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Quantum field effects in coupled atomic and molecular Bose-Einstein condensates
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This paper examines the parameter regimes in which coupled atomic and molecular Bose-Einstein conden-
sates do not obey the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular
condensates are derived using the functional posRiveepresentation. These equations describe the full
guantum state of the coupled condensates and include the commonly used Gross-Pitaevskii equation as the
noiseless limit. The model includes all interactions between the particles, background gas losses, two-body
losses, and the numerical simulations are performed in three dimensions. It is found that it is possible to
differentiate the quantum and semiclassical behavior when the particle density is sufficiently low and the
coupling is sufficiently strong.
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[. INTRODUCTION cludes pair correlations in the atomic field, and showed dis-
crepancies with the results obtained with the GRHE. The

One of the surprising discoveries that has been madgost dramatic example of this breakdown of the GPE is
since the experimental production of a Bose-Einstein condemonstrated by the initial state where there are only mol-
densategBEC) in a weakly interacting gafl] has been the ecules. The GPE predicts that nothing will change without an
fact that virtually all of their properties may be describedinitial atomic population, whereas in reality, the molecules
using the Gross-Pitaevskii equatiéBPB. This semiclassi- Wil spontaneously dissociate.
cal approximation ignores any dynamics in the quantum sta- The full effects of the quantum nature of the fields may be
tistics of the field. There has been much interest recently ifmodeled by a set of stochastic equations for the atomic and
the production of a molecular Bose-Einstein condensaténolecular fields based on the functional positieepresen-
(MBEC) from the photoassociation of an atomic BEC of atation[19-22. A recent paper used this technique in a one-
Weak|y interacting dilute ga&_l?il We have recenﬂy cal- dimensional calculation to show that it was pOSSible to see
culated that in certain parameter regimes, the GPE may givie effects of the quantum statistics in the population dynam-
incorrect results for this procefs4]. This paper investigates ics of coupled atomic and molecular BEGA]. The signature
the process with a three-dimensional model that include®as a reduction in the transfer from atoms to molecules. This
background gas losses, two-body losses, and the atorRaper uses a more complete model that includes all three
molecule interactions. dimensions as well as atom-molecule interactions and losses.

The success of the GHES5] might not seem so surprising The pa_rameter regimes in which the GPE breaks down are
considering the effectiveness of the semiclassical approximaletermined.
tion in quantum optic§17]. It includes the effects of-wave In Sec. Il, the extended model is described and the sto-
interactions, and can be readily generalized to include mulchastic equations of motion for the system are derived. The
ticomponent condensates with interspecies COUF)'[W_ fO”OWing SeCtion iS a bl’ief eXamination Of the behaViOI’ Of
As a semiclassical, mean-field theory it necessarily canndfe GPE and the likely parameter regimes in which there are
give information about the quantum statistics of the condenmeasurable deviations from this behavior. In Sec. IV, the
sates, but for most experiments with BEC, these propertiegvolution of the atomic population is compared with the so-
have not been observed. Quantum statistics affect some nolition of the GPE for a range of densities and coupling
linear quantum optical systems, the simplest of which isstrengths.
second-harmonic generation, where pairs of photons are
coupled to single, high-energy photofis8]. The analogous
process in atom optics is that of the coupling of a MBEC and
a BEC, which may be done either through tuning of a Fesh-
bach resonancil1], or through photoassociation via a two-
photon Raman coupling—6].

The Bose enhancement of the photoassociation of atoms
from a trapped BEC leads to giant, collective oscillations Y
between the atomic and molecular populations. This en-
hancement of a chemical process was dubbed “superchem- FI|G. 1. Energy-level scheme for coherent free-bound-bound
istry” by Heinzen et al. when they first modeled it using a photoassociation. Levelkl), |2,v), and |3) are the electronic
two-component Gross-Pitaevskii equati@PE) [4]. Amore  states for the atomic BEC, thevibrational level excited MBEC,
recent model using the Hartree-Fock-Bogoliubov method inand the stable MBEC, respectively.

BEC
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Il. MODEL

An atomic field is coupled to a molecular field by two-

color Raman photoassociation. A first laser couples a single
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the two-body loss rate due to inelastic collisions between the
BEC and MBEC fields, and where the superoperdbis
defined by

electronic level of the atomic field to a set of molecular ex-
cited states. A second laser then couples these states to a

stable molecular level. The modes are arranged as shown
Fig. 1, with state1) being the atomic BEC, sta{@,v) the
vth vibrational level of the excited state of the MBEC, and
state|3) the stable MBEC. Two laser fields induce a free-
bound coupling betweefl) and|2,») and a bound-bound
coupling between2,v) and|3). In a rotating frame, the
Hamiltonian may be written as

3
. A A PN U P
H=2 T+ 0+ 2 f A% 3 () ] () 4 (X) 85 (%)

" o
2 f AT, () 120X) B (%)
— KX PP ()]
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wheref//j(x) is the field annihilation operator for the atomic

or molecular field in stat¢j), T, andV; are the kinetic-
and potential-energy operators for théh field, U;; is

in Dlc]=J[c]-Alc], (2a)
Jlclp=cpc', (2b)

1
Alclp= E(CTCp-l-pCTC). (20)

A. Derivation of the stochastic field equations

The master equation is a field operator equation with a
nontrivial level of excitation, and is therefore impossible to
solve numerically by direct means. Analytical results are pre-
cluded by the nonlinearities in the equations. To find a nu-
merical method that is tractable in some parameter regimes,
this master equation is written in the functional positRe-
representatiofn20,23

P({lpa’wﬁ}77):p(a)({;ﬁ1 ;,\DT},T)L}/Hwa‘Q,THwB, (3)

where p® is the density operator antinormally ordered
with respect to the field operators in the Salinger picture.
It is then possible to use the functional operator correspon-

the strength of the interatomic interactions between particles

in states|i) and |j), «,(x) is the Rabi frequency of
the free-bound photoassociation from levdl) to level
[2,v), and Q(x) is the Rabi frequency of the bound-bound
transition from level 2,v) to level|3). In this notation, the

detunings of the lasers from the bare atomic and molecular

energy levels are included in the potential energy tevins
andVs.

In addition to the coherent effects produced by this

Hamiltonian, the losses from the trapped levels are include

by adding standard loss terms to the master equation. The

total master equation is

p=— A1+ S o | ax DLl
+3 o) [ ExotiEl

+2+3) f d3x D[ 1(X) Pra(x) 1p, (1)

where y{" is the loss rate from leve}) due to background
gasesy{?) is the two-body loss rate from levél), 3 is

Yp— P,

dences
Jd
)P,

e
)

to write a functional Fokker-Planck equati¢fPE) from the
master equation. This FPE may be written in the form

f//TpH( YP—

d

d
ayP
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where the elementg andv correspond to the (4 2n) com-

ponents of the fields in the positie- representation:
{508, s, 05, s ¢h), Ais the drift vector,
D is the diffusion matrix, and, .¢n ,1y=3d/ 4. The drift

vector is given by
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where ;= — i/ﬁ('AI',-Jr\A/j), andI';;=U;; /4. The terms proportional to the density of the excited molecular states have been

dropped, as these upper states are going to be adiabatically eliminated. The diffusionDmatgiven by
— g+ 2 k5, 0O oo —Oud3yy O

0 —gnY+ D kEyE, .. 0 —giiyt
D= v , (7)

— Q13397 0 —g33¢//§2 0
0 e ... 0 Lo

whereg;; = 7” )+|F” combines the atomic interactions and derivative can be ignored. In the equations of motlon for
the two-body losses. The noise terms due to the self mteraQ/;g 4 we ignore the termgtwh , T 2V¢,| e, sz and

tion of the excited molecular states have been ignored, as thae trapplng potential on the basis that they are smaller than

density of these states is about to be assumed to be extremehe other terms. This approximation gives the following re-
small. This will enable them to be adiabatically eliminated. gyt

The Fokker-Planck equation leads to the following set of

equations for the excited molecular states: 12k, 52— Q) s
s 7o Ve O |
= (’Czu 2’”—irl;z,vwfvff—irs;z,vwéwé’)w;y
P L i
K: a2 a 'JIZ’VZ o ’ (10)
_71!/1 +va3' (8) v

These equations may then be substituted into Ejsand
f?l,/fzy oy B 8| 8 (7) to produce the drift and diffusion matrices for the two
at — Koo~ 2 Tl Yy +ils o, 505 | 4, levels|1) and|3). This simplifies these matrices. It is still
impossible to solve the FPE directly, as the functional space
is of an extremely high dimensionality. Instead, we make use
of a stochastic decomposition of the FPE. It is possible to
find a simple matrixB such thatD=BBT. This matrix de-

In order for two lasers to provide a two-photon transitionfines the noise of the stochastic decomposition, and in gen-
without populating the excited MBEC, the single-photon de-eral it will not be unique. Finally, there is a theorem that
tunings 8, must be made very large. This means that theallows us to map the solution of the master equation in Eq.
population of the excited level is very small and that its time(1) to the following set of Itostochastic field equations:

KV
R e U (9)
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FIG. 2. Evolution of the semiclassical equations of motion for
the atomic and molecular populations in a fixed three-dimensional
harmonic trap. The values gfused were 3.8 10°> mY¥s (solid),
3.0x10°® mY¥s (dashed, 3.0x10°7 mY¥s (dash-dottef and
3.0x10°8 mY¥s (dotted.

The Ito stochastic equations reduce to the GPE for this
system if the noise terms are ignored. As can be seen later,
this is not the case when using a different stochastic calculus,
such as Stratonovich calculus, which reinterprets the noise
terms and therefore requires corrections to the deterministic
part of the equations. This reinforces the fact that the noise
terms cannot be treated separately from the deterministic
terms, as the same physics produces both of them. It is also
worth reiterating that there is no useful interpretation of the
individual trajectories of the simulation, only the ensemble
averages.

Our equations of motion are very similar to those obtain-
able by a direct coupling between the BEC and the stable
MBEC. The difference is the nonlinear light shift of the
BEC, which is proportional td', and the linear light shift of
the MBEC, which is equal ta.

and then, are a set of real, Gaussian noise sources that are

S-correlated in time and space

7i(X,1) 7 (X",t") = & S(x—x") 8(t— '),

Ill. SEMICLASSICAL SUPERCHEMISTRY

Examination of the semiclassical equations of motion ob-
tained by dropping the noise terms from Etjl) shows that

and({, are a set of complex, Gaussian noise sources that atee behavior is sensitive to the relative strengths of the non-

S-correlated in time and space

é’r(xat)gj(xrlt,)z 5i15(X_X/)5(t—t')_

linearities. In the limit that there are no third-order nonlin-

earities, it may be seen that if the population starts in the
atomic field then there is a complete, one-way conversion to
molecules. In the presence of atomic and molecular interac-

These stochastic equations allow us to generate any mutions, the third-order nonlinearities dephase this evolution,
titime time-normally ordered quantum field averages by av-and cause a revival of the atomic population. This behavior
eraging selected moments of these fields over a sufficientlis shown in Fig. 2, where the evolution is shown for different

large sample of trajectorid20]
<-|(:;ﬂ1'(x,t) . {Zﬂ'(xr,tr)-li;ﬂ‘l‘(xn,tn) L l';b‘[’(xm,tm)>
= lpﬁ(x,t). .. lﬁB(X',t’)lﬁ“(X",t")- . (ﬂa(x///,tu/),

where (T) T is the (anti-) chronological time ordering op-
erator.

values of the atomic-molecular coupling rate.

This semiclassical behavior has been observed in
traveling-wave second-harmonic generation, which is a zero-
dimensional analogue of coupled atomic and molecular con-
densates. However, it has also been shown that the semiclas-
sical approximation gives incorrect predictions for the mean
behavior of the fields in traveling-wave second harmonic
generatior{ 18], as well as for their quantum statistical prop-
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erties[24,25. This discrepancy is most pronounced whencurrent experiments use highly anisotropic “cigar-shaped”
there is nearly complete conversion to the second harmonit;aps, which allow a high column density along the long axis.
which occurs when the third-order nonlinearities are veryFor a given aspect ratiav,=wy=Aw, and number of
small[26]. It has since been shown that it is also possible tdrapped atoma, it is possible to calculate the transverse trap
observe the effects of the quantum nature of the fields in &equency required to obtain the required peak column den-
one-dimensional model of coupled atomic and moleculad'ty op
condensatefgl4].
. . . . 512 _3

The breakdown of the semiclassical approximation has a [ 18Uy
simple explanation. The semiclassical equations do not in- Ox= 125N3m2A2
clude the spontaneous emission terms that allow a molecule
to break into two atoms in the absence of an atomic field. Torhe peak density scales inversely with the aspect ratio
include these processes in the model, the full stochastighich has been as large as 100 in current experinj@slis
equations of motion must be considered, which include alln the next section, the behavior of the quantum model of the
the physics of the quantum fields. The noise terms of thgystem will be investigated in both dilute and strong traps,
evolution mimic the dephasing effect of third-order nonlin- and with both weak and strong coupling.
earities, and cause a revival of the atomic population.

For coupled atomic and molecular condensates in three IV. QUANTUM SUPERCHEMISTRY
dimensions, with losses due to background gas collisions and
two-body collisions, it may be significantly more difficult to ~ This section will examine the difference between the
observe the quantum nature of the fields. In higher dimenguantum solution and the semiclassical solution allowing for
sions, there is a larger volume of low-density fields than inphysical constraints such as limited detuning and laser
low dimensions, which in combination with the third-order power. To ensure that the adiabatic approximation is being
nonlinearities and the losses, will tend to “blur” the strong made self consistently, the density of atoms in the excited
conversion to molecules that may be observed in the semstate(which must remain smalimay be calculated from the
classical theory for low dimensions. This effect may beamplitudes of the other fields.
counteracted by ensuring that the field is as dilute as pos- Since our last calculatiofl4], the interaction between the
sible, which makes thésecond order in the fieldgoupling  atomic and molecular species has been measured by exam-
between the BEC and the MBEC relatively stronger than théning the resonances in the molecular formation due to
(third order in the fieldsinteraction terms. In order to mini- photoionizatior{5]. The atoms and molecules are attracted to
mize the diffusion due to kinetic energy and further reducesach other with a scattering length af;= — (180=150)a,,
the effect of the interactions, the Raman transition must bevhich leads to a value ofU;;=6ma;#%/m=—-1.4
made as strong as possible. x10°%° Jn. The strength of the interactions between the

Making the Raman transition as strong as possible reRb, molecules has not been measured, so it will be assumed
quires maximum laser intensities and a two-photon resonarthat they are the same as the interatomic interactions for the
coupling (A=X\). The practical limits on the total strength of purposes of this calculatior(;=Uz3=3x10 %! Jn?).
the coupling are the requirement that the excited molecular The losses due to background gases are very slow on the
state must not have significant population, and the need ttmescale of the superchemistry. All calculations in this paper
avoid inducing large, attractive atomic interactions throughuse a value of{"=y{"’=0.01 s*, which is a comfortable
the nonlinear light shift due to the laser-assisted photoionizagverestimate of the background gas losses measured by the
tion. Unless there is a low excited-state population, spontagroup at JILA[29]. At the high densities involved in the
neous losses from that highly energetic state could disrugsroduction of an atomic BEC, the three-body losses are
the condensates, and the adiabatic approximation used #bminant and the two-body losses are negligibjéz)(s 1.6
eliminate the upper level may break down. This limit im- x 10-22 m?s). By contrast, the three-body losses may be
poses the condition that the single-photon deturdngiust  jgnored at the low densities considered in this paper, but in
be significantly larger than the Rabi frequencies of the indithe presence of molecules, the two-body losses cannot be
vidual laser beams. The second requirement means that tighored, as there is a significant cross section for the inelastic

nonlinear ||ght shift should Stay of the order of the repUISivescattering of an atom from a molecule. This was recent|y

interactions. If the Rabi frequency of the first laser is chosefineasured to be{2<8x 10717 m¥s, and in this paper, the
such thatl'=T1"4, then the nonlinear light shift will com- upper bound shall be used in all calculations.

pletely cancel the interactions between the atoms. There will" }; js experimentally difficult to produce large Rabi fre-

still be repulsive interactions between the molecules and alyuencies for the atom-molecule interaction due to the low
traction between the atoms and the molecules. Franck-Condon factors, but this does not appear to be a limi-

Dilute condensates may be created by evaporating belowtion of this system provided large Rabi frequencies may be
the BEC condition using strong straps, and then adiabaticallychieved for the molecule-molecule transition.

lowering the trap strengths in all directions. The trap depth
remains large compared to the chemical potential of the con-
densate even for extremely weak trg@g]. The field cannot

be arbitrarily dilute, however, as the accurate measurement Although Ito equations of motion for this system have
of the fields depends on a sufficient column density. Manybeen produced in the previous section, it is much easier to

14
(13)

A. Numerical methods
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use high-order integration methods on Stratonovich equa- 1
tions. This is because the normal chain rule of differentiation (@)
applies to Stratonovich calculus, and standard high-order  0.5f =z ]
methods may be used without modification. The transforma- et
tion from a set of licequations to a set of Stratonovich equa- % > 4 6 8 10 12
tions may be performed easily, as it involves a simple cor- &
rection to the deterministic terms. Unfortunately, this (b)
correction is infinite for Eq(11). This is a recurrence of the ©0.5; ]
renormalization problem often found in quantum field theo- & P
ries. | | - T R )
The infinite correction only occurs in the continuous field 1 . . .
description. When the conversion to Stratonovich calculus is (c)
done after the fields have been discretized and placed on a 0.5} 1
rectangular grid with spacing ohx, Ay, and Az in the P
three dimensions, the following correction terms are ob- 00 o5 | === 15
tained: ' time (ms) ’
Iy 0142+9:1 FIG. 3. Evolution of the atomic populatiosolid line§ com-
gt 2AxAyAz"? pared to the solution of the GRHashed lings Trap parameters are
P . N as given in the text. In each case, the atomic-molecular coupgling
% 9142+ 07 8 was chosen such thht=T";;, and the detuning was chosen to be
ot 2AXAyAz 1 50 times larger than the molecule-molecule Rabi frequengies
s = 9142+ g . (14) Thus, a Ifilrger COliphng ;trength requires a higher dgtur(m)gx
v 1 3 =4.7<10"% m*?s™!, which corresponds to a detuning of 160
at 2AxAyAz"3 MHz, (b) x=1.5x10"° m®¥2s%, which corresponds to a detuning
a%ﬁ giJ2+ gk of l.§ GHz, (c) y=4.7x10"° msfzs’l, which pqrresponds to a
_2 - = g detuning of 16 GHz. The dotted lines, where visible, are the uncer-
Jt comection | 2 AXAYAZ tainties in the theory due to the sampling error.

This correction is equivalent to a stepsize-dependent phase
shift of the fields. It is clear that the correction is infinite in
the limit of zero spatial cell size. In fact, this limit is not  The feasibility of observing quantum field effects shall be
realistic for atomic fields, as the interactions between thelemonstrated by considering the most dilute system possible.
particles are modeled as a contact potential, and this approxiFhe diluteness will be limited by the requirement that the
mation fails at a sufficiently small distance scale. This puts a&olumn density be large enough to provide easy measure-
lower limit on the distance between the gridpoints, whichments, and by the total number of atoms available in the
will be of the order of magnitude of the scattering length.initial trap. All further calculations assume that it will be
This forced discretization is equivalent to the cutoff in mo- possible to have a million atoms in the trap after the adia-
mentum that is usually used to solve renormalization probbatic expansion. The noise in the column density measure-
lems. ments is estimated to be ¥0m~2, which is that of the

In a numerical simulation with stepsiz&t, the noise current BEC at ANU32]. For the purposes of this section, it
terms 7(x,t) are included at each time step by choosing ais assumed that the trap has an aspect ratidof30. The
random numberR from a Gaussian distribution centered weakest trap in which 99.5% of the atoms are above the
around zero and with unit width. The noise terms are themoise level in the column density has a trap frequency of
formed using 7(x,t)=R/\JAx Ay AzAt. This means that ®,=0.59 s, and a condensate size of 0.09 mm in the
going to smaller grid spacing slows the computation in threestrong axis and 0.3 mm in the weak direction. The effect of
ways. The field contains more points, which proportionallyvarying the coupling rate in such a trap will be calculated in
increases the computation time per time step. Also, the noistis section. The next section will examine the quantum field
terms become larger, which means that both a smaller timeffects in stronger traps.
step is required to perform a stable integration and a larger Figure 3 compares the evolution of the atomic population
ensemble of paths is required to obtain precise averages. With the solution to the Gross-Pitaevskii equation. It can be
follows that these stochastic methods are most successfaeen that the effect of the quantum statistics of the field
when the density is low. Fortunately, the strong effect shouldyrows as the coupling increases. The coupling cannot be in-

B. Quantum superchemistry with varying coupling rates

also be in this limit. creased indefinitely, due to restrictions on both the available
The stochastic integration was performed with ¥mps  laser power and allowable detuning.
package, developed by Collecutt and DrummdB@]. In The difference between the dynamics of the system and

collaboration with them and the ANU Supercomputer Facil-the semiclassical result is essentially unaffected by the
ity, this has been adapted to run multiple integrations of thdosses, which dominate at higher densities and over longer
stochastic equations in parallel on the Australian Partnershiime scales. By contrast, the inclusion of the atom-molecule
for Advanced Computing National FacilityAPAC) super- interactions in this model has reduced the distinction at high
computer{31]. densities. From Fig. 3, it can be seen that the deviation from
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method of calculating this is that the number of atokhs
required to obtain a peak density of, is

[3)]
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— -7 The figure shows a significant effect of the quantum statistics

Thousands of atoms
N
(=]

% 0.1 02 03 04 05 of the field even for much higher densities. Unfortunately, it

2 ' also shows the difficulty in performing quantitative experi-
© ments at these densities, where the theoretical results are

r TS e ] difficult or impossible to obtain by the stochastic methods

0 e used in this paper. In each plot, the integration cannot be

0 0.05 0.1 0.15 performed far beyond the region shown.
time (ms) The importance of including the quantum statistical ef-

FIG. 4. Evolution of the atomic populatiofsolid liney com-  fects actually appears to increase with density. This is sur-
pared to the solution of the GP@lashed lines The parameters Prising, as we would expect the third-order nonlinearities to
used ard"=T;;, y=4.7x10"5 m¥2s !, which corresponds to a b€ the main source of dephasing of the conversion, and they
detuning of 16 GHz. The trap has an aspect rati&ef30, and trap ~ are getting stronger with density. This may be due to the fact
frequenciesa) w,=2mx0.092 Hz,(b) w,=27X1.0 Hz, andc) that the densities considered here are so low that the main
w,=2m7X10 Hz. The dotted lines, where visible, are the uncertain-dephasing is being caused by the kinetic-energy term. If this
ties in the theory due to the sampling error. is true, then there will be an optimal density that will maxi-

mize the parametric conversion rate compared to the kinetic-
the semiclassical result is clearly observable for currentlyenergy terms, but minimize the two-body interaction terms

achievable trap and coupling parameters. with respect to the conversion rate. Detailed testing of this
hypothesis is difficult due to the numerical difficulties, and is
C. Quantum superchemistry at varying densities beyond the scope of this work.

Although it is possible to use very weak traps to work in
the low-density limit, most experiments are performed using V. CONCLUSIONS
stronger traps than those modeled in the previous section. ' U

This section will examine the effects of Changing the denSity. This paper has shown that it is possib|e to observe the
The most dramatic effect of increasing the strength of theyuantum statistical effects of the field in coupled atomic and
trap in the model is that the calculation becomes less stableyolecular BEC. The effect is most clearly visible in the low-
As previously explained, the noise in the numerical simulaﬂensity and high-coupling strength limits.
tion becomes relatively larger as the unit cell size decreases. Although it is a very successful model, the GPE cannot be
Stronger traps mean that the overall size of the condensatgplied to every system of coupled BEC’s. While it may
decreases, and so does the minimum allowable stepsize §xem reasonable to expect that the quantum statistics will
the spatial grid. It therefore becomes harder to use the stQend to affect the multitime correlations of the field rather
chastic field equations to model the system for long timesthan the mean field, our result shows it is sometimes also
The stochastic method will always produce results up to dmportant to include them when considering the equations of
certain point in time, but as the individual trajectories be-motion for moments of the mean field. The signature of the
come unstable numerically, it becomes impossible to intepreakdown of the GPE occurs in the simplest experimental
grate further. observable—the total atomic and molecular populations.
Under the constraint that there are just enough atoms to The calculations in this paper were numerically intensive.
provide easily measurable results, the ratio of the secondsithough the positiveP representation contains the full de-
order and third-order nonlinearities scalescs’, whereas  scription of the quantum field, it cannot be applied to every
the condensate volume will scale ag ?. The difference system of coupled BEC's. Individually, trajectories do not
between the full, quantum evolution of the system and théhave to behave in a physical fashion and they may become
semiclassical evolution depends on the ratio of the secondinstable over time in the absence of damping. The technique
order and third-order nonlinearities, so based on this scaling therefore often only useful over short time scales, or for
the distinction may be measurable for trap strengths wherexamining systems that are well described by the coherent
the positiveP method cannot calculate the correct result.  state basis that underlies the description. This is not usually a
Figure 4 shows the evolution of the atomic population fornatural basis for the atomic field, although it is often a good
three different trap frequencies. The aspect ratio of the trapasis for the optical field. A possible counter example may be
and the coupling rate are kept the same. The number of a& continuously pumped atom laser operating well above
oms in the trap is varied so that each trap contains the minithreshold, for which the positive- representation may be
mum number of atoms required to maintain 99.5% of themtractable. It is also to be expected that the behavior of such a
above a column density af =10 m~2. An approximate device would depend critically on the quantum statistics.
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