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Chaotic and frequency-locked atomic population oscillations between two coupled
Bose-Einstein condensates
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We have investigated the chaotic and frequency-locked population oscillations between two coupled Bose-
Einstein condensates with time-dependent asymmetric potential and damping. Under the deterministic pertur-
bation, there exist stable oscillations close to the separatrix solution, which are Melnikov chaotic. Numerical
results reveal that, in the nondissipative regime, regular oscillations gradually tend to chaotic with the increase
of the trap asymmetry, the long-term localization disappears, and short-term localization can be changed from
one of the Bose-Einstein condensates to the other through the route of Rabi oscillation. But in the dissipative
regime, stationary chaos disappears and transient chaos is a common phenomenon before the regular stable
frequency-locked oscillations, and a proper damping can keep the localization long lived.
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I. INTRODUCTION

The macroscopic quantum property of weakly interact
Bose-Einstein condensates~BEC! has stimulated much inter
est for investigation of coupled BEC’s. The Josephson eff
both interference and tunneling dynamics, of two-state s
tems is one of the hotspots@1–10#. Leggett classified it into
two different types, external and internal Josephson effe
The former has two spatially separated single-particle st
in a double-well trap potential, and the latter has two hyp
fine internal states in a single-well trap potential@1#. The
strong squeezing of the atomic number difference and a
gime of squeezing in the relative phase were revealed@2,10#.
Williams et al.demonstrated the existence of Josephson c
pling for a driven two-state single-particle BEC in a sing
well trap potential@9#. Smerzi et al. studied the coheren
atomic tunneling and oscillations between two ze
temperature BEC’s confined in a double-well magnetic t
@4–6,8#. The macroscopic quantum self-trapping~MQST!,
namely, a self-maintained population imbalance with no
zero average value of the fractional population imbalan
and the p-phase oscillations in which the time-averag
value of the phase difference is equal top were detailed
@4,5#. They claimed that the damping decays all differe
oscillations to the zero-phase mode@6#. In addition, macro-
scopic quantum fluctuations have also been discussed b
ing second-quantization approaches@8#.

When the trapping potential is time dependent and
damping and finite-temperature effects cannot be neglec
chaos emerges. Abdullaev and Kraenkel treat the nonlin
resonances and chaotic oscillations of the fractional imb
ance between two coupled BEC’s in a double-well trap w
a time-dependent tunneling amplitude for different dampin
@11#. They also considered the chaotic atomic populat
resonances and the possibility of stabilization of t
unstable-mode regime in coupled BEC’s with oscillati
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atomic scattering length@12#. Experimentally, the laser bar
rier position and the intensity and detuning of the laser be
in the trap can be modified, so the trap asymmetry and
amplitude of the tunneling between the coupled BEC’s c
be time dependent@1,4,5#; and the damping cannot be ne
glected @11#. Taking account of these effects, what is t
route to chaos about? And when chaos apears, is the lo
ization ~i.e., the MQST! maintained or destroyed? These a
still open problems, which will be discussed in this paper

Below, we shall analyze the frequency-locked and chao
oscillations of the fractional atomic population imbalance b
tween two Josephson-coupled states of a two-state sin
particle BEC in a time-dependent asymmetric trapping
tential with damping. The outline of this paper is as follow
In the next section, the chaotic atomic population oscillatio
close to the separatrix solution with small trap asymme
are analyzed by using our direct perturbation method@13–
15#. The chaotic and frequency-locked population oscil
tions are numerically simulated in Sec. III. In the last sectio
the brief summary and discussion are presented.

II. CHAOTIC ATOMIC POPULATION OSCILLATIONS
CLOSE TO THE SEPARATRIX SOLUTION

WITH SMALL TRAP ASYMMETRY

Within the mean-field approximation of the two-mod
Gross-Pitaevskii equation, ignoring the damping and fin
temperature effects, two Josephson-coupled states of a
state single-particle BEC are described by the nonlin
equations@2–10#

i\
]c1

]t
5@E11U1uc1u2#c12Kc2 , ~1!

i\
]c2

]t
5@E21U2uc2u2#c22Kc1 . ~2!

Here,E1 andE2 are zero-point energies for each condensa
U1 andU2 are proportional to the mean-field energies; andK
describes the tunneling dynamics between two condens
©2001 The American Physical Society04-1
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FIG. 1. The changing of the
shape of the effective potentia
Ve f f versus the fractional popula
tion imbalance z, ~A! with L
52.0 and differentH, ~B! with
H50.5 and differentL.
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The wave functionsc i( i 51,2) are in the form ofc i

5ANi(t) exp@iui(t)#, where Ni(t)5uc i u2 and u i(t) are the
numbers of condensed atoms and phases of states. The
number of atomsNT5N1(t)1N2(t) is conserved. For a
time-independent parameterK, defining the fractional popu
lation imbalancez(t)5@N1(t)2N2(t)#/NT and the relative
phasef(t)5u2(t)2u1(t), and scaling the time in 2K/\,
then they obey the following differential equations

dz

dt
5 f ~z,f!52A12z2 sinf, ~3!

df

dt
5g~z,f!5DE1Lz1

z

A12z2
cosf. ~4!

The parameters trap asymmetryDE and atomic scattering
lengthL determine the dynamic regimes of the BEC atom
tunneling and they can be expressed asDE5(E1
2E2)/(2K)1(U12U2)NT /(4K) and L5(U1
1U2)NT /(4K). The above equations indicate thatz is the
conjugate momentum for the generalized angular coordin
f, and the corresponding oscillation is the same as a n
rigid pendulum with Hamiltonian

H5
Lz2

2
1DEz2A12z2cosf. ~5!

For a time-independent trapping potential, the quasienerg
the above system is conservative. The second-order de
tive of z can be derived from Eqs.~3!–~5! as

d2z

dt2
5

] f ~z,f!

]z

dz

dt
1

] f ~z,f!

]f

df

dt

5~LH21!z2
L2

2
z31h~ t !,

h~ t !5DEH2
3

2
DELz22DE2z. ~6!

Obviously, the above equation is a perturbed Duffing eq
tion. Regardingz and dz/dt as the coordinate and mome
tum of an effective classical particle, respectively, its effe
tive potential reads as
05360
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Ve f f52E d2z

dt2
dz

5
1

2
z2S 12LH1

1

4
L2z2D

1S 1

2
DELz31

1

2
DE2z22DEHzD . ~7!

If DE50, the effective potential changes from a double w
to a parabolic when increasing the value of (12LH) from
negative to positive. The effective particle moves betwe
the classical turning points where its kinetic energy is ze
Figure 1 shows the changing of shape of the effective po
tial, ~A! for different values ofH with a fixed value ofL, and
~B! for different values ofL with a fixed value ofH.

The motion in the parabolic potential is a Rabi oscillati
with a zero time-average value ofz. For fixed parametersL
and H, the oscillations with small effective energiesHe f f
5 1

2 (dz/dt)21Ve f f are sinusoidal, and increasing the effe
tive energies will add higher harmonics to the sinusoidal
cillations. In the case of double-well potential, the motion
very different from the case of the parabolic potential. Wh
He f f.0, the motion is a nonlinear Rabi oscillation with
zero time-average value ofz, which corresponds to the per
odic flux of atoms from one BEC to the other. WhenHe f f
,0, the particle is confined in one of the two wells, th
means the localization of atomic population in one of the t
condensate states, and this localizing phenomenon has
named as macroscopic quantum self-trapping~MQST!.
WhenHe f f50, it corresponds to the threshold motion sep
rating the above two regimes, the separatrix solution for
right-hand side well is

zs~ t !52A~LH21!/L2sechj, j5C01tALH21.
~8!

Here, constantC05Ar sech$zs(0)/@2A(LH21)/L2#%.
The dynamics of the fractional population imbalance n

the separatrix solution sensitively depends on the initial c
ditions and system parameters such that it becomes ch
with a stochastic layer. The Melnikov function method
useful to find the regions of chaotic oscillation@11,12#.
Based upon our understanding of the chaotic dynamics of
perturbated pendulum and rf-driven superconducting Jose
4-2
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CHAOTIC AND FREQUENCY-LOCKED ATOMIC . . . PHYSICAL REVIEW A 64 053604
son junction@13,14#, we will use our direct perturbation ap
proaches to analyze the stability of the boson Joseph
junction in the following.

Now we take into account the damping effects. For t
coupled BEC’s in a double-well potential with a noncohere
dissipative current of normal-state atoms, the damping t
of Eq. ~3! is 2hdf/dt; and for two interacting condensate
with different hyperfine levels in a single-well potential, th
damping has the form2hz(t) ~i.e., the damping term in the
right of Eq.~6! is 2hdz/dt) @9,11,12#. In this paper, we only
consider the latter case. When the trap asymmetry and da
ing amplitude is very small, they can be treated as pertu
tions to the symmetric system (DE50). Then the function
h(t) becomes

h~ t !5DEH2
3

2
DELz22DE2z2h

dz

dt
. ~9!

In addition to a time-independent trap asymmetryDE0, we
impose a sinusoidal variation, so the asymmetryDE5DE0
1DE1sinvt; this can be realized by varying the laser barr
position or detuning of the laser beam@1,4,5#. According to
our analytical approach@13,14#, if the trap asymmetry and
the damping amplitude satisfy

DE5«~DE01DE1sinvt !, h5«h8, u«u!1, ~10!

the solution close to the separatrix solution may be expres
as

z5(
i 50

1`

« izi5z
0
1«z

1
1«2z

2
1•••. ~11!

Here,zi are thei th order corrections. Substituting the abo
expression into Eq.~6! and comparing the coefficient func
tion of every« i for both sides of the differential equation, w
obtainzi satisfy the equations

d2z0

dt2
2~LH21!z01

L2

2
z0

350. ~12!

d2zi

dt2
2~LH21!zi1

3L2

2
z0

2zi5e i , ~ i 51,2,3, . . . !,

~13!

with

e152h8
dz

0

dt
1DEH2

3

2
DELz0

2 ,

e252h8
dz

1

dt
23DELz0z12

3

2
L2z0z1

22DE2z0 ,

•••

We take the zero-order solution as the separatrix solu
z05zs of Eq. ~8!, and the basic solutions of the unperturb
high-order equations~13! with (e i50) are as follows
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zi1
0 5

dz0

dt
52

2~LH21!

AL2
sechj tanhj. ~14!

zi2
0 5zi1

0 E ~zi1
0 !22dt

5
2AL2

16~LH21!3/2
sech2j~cosh 3j29 coshj

112j sinhj!. ~15!

So the general expressions ofi th corrections are

zi5zi2
0 E

C1

t

zi1
0 e idt2zi1

0 E
C2

t

zi2
0 e idt. ~16!

ConstantsC1 andC2 are determined by the initial condition
and the physical parameters. When timet→6`, Eqs. ~14!
and~15! give uzi1

0 u→0 anduzi2
0 u→1`. Solving thei th order

equations one by one, we can obtain functionse i containing
time-periodic functions with finite amplitudes. This mea
the high-order corrections are unbounded unless the co
cient functions of the growing functionzi2

0 vanish att5`.
So the general motion is unstable oscillations, the necess
sufficient conditions for bounded oscillations are expres
as

lim
t→6`

E
C1

t

zi1
0 e idt50. ~17!

The boundedness of perturbed corrections means stabilit
the system under deterministic perturbation. Here, a
throughout the paper, the stable chaos is defined for the
terministic perturbation without any random disturbance. A
though the above conditions are nonintegrable, they con
the integrable necessary conditions

E
2`

1`

zi1
0 e idt50. ~18!

The first-order integration (i 51) is the Melnikov function of
the system, which equates zero, indicating the existenc
Melnikov chaos. This implies that the stable oscillations a
chaotic, but not all chaotic oscillations are stable becaus
the nonsufficient property of the condition~18!. Integrating
the above equations, one may evidence the necessary c
tions as a series of relations of the initial conditions a
parameters. For fixed initial conditions, modifying the p
rameters may control the instability of the chaotic oscil
tions. Substituting the expressions ofz11

0 ande1 into Eq.~18!
and integrating it yield the first-order condition

2
8h8~LH21!ALH21

3L2
2

2DE1H

AL2

3vp cos
vC0

ALH21
sech

vp

2ALH21
4-3
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FIG. 2. The stability curves for different in
tial conditions withH50.5, L50.5, DE050.0,
andh850.531024.
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2DE1~LH21!ALH21

LAL2 S 11
v2

LH21D
3vp cos

vC0

ALH21
sech

vp

2ALH21
50. ~19!

The independence of the above-necessary condition on
time-independent trap asymmetryDE0 means that the cha
otic oscillations are caused by the time-dependent trap as
metry. However, this does not imply that the stability is
relevant to the time-independent trap asymmetry, since
sufficient-necessary conditions~17! and high-order necessar
conditions~18! with i .1 are correlated withDE0 and other
parameters. For the same parameters, the distribution of
bility curves sensitively depends on the initial conditions.
display this dependence explicitly, we have chosen a se
of values of the initial constantC0 to plot Fig. 2 from Eq.
~19!, in which the curves become denser and denser with
growing of the valueC0; this illustrates the existence o
chaos. The transition between the regular oscillations and
chaotic ones is described by the curves shown in Fig
Regions above the curves correspond to Melnikov cha
oscillations of the fractional population imbalance and tho
below correspond to the regular oscillations. There exist
chaotic regions separated by a special frequency that is
termined by the physical parameters, and this frequency
cause an unstable nonlinear resonance. When the dam
becomes stronger and stronger, the regions of chaotic o
lations become smaller and smaller, and the regular reg
becomes larger and larger.

III. NUMERICAL SIMULATION OF CHAOTIC AND
FREQUENCY-LOCKED ATOMIC POPULATION

OSCILLATIONS

When the atomic population oscillations are far aw
from the separatrix solution, or when the trap asymmetry
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the damping are large enough, the oscillating dynamics c
not be obtained from the previous analytical method. In t
section, by numerically integrating Eqs.~3! and~4! with the
fourth Runge-Kutta method with variable step widths, w
simulate the atomic population oscillations that has fix
coupling K, and time-dependent trap asymmetryDE
5«(DE01DE1sinvt) and damping term2«h8z(t) in the
right side of Eq.~3!.

In the case of the time-independent symmetric trap pot
tial (DE50), because of the damping, both Rabi oscillati
and MQST reach an equilibrium state with zero populat
imbalance, see Figs. 4~b! and ~f!; increasing the trap asym
metry (DE) to 1.0 leads to the departure of the equilibriu
state from zero population imbalance, see~d! and~h! of Fig.
4. Ignoring the damping effects, the oscillations are regu
they contain two different kinds, Rabi oscillation and MQS
see~a!, ~e!, ~c!, and~g! of Fig. 4.

In the case of the time-dependent asymmetric trap po

FIG. 3. The regions of chaotic oscillations for different values
the damping parameterh8, with L54.0, DE050, andH50.5.
4-4
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CHAOTIC AND FREQUENCY-LOCKED ATOMIC . . . PHYSICAL REVIEW A 64 053604
tial (DE1Þ0), the chaotic oscillation appears. For simplici
we chooseDE050, the dimensionless parameter«51, the
initial phasef(0)50, and the atomic scattering lengthL
510. Sampling a single trajectory once within every peri
of the variation of the trap asymmetry, we obtain the stro
scopic Poincare section. In the nondissipative regimeh8
50), with the increase of the time-dependent trap asym
try DE1, the sections vary from a single island to a lot
islands, and all islands are finally submerged by the cha
sea. This means the periodic oscillations change into qu
periodic, and then chaotic. Figure 5 is the Poincare sect
of (z,dz/dt), with the initial conditionsz(0)50.5, the pa-
rametersv54p, and different values ofDE1, the corre-
sponding oscillation in its beginning is a Rabi oscillatio
When DE153.000, there is only a single island. Then it
separated into six islands asDE1 increase to 6.000. Fo
larger trap asymmetryDE156.750, the regular islands ar
surrounded by the chaotic sea. For large enough trap as
metry DE157.500, the regular islands are all submerged
the chaotic sea, and the sea is symmetrical with zero ti
averaged value ofz. Evolving from a MQST, the Poincar
sections withz(0)50.75, v52p, and different values of
DE1 is showed in Fig. 6, where the similar chaotic dynam

FIG. 4. The time evolution of the fractional population imba
ancez with L510, the left column with initial conditionsz(0)
50.5 and f(0)50.0, the right column withz(0)50.8, f(0)
50.0. ~A! and ~E! with DE50.0 andh850.0; ~B! and ~F! with
DE50.0 andh850.5; ~C! and~G! with DE51.0 andh850.0; ~D!
and ~H! with DE51.0 andh850.5.
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is exhibited. For smallDE1 ~1.000, 1.560, and 1.565), th
time-averaged value of the fractional population imbalanc
nonzero, and the atoms are localized on one of the cond
sates. However, for large enoughDE1(1.700), the chaotic
sea is also symmetrical to the linez50. This indicates that,
in the completely chaotic oscillation, the time-averag
value of the fractional population imbalance is zero, and
long-lived MQST or localization disappears.

The completely chaotic oscillations of the fraction
population imbalance evolving from Rabi oscillation an
MQST are presented in Fig. 7. The left column correspo
to z(0)50.5, v54p, and DE157.500; the right column
corresponds toz(0)50.75, v52p, and DE151.700. The

FIG. 5. The stroboscopic Poincare sections of (z,dz/dt) in the
nondissipative regime withz(0)50.5, v54p and different values
of DE1.

FIG. 6. The stroboscopic Poincare sections of (z,dz/dt) in the
nondissipative regime withz(0)50.75, v52p and different val-
ues ofDE1.
4-5
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FIG. 7. The completely chaotic oscillation
and the corresponding power spectra in the no
dissipative regime. The left column correspon
to z(0)50.5,v54p, andDE157.500. The right
column corresponds toz(0)50.75, v52p, and
DE151.700.
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first row is the time evolution ofz, the second row is the
power spectra of the corresponding oscillation. Clea
through the route of Rabi oscillation, the short-term localiz
tion or MQST can be changed from one of the BEC’s to
other, and the corresponding power spectra is very noisy

In the dissipative regime (h8Þ0), because of the exis
tence of the damping effects, the volume in phase space
decrease through time evolution. A common phenomeno
these dynamical systems is that they seem to behave ch
cally during some transient periods, but eventually fall on
periodic stable attractors. This is known as the trans
chaos or chaotic transient. Superlong transient chaos oc
commonly in dissipative dynamical systems, where osci
tions that start from arbitrary initial conditions oscillate ch
otically for a very long time before they set into the fin
attractors, which are usually regular and stable@16,17#. In
our two-state BEC system, we also find transient chaos
final attractors. We will exhibit the attracting process of t
transient chaos and the fixed points of the final attractor
the Poincare sections of (z,dz/dt). The phase trajectories o
the final attractors are also shown.

For a fixed value of damping amplitudeh8, there exist
many types of attractors whenDE1 is changed. Fixing the
DE1, different initial conditions will lead to different fina
states. Staring from a Rabi oscillation, withz(0)50.5, v
54p, h850.01, and different values ofDE1, the Poincare
sections of the attracting processes and the final attrac
and the phase trajectories of the final attractors are prese
in Fig. 8. The left column shows the Poincare sections of
attracting processes; the right column shows the phase
jectories and Poincare sections of the final states,~a! and~b!
for DE153.000,~c! and~d! for DE157.500. In the Poincare
sections, after the transient chaos, the sampled points gr
ally approach the final fixed points. The phase trajectorie
final oscillations are closed curves, and the correspond
Poincare sections only contain fixed points that are deno
05360
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as small circles, so that the final oscillations are freque
locked ~FL!. WhenDE153.000, there is only a single fixe
point in the Poincare sections, the corresponding final os
lation is a period-one limit-cycle with frequencyv. While
for DE157.500, there exist five fixed points, and then t
final oscillation is a 1/5 FL motion, this means the oscillati
frequency is (1/5)v. Figure 9 presents similar dynamic
evolving from a MQST withz(0)50.75, v52p, and h8
50.001 for different parameterDE1. Where,~a! and ~b! for
DE151.000, ~c! and ~d! for DE151.700. The transien
chaos and the FL oscillations appear too. WhenDE1
51.000, the eventual oscillation is a period-one limit cyc

FIG. 8. The stroboscopic Poincare sections of (z,dz/dt) in dis-
sipative regime and frequency-locked oscillations withz(0)50.5,
h850.01, and different values ofDE1. ~A! and ~B! with DE1

53.000,~C! and ~D! with DE157.500.
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CHAOTIC AND FREQUENCY-LOCKED ATOMIC . . . PHYSICAL REVIEW A 64 053604
with a nonzero time-averaged value of the fractional popu
tion imbalancez, so the atoms are localized on one of t
condensates. Amazingly, for largeDE1 ~1.700!, due to the
damping effects, the final 1/6 FL oscillation possesses a n
zero time-averaged value ofz. Comparing with the non-
damping regime~Fig. 6!, one can see that a proper dampi
can keep the MQST long lived.

IV. SUMMARY AND DISCUSSIONS

With both analytical and numerical methods, we ha
studied the chaotic and frequency-locked oscillations
tween two coupled Bose-Einstein condensates in a ti
dependent asymmetric trap potential. The trap asymm
has been chosen as Eq.~10!, which can be realized by vary
ing the laser barrier position or the detuning of the la
beam @1,4,5#. The damping of the oscillations of the frac
tional population imbalance is taken as the form2hz(t), it
commonly exists in two interacting condensates with t
different hyperfine levels in a single-well trapping potent
@11,12#.

In the perturbative regime, the population oscillatio
have been depicted with the Duffing equation, and the c
otic oscillations near the separatrix solution are detailed
this regime, the Melnikov function approach is a valid w
to predict the onset of chaos in the population oscillatio
that are close to the separatrix. Using this method, Abdull
and Kraenkel analyzed the population oscillations of t
coupled BEC’s with time-dependent coupling@11# and oscil-
lating atomic scattering length@12#, and gave out the criteria
for the onset of chaos. In this article, based on our succes

FIG. 9. The stroboscopic Poincare sections of (z,dz/dt) in dis-
sipative regime and frequency-locked oscillations withz(0)
50.75, v52p,h850.001, and different values ofDE1. ~A! and
~B! with DE151.000,~C! and ~D! with DE151.700.
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analysis of perturbated pendulum@13# and superconducting
Josephson junction@14#, we have discussed the stability o
the population oscillations near the separatrix by using
direct perturbation technique. A formally general solution
the perturbated system gave the correction to the separ
solution. Theoretical analysis revealed that the sufficie
necessary conditions for bound oscillations contain Me
kov criterion for chaos. This indicates that the bounded
cillations are embedded in a chaotic attractor. T
boundedness conditions imply the sensitive dependenc
the system on initial conditions. The regions of chaotic a
regular oscillations can be exchanged by varying the da
ing strength.

However, when the oscillations are not close to the se
ratrix solution, and the system parameters are not in per
bative regime, the numerical method is unavoidable. T
chaotic population and frequency-locked oscillations
simulated by straightforward numerical integration of t
motion equations. In the nondissipative regime, regular
cillations gradually tend to become chaotic ones with
increased values ofDE1. In the case of completely chaoti
oscillations, the long-lived localizations or MQST’s are com
pletely destroyed, and the short-term localization or MQ
can be exchanged from one of the BEC’s to the other thro
the route of the Rabi oscillation. In the corresponding Po
care section, the single regular island is separated into m
small islands, and all islands are finally submerged into
chaotic sea. In the dissipative regime, due to the damp
effects, the volume of the phase space is reduced by t
evolution. Then the stationary chaos disappears, and t
sient chaos is a common phenomenon before becoming r
lar, stable frequency-locked oscillations. Surprisingly,
proper damping strength can keep the localization or MQ
long lived.

Experimentally, the long-term average lifetime of th
transient chaotic oscillation requires long-term measu
ments, too. So the prediction of the relation between
average lifetime of the transient and the physical parame
(h, DE0 , DE1, andL) may be a practical problem. And i
one wants to observe the long-lived localization or MQS
understanding attraction basins of the eventual frequen
locked oscillations in parameter space will give some use
indication for how to choose the physical parameters. Th
results will be reported elsewhere.
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