
PHYSICAL REVIEW A, VOLUME 64, 053605
Macroscopic quantum tunneling of two-component Bose-Einstein condensates

Kenichi Kasamatsu, Yukinori Yasui, and Makoto Tsubota
Department of Physics, Osaka City University, Sumiyoshi-Ku, Osaka 558-8585, Japan

~Received 14 March 2001; published 3 October 2001!

We show theoretically the existence of a metastable state and the possibility of decay to the ground state
through macroscopic quantum tunneling in two-component Bose-Einstein condensates with repulsive interac-
tions. Numerical analysis of the coupled Gross-Pitaevskii equations clarifies the metastable states whose
configuration preserves or breaks the symmetry of the trapping potential, depending on the interspecies inter-
action and the particle number. We calculate the tunneling decay rate of the metastable state by using the
collective coordinate method under the WKB approximation. Then the height of the energy barrier is estimated
by the saddle point solution. It is found that macroscopic quantum tunneling is observable in a wide range of
particle numbers. Macroscopic quantum coherence between two distinct states is discussed; this might give an
additional coherent property of two-component Bose condensed systems. Thermal effects on the decay rate are
estimated.
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ro
in
o
o
e

th

d
o

th
un
s

n
te

s

n

nd

d
-

o
h
r

t
p

o

o
u

ing

trap
t has
e of
fter
Es
rue

s a

ion
ion,

hus,
the

ped
ne-
ar
nd

en-

in-
itself
nter-
ap-
of a
ted

he
en
tion

Es
s a
of

on
I. INTRODUCTION

Multicomponent Bose-Einstein condensates~BECs! of
alkali-metal atomic gases are expected to exhibit mac
scopic quantum phenomena that have not been found
single condensate. Multicomponent atomic gases can be
tained experimentally by trapping different atomic species
the same atoms with different hyperfine spin states. The
perimental realization of multicomponent BECs@1–3# fur-
ther stimulated many researchers to study the physics of
interesting system.

Macroscopic quantum tunneling~MQT! is an interesting
subject in many fields of physics. In this paper we stu
MQT of metastable two-component BECs in a trapping p
tential. Thus we need to know detailed information about
stationary state of this system. The structure of the gro
state has been studied by solving two coupled Gro
Pitaevskii equations~GPEs! analytically or numerically
@4–15#. The stationary solution of the GPEs gives the de
sity profile of the condensate characterized by the parame
of the system—trapping frequencies, the number of atom
each component, and threes-wave scattering lengthsa1 , a2,
and a12, which represent the interactions between like a
unlike components.

The interspecies interaction characterized bya12 plays an
important role in determining the structure of the grou
state. When the inequalitya12.Aa1a2 is satisfied, a mixture
of two-component BECs without a trapping potential ten
to separate spatially@9,11#. The trapped BECs have two dif
ferent configurations of the condensates whena12 is large
@7,10#. One configuration preserves the spatial symmetry
the trapping potential by forming a core-shell structure. T
other breaks the spatial symmetry by displacing the cente
each condensate from that of the trapping potential.

Ho and Shenoy first constructed a simple algorithm
determine the density profile within the Thomas-Fermi a
proximation~TFA! @4#. However, the TFA is not enough t
describe the density profile of phase separation because
penetration at the boundary of each component is not c
sidered. Without the TFA Pu and Bigelow investigated n
1050-2947/2001/64~5!/053605~11!/$20.00 64 0536
-
a
b-
r
x-

is

y
-
e
d

s-

-
rs

of

d

s

f
e
of

o
-

the
n-
-

merically the ground state of Rb-Na BECs by assum
spherical symmetry@6#. When a12 is large, they found a
ground state that forms a core of Rb at the center of the
and a shell of Na around Rb, and a metastable state tha
a Rb shell and Na core. However, they noted the existenc
an unstable mode which forms the core-shell structure. A
that, further investigation of two- or three-dimensional GP
showed a spherical symmetry-breaking solution for the t
ground state@7,10,14#.

Öhberg showed that whether the ground state take
symmetry-breaking state~SBS! or a symmetry-preserving
state~SPS! depends not only on the interspecies interact
but also on the particle number, the intraspecies interact
and the shape of the trapping potential@15#. However, the
details of the metastable state have not been studied. T
we investigate the dependence of the ground state and
metastable state of two-component BECs in a cigar-sha
potential, which can be considered as a quasi-o
dimensional system for simplicity. We also make a line
stability analysis of the stationary solutions of the GPEs a
reveal their metastability.

A metastable BEC can also be found in a single cond
sate with negatives-wave scattering length@17#. The nega-
tive scattering length represents an attractive atom-atom
teraction, which causes the condensate to collapse upon
to a denser phase. The balance between the attractive i
action energy and the zero-point kinetic energy of the tr
ping potential realizes the metastable condensate. MQT
condensate with attractive interaction has been predic
@18#.

For two-component BECs with repulsive interactions t
metastability mainly comes from the competition betwe
intra- and interspecies interactions. We study the transi
between the SBS and SPS by MQT.

In Sec. II, we obtain the stationary solution of the GP
numerically. The phase diagram of the ground state ha
rich structure including metastable states. The stability
these solutions is checked by following Ref.@16# which con-
siders the stability by taking account of the linear fluctuati
around the stationary solution.
©2001 The American Physical Society05-1
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In Sec. III, we introduce the collective coordinate meth
to evaluate the decay rate of a metastable state through M
by an imaginary-time path integral~instanton! technique.
The collective coordinate enables us to derive an effec
one-dimensional Lagrangian describing the two-compon
BECs and obtain the decay rate. We estimate the decay
at finite temperatures; the results show the probability
observation of MQT. We also discuss macroscopic quan
coherence~MQC!, which is the oscillation between the SP
and the SBS. Section IV is devoted to conclusions and
cussion.

II. FORMULATION AND STATIONARY SOLUTION

We consider two-component BECs in the external tr
ping potentials

Vext
i ~r !5

1

2
miv i

2x21
1

2
miv i'

2 ~y21z2!, i 51,2,

~2.1!

wheremi is the atomic mass, andv i andv i' are the longi-
tudinal and transverse trapping frequencies. Forv i'@v i the
trapping potential is cigar shaped. If the two-body interact
energy is smaller than\v' , it does not affect the transvers
componentc i' of the wave functions, which allows us t
analyze the problem in one-dimensional space. Althoug
has been predicted that the two-body interaction is chan
by the effect of tight confinement of the trapping potent
@19,20#, we will use the following treatment to derive th
one-dimensional GPEs@21#. Using the ground state wav
function in the harmonic potential forc i'(y,z), we assume
the macroscopic wave function as C i(r ,t)
5c i(x,t)c i'(y,z) ( i 51,2). These wave functions are su
stituted into the three-dimensional Gross-Pitaevskii ene
functional, which is integrated overy andz. Thus we obtain
the one-dimensional Gross-Pitaevskii energy functional,

H@c1 ,c2#5E dxF (
i 51,2

S \2

2mi
U]c i

]x U
2

1
1

2
miv i

2x2uc i u2

2m i uc i u2D1
1

2
U11uc1u41

1

2
U22uc2u4

1U12uc1u2uc2u2G ~2.2!

with the chemical potentialm i . Here the two-body interac
tions Uii andU12 are written as

Uii 5gii E dydzuc i'~y,z!u45
gii

2pbi'
2

, ~2.3a!

U125g12E dydzuc1'~y,z!u2uc2'~y,z!u25
g12

p~b1'
2 1b2'

2 !
,

~2.3b!
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where bi'5A\/miv i', gii 54p\2ai /mi , and g12
52p\2a12/m12 with reduced massm12. The corresponding
two coupled time-dependent GPEs are given by

i\
]c i

]t
5Hi@c1 ,c2#c i , ~2.4!

where

H1@c1 ,c2#52
\2

2m1

]2

]x2
1

1

2
m1v1

2x2

2m11U11uc1u21U12uc2u2, ~2.5a!

H2@c1 ,c2#52
\2

2m2

]2

]x2
1

1

2
m2v2

2x2

2m21U22uc2u21U12uc1u2, ~2.5b!

and each wave function is normalized by the number of p
ticles Ni as*dxuc i(x)u25Ni .

A. Numerical solution

The stationary solutions of Eq.~2.4! correspond to the
critical points of the energy functionalH. There are severa
ways to find these critical points numerically. Our method
described in the following. The stationary solutionc i0 satis-
fies the relation

Hi@c10,c20#c i050 ~2.6!

from Eq. ~2.4!. The solutionc i0 is taken to be real by mak
ing the phase zero. Using the trial functionc i

tri , c i0 is given
by c i

tri and its deviationDc i , i.e., c i05c i
tri2Dc i . Substi-

tuting this relation in Eq.~2.6!, we obtain the linearized
equation forDc i :

$H1@c1
tri ,c2

tri#12U11~c1
tri!2%Dc112U12c1

tric2
triDc25s1 ,

~2.7a!

$H2@c1
tri ,c2

tri#12U22~c2
tri!2%Dc212U12c1

tric2
triDc15s2 ,

~2.7b!

where s i5Hi@c1
tri ,c2

tri#c i
tri . The linear correctionDc i can

easily be calculated and the modified trial function is defin
by c i5c i

tri2Dc i . We repeat the above calculation until th
solution converges by conserving the norm of each com
nent.

Assuming the condensates of two hyperfine spin state
87Rb, we use the values of the scattering lengthsa1
55.36 nm anda255.66 nm, which have the ratioa2 /a1
51.06 @22#. We choose the atomic massm15m25mRb
51.45310225 kg, the trapping frequencyv15v25v
59032p Hz, and the aspect ratiov' /v530. It is conve-
nient to introduce scales characterizing the trapping po
tial: ~a! the length scaleb5A\/m12v, ~b! the time scale
v21, and~c! the energy scale\v. The dimensionless param
eters normalized by these scales are expressed by putt
tilde upon the symbols. Then the dimensionless intraspe
5-2
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MACROSCOPIC QUANTUM TUNNELING OF TWO- . . . PHYSICAL REVIEW A 64 053605
interactions becomeŨ1150.2010 andŨ2250.2123 from
Eqs. ~2.3!. Setting the particle numbers toN15N25N for
simplicity, our formulation has two free parameters,N and
Ũ12. The parameterŨ12 might be controlled experimentall
by the choice of some combination of atoms, or by chang
the scattering length via the Feshbach resonance@23#.

Typical stationary solutions of Eq.~2.4! are shown in Fig.
1. When the interspecies interaction is weak, two cond
sates overlap each other. ForŨ12,Ũ11,Ũ22 two overlap-
ping condensates have peaks of the density at the cent
the trapping potential, as shown in Fig. 1~a!. For Ũ11,Ũ12

,Ũ22 andAŨ11Ũ22,Ũ12, the density peak of condensate
is not at the center and two peaks appear symmetric
about the originx̃50, as shown in Fig. 1~b!. Note that the
width of condensate 2 is larger than that of 1, becauseŨ11

,Ũ22. These structures can be predicted easily within

TFA @4,12#. For Ũ12.AŨ11Ũ22 the two condensates separa
from each other with very narrow overlapping regions.
Fig. 1~c! the condensate 1 occupies the central region, pu
ing aside the condensate 2 symmetrically; this configura
preserves the spatial symmetry of the trapping potential.
the other hand, as shown in Fig. 1~d!, there exists anothe
configuration with the boundary between the two cond
sates at the center of the trapping potential and its sp
symmetry is broken. Now we call the stationary state in F
1~c! the symmetry-preserving state and that in Fig. 1~d! the
symmetry-breaking state. The total energy of solution~c! is
lower than that of~d! as described in the figure caption, s
that the solution~d! represents the metastable state.

In Fig. 2 we show theN-Ũ12 phase diagram of the groun
state. The gray region represents the overlapping config
tions, Figs. 1~a! and 1~b!, and the other the separated co
figurations, Figs. 1~c! and 1~d!; the two regions are divided

by the lineŨ125AŨ11Ũ2250.2066 which was predicted b
the TFA @5,8–12#. The gray region is further divided into

FIG. 1. Numerical solutions of the two coupled stationary GP
The solid lines and the dotted lines show the condensates 1 a

respectively. The wave functionsc̃ i divided byAN and the coordi-

natex̃ are normalized by the length scaleb5A\/m12v. ~c! shows
the symmetry-preserving state with energy 87.4261 in units
\vN. ~d! shows the symmetry-breaking state with energy 87.55
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two regions@Figs. 1~a! and 1~b!# by the line Ũ1250.2010
@12#. More precisely, these boundaries are bent for smaN
because of the failure of the TFA. The region of the se
rated configurations has the following structure. The b
line shows the boundary where the energy of the SBS
equal to that of the SPS. In regionB the SBS is the ground
state, while in regionP the SPS is the ground state.

The position of the SBS and the SPS in the phase diag
Fig. 2 can be understood as follows. We first consider
transition on increasing the particle numberN with a fixed
value ofŨ12. Note that the SBS has one domain wall and t
SPS two domain walls. WhenN is small, the SBS is realized
because the multiple domain walls increase the domain w
energy, which is estimated by the energ
*dx@( i(\

2/2mi)u¹c i u21U12uc1u2uc2u2# in Eq. ~2.2!. The
increase inN makes the intraspecies interaction energy i
portant, thus tending to extend each domain. This overco
the energy of formation of domain walls, so that the S
becomes more stable than the SBS. WhenŨ12 increases, the
domain wall energy becomes larger and thus the regionB is
extended.

The bold line suggests the existence of metastable st
as shown in Fig. 3. In Fig. 2, the regionsBp and bP have
metastable states; the SBS is the ground state and the S
the metastable state in the regionBp, and vice versa in the
region (bP). The details of the metastable state and how
decide the boundaries betweenB and Bp, bP, and P are
described in the next subsection.

B. Stability of the solutions

We linearize the energy functionalH of Eq. ~2.2! by sub-
stituting

c i5c i01dc i . ~2.8!

Here c i0 is the stationary solution obtained by solving th
GPEs, and the fluctuationdc i is complex. The stationary
solutions represent the local minima or the saddle points

.
2,

f
.

FIG. 2. N-Ũ12 phase diagram of the ground state. The gr
region represents the overlapping configuration and the other
separated configuration. In regionB the SBS is the ground state
while in regionP the SPS is the ground state. In the region w
slanted lines, there exists the metastable SBS~SPS! denoted by the
lower-case letterb(p).
5-3
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the energy functional. Then the energy can be expan
around the stationary solution:

H@c1 ,c2#.H01dH@dc1 ,dc2#, ~2.9!

dH@dc1 ,dc2#5
1

2 (
i , j 51

4 E drh iWi j h j . ~2.10!

Here h5(h1 ,h2 ,h3 ,h4)[(dc1 ,dc2 ,dc1* ,dc2* ) and W
5(Wi j ) is the Hessian operator, corresponding to
second-order derivative of the energy functional at the
tionary solution:

W115W3352
\2

2m1

]2

]x2
1

1

2
m1v1

2x2

2m112U11c10
2 1U12c20

2 ,

W225W4452
\2

2m2

]2

]x2
1

1

2
m2v2

2x2

2m212U22c20
2 1U12c10

2 ,

W125W235W345W415U12c10c20,

FIG. 3. Schematic illustration of the total energy in the region
the separated configurations in Fig. 2. When the energy of the
is equal to that of the SPS, the energy configuration becom
triple well.
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2 .

When all eigenvalues ofW are positive, the stationary solu
tion is stable, while the appearance of a negative eigenv
makes it unstable.

This eigenvalue problem is simplified by the unita
transformation@16#

U†WU5S L1 0

0 L2
D , ~2.11!

where

L15S W112U11c10
2 0

0 W222U22c20
2 D , ~2.12!

L25S W111U11c10
2 2W12

2W21 W221U22c20
2 D , ~2.13!

and

U5S a b

2a bD ,

a5S a 0

0 aD , b5S b 0

0 bD , uau25ubu25
1

2
.

Law et al. used the lowest eigenvalue ofL2 as the stability
criterion of the system of two-component BECs@16#. The
lowest eigenvalue ofL1 is zero and the eigenfunction i
given by the stationary solutionc i0.

Figure 4 shows several lower eigenvalues ofW as func-
tions of N for the SPS~a! and SBS~b! with Ũ1250.2438 as
used in Figs. 1~c! and 1~d!. The critical particle numberNc
defined by the zero eigenvalue ofL2 gives the criterion for
the stability of the stationary solution. From Fig. 4~a!, the
SPS is stable forN.Nc . Figure 4~b! shows that there al-
ways exists one negative eigenvalue whose eigenfunc
changesN. Hence, as long asN is fixed, the SBS is stable fo
N,Nc . ObtainingNc as a function ofŨ12 allows us to de-
cide the boundaries between the regionsB and Bp, P, and
bP in Fig. 2.

Finally, let us note the fluctuation changing the partic
number. By using the eigenfunctionu5(u1 ,u2) of L2 this
fluctuation is evaluated as

dNi.2E c i0~x!ui~x!dx. ~2.14!

For the mode in Fig. 4~b! whose eigenvalue is always neg
tive we obtaindNi5” 0. The other mode ofL2 in Fig. 4~b!
conserves the particle number. The fluctuation that chan
the particle number leads to the ground state of the SBS w
unbalanced particle numberN15” N2 @16#.
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S
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III. POSSIBILITY OF MACROSCOPIC QUANTUM
TUNNELING

As described in Sec. II, the SBS is the ground state
the SPS is the metastable state in the regionBp in Fig. 2, and
vice versa in the regionbP. In this section, we study the
MQT of the metastable state inBp andbP.

A. Collective coordinate approach

It is difficult to consider MQT by full quantum field
theory. In the case of a single condensate, the variatio
method is often used to estimate the condensate wave f
tion. This method was applied to the evaluation of the de
rate via MQT of a metastable condensate with attractive
teraction@18#. However, there is an important difference
the description of the decay of a single condensate and
transition between the SBS and SPS in two-component c
densates. In the former case, there is an obvious collec
coordinate, i.e., the spatial size of the condensate wave f
tion, which allows us to approximate the wave function u
der the Gaussian ansatz@18#. In contrast, in the latter case,
is difficult to find suitable collective coordinates that c
describe the continuous deformation from a metastable s
to the ground state. Thus we introduce an alternative va
tional approach for this system in order to calculate the M
rate.

The actionS for the Gross-Pitaevskii model is given b
S5*Ldt with the Lagrangian

L5 (
i 51,2

E dxS i\c i*
]

]t
c i D2H, ~3.1!

FIG. 4. Several lower eigenvalues ofW for the SPS~a! and the
SBS~b!. The bold lines show the eigenvalues ofL2 and the dashed
lines show those ofL1. The critical particle number is represente
by Nc .
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whereH is the Hamiltonian of Eq.~2.2!. The macroscopic
wave functions are written asc i5F i(x,t)eiu i (x,t), where
F i

25r i andu i are the number density and the phase for e
component, respectively. Substituting these forms in
~3.1! yields

L5E dxF (
i 51,2

H \
]r i

]t
u i2

\2

2mi
F i

2S ]u i

]x D 2J 2V~F i !G ,
~3.2!

whereV(F i) is written as

V~F i !5 (
i 51,2

F \2

2mi
S ]F i

]x D 2

1~Vext
i 2m i !F i

2G
1

U11

2
F1

41
U22

2
F2

41U12F1
2F2

2 . ~3.3!

The amplitudeF i can be expanded around the stationa
solution F i

s5Ar i
s5uc i0u in Sec. II by using an orthogona

complete setuin(x),

F i~x,t !5F i
s~x!1(

n
Q̃n~ t !uin~x! ~n51,2, . . .!,

~3.4!

with the normalization

(
i 51,2

E uinuimdx5dnm . ~3.5!

Here Q̃n(t) stands for the dimensionless arbitrary functi
and represents the small displacement of the density pr
from the stationary solution:

(
n

Q̃n
2~ t !5 (

i 51,2
E dx@F i~x,t !2F i

s~x!#2 ~n51,2, . . .!.

~3.6!

Substituting Eq.~3.4! in Eq. ~3.2!, we can obtain the effec
tive action written by the functionsQ̃n(t). If we assume that
the phase has the formu i(x,t)5(nP̃n(t)v in(x)/N with some
complete setv in(x), the first term of Eq.~3.2! can be written
as

(
nm

2\
P̃m~ t !

N
Q̇̃n~ t !(

i
E dxv im~x!F i

s~x!uin~x!,

~3.7!

by using ṙ i.2(nQ8 nF i
suin . Then we define the collective

coordinateQn5bQ̃n /AN and the collective momentumPm

52\ P̃m /b with the length scaleb of the trapping potential.
By choosing the complete setv in(x) as

(
i
E dxv im~x!

F i
s~x!

AN
uin~x!5dmn , ~3.8!
5-5



e

f

g

e

s
ab

-

ths

i-

e
y

e
n
to

tates
ei-

the
the
that

hed
icle

the

s
u-
olu-
is

-
m

KENICHI KASAMATSU, YUKINORI YASUI, AND MAKOTO TSUBOTA PHYSICAL REVIEW A 64 053605
the first term of Eq.~3.2! becomes(nPnQ̇n and the second
term

E dt(
mn

Pm~ t !Pn~ t !

2Mmn
, ~3.9!

where the effective mass matrixMmn is given by

1

Mmn
5 (

i 51,2

b2

4miN
2E r i

sS dv im

dx

dv in

dx Ddx. ~3.10!

The potentialV(F i) is a function of the collective coordinat
Qn . Thus we can obtain the effective action

S.E dtF(
n

PnQ̇n2Heff~P,Q!G , ~3.11!

P5~P1 ,P2 , . . . !, Q5~Q1 ,Q2 , . . . !,

with the effective Hamiltonian

Heff~P,Q!5(
mn

PmPn

2Mmn
1V~Q!. ~3.12!

By substituting Eq.~3.4! into Eq. ~3.3! the effective po-
tential V(Q) can be expanded as follows:

V~Q!5E V~F i
s!dx1

1

2 (
n

Q̃n
2(

i , j
uinHi j ujn1•••.

~3.13!

Here the linear term inQn vanishes becauseF i
s is the sta-

tionary solution. The quadratic term inQn can be written by
the Hessian operatorHi j , which is equal to 2L2 given by Eq.
~2.13!. We take the orthogonal setuin as the eigenfunction o
L2. Thus the second term of Eq.~3.13! is diagonalized and
V(Q) is written as

V~Q!5E V~F i
s!dx1

1

2 (
n

Nln
2

Qn
2

b2
1•••, ~3.14!

whereln
2 (n51,2, . . . ) are theeigenvalues ofHi j . The con-

stant*V(F i
s)dx will be chosen to be zero in the followin

section.

B. Calculation of the decay rate

We now calculate the MQT rateG of the metastable stat
in Fig. 2. The energy of the metastable state must have
~exponentially small! imaginary part when the tunneling i
taken into account. Then the decay rate of the metast
state is given by@24#

G5
2

\
Im Eg . ~3.15!

The energyEg is evaluated by the partition function

Z~b![e2W(b)5tr~e2bH! ~3.16!
05360
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Eg5 lim
b→`

W~b!

b
, ~3.17!

whereb51/kBT. Using the action Eq.~3.11! with the imagi-
nary timet→2 i t ~Euclidean actionSE), the partition func-
tion is written as

Z~b!5E DQ~t!expF2
SE~Q!

\ G , ~3.18!

Within the WKB approximation this path integral is evalu
ated by the saddle-point method@24#. More precisely, the
dominant contributions to the path integral are from pa
that minimize the Euclidean actionSE . Such paths are the
solution of the Euler-Lagrange equationdSE /dQ50, the
classical equation of motion for the valuablesQ(t) in the
inverted potential2V(Q). We choose the boundary cond
tion that Q(t) approaches the metastable minimum att
56`. By solving this equation of motion, we obtain th
solution QB called the ‘‘bounce solution.’’ Then the deca
rate has the form

G.A expS 2
SB

\ D , ~3.19!

whereSB5SE(QB) is the Euclidean action evaluated at th
bounce solutionQB andA the quadratic quantum fluctuatio
around the bounce solution. The following describes how
approximate the bounce solution.

We are interested in the regionsBp and bP near the
dashed lines in Fig. 2. These regions have metastable s
as described in Sec. II. On the dashed lines, one of the
genvalues of the Hessian operatorHi j vanishes. Thus, in the
region close to the dashed lines, the potential barrier of
metastable state is very small along the direction of
eigenfunction with the zero eigenvalue. We may assume
the direction of the initial~infinitesimal! velocity of the
bounce solution is given by the eigenfunctionu1 subject to
the following conditions. First,u1 has the eigenvaluel1

2

which is small in this region and becomes zero on the das
line. Secondly, this eigenfunction conserves the part
number, i.e.,dNi50 in the sense of Eq.~2.14!. Thus the
trajectory of the bounce solution is mainly described by
collective coordinateQ1(t), which is the coordinate along
the direction of u1, and the other coordinate
Q2(t),Q3(t), . . . give higher order corrections of the sol
tion. These assumptions allow us to solve the bounce s
tion approximately; the trajectory of the bounce solution
straight in the collective coordinate spaceQ
5(Q1 ,Q2 ,Q3 . . . ) @25#. Thus the infinite-dimensional sys
tem of Eq.~3.11! is reduced to a one-dimensional quantu
mechanical system with the collective coordinateQ1 subject
to the action

S.E
2`

`

dtFM

2 S dQ1

dt D 2

1V~Q1!G . ~3.20!
5-6
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Here we have defined the massM by the~1,1! component of
Eq. ~3.10!; the other components represent the mass rele
to Q2 ,Q3 . . . , so that they are negligible. The massM in-
cludes unknown functionsv i1, although they satisfy Eq
~3.8!. We will assumev i1;O(1), thus obtainingM5M11
;(4mRbN

2/b2)3(b2/N);mRbN.
The next problem is to decide the form of the effecti

potential V(Q1). It should be noticed the potential is ex
pressed asV(Q1). 1

2 Nl1
2(Q1

2/b2) for small Q1 around the
metastable state, from Eq.~3.14!. As Q1 increases, it is not
clear how to extrapolate the potential. However,V(Q1)
should reflect the structure of the original potentialV(F i) of
Eq. ~3.3!, which has a metastable state in addition to
ground state as discussed in Sec. II. Hence we require,
that V(Q1) has a metastable minimum atQ150. Secondly,
as Q1 increase,V(Q1) increases once and decreases vi
potential barrierDV as shown in Fig. 5. The potential i
expected to be written as a power series ofQ1. Since the
calculation of the decay rate does not need information
the ground state, we neglect thenth order terms (n>4) and
approximate the potential as

V~Q1!.
1

2
Nl1

2
Q1

2

b2
2

1

6
aQ1

3 ~a.0!, ~3.21!

with an unknown parametera. Then the height of the poten
tial barrier is given by

DV5
2N3l1

6

3a2b6
. ~3.22!

The value ofDV cannot be determined within the collectiv
coordinate method. The barrierDV may be interpreted a
follows. In general, when we consider quantum tunneling
is natural to assume that the bounce trajectory will
through the sphaleron, which is the unstable stationary s
tion of the equation of motion, corresponding to the sad
point of the potential@26#. ThenDV represents the energy o
the sphaleron. In our case, the equation of motion is the G
of the potential Eq.~3.3!; we have found the sphaleron b

FIG. 5. The quadratic-plus-cubic potential given by Eq.~3.21!.
The potential has a metastable minimum atQ150, barrier height
U05DV at Q15Q1

s , and width R0. The second derivative o
V(Q1) at Q150 is given byl1

2N. The coordinateQ1
s corresponds

to the sphaleron with energyDV.
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numerical simulations~see Fig. 6! and obtained the value o
DV. The collective coordinateQ1 of the sphaleron is simply
written as

Q1
s52bA 3DV

2l1
2N

. ~3.23!

Thus our collective coordinateQ1 effectively describe MQT:
the pointsQ150 andQ15Q1

s correspond to the metastab
state and the sphaleron, respectively, and the tunnelin
represented by the bounce solution, going through
sphaleron. We will give the explicit bounce solution writte
via the collective coordinate in Eq.~3.30!.

To calculate the decay rate of Eq.~3.19!, it is convenient
to introduce new scales characterizing the quantum tunne
instead of the scales of the trapping potential: according
Fig. 5 we define the length scale

R053bA 3DV

2l1
2N

, ~3.24!

the energy scale

U05DV, ~3.25!

and a time scale representing the ‘‘tunneling time’’

t05R0AM

U0
5v0A \

vl1
2
A M

m12N
~3.26!

with v05A27/2. In these units the action Eq.~3.20! can be
written by the dimensionless lengthq5Q1 /R0 and the time
s5t/t0 as

S

\
5

1

hE2`

`

dsF1

2 S dq

dsD
2

1Ṽ~q!G , ~3.27!

Ṽ~q!5
1

2
v0

2q2~12q!. ~3.28!

Hereh is the effective Planck constant defined as

FIG. 6. Saddle-point solution~sphaleron! of the two-coupled

stationary GPEs forŨ1250.2438 andN52000. The unit of length

is the same as in Fig. 1. The inset shows the detail nearx̃58.
5-7
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h5
\

t0U0
5

1

v0
Am12N

M

A\vl1
2

DV
, ~3.29!

whose value must be smaller than unity for use of the W
approximation, although it includes the macroscopic va
able N. From Eq.~3.27! the bounce solution can easily b
obtained by solving the equation of motiond2q/ds2

5dṼ(q)/dq with the boundary conditionq50 at s56`:

qB~s!5sech2S v0s

2 D , ~3.30!

and the decay rate can be written as

G.
Ã

t0
expS 2

S̃B

h
D ~3.31!

with the prefactorÃ54Av0
3/ph and the bounce actionS̃B

58v0/15.
We may observe MQT experimentally if the decay rateG

is of the order of the lifetime of the BEC. Let us search t
region near the dashed lines in Fig. 2 satisfying this con
tion. We obtained the potential barrierDV from the sphale-
ron energy and the eigenvaluel1

2 from the Hessian operato
Hi j . Recalling thatN is equal to the critical particle numbe
Nc on the dashed line~Sec. II B!, it is convenient to intro-
duce a small parameterd5u12N/Ncu. Figure 7 shows thed
dependence ofl1

2 andDV for the metastable SPS and SB
near the dashed lines in Fig. 2. Sincel1

2 andDV vanish on
the dashed line withd50, the scaling laws for the particl
number are expected to be like those of a single conden
@18#:

l1
2.\vCdb, ~3.32!

DV.\vDdg. ~3.33!

FIG. 7. d dependence of the eigenvaluel1
2 and the potential

barrierDV. The metastable SPS is shown in the left column and
metastable SBS in the right column. The open circles represen
numerical results ofl1

2 andDV from the GPEs. The solid, dashed

dotted, and dotted lines show the scaling laws forŨ1250.2250,
0.2483, and 0.2813, respectively.
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The exponentsb,g and the coefficientsC,D are determined
by fitting the scaling laws to the numerical results. Thus
obtain the exponentsb51.060.002,g52.0660.03 for the
metastable SBS, andb50.78860.006,g51.67360.007 for
the metastable SPS. As shown in Table I, they are appr
mately independent of the value ofU12 within our analysis,
while the coefficientsC and D depend onU12. When we
calculateR0 andU0 of Eqs.~3.24! and~3.25! by using these
exponents and coefficients, we find that the metastable
has larger values ofR0 and U0 than the SBS. Thus MQT
cannot be expected for the metastable SPS compared
the metastable SBS.

Substituting Eq.~3.32! and Eq.~3.33! for t0 andh of Eqs.
~3.26! and~3.29!, we can obtain the scaling laws of the dec
rateG of Eq. ~3.31! by

S̃B

h
.

8v0
2

15
A M

m12N

D
ACdg2b/2, ~3.34!

and

Ã

t0
.v

4v0

Ap
S M

m12N
D 1/4

~CD 2!1/4db/41g/2. ~3.35!

The dominant contribution toG is the exponential factor
To obtain the observable decay rate, we requireh;1021,
althoughh should be small under the WKB approximatio
Figure 8 shows the effective Planck constant for several
ues of Ũ12 as a function ofd5u12N/Ncu. The SBS has a
wider range with respect tod satisfying the above condition
for h than the SPS. Although it is difficult to tune the valu
of d experimentally, we may observe MQT of the SBS mo
easily than that of the SPS. We now estimate the ranged
for U1250.2483 where G becomes of the order o
1022 sec21; the lifetime of the BEC is typically 100 sec@1#.
The metastable SPS (Nc5770) yields S̃B /h597133d1.283

andÃ/t0544.663v3d1.039 sec21, so thatd,3.931023, a
range too narrow to observe MQT. For the metastable S
(Nc52520) we obtain S̃B /h5146.73d1.537 and Ã/t0

e
he

TABLE I. The valuesC, D, b, andg of Eqs.~3.32! and ~3.33!.

Metastable SPS

Ũ12
0.2250 0.2483 0.2813

C 0.03041 0.021508 0.015738
D 57.155 139.87 279.79
b 0.78718 0.79373 0.79177
g 1.6684 1.6801 1.671

Metastable SBS

Ũ12
0.2250 0.2483 0.2813

C 1.1445 2.0161 3.5006
D 17.454 20.462 26.086
b 1.0034 1.0022 1.0055
g 2.068 2.0371 2.0562
5-8
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553.153v3d1.269 sec21; then d,0.205. However, values
of d,6.431022 makeh larger than unity, thus breaking th
WKB approximation.

C. Macroscopic quantum coherence

An interesting phenomenon may appear on the bold
in Fig. 2 where the energy of the SPS is equal to that of
SBS. It is macroscopic quantum coherence between the
and the SPS, i.e., the oscillation of a wave packet betw
their potential wells. Then, the effective potentialV(Q) has a
triple-well geometry, as illustrated in Fig. 9.

The period of that oscillation can be estimated by
splitting D of the ground state energy due to the tunnelin
The splitting is written asD;Ae2I /h, whereh is the effec-
tive Planck constant,I the instanton action, andA a prefactor
of the order of unity. Here we only estimate the order of t
oscillation period by using the effective Planck constanh
5\/(RAMU0) of Eq. ~3.29!.

The barrier heightU0 is given by the energy of the
saddle-point solution, and the barrier widthR is given by the
‘‘distance’’ between two stable solutions of the SBS and
SPS. Then the distance is estimated to beR5(R11R2)/2 as
shown in Fig. 9, whereR1 andR2 are given by Eq.~3.24!.
By tuning the parameterN;200 andU12;0.2116, the pe-
riod of the oscillation becomes of the order of 1 sec. T

FIG. 8. The solid lines show the effective Planck constant of
metastable SBS and the dashed lines show that of the metas

SPS. The parameterŨ12 is set as 0.2250 for~a! and~d!, 0.2438 for
~b! and~e!, and 0.2813 for~c! and~f!. The critical particle number
Nc is ~a! 481,~b! 770,~c! 1197,~d! 1121,~e! 2520, and~f! 5575. In
the regionh.1, the WKB approximation breaks down.

FIG. 9. Schematic illustration of the triple-well potential.D
shows the splitting of the ground state energy. See the text abouR1

andR2.
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increase of the particle number raises the energy barrier
tween the SPS and the SBS so that MQC cannot be
served.

D. Finite-temperature effect

Let us consider finite-temperature effects, although
discussion of the last subsection was limited to zero temp
ture. Then the bounce solution Eq.~3.30! turns into the pe-
riodic solution, i.e., the classical solution in the potent
2Ṽ(q) @Eq. ~3.28!# with energy2E(0,E,1) @27#. From
Fig. 10 the explicit solution is given by the elliptic functio

qB~s!5q22~q22q1!sn2S v0

2
Aq22q0s;mD ~3.36!

with m5A(q22q1)/(q22q0), and the periodT is given by
the complete elliptic integral of the first kindK(m),

T5
4

v0Aq22q0

K~m!. ~3.37!

The periodT is related to the temperature,T5hb, whereb
is the inverse temperature normalized byU0. This solution
reduces, of course, to the previous solution Eq.~3.30! for
E50. The corresponding bounce action is evaluated as

S̃B~b!5E
0

hb

dsF1

2 S dqB

ds D1Ṽ~q!G ~3.38!

5W1hbE, ~3.39!

where

W5
4

15
v0Aq22q0@2~q0

21q1
21q2

22q0q12q0q2

2q1q2!E~m!1~q12q0!~2q02q12q2!K~m!#

~3.40!

with the complete elliptic integral of the second kindE(m).
The decay rate by MQT takes the form

e
ble

FIG. 10. Turning pointsq1 and q2 in the potential2Ṽ(q)5

2(1/2)v0
2q2(12q), v05A27/2. The ‘‘energy’’ E (0,E,1) is

determined as a function of inverse temperatureb by requiring that
the motion between the turning pointsq1 and q2 is periodic, with
periodbh.
5-9
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G~b!5
A~b!

t0
expS 2

S̃B~b!

h
D . ~3.41!

The prefactorA(b) was derived in Ref.@28# as

A~b!5A v0
3

2ph
~q22q0!3/4~q22q1!~12m2!

3@a~m!E~m!1b~m!K~m!#21/2sinhS v0bh

2 D
~3.42!

with

a~m!52~m42m211!, ~3.43!

b~m!5~12m2!~m221!. ~3.44!

The thermal effect increases the MQT rate by a factor of o
the order of unity from the MQT rate at zero temperature

For E→0, we have (12m2)sinh(v0bh/2)→8,
a(m)E(m)1b(m)K(m)→2, andq0 ,q1→0, q2→1, so that
A(b)→4Av0

3/ph, which reproduces the zero-temperatu
decay rateG of Eq. ~3.31!. Let us turn to the limitE→1,
where the period behaves as

bh5
2p

v0
S 11

5

36
~12E!1••• D . ~3.45!

The leading term gives the crossover temperaturebc
21

5hv0/2p. As the temperature is raised abovebc
21 , the sys-

tem has no bounce solutions, and the decay is cause
thermal activation~the Arrhenius law!: Gb;v0 exp(2bDV).
The crossover temperature is of the order of 0.1 nK for
range ofd discussed in the last subsection.

Equation~3.41! and the Arrhenius formula are not avai
able in the narrow region nearbc . In this region the decay
rate is given by@29#

G~b!t0.A 8v0
3

15hp2
sinhS v0bh

2 DerfFA 36

5bc
~b2bc!G

3expF2b1
18bc

5 S b2bc

bc
D 2G , ~3.46!

with the error function

erf~x!5
1

A2p
E

2`

x

dy expS 2
y2

2 D . ~3.47!

For smallh!1022, this formula matches smoothly onto E
~3.41! for b.bc and the Arrhenius formula forb,bc near
.

, A

05360
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bc . However, we cannot apply the formula Eq.~3.46! to
MQT since the value ofh in our situation is of the order o
1021. We leave the issue of the crossover region for fu
study.

IV. CONCLUSIONS AND DISCUSSION

The metastability and MQT of two-component BE
were studied theoretically. By analyzing two coupled GP
numerically, we obtained two kinds of metastable state,
symmetry-breaking state~SBS! and the symmetry-preservin
states~SPS!, which depend on the particle numbers and
interspecies interaction. We introduced the collective coo
nate method by improving the usual Gaussian variatio
approach, and calculated the MQT rate within the WKB
proximation. The effective potentialV(Q) was determined
by analysis of the linear stability and using the saddle-p
solution. Then the decay rate is found to obey a scaling
near the critical region. MQT from the SBS to the SPS
expected to be observed in a wide range of the parametd.
We also predicted MQC between the SBS and the SPS
though the range ofd is rather narrow.

Our analysis is restricted to the one-dimensional cond
sate, but it can be applied to a system in a highly anisotr
trapping potential. The extension to the three-dimensi
system is troublesome. However, the qualitative nature
be the same as in the one-dimensional case. This analys
also be applied to the MQT between the domains of a sp
condensate@3# where the external magnetic field can be u
as another variable parameter.

In Sec. II B we stated that negative eigenvalues alw
exist for the SBS, corresponding to the change of par
number. This instability may be caused by inelastic collisi
of atoms in a real system. However, if we confine ourse
to the region near the critical particle number, MQT is
pected to be the dominant mechanism of decay@18#. Thus
the change of particle number is neglected in the analys
the MQT.

Finally, we comment on the validity of the quasi-on
dimensional approximation. In this paper, we used the at
atom interaction Eqs.~2.3!. This would be modified for at
oms in a one-dimensional confining potential such as
atom waveguide or a cigar-shaped potential. Accordin
Ref. @19#, a two-body potential of the atoms in such a c
fining potential can be written as

U1D~x!5d~x!
2p\2a

m

1

pb'
2 S 121.4603

a

b'
D 21

, ~4.1!

where b'5A\/mv'. For b'@a, which our parameterb'

.0.29mm satisfies, Eq.~4.1! is smoothly reduced to Eq
~2.3!.
.
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