eq.~3.11b! is expressed in a slightly different form
than in Ref.@2#. The relation is that

(
ij

1

i3/2j 3/2~ i 1 j !1/2
5(

i j

~ i 1 j !

i 3/2j 3/2~ i 1 j !3/2
52(

i j

1

i 3/2j 1/2~ i 1 j !3/2
,

where we have usedi↔ j in the last step.
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TABLE II. Feynman rules, appropriate for a matching calculation in a uniform Bose gas, for the o
311 dimensional theory~2.3! of c and the effective three-dimensional theory~2.5! of f. We have set\
5kB51. The variablek0 represent the Matsubara frequency of the field, whilevk[k2/2m. At finite tem-
perature, loop frequenciesl 0 are summed over the discrete valuesl 052pnT with n any integer. In dimen

sional regularization with theMS renormalization scheme, a factor ofM e5(egE/2M̄ /A4p)e should also b
associated with each four-point vertex but has not been explicitly shown above.
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ing lattice field theory@19#, Bose condensates at zero tem
perature@20#, relativistic corrections to nonrelativistic QED
@21#, heavy quark physics@22#, ultrarelativistic plasmas@23#,
and nonrelativistic plasma physics@24#. For a general discus
sion, see also Ref.@25#. The basic idea is to formally com
pute, in perturbation theory, some number of infrared phy
cal quantities in both the effective theory and the mo
fundamental theory. By equating the results from the t
theories, one can then solve for the parameters of the e
tive theory~to the order desired!.

The perturbative computations are performed using
convenient infrared regulator~though it must be the sam
regulator in both theories!. The perturbation series for var
ous physical quantities will be badly behaved if one remo
the infrared regulator since, in our case at least, the infra
physics is nonperturbative. But this bad infrared behav
will cancel out in the perturbation series derived for the p
rameters of the effective theory, and so one may safely
move the infrared regulator at the end of the matching c
culation. This is a reflection of the fact that the differen
between the effective theory and underlying theory has to
with short-distance physics, and short-distance physic
perturbative~in the cases where perturbative matching is
plicable!.

The relevant distance scale of physics for the match
calculation is the short-distance scalel where the three-
dimensional O~2! theory breaks down. The correspondin
energy scale is therefore of order\2/ml2;kBT, which is
simply the typical energy of particles in the gas. This scale
large compared to the size of the chemical potential at
transition~3.7!, which is of order (a/l)kBT. Therefore, for
the purpose of doing a matching calculation, the chem
potentialm may be treated as a perturbation. In combinat
with the use of dimensional regularization, this turns out
be very convenient computationally.

With m treated perturbatively, the imaginary-time Fey
man rules for the original 311 dimensional action~2.3! are
shown, for reference, in Table II. The analogous rules for
three-dimensional O~2! effective theory are also shown
When discussing the evaluation of Feynman diagrams,
will always set \5kB51 in order to avoid cluttering up
equations and discussions of conventions. We have spe
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ized to the case of a uniform gas by takingV(x)50, and
we’ve introduced the shorthand

vk[
k2

2m
. ~4.1!

We will use the notationk0 , l 0 , p0 , . . . to designate the
Matsubara ~imaginary time! frequencies associated wit
propagators with momentak, l, p, . . . .

In our case, the short-distance length scaleL21 at which
the three-dimensional theory breaks down is of ordern21/3

;l, as we have discussed before. In principal, a lon
distance effective theory can correctly describe physics a
infrared wavelength scalek!L to any desired order ink/L.
However, as one pushes the description to higher and hig
powers ofk/L, one must add more and more corrections
the action of the effective theory, in the form of interactio
that are more and more infrared irrelevant~in the sense of the
renormalization group!—that is, interactions with highe
scaling dimension. In our case, the long-distance phy
scale of interest is the nonperturbative scale 1/u, and powers
of k/L translate into powers of our expansion parame
ul;a/l!1. We shall discuss later why including such co
rections, such as auf*“fu2 term in the effective Lagrang
ian, would in particular not affectTc at second order.@We
will also give a similar discussion of (f* f)3, which is a
marginal operator in three dimensions.# For now, though, we
shall simply ignore the issue and push ahead with the ma
ing calculation.

The action for a given effective theory can be written in
variety of equivalent ways by making field redefinition
such asf→cf or f→(11e“21•••)f, etc. Our conven-
tion shall be to insist that the fields of the three-dimensio
and 311 dimensional theories match up, to whatever ord
in k/L we are working, as

c~0,k!5A2mT

\
f~k!. ~4.2!

This was our definition off in the more cavalier discussio
in the introduction. The frequencyk0 of c(k0 ,k) denotes
9-7
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imaginary-time frequency. So one of our matching con
tions will be that the inverse Green functions match up a

Gc
21~0,k!5

Gf
21~k!

2m
~4.3!

to the relevant order ink/L. In the presence of interaction
this definition of f might fix the normalization of the
(“f)* (“f) term in the action~2.5! to be different from 1.
Our three-dimensional effective theory should therefore
written in the somewhat more general form

S5E d32exFZf~“f!* •~“f!1r efff* f1
ueff

6
~f* f!2

1~higher-dimensional operators!G , ~4.4!

where Zf can deviate from one beyond leading order.
principle, we need to determine the parametersZf , r eff , and
ueff ~and any higher-dimensional operators, if they were
quired at a desired order! by matching.

B. UV regularization

Before starting on matching, we must first unambiguou
define the parameters of our theories. The three-dimensi
long-distance O~2! theory ~2.5! is superrenormalizeable, bu
there are UV divergences associated with thef* f interac-
tion. Diagrammatically, these divergencies are associa
with the graphs of Fig. 3. In order to give the coefficientr a
well-defined meaning, we need to specify a regularizat
and renormalization scheme. By far the most conven
regularization scheme for perturbative matching calculati
is dimensional regularization. We shall replace the num
d53 of spatial dimensions byd532e, taking e→0 at the
end of the day.

To define a finite, renormalized value ofr, we will use the
modified minimal subtraction (MS) scheme with a renormal
ization scaleM̄ . The theory is then

S5E d32exFZf~“f!* •~“f!1r baref* f

1M e
ueff

6
~f* f!2G , ~4.5!

with the relation

FIG. 3. Fundamental UV-divergent diagrams in the thre
dimensional theory~2.5!. Dimensional regularization automaticall
removes the linear divergence of the first diagram and regulate
logarithmic divergence of the second diagram as 1/e.
05360
-

e

-

y
al

d

n
nt
s
r

r bare5r MS1
1

~4p!2e S u

3D 2

~4.6!

between the bare couplingr bare and the renormalized cou
pling r MS(M̄ ), and where

M[
egE/2

A4p
M̄ . ~4.7!

@The factor ofegE/2/A4p in Eq. ~4.7! is what distinguishes
modified minimal subtraction (MS) from unmodified mini-
mal subtraction ~MS!; the difference between the tw
schemes amounts to nothing more than a multiplicative
definition of the renormalization scale.#

The original ~311!-dimensional effective theory~2.2! is
not renormalizeable and also requires UV regularization,
we will again use dimensional regularization. At second
der in the interaction strength~the order relevant to our cal
culation!, the only UV divergence is a well-known linea
divergence associated with the second diagram of Fig
which can be absorbed into a redefinition of the coeffici
of the (c* c)2 interaction. To relate this coefficient to th
physical scattering lengtha, one needs to regularize th
theory and then compute the zero-energy limits(0) of the
two-particle cross-section~at zero temperature and densit!
sincea is defined by 8pa2[s(0) for identical particles. In
dimensional regularization, however, the loop integral for
second diagram in Fig. 4 vanishes at zero temperature
density, and so there is no second-order correction tos(0).
The coefficient of the quartic interaction therefore remains
its tree-level value 2p\2a/m, as in Eq.~2.2! @17#.

This property of dimensional regularization is a simp
consequence of dimensional analysis. At zero energy~i.e.,
zero external momenta! the second diagram in Fig. 4 is pro
portional to the loop integral

E dl0d32el

~ i l 01v l !~2 i l 01v l !
. ~4.8!

All of the parameter dependence of this integral can be f
tored out by rescalingl 0 by a factor of 2m. The rescaled
integral

E dl0d32el

~ i l 01 l 2!~2 i l 01 l 2!
~4.9!

has dimensions of (length)211e but no dimensional param
eters to make up that dimension. The only dimensiona
consistent answer is zero. In most regularization sche

-

he

FIG. 4. The two-particle scattering amplitude at second- orde
the interaction strength.~Note that there is no t-channel analog
the second diagram, since such a diagram vanishes in a nonre
istic theory.!
9-8



to
,

as
lc

-
am
t
E

nd

e
a-
.

in
U
e
la

on
on
ia

am-
ial

lcu-
in

ing

al
nal
f

in

s,
g.
ure.

Tc FOR TRAPPED DILUTE BOSE GASES: A . . . PHYSICAL REVIEW A 64 053609
other than dimensional regularization, thereare still dimen-
sionful parameters in the integral associated with cu
scales, and the integral would not be zero. For example
we regulated with a UV cutoffL on l, the integral would
give a nonzero result proportional toL in d53.

C. Matching of Zf

We want to calculate the critical valuem̄c to next-to-
leading order@i.e., m (2) in the expansion~3.7!#. One might
expect this to require knowing the parametersZf , r eff , and
ueff of the effective theory to next-to-leading order. In fact,
we shall see, dimensional regularization organizes the ca
lation in such a way that we only need to computer eff ,
which is the three-dimensional analog ofm. But let us briefly
discuss the matching ofZf anyway, as a simple warm up.

The matching ofZf is trivial because the first-order con
tribution to the inverse propagator, given by the first diagr
of Fig. 3, does not have any momentum dependence. Tha
equating the inverse propagators of the two theories as in
~4.3! gives

k2

2m
1~k independent!1O~a2!

5
1

2m
@Zfk21~k independent!1O~a2!#,

~4.10!

whereO(a2) indicates corrections that are formally seco
order in perturbation theory. So

Zf511O~a2!. ~4.11!

In this paper, we will writeO( . . . ) when displaying the
full parameter dependence of a correction~except possibly
for logarithmic factors! and writeO( . . . ) when just show-
ing the dependence on a particular parameter. So 32a2/l2

5O(a2/l2)5O(a2). In matching calculations, where w
are formally doing perturbation theory with IR regulariz
tion, O(an) will just meannth order in perturbation theory

D. Matching of r

To match r, take thek50 case of matching~4.3! the
inverse Green functions:

2m1Pc~0,0!5
1

2m
@r bare1Pf~0!#, ~4.12!

whereP is the proper self-energy.
We will use dimensional regularization to regulate the

frared divergencies of perturbation theory, as well as the
divergencies already discussed. A well-known advantag
such use of dimensional regularization for matching calcu
tions is that every loop diagram contributing toPf(0) van-
ishes by dimensional analysis arguments similar to the
given in Sec. IV B. Consider, for example, the contributi
of Fig. 5. In the three-dimensional effective theory, this d
gram is proportional to the loop integrals
05360
ff
if

u-

is,
q.

-
V
of
-

e

-

E d32eld32eq

l 6q2u l1qu2
, ~4.13!

which must vanish because there are no dimensionful par
eters to make up the dimensions of the result. It is cruc
here that there are no external momenta, thatr may be
treated as a perturbation for the purpose of matching ca
lations, and that loop integrals are never dimensionless
dimensional regularization. The upshot is that the match
condition ~4.12! becomes simply

r bare52m@2m1Pc~0,0!#. ~4.14!

Another convenience of the vanishing, in dimension
regularization, of loop diagrams in the three-dimensio
theory is that we need not keep track of the matching ou
and Zf if we are only interested in the matching ofr. For
instance, the one-loop contribution of the first diagram
Fig. 3 gives a contribution proportional tou in three dimen-
sions, and so a second-order calculation ofPf would require
a second-order determination ofu, if it were not for the fact
that this diagram vanishes.

Returning to the 311 dimensional theory, the diagram
which contribute toPc up to second order, are shown in Fi
6, and all diagrams are to be evaluated at finite temperat
Diagram~a! gives the first-order contribution toPc . It gives

Pc
(a)5

8pa

m X

P

1

ip01vp
, ~4.15!

where we introduce the shorthand notations

X

P

[T(
p0

E
p
[T(

p0

M eE ddp

~2p!d , ~4.16!

FIG. 5. A two-loop example of a diagram contributing to
2Pf(0) for a matching calculation.r is treated perturbatively.

FIG. 6. Diagrams contributing to2Pc . m has been treated
perturbatively.
9-9
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whered532e is the number of spatial dimensions. Thep0
sum can be performed by standard contour tricks,5 yielding

Pc
(a)5

8pa

m E
p
@n~vp!1 1

2 #, ~4.17!

wheren(v) is the Bose distribution function

n~v![
1

ebv21
. ~4.18!

The integral of a constant vanishes in dimensional regu
ization ~again by dimensional analysis! and the integral of
n(vp) can be carried out in three dimensions to yield

Pc
(a)5

4aT

l
z~ 3

2 !1O~e!. ~4.19!

At the critical point, diagrams~b! and ~c! cancel each
other and so need not be computed individually. The can
lation arises because the inverse susceptibilityxc

2152m
1Pc(0,0) will vanish at a second-order phase transiti
This condition is shown diagrammatically in Fig. 7 at fir
order in perturbation theory. As we have discussed in S

FIG. 7. The vanishing of the inverse susceptibility at the ph
transition, expressed in terms of diagrams at first order ina. ~Unlike
Fig. 14, these diagrams are evaluated at the center of the trap
not integrated overx.!
e

,
pe

05360
r-

l-

.

c.

II C, perturbation theory breaks down in the calculation ofm
at second order, but the first-order relation of Fig. 7 is, the
fore, reliable.6 This relation implies that diagrams~b! and~c!
of Fig. 6 cancel at second order:

Pc
(b)1Pc

(c)5O~a3! at m5m̄c . ~4.20!
The sunset diagram.We now turn to diagram~d! in Fig.

6, the sunset diagram:

Pc
(d)~0!52

1

2 S 8pa

m D 2

X

Q

X

K

3
1

~ iq01vq!~ ik01vk!@ i ~q01k0!1vq1k#
.

~4.21!

We review in Appendix D how the loop frequency sums c
be done with standard contour tricks, with the result

e

nd

FIG. 8. Time-ordered perturbation theory diagrams correspo
ing to the three terms of Eq.~4.22!. Time flows from left to right,
and the dashed line represents the zero external momentum~and
zero frequency! in diagram~d! of Fig. 6 for 2Pc(0,0). Each in-
coming momentum~other than the zero one! is associated with a
Bose distribution factorn.
Pc
(d)~0!52

1

2 S 8pa

m D 2E
qkl

P
@n~vq!n~vk!22n~vk!n~v l !2n~v l !#

v l2vq2vk
~2p!dd (d)~ l2q2k!. ~4.22!
er-
rba-

hat
ion.
t in-
t

t

The symbol P indicates the principal-value prescription

P
1

x
5Re

1

x1 i06 , ~4.23!

where 06 is an infinitesimal. This prescription removes th
spurious divergence associated withv l2vq2vk→0 ~but
not also l;q;k→0), which is an artifact of this form of
writing P (d)(0). ~See Appendix D.! We will not bother to
explicitly write the principle value in what follows. We note
as a side remark, that, in the language of time-ordered

5For example, see Sec. 25 of Ref.@26#.
r-

turbation theory~in real time! the three terms of Eq.~4.22!
correspond to the three diagrams of Fig. 8.

It is easy to see that the first term of Eq.~4.22! vanishes,

6You may wonder why we have discussed the reliability of p
turbation theory here when we have already asserted that pertu
tion theory is valid for the matching calculation. The reason is t
we are jumping ahead a little in order to streamline the calculat
The matching calculation can be done perturbatively because i
volves only physics at the perturbative scalel, but the subsequen

solution forr c ~and thereforem̄c) cannot, since it involves physics a

the nonperturbative scale 1/u. Since we are using a result aboutm̄c

to simplify our matching calculation atm̄c , we need to be careful.
9-10
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because it is proportional to

E
qk

n~vq!n~vk!

vq1k2vq2vk
}E

qk

n~vq!n~vk!

uq1ku22q22k2

5E
qk

n~vq!n~vk!

2q•k
, ~4.24!

which vanishes byq→2q ~for any reasonable choice o
regularization scheme!. In Appendix D, we show that the las
term of Eq.~4.22! vanishes ase→0 in dimensional regular-
ization. Only the second term of Eq.~4.22! remains, giving

Pc
(d)~0!5S 8pa

m D 2E
kl

n~vk! n~v l !

v l2vk2 l2vk
1O~e!. ~4.25!

Subtracting divergences of the sunset diagram.Because
n(vp)→(bvp)21}p22 as p→0, the above integral~4.25!
has a logarithmic infrared divergence associated withk; l
→0. Unfortunately, the full integral in Eq.~4.25! is too com-
plicated for us to do in arbitrary dimensions, which would
the most straightforward way to apply our chosen regular
tion scheme, dimensional regularization. It is convenien
instead explicitly isolate the divergent IR behavior by rewr
ing

Pc
(d)~0!5S 8pa

m D 2F E
kl

n~vk!n~v l !2n0~vk!n0~v l !

v l2vk2 l2vk

1E
kl

n0~vk! n0~v l !

v l2vk2 l2vk
1O~e!G , ~4.26!

where

n0~v![
1

bv
. ~4.27!

The second integral vanishes in dimensional regulariza
for the usual reason: it is proportional to

E
kl

1

k2l 2~ l 22uk2 lu22k2!
, ~4.28!

which contains no dimensionful parameter to make up
dimensions. So

Pc
(d)~0!5S 8pa

m D 2E
kl

n~vk!n~v l !2n0~vk!n0~v l !

v l2vk2 l2vk
1O~e!.

~4.29!

The above integral is infrared convergent and, if it were
for the fact that we have now introduced a UV divergen
associated withk; l→`, we would be able to setd53 in
that integral and ignore regularization issues.

To continue, it is useful to understand another way
interpret the infrared behavior represented by the last term
Eq. ~4.26!:
05360
-
o

n

s

t
e

o
of

I 05S 8pa

m D 2E
kl

n0~vk! n0~v l !

v l2vk2 l2vk
. ~4.30!

As discussed before, infrared physics is dominated, in ima
nary time, by the zero-frequency mode of the fieldc. I 0

turns out to be theq05k050 piece of the original frequency
sums ~4.21! representing diagram~d!. A quick way to see
this is to note that the integrand inI 0 above is the high-
temperature limit (b→0) of the original integrand in Eq
~4.25!. But, if one goes all the way back to the origin
imaginary-time frequency sums~4.21!, the integrand there is
proportional to

(
q0

(
k0

1

~ iq01vq!~ ik01vk!@ i ~q01k0!1vq1k#
,

~4.31!

with q0 andk0 of the form 2pnT. Only theq05k050 piece
survives in theb→0 limit of this integrand, and this estab
lishes the correspondence.

It is important to note that nonzero frequency modesdo
contribute to diagram~d! even in the infinitely high-
temperature limit, because the limit does not commute w
the integration over spatial momentaq and k. However, in
our analysis so far, we have not yet performed theq andk
integrations, and it is okay to take limits of integrands to s
the correspondence ofI 0 with the q05k050 piece of dia-
gram ~d!.

The upshot is that the infrared pieceI 0 that we isolated
from diagram~d! is proportional to the same diagram eval
ated in a purely three-dimensional theory:

I 052
T2

2 S 8pa

m D 2E
qk

1

vqvkvq1k

524m3T2S 8pa

m D 2E
qk

1

q2k2uq1ku2
. ~4.32!

This diagram is logarithmically divergent in both the infrare
and ultraviolet, just as the original expression~4.30! for I 0,
and it vanishes in dimensional regularization. The UV div
gence of our current expression~4.29! for diagram~d! came
from the UV divergence ofI 0. To isolate this UV divergence
we’d like to isolate a term that~i! has the same UV diver
gence asI 0, ~ii ! is analytically computable in dimensiona
regularization, and~iii ! is infrared convergent~since other-
wise we’ll just reintroduce an infrared divergence when
isolate it!. Something that satisfies all these requirement
the same integral~4.32! of a three-dimensional theory a
above, but with mass terms to cut off the infrared:
9-11
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I N [2
T2

2 S 8pa

m D 2E
qk

1

~vq1N !~vk1N !~vq1k1N !]
524m3T2S 8pa

m D 2E
qk

1

~q21M 2!~k21M 2!~ uq1ku21M 2!
,

~4.33!

hereN5M 2/2m is an arbitrary frequency scale. Our strategy will then be to rewrite our current expression~4.29! as

Pc
(d)~0!5F S 8pa

m D 2E
kl

n~vk! n~v l !2n0~vk! n0~v l !

v l2vk2 l2vk
1I NG2I N 1O~e!. ~4.34!

o put the firstI N term in a form similar to the integral shown explicitly in Eq.~4.34!, one may replacev by v1N in our
arly discussion ofPc

(d)(0) and take theb→0 limit in all integrands to get the following analogy to Eq.~4.22!:

I N 52
1

2 S 8pa

m D 2E
qkl

@n0~vq1N ! n0~vk1N !22n0~vk1N !n0~v l1N !#

~v l1N !2~vq1N !2~vk1N !
~2p!dd (d)~ l2q2k!1O~e!. ~4.35!
a
d
,
s
i
n

ss
s

act

to

for-
se
ce

the
ly

nd
We then obtain

Pc
(d)~0!5S 8pa

m D 2H E
kl
Fn~vk!n~v l !2n0~vk!n0~v l !

v l2vk2 l2vk

1
n0~vk1N !n0~v l1N !

v l2vk2 l2vk2N G
2

1

2Ekl

n0~vk2 l1N !n0~vk1N !

v l2vk2 l2vk2N J 2I N 1O~e!.

~4.36!

The first integral~with its implicit principal-value prescrip-
tion! is now both infrared and ultraviolet convergent and c
now be evaluated in exactlyd53 dimensions. The secon
integral is convergent as well. So fixd53 in these integrals
scale out the parameters, and do the angular integration
ing the principal-value prescription. This puts the integrals
a form appropriate for straightforward numerical evaluatio
The result for the dimensionally regulated integral~4.33! for
I N is

E
qk

1

~q21M 2!~k21M 2!~ uq1ku21M 2!

5
1

~4p!2 F 1

2e
1 ln

M̄

3M 1
1

2
G1O~e!, ~4.37!

which can be extracted from the generald result of Ref.@27#
or the e→0 analysis in Ref.@28#. Putting everything to-
gether,

Pc
(d)~0!5

32pa2T

l2 F 1

2e
1 ln~M̄l!1C1G , ~4.38!

whereC1 is the numerical constant
05360
n

us-
n
.

C15
12 ln~36pN̄ !

2

1
2

p2E
0

`

dkdlF S kl

~ek2
21!~el 221!

2
1

kl D lnUk2 l

k1 lU
1

kl

~k21N̄ !~ l 21N̄ !
lnUN̄12k~k2 l !

N̄12k~k1 l !
UG

1
1

p2E
0

`

dqdk
qk

~q21N̄ !~k21N̄ !
lnUN̄12qk

N̄22qk
U ,
~4.39a!

which is independent of the choice of the dimensionle
numberN̄[bN. Numerical evaluation of the integrals give

C1.20.544 10. ~4.39b!

~Since completion of this work, a somewhat more comp
formula for C1 has been derived in Ref.@4#.!

We should mention that it is possible, at a formal level,
turn the original unregulated integral of Eq.~4.25! into a
double sum, similar to the sums appearing in the earlier
mula ~3.4! for the density, by using methods similar to tho
reviewed in Appendix A. However, the infrared divergen
of Pc

(d)(0) would manifest asi , j→` divergencies of these
sums. We found it easier to handle the infrared issues in
integral form than in the summation form. This is the on
reason why our treatment ofPc(0) superficially looks so
dissimilar, in final form, to our treatment of pressure a
density in Sec. III.

1. Final result for r

Combining our results for the pieces ofPc(0) with the
matching formula~4.14! for r, we obtain

r bare522mm12mTH 4a

l
z~ 3

2 !1
32pa2

l2 F 1

2e
1 ln~M̄l!

1C1G J 1O~a3!1O~m2m̄c!. ~4.40!
9-12
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Comparing this to the expression~4.6! for the MS definition
of r, and using the leading-order result~2.6! for u,

r MS~M̄ !522mm12mTH 4a

l
z~ 3

2 !1
32pa2

l2 @ ln~M̄l!1C1#J
1O~a3!1O~m2m̄c!. ~4.41!

E. Final result for µ̄c

We can now solve Eq.~4.41! for the coefficients in the
expansion

m̄c 5F m̄c
(1) a

l
1m̄c

(2)S a

l D 2

1•••GkBT ~4.42a!

of m̄c . The first-order result, well known in the literature,

m̄c
(1)54z~ 3

2 !, ~4.42b!

and is a simple consequence of the vanishing susceptib
as depicted in Fig. 7. The second-order coefficient is

m̄c
(2)532pF ln~M̄l!1C1272p2

r c,MS~M̄ ,u!

u2 G ,

~4.42c!

where r c,MS(M̄ ,u) is the critical value ofr MS for a given
choice of couplingu and renormalization scaleM̄ . The only
dimensionful scale of the three-dimensional theory at
critical point isu, and so one should pick the renormalizati
scaleM̄ of orderu. Note that the critical valuer c,MS is then
proportional tou2 by dimensional analysis. TakingM̄5u/3
for definiteness, and because that was the choice mad
presenting lattice simulation results in Ref.@7#, we have

m̄c
(2)532pF lnS 32p2a

l D1C1272p2RG , ~4.43!

where the dimensionless constant

R[
r c,MS~M̄5u/3,u!

u2
~4.44a!

is nonperturbative and must be extracted from simulation
the three-dimensional effective theory~2.5!. The simulation
result is, from Eq.~1.5! of Ref. @7#,

R50.001920~2!. ~4.44b!

V. FINAL RESULT FOR Tc

We can now combine the second-order result~4.43! for
m̄c with our earlier expression~3.11! for Tc to obtain

Tc5T0F11c1

a

l0
1S c28 ln

a

l0
1c29D S a

l0
D 2

1OS a

l0
D 3G ,

~5.1a!

with
05360
ty

s

in

of

c1.23.426 032, ~5.1b!

c2852
32pz~2!

3z~3!
, ~5.1c!

c295C22
32pz~2!

3z~3!
@ ln~32p2!1C1272p2R#.2155.0,

~5.1d!

and withT0 , l0 the ideal-gas quantities given at the end
Sec. III. The constantsc1 , C2 , C1, andR are given by Eqs.
~3.11b!, ~3.12!, ~4.39!, and~4.44!, respectively. All have been
computed perturbatively, except forR, which is the nonper-
turbative information extracted from lattice simulations.

VI. YET HIGHER-ORDER CORRECTIONS

We have based our discussion on the~311!-dimensional
theory~2.2! of c and the effective 3-dimensional theory~2.5!
of the zero-frequency Matsubara modes. Both of these th
ries are approximate and have corrections that we have
nored, claiming them to be higher order than the order
interest. In this section, we will briefly discuss the nature
those corrections.

Let us begin with the original~311!-dimensional theory
~2.2! of c. Among other things, this theory ignores~a! the
energy dependence of the low-energy atomic scattering c
section, and~b! the effects of three-body collisions. Braate
et al. @29#, give a nice discussion of how to systematize t
corrections to the low-energy~311!-dimensional theory, dis-
cussing interactions that are progressively more and m
irrelevant at low energies. The most important of such c
rections are to supplement the Lagrangian~2.2! by the addi-
tional interactions

dL52
p\2a2r s

2m
u“~c* c!u22B~c* c!3. ~6.1!

B parametrizes the amplitude for three-body collisions.r s is
the effective range of the two-body scattering problem a
parametrizes the linear term in the energy dependence o
cross section at low energy. The importance of ther s term
grows with energy, which turns out to mean that its lead
effect on the critical temperature or the chemical potentia
not infrared dominated and can be treated perturbatively

The parametric size of the leading-order effects of th
corrections can be estimated in a very simple way by co
paring them to the usual quartic term (c* c)2. At leading
order, the effects of (c* c)2 on the quantities computed i
this paper@mc for a homogeneous gas andN(Tc) for a
trapped gas# were dominated by momentum scales of ord
k̄;1/l ~as opposed to the infrared scaleu). Relative to the
a(c* c)2 interaction, one would expect that the leadin
order effects of thea2r su“(c* c)u2 interaction of Eq.~6.1!
should therefore be suppressed byarsk̄

2;ars/l2. Near the
transition, this is down by two powers of the typical inte
particle separationl;n̄21/3;N21/6aho discussed in the intro-
duction ~sincel; l at Tc), whereas the second-order effec
9-13
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computed in this paper are down only by one power, co
pared to the leading-order effect of interactions. Again re
tive to the (c* c)2 interaction, one would expect that th
three-body (c* c)3 interaction of Eq.~6.1! is down by a
factor of (Bm/\2a)c* c;(Bm/\2a)n, which is down by
three powers ofl sincen; l 23. The moral is that correction
to the original 311 dimensional Lagrangian~2.2! do not
matter for a second-order calculation ofTc for a dilute
trapped gas, that the result at third order would depend
the effective ranger s and not just the scattering lengtha, and
that the result at fourth order would depend on the thr
body scattering rate as well.

One can also verify the above analysis by a considera
of the leading-order diagrams involving a given correcti
from Eq. ~6.1!. Figure 9 shows diagrams contributing tom̄c

and Fig. 10 those7 contributing ton(T,m). As an example,
the diagram of Fig. 9~a! gives a contribution to the chemica
potential proportional to

dm;
a2r s

\m X

k2

ik01v l
. ~6.2!

The diagram is not dominated by infrared momenta, and
the perturbative treatment is justified. The dominant wa
numbers arek̄;1/l, as claimed above, corresponding to e
ergieskBT and frequenciesv k̄;kBT/\. The result is that

dm;
a2r s

\m

kBTk̄5

v k̄

;
a2r s

l3
kBT, ~6.3!

where thek̄5 comes from thek2d3k in the integral. Com-
pared to the leading-order resultO(kBTa/l) for the chemi-
cal potential, Eq.~6.3! is down by O(ars/l2), just as we
argued more simply above.

Finally, even ignoring corrections to the original~311!-
dimensional theory, there will still be corrections to the e

7The effect ofr s represented by Fig. 10~a! has been considere
historically in discussions ofDTc for a homogeneous Bose gas@30#.
Those discussions completely missed the dominant contribution
DTc . They also did not use the more general language of effec
ranges but implicitly used the Born approximation to expressr s in
terms of the two-body potential.

FIG. 9. Leading-order corrections to thePc(0) ~and hence the

determination ofm̄c) due to ~a! the effective range and~b! the
three-body scattering terms of Eq.~6.1!. The dotted line represent
the momentum flowk in the u“(f* c)u2 vertex.
05360
-
-

n

-

n

o
e
-

-

fective 3-dimensional theory~2.5! of the zero modes. One
might worry in particular about a (f* f)3 interaction be-
tween the zero modes, which is a marginal interaction
three dimensions. Such an effective interaction can be
duced by diagrams such as Fig. 11 in the~311!-dimensional
theory, where the external lines are zero modes and the
ternal lines are nonzero modes. However, the nonzero mo
are infrared insensitive and are dominated by frequencie
the order ofkBT/\ and momenta of the order ofk̄;1/l.
Power counting Fig. 11 then gives an interaction in the
fective 3-dimensional theory of order

dL f;u3l3~f* f!3, ~6.4!

where theu3 can be understood as arising from the 3 vertic
in Fig. 11 and thel3 from dimensional analysis based on th
dominant momentum scale.

Now consider the effect of the vertex~6.4! on the infrared
physics at momentum scalesp;1/u, to which the
3-dimensional effective theory is intended to be applied.
that scale, the (f* f)2 interaction can no longer be treate
perturbatively and, by dimensional analysis, the fluctuatio
in f are of the order ofu1/2. The relative importance of the
(f* f)3 term at the infrared scalep;1/u is then

u3l3~f* f!3

u~f* f!2 ;u3l3;
a3

l3 . ~6.5!

The contributions of the effective (f* f)3 operator is there-
fore down by three powers ofl 21;l21 compared to those
contributions we have included in this paper. Other corr
tions to the three-dimensional theory are similarly su
pressed.

to
e

FIG. 10. As in Fig. 9 but showing corrections to the dens
n(T,m).

FIG. 11. An effective (f* f)3 interaction of zero modes gene
ated by a loop of nonzero modes.
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VII. HOW WIDE IS A WIDE TRAP?

We have assumed throughout this paper that the tra
arbitrarily wide (vx ,vy ,vz→0 with Nvxvyvz fixed!. We
will now take a moment to explain parametrically how wid
‘‘wide enough’’ is for our second-order results to be vali
Our second-order result form̄c depends on nonperturbativ
physics near the center of the trap, and we treated the tra
flat over the wavelength 1/u of such physics. The trap mus
therefore, be wide enough that this wavelength fits comf
ably inside the region of the trapped gas that is nearly c
cal, whose size we labeledRnp in Sec. II D.

First consider the casevx;vy;vz . Using Table I, the
condition 1/u!Rnp can be translated intol !N1/6a. Combin-
ing this with the basic diluteness assumptiona! l of our
analysis, we then require

a! l !N1/6a. ~7.1!

This shows only the parametric dependence, and we h
made no attempt to estimate numerical factors.

For a very anisotropic trap, the strongest constraint w
come from requiring the narrowest direction of the ne
critical region to be larger than 1/u. Let vmax be the largest
of vx , vy , andvz . Repeating the analysis of Sec. II D the
gives the corresponding value ofRnp in that direction as
\a/mvmaxl

2;N1/3avho/vmax. So the condition is

a! l !N1/6aA vho

vmax
. ~7.2!

These constraints may be translated into other variables
ing l;n̄21/2;l;N21/6aho.

This condition on the size of the trap can also be summ
rized as a comparison of the uncertainty in the value ofTc
due to finite-size effects versus the resolution with which
have computedTc in our second-order formula~5.1!. Finite-
size effects round off the nonanalyticity of the infinite-si
transition, as depicted in Fig. 12. A standard result from
literature is that, below the rounded transition, finite-size
fects create the appearance of a transition temperature sh
by @1,31#

FIG. 12. A schematic depiction of finite-size effects on the BE
phase transition in the ideal-gas limit. The dashed curve indic
the infinite-volume transition.
05360
is

.

as

t-
i-

ve
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e

e
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dTc

T0
.2

z~2!

2z~3!2/3

v̄

vho
N21/3 ~7.3!

from the infinite-volume value~in the ideal-gas approxima
tion! as depicted in the figure. Here,v̄ is the arithmetic mean

v̄[
vx1vy1vz

3
. ~7.4!

The condition that this finite-size effect on the transition
small compared to the relativeO(a2/l0

2) correction toT0

that we have presented in Eq.~5.1! happens to be the sam
parametrically, as the right-hand condition in Eq.~7.2!.

VIII. CONCLUSION

The relative size of the second-order effect in our fin
result~5.1! for Tc obviously depends on the diluteness of t
gas and the value of the scattering length, which will va
from experiment to experiment. However, just for fun, let
put numbers to the size of the effect for one specific exp
mental study ofTc that has appeared in the literature. T
1996 experiment of Ensheret al. @32# found DTc /T0
520.0660.05 for dilute gases of roughlyN540,00087Rb
atoms in the F52 hyperfine state, trapped withnz

5373 Hz, vz52pnz , and vx5vy5vz /A8. The relevant
scattering length is a5(10365)a0 @33#, where a0
50.052 917 7 nm is the Bohr radius.~See also Ref.@34#.!
These parameters correspond toa/l0.0.016. For an arbi-
trarily wide trap, this would translate into a first-order co
rection toTc of roughly 25.4% and a second-order corre

es

FIG. 13. An additional perturbative diagram contributing to t
pressure at second order. The fat black dot represents the one
(c* c)2 renormalization counterterm, which vanishes in dime
sional regularization.

TABLE III. Feynman rules appropriate for standard perturbat
theory in the~311!-dimensional theory.
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tion of roughly 10.9%. For the actual trap, however, th
corrections ~7.3! due to finite-size effects are roughly
22.4%. The fact that this is larger in magnitude than
second-order correction, leads us to suspect that this par
lar trap may not be wide enough for the second-order re
to be trusted, as was discussed in Sec. VII.
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APPENDIX A: FIELD THEORY REDERIVATION
OF P„T,µ…

The two diagrams that contribute to the pressure at sec
order in perturbation theory were shown in Figs. 1~b! and
1~c!. Technically, there is also a third diagram, Fig. 13, whi
involves the one-loop (c* c)2 counterterm~represented by
the fat dot! for renormalizing the linear UV divergence o
zero-temperature, zero-density 2→2 scattering at second or
der. However, we shall use dimensional regularization,
which this counter-term vanishes, as discussed in Sec. I
The Feynman rules are given in Table III. They are the sa
as in Table II except that we are not treating the chem
potential m as a perturbation in this context. We work
units where\5kB51.

1. The basketball diagram

Let us start with diagram~c! of Fig. 1. The corresponding
contribution to the pressureP5(bV)21ln Z is8

Pc5
1

8 S 28pa

m D 2

3 X

PQKL

bdp01q02k02 l 0
~2p!3d (3)~p1q2k2 l!

~ ip01ṽp!~ iq01ṽq!~ ik01ṽk!~ i l 01ṽ l !
,

~A1!

where we have introduced the shorthand notation
05360
e
u-
lt

d
,
.

nd

r
B.
e
l

ṽk[vk2m5
k2

2m
2m, ~A2!

and where the summation-integration sign is defined in
~4.16!. We now use standard tricks to evaluate the freque
sums.9 Specifically, rewrite the frequency Kroneckerd as an
integral of exponentials, and factorize the expression i
independent sums:

Pc5
8p2a2

m2 E
0

b

daX
P

e2 iap0

ip01ṽp
X

Q

e2 iaq0

iq01ṽq

3X

K

e1 iak0

ik01ṽk
X

L

e1 ia l 0

i l 01ṽ l

~2p!3d (3)~p1q2k2 l!.

~A3!

Then we use the standard frequency sums

T(
p0

e2 iap0

ip01v
5n~v!eav, ~A4a!

T(
p0

e1 iap0

ip01v
5n~v!e(b2a)v, ~A4b!

for 0,a,b. Thea integration is then trivial, yielding

Pc5
8p2a2

m2 E
pqkl

n~ṽp!n~ṽq!n~ṽk!n~ṽ l !

3
eb(ṽp1ṽq)2eb(ṽk1ṽ l )

ṽp1ṽq2ṽk2ṽ l

~2p!3d (3)~p1q2k2 l!.

~A5!

Note that the zero of the denominator atṽp1ṽq5ṽk1ṽ l is
canceled by a corresponding zero of the numerator. H
ever, it will be useful to split the integral into pieces th
individually lack this cancellation, and so it is useful to fir
introduce a redundant principal part~P! prescription in Eq.
~A5!. Making use of the identity

n~v!ebv5n~v!11, ~A6!
expanding terms, and permuting integration variables,
can rewrite Eq.~A5! as
Pc5
32p2a2

m2 E
pqkl

P
n~ṽq!n~ṽk!n~ṽ l !2 1

2 n~ṽp!n~ṽq!

ṽp1ṽq2ṽk2ṽ l

~2p!3d (3)~p1q2k2 l!

5
32p2a2

m2 E
pqkl

P
n~ṽq!n~ṽk!n~ṽ l !2 1

2 n~ṽp!n~ṽq!

vp1vq2vk2v l
~2p!3d (3)~p1q2k2 l!. ~A7!

8VPc corresponds toQ8/Q (0) of Ref. @15#. The contribution VPb from diagram ~b! of Fig. 1 corresponds to@Q9/Q (0)#
2

1
2 @Q (1)/Q (0)#2.

9See, for example, Sec. 5.5.1 of Ref.@35#.
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The term

Pc,25
32p2a2

m2 E
pqkl

P
2 1

2 n~ṽp!n~ṽq!

vp1vq2vk2v l
~2p!3

3d (3)~p1q2k2 l!, ~A8!

involving just twon’s, has a linear UV divergence associat
with k,l→`, with p andq fixed. This is the divergence tha
is canceled by the counterterm diagram of Fig. 13 for gen
regularization schemes and that dimensional regulariza
will simply ignore. In fact, the entire termPc,2 simply van-
ishes in dimensional regularization, which can be seen
doing thek and l integrations explicitly ind spatial dimen-
sions. Definings5k2 1

2 (p1q),

E
kl

P
~2p! dd (d)~p1q2k2 l!

vp1vq2vk2v l

52mE dds

~2p!d P
1

s22
1

4
up2qu2

. ~A9!

It’s convenient to re-express the principal part in terms
infinitesimals, using Eq.~4.23!, before doing thes integra-
tion. The integral~A9! then yields

2

mGS 12
d

2D
~4p!d/2

Re@2 1
4 up2qu21 i06# (d22)/2

52

mGS 12
d

2D
~4p!d/2

@ 1
4 up2qu2# (d22)/2cosS ~d22!p

2 D .

~A10!

Analytic continuation tod53 yields zero:

E
kl

P
~2p!dd (d)~p1q2k2 l!

vp1vq2vk2v l
5O~e!, ~A11!

wheree532d. To conclude that the contribution~A8! to the
pressure vanishes in dimensional regularization, one m
also check that the finalp and q integrals with theO(e)
integrand do not diverge, since divergencies could poss
generate a 1/e singularity to cancel theO(e) behavior of the
integrand. However, the UV is cut off by the distributio
functionsn(vp) andn(vq) in Eq. ~A8!, and so this is not an
issue.

We are left with only the term of Eq.~A7! with threen’s:

Pc5
32p2a2

m2 E
pqkl

P
n~ṽq!n~ṽk!n~ṽ l !

vp1vq2vk2v l

3~2p!3d (3)~p1q2k2 l!. ~A12!

This reproduces Eq.~A15! of Huanget al. @15#. Since their
subsequent discussion of evaluating this integral is somew
05360
ic
n
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f
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telegraphic, we will present our own method. First, expa
the distribution functionsn(ṽ)5n(v2m) in powers of
fugacity z5exp(bm):

Pc5
32p2a2

m2 (
a51

`

(
b51

`

(
c51

`

za1b1c

3E
pqkl

P
e2abq2/2me2bbk2/2me2cb l 2/2m

vp1vq2vk2v l

3~2p!3d (3)~p1q2k2 l!. ~A13!

Rescaling all momenta byAb/m to make them dimension
less gives

Pc5
8a2T

l5 (
a51

`

(
b51

`

(
c51

`

za1b1cI abc , ~A14!

I abc[~2p!9/2E
pqkl

P
e2aq2/2e2bk2/2e2cl2/2

1

2
~p21q22k22 l 2!

~2p!3

3d (3)~p1q2k2 l!. ~A15!

For the sake of justifying later manipulations, it is conv
nient to introduce a redundant exp(201p2) convergence fac-
tor into the integral definingI abc . We will evaluateI abc by
representing the energy denominator and thed function as
integrals of exponentials. Using the infinitesimal versi
~4.23! of the principal part prescription, we write

I abc5~2p!9/2ReE
pqkl

e201p2
e2aq2/2e2bk2/2e2cl2/2

3E
0

i`

dle2(p21q22k22 l 22 i01)l/2E d3xeix•(p1q2k2 l).

~A16!

The p, q, k, and l integrations are now simple Gaussia
integrals, yielding

I abc5~2p!23/2ReE
0

i`

dlei01lE d3x~011l!23/2

3~a1l!23/2~b2l!23/2~c2l!23/2

3expF2
x2

2 S 1

011l
1

1

a1l
1

1

b2l
1

1

c2l D G .
~A17!

The exp(i01l) prescription is now redundant and can
dropped. It’s also convenient to change integration variab
from l to l101 in order to remove the remaining 01 pre-
scription from the integrand~noting thata,b,c5” 0). The x
integral is Gaussian and yields
9-17
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I abc5ReE
01

i`101

dl@abc12bcl2~a1b1c!l2#23/2.

~A18!

The final integral is straightforward and gives

I abc5
1

~a1b!~a1c!~abc!1/2
. ~A19!

The final result for this contribution to the pressure is

Pc5
8a2T

l5 (
a51

`

(
b51

`

(
c51

`
za1b1c

~a1b!~a1c!~abc!1/2
.

~A20!

2. The three-circle diagram

The other second-order diagram, Fig. 1~b!, is trivial in
comparison. It’s contribution to the pressure is

Pb5
1

2 S 28pa

m D 2

X

P

1

~ ip01ṽp!2SX 1

iq01ṽq
D 2

.

~A21!

One of the summation integrals is

X

Q

1

iq01ṽq

5E
q
@n~ṽq!1 1

2 #5E
q
n~ṽq!

5S m

2pb D 3/2

Li 3/2~z!. ~A22!

The other is easily obtained by differentiating with respec
m:

X

P

1

~ ip01ṽp!2
5bS m

2pb D 3/2

Li 1/2~z!. ~A23!

So,

Pb5
8a2T

l5 @Li3/2~z!#2Li 1/2~z!. ~A24!

Putting Pb and Pc together gives the total second-ord
contribution to the pressure, which appears in Eq.~3.1!. The
first-order contribution of Fig. 1~a! is easily evaluated in a
similar manner.

APPENDIX B: SMALL µ̄ EXPANSION OF N

1. The expansion

Consider the (a/l)2 term in the expansion~3.5! for N.
First consider the term proportional to

(
i jk

z̄i 1 j 1k

~ i j !3/2k1/2~ i 1 j 1k!1/2
. ~B1!
05360
o

Because of the explicit factor ofa2, one might naively think
one could use the ordera0 result z̄.1 for z̄. But this would
give

(
i jk

1

~ i j !3/2k1/2~ i 1 j 1k!1/2
, ~B2!

which has logarithmic divergencies associated withk→`,
with i and j fixed. We can isolate these divergencies by
writing the original sum as

(
i jk

z̄i 1 j 1k

~ i j !3/2k1/2~ i 1 j 1k!1/2
5(

i jk
F z̄i 1 j 1k

~ i j !3/2k1/2~ i 1 j 1k!1/2

2
z̄k

~ i j !3/2k
G1(

i jk

z̄k

~ i j !3/2k
.

~B3!

We can now safely setz̄ to 1 in the first sum on the left-han

side. The second sum is easy, giving2z( 3
2 )2 ln(12z̄). The

small m̄ result is then

(
i jk

z̄i 1 j 1k

~ i j !3/2k1/2~ i 1 j 1k!1/2
5(

i jk
F 1

~ i j !3/2k1/2~ i 1 j 1k!1/2

2
1

~ i j !3/2k
G2z~ 3

2 !2 ln~2bm̄!

1O~m̄ !. ~B4!

The sum associated with thea/l term of Eq.~3.5! must
be expanded to first order inm̄, where it suffers a similar
problem. Naively,

(
i j

z̄i 1 j

~ i j !3/2~ i 1 j !1/2
5(

i j

1

~ i j !3/2~ i 1 j !1/2
2bm̄(

i j

~ i 1 j !1/2

~ i j !3/2

1•••. ~B5!

The second term has logarithmic divergencies associ
with ~i! i→` with j fixed, and, symmetrically~ii ! j→` with
i fixed. Proceeding as before, we can isolate the diverg
behavior by writing

(
i j

z̄i 1 j

~ i j !3/2~ i 1 j !1/2
5(

i j
F z̄i 1 j

~ i j !3/2~ i 1 j !1/2
2

z̄i

i 2 j 3/2
2

z̄j

i 3/2j 2G
1(

i j
F z̄i

i 2 j 3/2
1

z̄j

i 3/2j 2G . ~B6!

In the first sum, we can now safely replacez̄ by 11bm̄

1O(m̄2), and the second sum gives

2z~ 3
2 !Li2~ z̄!52z~ 3

2 !$z~2!1@2 ln~2bm̄!11#bm̄%

1O~m̄2!. ~B7!
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The final result for the expansion is then

(
i j

z̄i 1 j

~ i j !3/2~ i 1 j !1/2
5(

i j

1

~ i j !3/2~ i 1 j !1/2
12z~ 3

2 !bm̄

3@2 ln~2bm̄!11#

1bm̄(
i j

~ i 1 j !1/22 i 1/22 j 1/2

~ i j !3/2
1O~m̄2!.

~B8!
ed
a

a

d

-
io

a

in

om

-

05360
The last thing we need is the expansion of the sum in
ordera0 term of Eq.~1.5!, which is just

Li 3~ z̄!5z~3!1z~2!bm̄1 1
2 @2 ln~2bm̄!1 3

2 #~bm̄!2

1O~m̄3!. ~B9!

Combining the expansions~B4!, ~B8!, and~B9! of the sums
with the expansion~3.5! of N, we obtain
N5S kBT

\vho
D 3H z~3!1F z~2!bm̄2

2a

l (
i j

1

i 3/2j 3/2~ i 1 j !1/2G1F3

4
~bm̄!22

2a

l
bm̄(

i j

~ i 1 j !1/22 i 1/22 j 1/2

i 3/2j 3/2
2

4a

l
bm̄z~ 3

2 !

18S a

l D 2

(
i jk

1

~ i j !3/2k1/2S 1

~ i 1 j 1k!1/2
1

i j

~ i 1k!~ j 1k!~ i 1 j 1k!1/2
2

1

k1/2D G2 1
2 S bm̄2

4a

l
z~ 3

2 ! D 2

ln~2bm̄!

1OS a

l
,bm̄ D 3J . ~B10!
e
rap,
he

UV

i-
ame

ace

nsi-
sus-
is
e
ach

he
If we now use the expansion~3.7! of m̄c , we obtain the result
~3.9! presented in the main text.

2. Cancellation of logarithms

To understand the origins of the logarithms in the prec
ing analysis, consider a straight, naive, perturbative exp
sion in m̄. Treating the2m̄c* c term of the Lagrangian as
perturbation, the logarithms then arise from the diagrams
Fig. 14. Each diagram should be understood as evaluate
fixed x, with effective chemical potentialm5m̄2V(x), and
then the result of the diagram integrated overx. m̄ is treated
perturbatively, whileV(x) is not. The imaginary-time propa
gators in this perturbation theory, derived from the act
~2.3!, are

G0~p0 ,p!5
1

ip01p2/2m1V~x!
, ~B11!

FIG. 14. Diagrams producing the infrared logarithm in the sm

m̄ expansion ofN. Each diagram should be understood as be

evaluated with an effective chemical potentialm5m̄2V(x) with m̄
treated perturbatively. The dots represent the two-point vertex c

ing from treating the2m̄c* c term in the Lagrangian perturba
tively. The crosses are as in Fig. 2.
-
n-

of
at

n

where we now set\51 for convenience. The logarithms ar
produced by the infrared behavior, near the center of the t
of the loops drawn large in the figure. Specifically, it is t
p050, p→0, x→0 behavior of these diagrams, wherep is
the loop momentum of those loops. The small loops are
dominated and so, to this order in the expansion ina, are
insensitive tox near the center of the trap. The infrared d
vergencies due to the large loops then produce the s
common factor for all diagrams:

E d3xE d3p@G~0,p!#3}E d6q

q6 5 log divergent,

~B12!

where we’ve introduced the six-dimensional phase-sp
vector

q5S px

A2m
,

py

A2m
,

pz

A2m
,Am

2
vxx,Am

2
vyy,Am

2
vzzD .

~B13!

The cancellation of these logarithms at the phase tra
tion occurs because, at the phase transition, the inverse
ceptibility vanishes at the center of the trap. This condition
shown diagrammatically in Fig. 7, which implies that th
logarithms generated by the diagrams of Fig. 14 cancel e
other at the order ofa under consideration.

APPENDIX C: NUMERICAL RESULTS FOR SUMS

The following sums were computed numerically using t
iterative application of the Euler-MacLaurin formula.

ll

g

-
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(
1

i 3/2j 3/2~ i 1 j !1/2
.2.416 942 200, ~C1!

(
i j

~ i 1 j !1/22 i 1/22 j 1/2

i 3/2j 3/2
.28.215 157 561, ~C2!

(
i jk

1

~ i jk !1/2~ i 1k!~ j 1k!~ i 1 j 1k!1/2
.2.2111, ~C3!

(
i jk

1

~ i j !3/2k1/2S 1

~ i 1 j 1k!1/2
2

1

k1/2D .216.70. ~C4!

APPENDIX D: DERIVATION OF THE SUNSET DIAGRAM

Using the methods outlined in Appendix A, we will no
reduce the sunset diagram~4.21! to the integral representa
tion ~4.22! in terms of distribution functions. Starting with

Pc
(d)~0!52

1

2 S 8pa

m D 2

3X

QKL

bd l 02q02k0
~2p!dd (d)~ l2q2k!

~ i l 01v l !~ iq01vq!~ ik01vk!
,

~D1!

and rewriting the Kroneckerd function in ~D1! as in Appen-
dix A, we obtain
v.

v

05360
Pc
(d)~0!52

1

2 S 8pa

m D 2E
0

b

da X
L

e2 ia l 0

i l 01vp
X

Q

e1 iaq0

iq01vq

3X

K

e1 iak0

ik01vk
~2p!dd (d)~ l2q2k!. ~D2!

Using the frequency sums~A4! and then performing thea
integration,

Pc
(d)~0!52

1

2 S 8pa

m D 2E
qkl

n~v l !n~vq!n~vk!

3
ebv l2eb(vq1vk)

v l2vq2vk
~2p!dd (d)~ l2q2k!.

~D3!

The integrand is well behaved atv l5vq1vk ~except for the
infrared divergence wherel, q, andk all go to zero, which is
dealt with in the main text!. However, as in Appendix A, it is
convenient to introduce a spurious principal part prescript
at this stage. Then, using Eq.~A6! and permuting integration
variables, one arrives at Eq.~4.22!.

The last term in Eq.~4.22!, involving just onen, is pro-
portional to

E
qkl

P
n~v l !

v l2vq2vk
~2p!dd (d)~ l2q2k!. ~D4!

The qk part of this integration is just a special case of E
~A11! with the momentum labels changed andp set to zero.
As described in Appendix A, it therefore gives zero cont
bution in dimensional regularization ford53.
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