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Quantum field effects in coupled atomic and molecular Bose-Einstein condensates

J. J. Hope
Department of Physics and Theoretical Physics, Australian National University, ACT 0200, Australia

~Received 21 June 2001; published 8 October 2001!

This paper examines the parameter regimes in which coupled atomic and molecular Bose-Einstein conden-
sates do not obey the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular
condensates are derived using the functional positive-P representation. These equations describe the full
quantum state of the coupled condensates and include the commonly used Gross-Pitaevskii equation as the
noiseless limit. The model includes all interactions between the particles, background gas losses, two-body
losses, and the numerical simulations are performed in three dimensions. It is found that it is possible to
differentiate the quantum and semiclassical behavior when the particle density is sufficiently low and the
coupling is sufficiently strong.
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I. INTRODUCTION

One of the surprising discoveries that has been m
since the experimental production of a Bose-Einstein c
densate~BEC! in a weakly interacting gas@1# has been the
fact that virtually all of their properties may be describ
using the Gross-Pitaevskii equation~GPE!. This semiclassi-
cal approximation ignores any dynamics in the quantum
tistics of the field. There has been much interest recentl
the production of a molecular Bose-Einstein condens
~MBEC! from the photoassociation of an atomic BEC of
weakly interacting dilute gas@2–13#. We have recently cal-
culated that in certain parameter regimes, the GPE may
incorrect results for this process@14#. This paper investigate
the process with a three-dimensional model that inclu
background gas losses, two-body losses, and the a
molecule interactions.

The success of the GPE@15# might not seem so surprisin
considering the effectiveness of the semiclassical approxi
tion in quantum optics@17#. It includes the effects ofs-wave
interactions, and can be readily generalized to include m
ticomponent condensates with interspecies couplings@4,16#.
As a semiclassical, mean-field theory it necessarily can
give information about the quantum statistics of the cond
sates, but for most experiments with BEC, these proper
have not been observed. Quantum statistics affect some
linear quantum optical systems, the simplest of which
second-harmonic generation, where pairs of photons
coupled to single, high-energy photons@18#. The analogous
process in atom optics is that of the coupling of a MBEC a
a BEC, which may be done either through tuning of a Fe
bach resonance@11#, or through photoassociation via a two
photon Raman coupling@4–6#.

The Bose enhancement of the photoassociation of at
from a trapped BEC leads to giant, collective oscillatio
between the atomic and molecular populations. This
hancement of a chemical process was dubbed ‘‘superch
istry’’ by Heinzen et al. when they first modeled it using
two-component Gross-Pitaevskii equation~GPE! @4#. A more
recent model using the Hartree-Fock-Bogoliubov method
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cludes pair correlations in the atomic field, and showed d
crepancies with the results obtained with the GPE@11#. The
most dramatic example of this breakdown of the GPE
demonstrated by the initial state where there are only m
ecules. The GPE predicts that nothing will change without
initial atomic population, whereas in reality, the molecul
will spontaneously dissociate.

The full effects of the quantum nature of the fields may
modeled by a set of stochastic equations for the atomic
molecular fields based on the functional positive-P represen-
tation @19–22#. A recent paper used this technique in a on
dimensional calculation to show that it was possible to
the effects of the quantum statistics in the population dyna
ics of coupled atomic and molecular BEC@14#. The signature
was a reduction in the transfer from atoms to molecules. T
paper uses a more complete model that includes all th
dimensions as well as atom-molecule interactions and los
The parameter regimes in which the GPE breaks down
determined.

In Sec. II, the extended model is described and the
chastic equations of motion for the system are derived. T
following section is a brief examination of the behavior
the GPE and the likely parameter regimes in which there
measurable deviations from this behavior. In Sec. IV,
evolution of the atomic population is compared with the s
lution of the GPE for a range of densities and coupli
strengths.

FIG. 1. Energy-level scheme for coherent free-bound-bou
photoassociation. Levelsu1&, u2,n&, and u3& are the electronic
states for the atomic BEC, then-vibrational level excited MBEC,
and the stable MBEC, respectively.
©2001 The American Physical Society08-1
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II. MODEL

An atomic field is coupled to a molecular field by two
color Raman photoassociation. A first laser couples a sin
electronic level of the atomic field to a set of molecular e
cited states. A second laser then couples these states
stable molecular level. The modes are arranged as show
Fig. 1, with stateu1& being the atomic BEC, stateu2,n& the
nth vibrational level of the excited state of the MBEC, a
stateu3& the stable MBEC. Two laser fields induce a fre
bound coupling betweenu1& and u2,n& and a bound-bound
coupling betweenu2,n& and u3&. In a rotating frame, the
Hamiltonian may be written as

Ĥ5(
i 51

3

~ T̂i1V̂i !1(
i j

E d3x ĉ i
†~x!ĉ j

†~x!
Ui j

2
ĉ i~x!ĉ j~x!

1
i\

2 (
n
E d3x@kn~x!ĉ1

†2~x!ĉ2,n~x!

2kn* ~x!ĉ1
2~x!ĉ2,n

† ~x!#

1 i\(
n
E d3x@Vn~x!ĉ2,n

† ~x!ĉ3~x!

2Vn* ~x!ĉ2,n~x!ĉ3
†~x!#,

whereĉ j (x) is the field annihilation operator for the atom
or molecular field in stateu j &, T̂i and V̂i are the kinetic-
and potential-energy operators for thei th field, Ui j is
the strength of the interatomic interactions between parti
in states u i & and u j &, kn(x) is the Rabi frequency o
the free-bound photoassociation from levelu1& to level
u2,n&, andV(x) is the Rabi frequency of the bound-boun
transition from levelu2,n& to level u3&. In this notation, the
detunings of the lasers from the bare atomic and molec
energy levels are included in the potential energy termsV2,n
andV3.

In addition to the coherent effects produced by t
Hamiltonian, the losses from the trapped levels are inclu
by adding standard loss terms to the master equation.
total master equation is

ṙ52
i

\
@Ĥ,r#1(

j
g j

(1)E d3x D@ĉ j~x!#r

1(
j

g j
(2)E d3x D@ĉ j

2~x!#r

12g13
(2)E d3x D@ĉ1~x!ĉ3~x!#r, ~1!

whereg j
(1) is the loss rate from levelu j & due to background

gases,g j
(2) is the two-body loss rate from levelu j &, g13

(2) is
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the two-body loss rate due to inelastic collisions between
BEC and MBEC fields, and where the superoperatorD is
defined by

D@c#5J @c#2A@c#, ~2a!

J @c#r5crc†, ~2b!

A@c#r5
1

2
~c†cr1rc†c!. ~2c!

A. Derivation of the stochastic field equations

The master equation is a field operator equation with
nontrivial level of excitation, and is therefore impossible
solve numerically by direct means. Analytical results are p
cluded by the nonlinearities in the equations. To find a n
merical method that is tractable in some parameter regim
this master equation is written in the functional positiveP
representation@20,23#

P~$ca,cb%,t!5r (a)~$ĉ,ĉ†%,t!u ĉ↔ca,ĉ†↔cb, ~3!

where r (a) is the density operator antinormally ordere
with respect to the field operators in the Schro¨dinger picture.
It is then possible to use the functional operator corresp
dences

ĉr↔caP, ĉ†r↔S cb2
]

]caD P,

rĉ†↔cbP, rĉ↔S ca2
]

]cbD P, ~4!

to write a functional Fokker-Planck equation~FPE! from the
master equation. This FPE may be written in the form

]P

]t
5(

n
E dxF2]nAn1(

m

1

2
]m]nDmnGP, ~5!

where the elementsm andn correspond to the (412n) com-
ponents of the fields in the positive-P representation:
$c1

a ,c1
b , . . . ,c2,n

a ,c2,n
b , . . . ,c3

a ,c3
b%, A is the drift vector,

D is the diffusion matrix, and] (n↔$n,g%)[]/]cn
g . The drift

vector is given by
8-2
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©
, ~6!

whereKj52 i /\(T̂j1V̂j ), andG i j 5Ui j /\. The terms proportional to the density of the excited molecular states have
dropped, as these upper states are going to be adiabatically eliminated. The diffusion matrixD is given by

D5S 2g11c1
a21(

n
knc2,n

a 0 . . . 2g13c3
ac1

a 0

0 2g11* c1
b21(

n
kn* c2,n

b . . . 0 2g13* c3
bc1

b

A A � A A

2g13c3
ac1

a 0 . . . 2g33c3
a2 0

0 2g13* c3
bc1

b . . . 0 2g33* c3
b2

D , ~7!
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wheregi j 5g i j
(2)1 iG i j combines the atomic interactions an

the two-body losses. The noise terms due to the self inte
tion of the excited molecular states have been ignored, as
density of these states is about to be assumed to be extre
small. This will enable them to be adiabatically eliminate

The Fokker-Planck equation leads to the following set
equations for the excited molecular states:

]c2,n
a

]t
5S K2,n2

g2,n
(1)

2
2 iG1;2,nc1

bc1
a2 iG3;2,nc3

bc3
aDc2,n

a

2
kn*

2
c1

a21Vnc3
a , ~8!

]c2,n
b

]t
5S 2K2,n2

g2,n
(1)

2
1 iG1;2,nc1

bc1
a1 iG3;2,nc3

bc3
aDc2,n

b

2
kn

2
c1

b21Vn* c3
b . ~9!

In order for two lasers to provide a two-photon transiti
without populating the excited MBEC, the single-photon d
tunings dn must be made very large. This means that
population of the excited level is very small and that its tim
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derivative can be ignored. In the equations of motion
c2,n

a,b , we ignore the terms] tc2,n
a,b , G i ;2,nc i

bc i
a , T̂c2,n

a,b and
the trapping potential on the basis that they are smaller t
the other terms. This approximation gives the following r
sult:

c2,n
a 5

i /2knc1
a22 iVnc3

a

dn
,

c2,n
b 5

2 i /2kn* c1
b21 iVn* c3

b

dn
. ~10!

These equations may then be substituted into Eqs.~6! and
~7! to produce the drift and diffusion matrices for the tw
levels u1& and u3&. This simplifies these matrices. It is sti
impossible to solve the FPE directly, as the functional sp
is of an extremely high dimensionality. Instead, we make
of a stochastic decomposition of the FPE. It is possible
find a simple matrixB such thatD5BBT. This matrix de-
fines the noise of the stochastic decomposition, and in g
eral it will not be unique. Finally, there is a theorem th
allows us to map the solution of the master equation in
~1! to the following set of Itoˆ stochastic field equations:
8-3
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2
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1A2g3c3
ah31Ag13c1

ac3
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]c3
b
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5S 2K32

g3
(1)

2
2 il2g3* c3

bc3
a2g13* c1

bc1
aDc3
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1
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xc1

b21A2g3* c3
bh41Ag13* c1

bc3
bz2* ,

where

G5(
n

uknu2

2dn
, ~12a!

x5(
n

knVn

dn
, ~12b!

l5( n
uVnu2

dn
, ~12c!

and thehn are a set of real, Gaussian noise sources that
d-correlated in time and space

h i~x,t !h j~x8,t8!5d i j d~x2x8!d~ t2t8!,

andzn are a set of complex, Gaussian noise sources tha
d-correlated in time and space

z i* ~x,t !z j~x8,t8!5d i j d~x2x8!d~ t2t8!.

These stochastic equations allow us to generate any
titime time-normally ordered quantum field averages by
eraging selected moments of these fields over a sufficie
large sample of trajectories@20#

^TQ ĉ†~x,t !•••ĉ†~x8,t8!TW ĉ†~x9,t9!•••ĉ†~x-,t-!&

5cb~x,t !•••cb~x8,t8!ca~x9,t9!•••ca~x-,t-!,

where (TQ ) TW is the ~anti-! chronological time ordering op
erator.
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The Itô stochastic equations reduce to the GPE for t
system if the noise terms are ignored. As can be seen l
this is not the case when using a different stochastic calcu
such as Stratonovich calculus, which reinterprets the no
terms and therefore requires corrections to the determin
part of the equations. This reinforces the fact that the no
terms cannot be treated separately from the determin
terms, as the same physics produces both of them. It is
worth reiterating that there is no useful interpretation of t
individual trajectories of the simulation, only the ensemb
averages.

Our equations of motion are very similar to those obta
able by a direct coupling between the BEC and the sta
MBEC. The difference is the nonlinear light shift of th
BEC, which is proportional toG, and the linear light shift of
the MBEC, which is equal tol.

III. SEMICLASSICAL SUPERCHEMISTRY

Examination of the semiclassical equations of motion o
tained by dropping the noise terms from Eq.~11! shows that
the behavior is sensitive to the relative strengths of the n
linearities. In the limit that there are no third-order nonli
earities, it may be seen that if the population starts in
atomic field then there is a complete, one-way conversion
molecules. In the presence of atomic and molecular inte
tions, the third-order nonlinearities dephase this evoluti
and cause a revival of the atomic population. This behav
is shown in Fig. 2, where the evolution is shown for differe
values of the atomic-molecular coupling rate.

This semiclassical behavior has been observed
traveling-wave second-harmonic generation, which is a ze
dimensional analogue of coupled atomic and molecular c
densates. However, it has also been shown that the semi
sical approximation gives incorrect predictions for the me
behavior of the fields in traveling-wave second harmo
generation@18#, as well as for their quantum statistical pro

FIG. 2. Evolution of the semiclassical equations of motion
the atomic and molecular populations in a fixed three-dimensio
harmonic trap. The values ofx used were 3.031025 m1/2/s ~solid!,
3.031026 m1/2/s ~dashed!, 3.031027 m1/2/s ~dash-dotted!, and
3.031028 m1/2/s ~dotted!.
8-4
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erties @24,25#. This discrepancy is most pronounced wh
there is nearly complete conversion to the second harmo
which occurs when the third-order nonlinearities are v
small @26#. It has since been shown that it is also possible
observe the effects of the quantum nature of the fields
one-dimensional model of coupled atomic and molecu
condensates@14#.

The breakdown of the semiclassical approximation ha
simple explanation. The semiclassical equations do not
clude the spontaneous emission terms that allow a mole
to break into two atoms in the absence of an atomic field.
include these processes in the model, the full stocha
equations of motion must be considered, which include
the physics of the quantum fields. The noise terms of
evolution mimic the dephasing effect of third-order nonli
earities, and cause a revival of the atomic population.

For coupled atomic and molecular condensates in th
dimensions, with losses due to background gas collisions
two-body collisions, it may be significantly more difficult t
observe the quantum nature of the fields. In higher dim
sions, there is a larger volume of low-density fields than
low dimensions, which in combination with the third-ord
nonlinearities and the losses, will tend to ‘‘blur’’ the stron
conversion to molecules that may be observed in the se
classical theory for low dimensions. This effect may
counteracted by ensuring that the field is as dilute as p
sible, which makes the~second order in the fields! coupling
between the BEC and the MBEC relatively stronger than
~third order in the fields! interaction terms. In order to mini
mize the diffusion due to kinetic energy and further redu
the effect of the interactions, the Raman transition must
made as strong as possible.

Making the Raman transition as strong as possible
quires maximum laser intensities and a two-photon reson
coupling (D5l). The practical limits on the total strength o
the coupling are the requirement that the excited molec
state must not have significant population, and the nee
avoid inducing large, attractive atomic interactions throu
the nonlinear light shift due to the laser-assisted photoion
tion. Unless there is a low excited-state population, spo
neous losses from that highly energetic state could dis
the condensates, and the adiabatic approximation use
eliminate the upper level may break down. This limit im
poses the condition that the single-photon detuningd must
be significantly larger than the Rabi frequencies of the in
vidual laser beams. The second requirement means tha
nonlinear light shift should stay of the order of the repuls
interactions. If the Rabi frequency of the first laser is chos
such thatG5G11, then the nonlinear light shift will com-
pletely cancel the interactions between the atoms. There
still be repulsive interactions between the molecules and
traction between the atoms and the molecules.

Dilute condensates may be created by evaporating be
the BEC condition using strong straps, and then adiabatic
lowering the trap strengths in all directions. The trap de
remains large compared to the chemical potential of the c
densate even for extremely weak traps@27#. The field cannot
be arbitrarily dilute, however, as the accurate measurem
of the fields depends on a sufficient column density. Ma
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current experiments use highly anisotropic ‘‘cigar-shape
traps, which allow a high column density along the long ax
For a given aspect ratiovx5vy5Avz and number of
trapped atomsN, it is possible to calculate the transverse tr
frequency required to obtain the required peak column d
sity sp

vx5S 18sp
5U11

2 p3

125N3m2A2D 1/4

. ~13!

The peak density scales inversely with the aspect ratioA,
which has been as large as 100 in current experiments@28#.
In the next section, the behavior of the quantum model of
system will be investigated in both dilute and strong tra
and with both weak and strong coupling.

IV. QUANTUM SUPERCHEMISTRY

This section will examine the difference between t
quantum solution and the semiclassical solution allowing
physical constraints such as limited detuning and la
power. To ensure that the adiabatic approximation is be
made self consistently, the density of atoms in the exci
state~which must remain small! may be calculated from the
amplitudes of the other fields.

Since our last calculation@14#, the interaction between th
atomic and molecular species has been measured by e
ining the resonances in the molecular formation due
photoionization@5#. The atoms and molecules are attracted
each other with a scattering length ofa1352(1806150)a0,
which leads to a value ofU1356pa13\

2/m521.4
310250 J m3. The strength of the interactions between t
Rb2 molecules has not been measured, so it will be assu
that they are the same as the interatomic interactions for
purposes of this calculation (U115U3353310251 J m3).

The losses due to background gases are very slow on
timescale of the superchemistry. All calculations in this pa
use a value ofg1

(1)5g3
(1)50.01 s21, which is a comfortable

overestimate of the background gas losses measured b
group at JILA @29#. At the high densities involved in the
production of an atomic BEC, the three-body losses
dominant and the two-body losses are negligible (g1

(2)<1.6
310222 m3/s). By contrast, the three-body losses may
ignored at the low densities considered in this paper, bu
the presence of molecules, the two-body losses canno
ignored, as there is a significant cross section for the inela
scattering of an atom from a molecule. This was recen
measured to beg13

(2),8310217 m3/s, and in this paper, the
upper bound shall be used in all calculations.

It is experimentally difficult to produce large Rabi fre
quencies for the atom-molecule interaction due to the l
Franck-Condon factors, but this does not appear to be a l
tation of this system provided large Rabi frequencies may
achieved for the molecule-molecule transition.

A. Numerical methods

Although Itô equations of motion for this system hav
been produced in the previous section, it is much easie
8-5
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use high-order integration methods on Stratonovich eq
tions. This is because the normal chain rule of differentiat
applies to Stratonovich calculus, and standard high-or
methods may be used without modification. The transform
tion from a set of Itoˆ equations to a set of Stratonovich equ
tions may be performed easily, as it involves a simple c
rection to the deterministic terms. Unfortunately, th
correction is infinite for Eq.~11!. This is a recurrence of the
renormalization problem often found in quantum field the
ries.

The infinite correction only occurs in the continuous fie
description. When the conversion to Stratonovich calculu
done after the fields have been discretized and placed
rectangular grid with spacing ofDx, Dy, and Dz in the
three dimensions, the following correction terms are o
tained:

1
]c1

a

]t

]c1
b

]t

]c3
a

]t

]c3
b

]t

2U
correction

51
g13/21g1

2 Dx Dy Dz
c1

a

g13* /21g1*

2 Dx Dy Dz
c1

b

g13/21g3

2 Dx Dy Dz
c3

a

g13* /21g3*

2 Dx Dy Dz
c3

b

2 . ~14!

This correction is equivalent to a stepsize-dependent ph
shift of the fields. It is clear that the correction is infinite
the limit of zero spatial cell size. In fact, this limit is no
realistic for atomic fields, as the interactions between
particles are modeled as a contact potential, and this app
mation fails at a sufficiently small distance scale. This put
lower limit on the distance between the gridpoints, whi
will be of the order of magnitude of the scattering leng
This forced discretization is equivalent to the cutoff in m
mentum that is usually used to solve renormalization pr
lems.

In a numerical simulation with stepsizeDt, the noise
termsh(x,t) are included at each time step by choosing
random numberR from a Gaussian distribution centere
around zero and with unit width. The noise terms are th
formed usingh(x,t)5R/ADx Dy Dz Dt. This means that
going to smaller grid spacing slows the computation in th
ways. The field contains more points, which proportiona
increases the computation time per time step. Also, the n
terms become larger, which means that both a smaller t
step is required to perform a stable integration and a la
ensemble of paths is required to obtain precise average
follows that these stochastic methods are most succe
when the density is low. Fortunately, the strong effect sho
also be in this limit.

The stochastic integration was performed with theXMDS

package, developed by Collecutt and Drummond@30#. In
collaboration with them and the ANU Supercomputer Fa
ity, this has been adapted to run multiple integrations of
stochastic equations in parallel on the Australian Partner
for Advanced Computing National Facility~APAC! super-
computer@31#.
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B. Quantum superchemistry with varying coupling rates

The feasibility of observing quantum field effects shall
demonstrated by considering the most dilute system poss
The diluteness will be limited by the requirement that t
column density be large enough to provide easy meas
ments, and by the total number of atoms available in
initial trap. All further calculations assume that it will b
possible to have a million atoms in the trap after the ad
batic expansion. The noise in the column density meas
ments is estimated to be 1013 m22, which is that of the
current BEC at ANU@32#. For the purposes of this section,
is assumed that the trap has an aspect ratio ofA530. The
weakest trap in which 99.5% of the atoms are above
noise level in the column density has a trap frequency
vx50.59 s21, and a condensate size of 0.09 mm in t
strong axis and 0.3 mm in the weak direction. The effect
varying the coupling rate in such a trap will be calculated
this section. The next section will examine the quantum fi
effects in stronger traps.

Figure 3 compares the evolution of the atomic populat
with the solution to the Gross-Pitaevskii equation. It can
seen that the effect of the quantum statistics of the fi
grows as the coupling increases. The coupling cannot be
creased indefinitely, due to restrictions on both the availa
laser power and allowable detuning.

The difference between the dynamics of the system
the semiclassical result is essentially unaffected by
losses, which dominate at higher densities and over lon
time scales. By contrast, the inclusion of the atom-molec
interactions in this model has reduced the distinction at h
densities. From Fig. 3, it can be seen that the deviation fr

FIG. 3. Evolution of the atomic population~solid lines! com-
pared to the solution of the GPE~dashed lines!. Trap parameters are
as given in the text. In each case, the atomic-molecular couplink
was chosen such thatG5G11, and the detuningd was chosen to be
50 times larger than the molecule-molecule Rabi frequenciesV.
Thus, a larger coupling strength requires a higher detuning.~a! x
54.731026 m3/2 s21, which corresponds to a detuning of 16
MHz, ~b! x51.531025 m3/2 s21, which corresponds to a detunin
of 1.6 GHz, ~c! x54.731025 m3/2 s21, which corresponds to a
detuning of 16 GHz. The dotted lines, where visible, are the un
tainties in the theory due to the sampling error.
8-6
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the semiclassical result is clearly observable for curren
achievable trap and coupling parameters.

C. Quantum superchemistry at varying densities

Although it is possible to use very weak traps to work
the low-density limit, most experiments are performed us
stronger traps than those modeled in the previous sec
This section will examine the effects of changing the dens

The most dramatic effect of increasing the strength of
trap in the model is that the calculation becomes less sta
As previously explained, the noise in the numerical simu
tion becomes relatively larger as the unit cell size decrea
Stronger traps mean that the overall size of the conden
decreases, and so does the minimum allowable stepsiz
the spatial grid. It therefore becomes harder to use the
chastic field equations to model the system for long tim
The stochastic method will always produce results up t
certain point in time, but as the individual trajectories b
come unstable numerically, it becomes impossible to in
grate further.

Under the constraint that there are just enough atom
provide easily measurable results, the ratio of the seco
order and third-order nonlinearities scales asvx

2/3, whereas
the condensate volume will scale asvx

22 . The difference
between the full, quantum evolution of the system and
semiclassical evolution depends on the ratio of the seco
order and third-order nonlinearities, so based on this sca
the distinction may be measurable for trap strengths wh
the positive-P method cannot calculate the correct result.

Figure 4 shows the evolution of the atomic population
three different trap frequencies. The aspect ratio of the
and the coupling rate are kept the same. The number o
oms in the trap is varied so that each trap contains the m
mum number of atoms required to maintain 99.5% of th
above a column density ofs51013 m22. An approximate

FIG. 4. Evolution of the atomic population~solid lines! com-
pared to the solution of the GPE~dashed lines!. The parameters
used areG5G11, x54.731025 m3/2 s21, which corresponds to a
detuning of 16 GHz. The trap has an aspect ratio ofA530, and trap
frequencies~a! vx52p30.092 Hz,~b! vx52p31.0 Hz, and~c!
vx52p310 Hz. The dotted lines, where visible, are the uncerta
ties in the theory due to the sampling error.
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method of calculating this is that the number of atomsN
required to obtain a peak density ofsp is

N5S 18U11
2 sp

5

125vx
4M2A2D 1/3

. ~15!

The figure shows a significant effect of the quantum statis
of the field even for much higher densities. Unfortunately
also shows the difficulty in performing quantitative expe
ments at these densities, where the theoretical results
difficult or impossible to obtain by the stochastic metho
used in this paper. In each plot, the integration cannot
performed far beyond the region shown.

The importance of including the quantum statistical
fects actually appears to increase with density. This is s
prising, as we would expect the third-order nonlinearities
be the main source of dephasing of the conversion, and
are getting stronger with density. This may be due to the f
that the densities considered here are so low that the m
dephasing is being caused by the kinetic-energy term. If
is true, then there will be an optimal density that will max
mize the parametric conversion rate compared to the kine
energy terms, but minimize the two-body interaction ter
with respect to the conversion rate. Detailed testing of t
hypothesis is difficult due to the numerical difficulties, and
beyond the scope of this work.

V. CONCLUSIONS

This paper has shown that it is possible to observe
quantum statistical effects of the field in coupled atomic a
molecular BEC. The effect is most clearly visible in the low
density and high-coupling strength limits.

Although it is a very successful model, the GPE cannot
applied to every system of coupled BEC’s. While it ma
seem reasonable to expect that the quantum statistics
tend to affect the multitime correlations of the field rath
than the mean field, our result shows it is sometimes a
important to include them when considering the equations
motion for moments of the mean field. The signature of
breakdown of the GPE occurs in the simplest experime
observable—the total atomic and molecular populations.

The calculations in this paper were numerically intensi
Although the positive-P representation contains the full de
scription of the quantum field, it cannot be applied to eve
system of coupled BEC’s. Individually, trajectories do n
have to behave in a physical fashion and they may beco
unstable over time in the absence of damping. The techn
is therefore often only useful over short time scales, or
examining systems that are well described by the cohe
state basis that underlies the description. This is not usua
natural basis for the atomic field, although it is often a go
basis for the optical field. A possible counter example may
a continuously pumped atom laser operating well abo
threshold, for which the positive-P representation may be
tractable. It is also to be expected that the behavior of suc
device would depend critically on the quantum statistics.

-
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