PHYSICAL REVIEW A, VOLUME 64, 053605
Macroscopic quantum tunneling of two-component Bose-Einstein condensates
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We show theoretically the existence of a metastable state and the possibility of decay to the ground state
through macroscopic quantum tunneling in two-component Bose-Einstein condensates with repulsive interac-
tions. Numerical analysis of the coupled Gross-Pitaevskii equations clarifies the metastable states whose
configuration preserves or breaks the symmetry of the trapping potential, depending on the interspecies inter-
action and the particle number. We calculate the tunneling decay rate of the metastable state by using the
collective coordinate method under the WKB approximation. Then the height of the energy barrier is estimated
by the saddle point solution. It is found that macroscopic quantum tunneling is observable in a wide range of
particle numbers. Macroscopic quantum coherence between two distinct states is discussed; this might give an
additional coherent property of two-component Bose condensed systems. Thermal effects on the decay rate are
estimated.
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I. INTRODUCTION merically the ground state of Rb-Na BECs by assuming
spherical symmetry6]. When a;, is large, they found a
Multicomponent Bose-Einstein condensat®EC9 of  ground state that forms a core of Rb at the center of the trap
alkali-metal atomic gases are expected to exhibit macroand a shell of Na around Rb, and a metastable state that has
scopic quantum phenomena that have not been found in @Rb shell and Na core. However, they noted the existence of
single condensate. Multicomponent atomic gases can be olan unstable mode which forms the core-shell structure. After
tained experimentally by trapping different atomic species othat, further investigation of two- or three-dimensional GPEs
the same atoms with different hyperfine spin states. The exsshowed a spherical symmetry-breaking solution for the true
perimental realization of multicomponent BEC5-3] fur-  ground stat¢7,10,14.
ther stimulated many researchers to study the physics of this Ohberg showed that whether the ground state takes a
interesting system. symmetry-breaking statéSBS or a symmetry-preserving
Macroscopic quantum tunnelind/QT) is an interesting  state(SPS depends not only on the interspecies interaction
subject in many fields of physics. In this paper we studybut also on the particle number, the intraspecies interaction,
MQT of metastable two-component BECs in a trapping po-and the shape of the trapping potenfia]. However, the
tential. Thus we need to know detailed information about thejetails of the metastable state have not been studied. Thus,
stationary state of this system. The structure of the groungve investigate the dependence of the ground state and the
state has been studied by solving two coupled Grossmetastable state of two-component BECs in a cigar-shaped
Pitaevskii equations(GPE3 analytically or numerically potential, which can be considered as a quasi-one-
[4-15]. The stationary solution of the GPEs gives the dendimensional system for simplicity. We also make a linear
sity profile of the condensate characterized by the parametegsability analysis of the stationary solutions of the GPEs and
of the system—trapping frequencies, the number of atoms afeveal their metastability.

each component, and threavave scattering lengtte, , a,, A metastable BEC can also be found in a single conden-
anda,,, which represent the interactions between like andsate with negative-wave scattering lengtfil7]. The nega-
unlike components. tive scattering length represents an attractive atom-atom in-

The interspecies interaction characterizedayplays an  teraction, which causes the condensate to collapse upon itself

important role in determining the structure of the groundto a denser phase. The balance between the attractive inter-
state. When the inequalig;,> \/a;a, is satisfied, a mixture action energy and the zero-point kinetic energy of the trap-
of two-component BECs without a trapping potential tendsping potential realizes the metastable condensate. MQT of a
to separate spatially9,11]. The trapped BECs have two dif- condensate with attractive interaction has been predicted
ferent configurations of the condensates wiep is large  [18].
[7,10]. One configuration preserves the spatial symmetry of For two-component BECs with repulsive interactions the
the trapping potential by forming a core-shell structure. Themetastability mainly comes from the competition between
other breaks the spatial symmetry by displacing the center dhtra- and interspecies interactions. We study the transition
each condensate from that of the trapping potential. between the SBS and SPS by MQT.

Ho and Shenoy first constructed a simple algorithm to In Sec. Il, we obtain the stationary solution of the GPEs
determine the density profile within the Thomas-Fermi ap-numerically. The phase diagram of the ground state has a
proximation(TFA) [4]. However, the TFA is not enough to rich structure including metastable states. The stability of
describe the density profile of phase separation because thigese solutions is checked by following REE6] which con-
penetration at the boundary of each component is not corsiders the stability by taking account of the linear fluctuation
sidered. Without the TFA Pu and Bigelow investigated nu-around the stationary solution.
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In Sec. Ill, we introduce the collective coordinate methodwhere b, =Vi/miw;,, gj=4wh%a/m;, and g,
to evaluate the decay rate of a metastable state through MQ¥ 27%.2a,,/m;, with reduced masm,,. The corresponding
by an imaginary-time path integrdinstanton technique. two coupled time-dependent GPEs are given by
The collective coordinate enables us to derive an effective

one-dimensional Lagrangian describing the two-component . (?_lﬂi_H 2.4
BECs and obtain the decay rate. We estimate the decay rate : a Ll :
at finite temperatures; the results show the probability of
observation of MQT. We also discuss macroscopic quanturiwvhere
coherencéMQC), which is the oscillation between the SPS
and the SBS. Section IV is devoted to conclusions and dis- ne 2.0
cussion. 1[ 1,01 I/IZ] 2m1 ﬁ + Ernl(’)lX
_ 2 2
ll. FORMULATION AND STATIONARY SOLUTION patUnlal*+ Uyl (259
We consider two-component BECs in the external trap- h2 92 -
ping potentials Hol 41, ¢2]= T oM, 2 + 5 MywaX
1 +U 2+u 2. (2.5Dp
Vi (1) = m 0P+ Emiwizj_(y2+22)v i—12 Mot Ul 12 ¥l (2.5b

(2.2) and each wave function is normalized by the number of par-
ticlesN; as fdx|¢i(x)|>=N; .

wherem; is the atomic mass, ang; and w;, are the longi-
tudinal and transverse trapping frequencies. &Qr=> w; the
trapping potential is cigar shaped. If the two-body interaction The stationary solutions of Ed2.4) correspond to the
energy is smaller thahw, , it does not affect the transverse critical points of the energy function&t. There are several
componenty;, of the wave functions, which allows us to ways to find these critical points numerically. Our method is
analyze the problem in one-dimensional space. Although itlescribed in the following. The stationary solutigp, satis-
has been predicted that the two-body interaction is changefies the relation

by the effect of tight confinement of the trapping potential

[19,20, we will use the following treatment to derive the Hil 10, 20l $i0=0 (2.9

one-dimensional GPER21]. Using the ground state wave _ .
function in the harmonic potential fag,, (y,z), we assume from Eq.(2.4). The solutiony;, is taken to be real by mak-

the  macroscopic wave  function  as W(r,t) ing the phase zero. Using the trial functi¢|ﬁ , Yo IS givelj
= yi(x,1) i, (,2) (i=1,2). These wave functions are sub- bY " and its deviationA ¢, i.e., io=yi" — Ay;. Substi-
stituted into the three-dimensional Gross-Pitaevskii energwtlng this relation in Eq.(2.6), we obtain the linearized
functional, which is integrated ovgrandz Thus we obtain equation forA;:

the one-dimensional Gross-Pitaevskii energy functional,

A. Numerical solution

{H]_[ trl tr|]+2U11( tri Z}Awl+2U12 trlwtrlA¢220-1,

(2.79
H[ by, o] = fdx ( (w' +—mw 2x2| |2
1.%2 o\ 2m; (9X 2 i {HZ[ m tr|]+2U22( tri 2}A¢2+2U12 mlﬂmAlﬂl o,
(2.7
— 12 - 4, 4 .
wil il ) + 2U11| dal*+ 2U22| Yol where oj=H;[ ", 444" . The linear correction\y; can
easily be calculated and the modified trial function is defined
I ALIAL 2.2 by 4= "= Ay . We repeat the above calculation until the
solution converges by conserving the norm of each compo-
nent.
with the chemical potentigk; . Here the two-body interac- __ ASsuming the condensates of two hyperfine spin states of
tions U;; and U, are written as 8Rb, we use the values of the scattering lengtns
=5.36 nm anda,=5.66 nm, which have the ratia,/a;
) =1.06 [22]. We choose the atomic mass;=m,=mgy
U, :g”f dydz i, (y,2)]4= Gi ' (2.3 ~ =145¢10 #kg, the trapping frequencyw;=w,=w
2mb? =90x 27 Hz, and the aspect rati@, /w=30. It is conve-
nient to introduce scales characterizing the trapping poten-
tial: (a) the length scald= \A/m,w, (b) the time scale
U12=912j dydZ¢y, (v,2)]? ¢2L(y’2)|2:L, o~ 1, and(c) the energy scal# w. The dimensionless param-
w(bi Ler% ) eters normalized by these scales are expressed by putting a

(2.3b tilde upon the symbols. Then the dimensionless intraspecies
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FIG. 2. N-U,, phase diagram of the ground state. The gray

FIG. 1. Numerical solutions of the two coupled stationary GPES region represents the overlapping configuration and the other the
The solid lines and the dotted lines show the condensates 1 and geparated configuration. In regi@the SBS is the ground state,
respectively. The wave functionj divided by N and the coordi-  while in regionP the SPS is the ground state. In the region with
natex are normalized by the length scdle- m (c) shows  slanted lines, there exists the metastable $833 denoted by the
the symmetry-preserving state with energy 87.4261 in units ofower-case letteb(p).
fhwN. (d) shows the symmetry-breaking state with energy 87.5514.

two regions[Figs. 1a) and Xb)] by the line U;,=0.2010

interactions becomél ;;=0.2010 andU,,=0.2123 from [12]. More precise]y, these boundaries are _bent for siall
Egs. (2.3). Setting the particle numbers t9,=N,=N for because of the fallure of the TFA. The region of the sepa-
simplicity, our formulation has two free parameteksand rated configurations has the following structure. The bold

~ ~ . . line shows the boundary where the energy of the SBS is
Us,. The parameted;, might be controlled experimentally equal to that of the SPS. In regi@hthe SBS is the ground
by the choice of some combination of atoms, or by changin

. . %tate, while in regiorP the SPS is the ground state.
the scattering _Iength via t_he Feshbach resonapgp N The position of the SBS and the SPS in the phase diagram
Typical stationary solutions of E@2.4) are shown in Fig.

) o e Fig. 2 can be understood as follows. We first consider the
1. When the interspecies interaction is weak, two conden

~ - > fransition on increasing the particle numbewith a fixed
sates overlap each other. FOR,<Uy;<Uy, two overlap- value ofU,,. Note that the SBS has one domain wall and the

ping condensates have peaks of the density at the center 8bg 5 domain walls. WheN is small, the SBS is realized
the trapping potential, as shown in Figal ForU;;<Ui;  because the multiple domain walls increase the domain wall
<U,, andyUq;,U,,<U;,, the density peak of condensate 2 energy, which is  estimated by the energy
is not at the center and two peaks appear symmetricallydx[ =;(%2/2m)|V |2+ Uqo #h1|%[14,|%] in Eq. (2.2). The
about the origirk=0, as shown in Fig. (b). Note that the increase inN makes the intraspecies interaction energy im-
width of condensate 2 is larger than that of 1, becdlige portant, thus tending to extend ea(;h domain. This overcomes
~ . o the energy of formation of domain walls, so that the SPS
<Uz. These sjructurss Ean be predicted easily within th%ecomes more stable than the SBS. Whignincreases, the
TFA[4,12]. ForU;,> yUy13U2; the two condensates separate qomain wall energy becomes larger and thus the reias
from each other with very narrow overlapping regions. Ingytended.
Fig. 1(c) the condensate 1 occupies the central region, push- The pold line suggests the existence of metastable states
ing aside the condensate 2 symmetrically; this configurationys shown in Fig. 3. In Fig. 2, the regioB andbP have
preserves the spatial symmetry of the trapping potential. Op,etastable states: the SBS is the ground state and the SPS is
the other hand, as shown in Fig(d], there exists another he metastable state in the regiBp, and vice versa in the
configuration with the boundary between the two condenyegion bP). The details of the metastable state and how to

sates at the center of the trapping potential and its spatig|acige the boundaries betwe&and Bp, bP, and P are
symmetry is broken. Now we call the stationary state in Fig.qescribed in the next subsection. ’ '

1(c) the symmetry-preserving state and that in Figl) the
symmetry-breaking state. The total energy of solufionis
lower than that of(d) as described in the figure caption, so
that the solutior(d) represents the metastable state. We linearize the energy functiona of Eq. (2.2) by sub-

In Fig. 2 we show the\-U,, phase diagram of the ground Stituting
state. The gray region represents the overlapping configura- U= ot S 2.8
tions, Figs. 1a) and 1b), and the other the separated con- o a '
figurations, Figs. () and Xd); the two regions are divided Here 4, is the stationary solution obtained by solving the
by the lineU ,= VU ;U»,=0.2066 which was predicted by GPEs, and the fluctuatiody; is complex. The stationary
the TFA[5,8—14. The gray region is further divided into solutions represent the local minima or the saddle points of

B. Stability of the solutions
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FIG. 3. Schematic illustration of the total energy in the region of
the separated configurations in Fig. 2. When the energy of the SBS
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Wis=U1ifio,  Was= Uty
When all eigenvalues diV are positive, the stationary solu-
tion is stable, while the appearance of a negative eigenvalue
makes it unstable.

This eigenvalue problem is simplified by the unitary
transformation 16]

L, 0
utwu= , 2.1
( 0 Lz) (213
where
W= Uy, 0
le O W . U 2 y (212
20— Uathzg
Wi+ Ui, 2W1p
2= 2 | (213)
2Wy, Wao+ Uogoifsg
and

a:

a o b 0 5 , 1
0 a' P=lo p) A==

is equal to that of the SPS, the energy configuration becomes a

triple well.

the energy functional. Then the energy can be expandeg

around the stationary solution:

Hl b1, po]l=Ho+ SH[ 61, 64,], (2.9

1 4
5H[5¢1a5¢2]:§ijzlfd”7iwij 7. (210

Here 77:(7711772:7731774)5(5‘#1151/121590’1(15‘703) and W
=(W,;) is the Hessian operator, corresponding to th

Law et al. used the lowest eigenvalue bf as the stability
criterion of the system of two-component BECKS]. The
west eigenvalue ot is zero and the eigenfunction is
given by the stationary solutiog.

Figure 4 shows several lower eigenvaluesfas func-

tions of N for the SPS(@) and SBS(b) with U;,=0.2438 as
used in Figs. (c) and 1d). The critical particle numbeN,
defined by the zero eigenvalue b§ gives the criterion for
the stability of the stationary solution. From Figlas the
SPS is stable foN>N,.. Figure 4b) shows that there al-
ways exists one negative eigenvalue whose eigenfunction

echangesxl. Hence, as long a\ is fixed, the SBS is stable for

second-order derivative of the energy functional at the staN<N.. ObtainingN, as a function ol , allows us to de-

tionary solution:

a1,
Wll_ W33— — 2—rnl ﬁ + Emlwlx
— 1+ 2U 10+ Ui,
w2 1 -
W22— W44— - 2_[T]2 ﬁ + Emzwzx
2 2
=t 2U o150+ U 1091,

W= Wo3=Was=Wy1=U 15110820,

cide the boundaries between the regi@&andBp, P, and
bP in Fig. 2.

Finally, let us note the fluctuation changing the particle
number. By using the eigenfunctian=(u,,u,) of L, this
fluctuation is evaluated as

5Ni22f Yio(X)U;(X)dx. (2.149

For the mode in Fig. @) whose eigenvalue is always nega-
tive we obtainSN;# 0. The other mode ok, in Fig. 4(b)
conserves the particle number. The fluctuation that changes
the particle number leads to the ground state of the SBS with
unbalanced particle numbét; # N, [16].
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0.2 Aoce where’H is the Hamiltonian of Eq(2.2). The macroscopic
3 1@ wave functions are written ag;=®;(x,t)e'%*V  where
50'15 a e 1 CDi2=pi and 6; are the number density and the phase for each
S oLl I component, respectively. Substituting these forms in Eq.
5" S (3.1) yields
S0.05 | ]
£ EJd 5P 2 70V
= = —_f — —— s — — .

_%0 0 oo T B Xi:]_'z at 7t o2m ' ax (@),
| N 3.2
'0'0%00 géocldoo 1200 1400 1600 1800 2000 o
04 N whereV(®;) is written as
s o 52 [ 9\ 2
B T i i 2
. : g )= —|—] + — ;) D
fO3 V(®) i;Z om | ax (Vext Iu’l)q)I:|
5 , |
E 0.2 : ] U Uz
5 IREREL TP +7(D£11+ Tng‘f‘Ulz(Diq)%. (3.3
=01 1
A
§° 0 The amplitude®; can be expanded around the stationary
R S solution ®$=\/p®=|¢;c| in Sec. Il by using an orthogonal
1200 1400 1600 1800 2000 2200 2400 2600 complete sets;(x),
N Ne
FIG. 4. Several lower eigenvalues \0f for the SPSa) and the CIDi(X,t)=(I>iS(x)+E Qn(t)um(x) (n=1,2,...),
SBS(b). The bold lines show the eigenvalueslof and the dashed n
lines show those of ;. The critical particle number is represented 3.4
by N with the normalization
Ill. POSSIBILITY OF MACROSCOPIC QUANTUM
TUNNELING 212 UinUimdX= 81 pm- (3.9

As described in Sec. Il, the SBS is the ground state and
the SPS is the metastable state in the re@ipnin Fig. 2, and ~ . . . .
vice versa in the regiobP. In this section, we study the Here Q,(t) stands for the dimensionless arbitrary function

MQT of the metastable state Bp andbP. and represents the smal_l dl.splacement of the density profile
from the stationary solution:

A. Collective coordinate approach

it is difficult to consider MQT by full quantum field 2 Q=2 | &P =CTC0)  (n=12,...).
theory. In the case of a single condensate, the variational (3.6
method is often used to estimate the condensate wave func-

tion. This method was applied to the evaluation of the decaysubstituting Eq(3.4) in Eq. (3.2), we can obtain the effec-
rate via MQT of a metastable condensate with attractive intjve action written by the function®,(t). If we assume that
tﬁragt|on[18]. Hower:/er(,j there is an |m|portan('; dlfferencedmhthe phase has the forf(x t)=2n5n(t)vin(x)/N with some
the description of the decay of a single condensate and t _ . :
transition between the SBS and SPS in two-component co @omplete sebin(x), the first term of Eq(3.2) can be written

densates. In the former case, there is an obvious collective
coordinate, i.e., the spatial size of the condensate wave func-

: : : - Pr(t).s

tion, which allows us to approximate the wave function un- 25— "0 (t j AXvim(X)P(X) Ujn(X

der the Gaussian ansdt8]. In contrast, in the latter case, it nEm Nl )Ei im(X) PO Uin(X),

is difficult to find suitable collective coordinates that can (3.7

describe the continuous deformation from a metastable state _ .
to the ground state. Thus we introduce an alternative variaby using p;=2%,Q,®;u;,. Then we define the collective

tional approach for this system in order to calculate the MQTeqordinateQ, = b0, /N and the collective momenturR,,
rate.

The actionS for the Gross-Pitaevskii model is given by ; ZZEo%g?nWIttuethceolrinlgetpeSsceatld?x(;faﬂs]e trapping potential
S= [ £dt with the Lagrangian y 9 P n
N DP(x)
L=i=§l:‘2de Iﬁtj/i*ﬁi,bi)—')'(, (3.0 Z J'dXUim(x)Wum(xFﬁmn, (3.9
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the first term of Eq(3.2) becomesS,P,Q,, and the second
term

(t)Py(1)
gt o , 3.9
f 2o (3.9
where the effective mass matM ,,, is given by
1 b? (dvim dvin)
= H dx. (3.1
Mmn i=21,2 4miN2j Pi dx dx ( @

The potentiaV(®;) is a function of the collective coordinate
Q.- Thus we can obtain the effective action

~ f d{; P\Qn—Her(P.Q) |, (3.1
P:(P11P21"')1 Q:(Q11Q21"-)1
with the effective Hamiltonian
Her(P.Q) =2, Zan+V(Q) (3.12

By substituting Eq(3.4) into Eq. (3.3 the effective po-
tential V(Q) can be expanded as follows:

1 ~
V(Q):f V(@Ddx+ 5 3 GRS oyt
(3.13

Here the linear term iQ, vanishes becaus®; is the sta-

tionary solution. The quadratic term @, can be written by
the Hessian operatét;; , which is equal to 2, given by Eq.

(2.13. We take the orthogonal sey, as the eigenfunction of
L,. Thus the second term of E¢3.13 is diagonalized and
V(Q) is written as

V(Q)zf of)dx+ 5 2 N)\Z -, (319

where)\ﬁ (n=1,2,...) are theigenvalues oH;; . The con-
stant [V(®7)dx will be chosen to be zero in the following
section.

B. Calculation of the decay rate

We now calculate the MQT ratE of the metastable state
in Fig. 2. The energy of the metastable state must have

state is given by24]

2
F=%ImEg.

(3.19

The energyE, is evaluated by the partition function

Z(p)=e WP =tr(e” A" (3.16

PHYSICAL REVIEW A 64 053605

as

. W(pB)
E = lim——,
g IBHOO B

(3.1

whereB=1/kgT. Using the action Eq(3.11) with the imagi-
nary timet— —i 7 (Euclidean actiorS), the partition func-
tion is written as

Se(Q)
LR

Z(B)= f DQ( T)eXF{ -

Within the WKB approximation this path integral is evalu-
ated by the saddle-point methd@4]. More precisely, the
dominant contributions to the path integral are from paths
that minimize the Euclidean actio®-. Such paths are the
solution of the Euler-Lagrange equatiaiSz/6Q=0, the
classical equation of motion for the valuablég7) in the
inverted potential-V(Q). We choose the boundary condi-
tion that Q(7) approaches the metastable minimum 7at
=+oo. By solving this equation of motion, we obtain the
solution Qg called the “bounce solution.” Then the decay
rate has the form

F=Aexd — =
ex ﬁ'

where Sg= Sg(Qg) is the Euclidean action evaluated at the
bounce solutiorQg andA the quadratic quantum fluctuation
around the bounce solution. The following describes how to
approximate the bounce solution.

We are interested in the regiodp and bP near the
dashed lines in Fig. 2. These regions have metastable states
as described in Sec. Il. On the dashed lines, one of the ei-
genvalues of the Hessian operakf vanishes. Thus, in the
region close to the dashed lines, the potential barrier of the
metastable state is very small along the direction of the
eigenfunction with the zero eigenvalue. We may assume that
the direction of the initial(infinitesima) velocity of the
bounce solution is given by the eigenfunctiop subject to
the following conditions. Firstu; has the eigenvaluaf
which is small in this region and becomes zero on the dashed
line. Secondly, this eigenfunction conserves the particle
number, i.e.,6N;=0 in the sense of E¢(2.14. Thus the
trajectory of the bounce solution is mainly described by the
collective coordinateQ(t), which is the coordinate along
the direction of u;, and the other coordinates

. give higher order corrections of the solu-

(3.19

2(1),Q3(t)
. ) . S a&m These assumptions allow us to solve the bounce solu-
(exponentially smallimaginary part when the tunneling is fi

taken into account. Then the decay rate of the metastabl&

ion approximately; the trajectory of the bounce solution is
raight in the collective coordinate spaceQ
=(Q1,Q,,Q5...) [25]. Thus the infinite-dimensional sys-
tem of Eq.(3.1)) is reduced to a one-dimensional quantum
mechanical system with the collective coordin@tg subject
to the action
o
dt

-

2

dQ,

TS (3.20

+V(Q1)}-
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vQ) 0.2 . .
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FIG. 5. The quadratic-plus-cubic potential given by E21). ) )

The potential has a metastable minimumQt=0, barrier height FIG. 6. Saddle-point solutioisphaleroi of the two-coupled
Uo=AV at Q;= Qi’ and width Ry. The second derivative of stationary GPEs fotJ;,=0.2438 andN=2000. The unit of length
V(Q,) atQ;=0 is given byA2N. The coordinateQ; corresponds is the same as in Fig. 1. The inset shows the detail Red.
to the sphaleron with energyV.

numerical simulationgsee Fig. 6 and obtained the value of
Here we have defined the madsby the(1,1) component of AV. The collective coordinat®, of the sphaleron is simply
Eqg. (3.10; the other components represent the mass relevantritten as
to Q,,Q3 ..., sothat they are negligible. The mas4 in-

cludes unknown functiong;;, although they satisfy Eq. < 3AV
(3.8). We will assumev;;~0O(1), thus obtainingM =M, Q1=2b NN (3.23
1

~ (4mgN?/b?) X (b%/N) ~ mgpN.

The next problem is to decide the form of the effective
potential V(Q;). It should be noticed the potential is ex-
pressed a®/(Q;)=3iN\3(Q3/b?) for small Q; around the
metastable state, from E¢3.14). As Q; increases, it is not
clear how to extrapolate the potential. Howevsi(Q,)
should reflect the structure of the original potenti&fb;) of
Eqg. (3.3, which has a metastable state in addition to th
ground state as discussed in Sec. Il. Hence we require, fi
thatV(Q;) has a metastable minimum @;=0. Secondly,
as Qq increaseV(Q,) increases once and decreases via
potential barrierAV as shown in Fig. 5. The potential is
expected to be written as a power series@f Since the

Thus our collective coordina®®, effectively describe MQT:

the pointsQ;=0 andQ;=Qj correspond to the metastable

state and the sphaleron, respectively, and the tunneling is

represented by the bounce solution, going through the

sphaleron. We will give the explicit bounce solution written

via the collective coordinate in E¢3.30.

€ ' To calculate the decay rate of E®.19, it is convenient

"o introduce new scales characterizing the quantum tunneling
instead of the scales of the trapping potential: according to
%ig. 5 we define the length scale

calculation of the decay rate does not need information on Ro=3b SAV, (3.24
the ground state, we neglect thtéh order termsi=4) and 22N
approximate the potential as
the energy scale
1,07 1 -
V(Ql)zsziﬁ— 52Qi (a>0), (3.2) Up=AV, (3.25

and a time scale representing the “tunneling time”
with an unknown parameter. Then the height of the poten-

tial barrier is given by /M Ao M
To= RO U—0= wo w_)\i m (326)

2N3\$
= 3a2b8 322 with wp=27/2. In these units the action E@.20 can be
written by the dimensionless length=Q, /R, and the time

The value ofAV cannot be determined within the collective s=t/ro as
coordinate method. The barrigfV may be interpreted as S 1(= 1/dqg\? -
follows. In general, when we consider quantum tunneling, it 7= HJ ds{i(d_ +V(q)}, 3.29
is natural to assume that the bounce trajectory will go -
through the sphaleron, which is the unstable stationary solu-
tion of the equation of motion, corresponding to the saddle < } 2 2.4
point of the potential26]. ThenAV represents the energy of Viq)= 2 @04 (1=a). (328

the sphaleron. In our case, the equation of motion is the GPE
of the potential Eq(3.3); we have found the sphaleron by Hereh is the effective Planck constant defined as
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0.01

TABLE I. The valuesC, D, B, andy of Egs.(3.32 and(3.33.

;5:0.008
;;0.006 Metastable SPS
Zoo0s U, 0.2250 0.2483 0.2813
o002 c 0.03041 0.021508 0.015738
05 D 57.155 139.87 279.79
16 B 0.78718 0.79373 0.79177
I y 1.6684 1.6801 1671
::;10 Metastable SBS
H) U, 0.2250 0.2483 0.2813
3 c 1.1445 2.0161 3.5006
oy D 17.454 20.462 26.086
B 1.0034 1.0022 1.0055
y 2.068 2.0371 2.0562

FIG. 7. 6 dependence of the eigenvalué and the potential
barrierAV. The metastable SPS is shown in the left column and the

metastable SBS in the right column. The open circles represent the . )
numerical results ok andAV from the GPEs. The solid, dashed- | "€ €xponentg,y and the coefficients, D are determined

dotted, and dotted lines show the scaling laws = 0.2250, by fitting the scaling laws to the numerical results. Thus we

0.2483, and 0.2813, respectively. obtain the exponentg=1.0+0.002,y=2.06+0.03 for the
’ ’ metastable SBS, ang=0.788+0.006, y=1.673+0.007 for
the metastable SPS. As shown in Table I, they are approxi-
/ 2
h= h _ i1 /m12N hwky (3.29 mately independent of the value bf;, within our analysis,
Ug @o V M AV while the coefficients® and D depend onU;,. When we

. calculateRy andU of Egs.(3.24) and(3.25 by using these
whose value must be smaller than unity for use of the WKBeyponents and coefficients, we find that the metastable SPS
approximation, although it includes the macroscopic valuag larger values oR, and U, than the SBS. Thus MQT
able N. From Eq.(3.27) the bounce solution can easily be cannot be expected for the metastable SPS compared with
obtained by solving the equation of motiod’q/ds’®  the metastable SBS.
=dV(q)/dq with the boundary conditiog=0 ats= =+ : Substituting Eq(3.32 and Eq.(3.33 for 7o andh of Egs.

(3.26 and(3.29, we can obtain the scaling laws of the decay

oS
qB(s)=secH(7° , (339 rael of Eq.(3.31 by
S, 8wl M D
and the decay rate can be written as B _ 8wg D srme 334
h 15 VmyN e
A S
= T—()exp( - F) (33D  and
with the prefactorﬁ=4\/w03/ 7h and the bounce actio”{%‘;B 5~ ﬂ M\ 4 S .
=8w/15. - —w =l ( | |

We may observe MQT experimentally if the decay rBte
is of the order of the lifetime of the BEC. Let us search the The dominant contribution & is the exponential factor
region near the dashed lines in Fig. 2 satisfying this condi- : P . .
. . . ; To obtain the observable decay rate, we reqhirel0 -,
tion. We obtained the potential barriaV from the sphale- althoughh should be small under the WKB approximation
rHoArl1 eFr;ggI/Iiigdtr:;]?\liggg\éz:% gloemc:ir':iial-I'%Sasrlc?crlleor?jrflgzrr Figure 8 shows the effective Planck constant for several val-
ij + -~ . _ _
N, on the dashed lin€Sec. Il B), it is convenient to intro- ues ofUy, as a function 0f5_|.1 I.\I/NC|' The SBS ha_s;_ a
duce a small parameter=|1— N/N,|. Figure 7 shows the wider range with respect té satisfying the above condition
dependence of? andAV for the r;etastable SPS and SBS for h than the SPS. Although it is difficult to tune the value
near the dasheé lines in Fig. 2. Sincg and AV vanish on of & experimentally, we may observe MQT of the SBS more

the dashed line with5=0, the scaling laws for the particle easily than that of the SPS. We now estimate the rang® of

. : or U,,=0.2483 whereI" becomes of the order of
number are expected to be like those of a single condensa 02 sec ™ the lifetime of the BEC is typically 100 sda]

[18]: T
The metastable SPN(=770) yieldsSg/h=9713x 5283
N=fwCsP, (3.32  andA/7y=44.66x 0 X 6*%¥sec’?, so that6<3.9x 1073, a
range too narrow to observe MQT. For the metastable SBS
AV=H%wD$§". (333  (N.=2520) we obtain S3/h=146.7x5"%%" and A/r,
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1 4 T _V(q)
0.1 B
q q
h [N cfo \1 2 a
0014 N @ Y 4 Bl N
DR R
MO T T -1}

0.001 b B

0 005 01 015 02 025 03 035 04 ~

=1-N/N_ FIG. 10. Turning pointsg; and d, in the potential—V(q)=

—(1/2)w39%(1—q), wo=+27/2. The “energy”E (0<E<1) is
FIG. 8. The solid lines show the effective Planck constant of thedetermined as a function of inverse temperajBifey requiring that
metastable SBS and the dashed lines show that of the metastalitee motion between the turning poimis and g, is periodic, with
SPS. The parametét,, is set as 0.2250 fof@) and(d), 0.2438 for ~ period gh.
(b) and(e), and 0.2813 foKc) and(f). The critical particle number
N, is (a) 481,(b) 770,(c) 1197,(d) 1121,(e) 2520, andf) 5575. In  increase of the particle number raises the energy barrier be-

the regionh> 1, the WKB approximation breaks down. tween the SPS and the SBS so that MQC cannot be ob-
served.

=53.15< w X 51?89 sec !; then §<0.205. However, values

of 6<6.4x10 2 makeh larger than unity, thus breaking the D. Finite-temperature effect

WKB approximation. Let us consider finite-temperature effects, although the

discussion of the last subsection was limited to zero tempera-
C. Macroscopic quantum coherence ture. Then the bounce solution E@.30 turns into the pe-

An interesting phenomenon may appear on the bold |InéIOdIC solution, , the classical solution in the potential
in Fig. 2 where the energy of the SPS is equal to that of the- V(a) [Eg. (3. 23] Wlth energy — E(0<E<1) [27]. From
SBS. It is macroscopic quantum coherence between the SBSg. 10 the explicit solution is given by the elliptic function
and the SPS, i.e., the oscillation of a wave packet between
th_eir potential wells. The_n, the effe(_:tive_ potend4lQ) has a 9a(S)=qp— (qz_ql)srg(@ \/ﬁs;m) (3.36
triple-well geometry, as illustrated in Fig. 9. 2

The period of that oscillation can be estimated by the
splitting A of the ground state energy due to the tunneling.with m=/(d,—d1)/(d2—do), and the period is given by
The splitting is written as\~Ae """, whereh is the effec-  the complete elliptic integral of the first kind(m),
tive Planck constant,the instanton action, antl a prefactor
of the order of unity. Here we only estimate the order of the
oscillation period by using the effective Planck constant T= \/—fK(m). (3.37
=#/(RyMUy) of Eq. (3.29. @oVG2~ o

The barrier heightU, is given by the energy of the
saddle-point solution, and the barrier widgis given by the
“distance” between two stable solutions of the SBS and the
SPS. Then the distance is estimated tdRze(R; +R,)/2 as
shown in Fig. 9, wherd®; andR, are given by Eq(3.24).

The periodT is related to the temperatur€=hg, where
is the inverse temperature normalized By. This solution
reduces of course, to the previous solution E330 for
E=0. The corresponding bounce action is evaluated as

By tuning the parametel~200 andU,~0.2116, the pe- hg dq
riod of the oscillation becomes of the order of 1 sec. The ~SB(B)=f dg[ ( . B +Y(q) (3.39

0 S

Energy
=W+hgE, (3.39
where
4
LA W= 1_5wOVQ2_QO[Z(qg+qg+qg_QOQ1_QOQ2
VS Y
SBS \RJ¥R /SPS A SBs —0102)E(M) +(d1—00)(2dp— 01— g2)K(mM) ]

2 (3.40

FIG. 9. Schematic illustration of the triple-well potentia.
shows the splitting of the ground state energy. See the text &out with the complete elliptic integral of the second kiBdm).
andR,. The decay rate by MQT takes the form
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B.. However, we cannot apply the formula E@®.46) to

A(B) p( S(8)
exp —

rp)= ho (3.41 MQT since the value oh in our situation is of the order of
7o 10" 1. We leave the issue of the crossover region for future
The prefactoA(B8) was derived in Ref[28] as study.
wg 3/ 2 IV. CONCLUSIONS AND DISCUSSION
A(B)= ﬂ(%_%) (d2—d1)(1—-m") N
77 The metastability and MQT of two-component BECs
woBh were studied theoretically. By analyzing two coupled GPEs
><[a(m)E(m)+b(m)K(m)]‘”zsinr(T) numerically, we obtained two kinds of metastable state, the

symmetry-breaking stat&BS and the symmetry-preserving
(3.42  states(SPS, which depend on the particle numbers and the
interspecies interaction. We introduced the collective coordi-
nate method by improving the usual Gaussian variational
(3.43 approach, and calculated the MQT rate within the WKB ap-
' proximation. The effective potentidl(Q) was determined
(1 m2\ (2 by analysis of the linear stability and using the saddle-point
b(m)=(1-m5)(m"~1). (349 solution. Then the decay rate is found to obey a scaling law
The thermal effect increases the MQT rate by a factor of onlynear the critical region. MQT from the SBS to the SPS is
the order of unity from the MQT rate at zero temperature. €xpected to be observed in a wide range of the parandeter
For E—0, we have (+m?)sinhyBh/2)—8, We also predicted MQC between the SBS and the SPS, al-
a(m)E(m) +b(m)K(m)—2, andqy,q;—0, g,—1, so that  though the range of is rather narrow. _
A(B)— 4w/ wh, which reproduces the zero-temperature OUr analysis is restricted to the one-dimensional conden-
decay ratel' of Eq. (3.31). Let us turn to the limitE—1, sate, but it can be applied to a system in a highly anisotropic

with

a(m=2(m*-m?+1),

where the period behaves as trapping potential. The extension to the three-dimensional
system is troublesome. However, the qualitative nature will

T 5 be the same as in the one-dimensional case. This analysis can
ph= oo I+ 35(1-B)+--- . (3.49  also be applied to the MQT between the domains of a spinor

condensatg3] where the external magnetic field can be used
The leading term gives the crossover temperatgie’  as another variable parameter.
=hwy/27. As the temperature is raised abg®g', the sys- In Sec. IIB we stated that negative eigenvalues always
tem has no bounce solutions, and the decay is caused I§¥ist for the SBS, corresponding to the change of particle
thermal activatior(the Arrhenius law: T 5~ wo €xp(— BAV). number. This instability may be caused by inelastic collisions
The crossover temperature is of the order of 0.1 nK for the?f atoms in a real system. However, if we confine ourselves
range of& discussed in the last subsection. to the region near the critical particle number, MQT is ex-

Equation(3.41) and the Arrhenius formula are not avail- Pected to be the dominant mechanism of def#8]. Thus

able in the narrow region neg. . In this region the decay the change of particle number is neglected in the analysis of

rate is given by[29] the MQT. » _
Finally, we comment on the validity of the quasi-one-
803 woBh 36 dimensional approximation. In this paper, we used the atom-
[(B) o= Ozsinr( 0 )er?{ _(ﬁ_ﬁc)} atom interaction Eqs2.3). This would be modified for at-
15h7 2 B¢ oms in a one-dimensional confining potential such as an
188, | f— B, |2 atom waveguide or a cigar-shaped potential. According to
Xexr{_BjL C( C) } (3.46  Ref.[19], a two-body potential of the atoms in such a con-
5 Be fining potential can be written as
with the error function . omhila 1 a1
" 1 | p( 2) 5 U 1p(X) = &(x) o Tr_bf 1_1'460ﬁ , (4.1
erf(x)= — exp — & .
N2 d — Y 2

whereb, = JA/mw, . For b, >a, which our parameteb,
For smallh<10"2, this formula matches smoothly onto Eq. =0.29 um satisfies, Eq(4.1) is smoothly reduced to Eq.
(3.4) for B> B. and the Arrhenius formula foB< 3. near  (2.3).
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