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We have investigated the chaotic and frequency-locked population oscillations between two coupled Bose-
Einstein condensates with time-dependent asymmetric potential and damping. Under the deterministic pertur-
bation, there exist stable oscillations close to the separatrix solution, which are Melnikov chaotic. Numerical
results reveal that, in the nondissipative regime, regular oscillations gradually tend to chaotic with the increase
of the trap asymmetry, the long-term localization disappears, and short-term localization can be changed from
one of the Bose-Einstein condensates to the other through the route of Rabi oscillation. But in the dissipative
regime, stationary chaos disappears and transient chaos is a common phenomenon before the regular stable
frequency-locked oscillations, and a proper damping can keep the localization long lived.
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[. INTRODUCTION atomic scattering lengtfil2]. Experimentally, the laser bar-
rier position and the intensity and detuning of the laser beam
The macroscopic quantum property of weakly interactingin the trap can be modified, so the trap asymmetry and the
Bose-Einstein condensatéBEC) has stimulated much inter- amplitude of the tunneling between the coupled BEC's can
est for investigation of coupled BEC's. The Josephson effectpe time dependeritl,4,5]; and the damping cannot be ne-
both interference and tunneling dynamics, of two-state sysglected[11]. Taking account of these effects, what is the
tems is one of the hotspofé—10]. Leggett classified it into  roUte to chaos about? And when chaos apears, is the local-
two different types, external and internal Josephson effectdzation (i.e., the MQST maintained or destroyed? These are
The former has two spatially separated single-particle stated!ll 0pen problems, which will be discussed in this paper.
in a double-well trap potential, and the latter has two hyper- B€l0W, we shall analyze the frequency-locked and chaotic

fine internal states in a single-well trap potential. The oscillations of the fractional atomic population imbalance be-

strong squeezing of the atomic number difference and a rdween wo Josephson-coupled states of a wo-state single-

) 2 . particle BEC in a time-dependent asymmetric trapping po-
gime of squeezing in the relative phase were revegdet). tential with damping. The outline of this paper is as follows.

. ; : . . X Y™ the next section, the chaotic atomic population oscillations
pling for a drlven two-state smgle—parhclg BEC in a single- ;oq0 15 the separatrix solution with small trap asymmetry
well trap potential[9]. Smerziet al. studied the coherent .o analyzed by using our direct perturbation metfit@i-
atomic tunneling and oscillations between two zero-15) The chaotic and frequency-locked population oscilla-
temperature BEC's confined in a double-well magnetic tragjons are numerically simulated in Sec. II1. In the last section,
[4-6.,8. The macroscopic quantum self-trappifdQST),  the brief summary and discussion are presented.

namely, a self-maintained population imbalance with non-

zero average value of the fractional population imbalance, || cHAOTIC ATOMIC POPULATION OSCILLATIONS

and the Tr-phase oscillations in which the time-averaged CLOSE TO THE SEPARATRIX SOLUTION

value of the phase difference is equal towere detailed WITH SMALL TRAP ASYMMETRY

[4,5]. They claimed that the damping decays all different

oscillations to the zero-phase mof. In addition, macro- Within the mean-field approximation of the two-mode
scopic quantum fluctuations have also been discussed by usross-Pitaevskii equation, ignoring the damping and finite-
ing second-quantization approach&s temperature effects, two Josephson-coupled states of a two-

When the trapping potential is time dependent and thétate _single-particle BEC are described by the nonlinear
damping and finite-temperature effects cannot be neglecte@ﬁuatlons[z—lo]
chaos emerges. Abdullaev and Kraenkel treat the nonlinear

ic oscillati ional imbal- L, 9

resonances and chaotic oscnlatl’or?s of the fractional imbal i — =[Eq+ Uq| 1|29 — Koo, 1)
ance between two coupled BEC's in a double-well trap with ot

a time-dependent tunneling amplitude for different dampings

[11]. They also considered the chaotic atomic population Oy 2

resonances and the possibility of stabilization of the 'ﬁﬁ_[EZ’LUZWﬂ 12— K. @

unstable-mode regime in coupled BEC's with oscillating
Here,E; andE, are zero-point energies for each condensate;
U, andU, are proportional to the mean-field energies; &nd
*Email address: Chlee@wipm.whcnc.ac.cn describes the tunneling dynamics between two condensates.
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The wave functionsy;(i=1,2) are in the form of; d?z
= N;(t) exdi6(t)], where N;(t)=||?> and 6;(t) are the Veff:_f@dz

numbers of condensed atoms and phases of states. The total

number of atomsNt=N;(t)+N,(t) is conserved. For a
time-independent parametkr defining the fractional popu-
lation imbalancez(t) =[Ny (t) —N,(t)]/Nt and the relative
phase ¢(t) = 6,(t) — 6,(t), and scaling the time in R/%,
then they obey the following differential equations

2—f=f(z,¢)=—\/1—zzsinq§, ®)
do 3
H—g(z,¢)—AE+Az+ r— COS¢. (4)

The parameters trap asymmethE and atomic scattering

length A determine the dynamic regimes of the BEC atomic

tunneling and they can be expressed a€=(E;
_Ez)/(ZK)+(U1_U2)NT/(4K) a.nd A:(Ul
+U,)N1/(4K). The above equations indicate ttmais the

conjugate momentum for the generalized angular coordina

¢, and the corresponding oscillation is the same as a no
rigid pendulum with Hamiltonian

2

A7 AE
2 z

J1—27%cose.

H ©)

For a time-independent trapping potential, the quasienergy o
the above system is conservative. The second-order deriv%

tive of z can be derived from Eq$3)—(5) as

d’z_ of(z,¢) dz of(z,¢) d¢b
a2 oz dt a4 dt

AZ
=(AH-1)z— 7z3+ h(t),

3
h(t)=AEH—§AEA22—AE22. (6)

1
1—AH+—A222)

1
_ T2
_22( 2

1 1
+ EAEAz3+§AE222—AEHz). (7)

If AE=0, the effective potential changes from a double well
to a parabolic when increasing the value of(AH) from
negative to positive. The effective particle moves between
the classical turning points where its kinetic energy is zero.
Figure 1 shows the changing of shape of the effective poten-
tial, (A) for different values oH with a fixed value ofA, and
(B) for different values ofA with a fixed value ofH.

The motion in the parabolic potential is a Rabi oscillation
with a zero time-average value nf For fixed parameterd
and H, the oscillations with small effective energiéh.¢¢
=1(dz/dt)?+ V¢ are sinusoidal, and increasing the effec-

tg‘ve energies will add higher harmonics to the sinusoidal os-
n(:_iIIations. In the case of double-well potential, the motion is

very different from the case of the parabolic potential. When
Hq¢=>0, the motion is a nonlinear Rabi oscillation with a
zero time-average value af which corresponds to the peri-
odic flux of atoms from one BEC to the other. Whel;
<0, the particle is confined in one of the two wells, this
eans the localization of atomic population in one of the two
ondensate states, and this localizing phenomenon has been
amed as macroscopic quantum self-trappitMQST).
WhenH;=0, it corresponds to the threshold motion sepa-
rating the above two regimes, the separatrix solution for the
right-hand side well is

z(t)=2\(AH—1)/A%sech¢, &é=Cy+tyAH—1.

()

Here, constan€,= ArsecHzy(0)/[2(AH—1)/A?]}.

The dynamics of the fractional population imbalance near
the separatrix solution sensitively depends on the initial con-
ditions and system parameters such that it becomes chaotic

Obviously, the above equation is a perturbed Duffing equawith a stochastic layer. The Melnikov function method is

tion. Regardingz and dz/dt as the coordinate and momen-

useful to find the regions of chaotic oscillatidil,12.

tum of an effective classical particle, respectively, its effec-Based upon our understanding of the chaotic dynamics of the

tive potential reads as

perturbated pendulum and rf-driven superconducting Joseph-
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son junction[13,14], we will use our direct perturbation ap- dz, 2(AH-1)
proaches to analyze the stability of the boson Josephson ?1:—=— > seché tanhé. (14
junction in the following. dt JAZ?
Now we take into account the damping effects. For two
coupled BEC's in a double-well potential with a noncoherent 20— ;0 f (2%)~2dt
dissipative current of normal-state atoms, the damping term 12751 ) AL

of Eq. (3) is — »d¢/dt; and for two interacting condensates
with different hyperfine levels in a single-well potential, the

seclfé(cosh ¥ —9 coshé

damping has the form- 7z(t) (i.e., the damping term in the - 16(AH—1)%?
right of Eq.(6) is — »dz/dt) [9,11,13. In this paper, we only .
consider the latter case. When the trap asymmetry and damp- +12¢ sinh¢). (15

ing amplitude is very small, they can be treated as perturba- . i
tions to the symmetric system\E=0). Then the function > the general expressionsidii corrections are
h(t) becomes

t t
zi= ziozf 2 e dt— z?lf Z%edt. (16)
dz C1 Cz

3
h(t)=AEH—§AEA22—AE22— Urre 9)

ConstantC,; andC, are determined by the initial conditions
In addition to a time-independent trap asymmehiy,, we and the p_hyS|coaI parameteors. When t|me_toc, I_Eqs.(14)
impose a sinusoidal variation, so the asymmetg=Ag, and(1d give|zjy|—0 and|zj|— + . Solving theith order
+AE;sinwt; this can be realized by varying the laser barriereguations one by one, we can obtain functiensontaining
position or detuning of the laser bedih4,5. According to time-periodic functions with finite amplitudes. This means
our analytical approacfil3,14, if the trap asymmetry and the high-order corrections are unbounded unless the coeffi-

the damping amplitude satisfy cient functions of the growing functioz’, vanish att=o.
So the general motion is unstable oscillations, the necessary-
AE=¢g(AEy+AE;sinwt), #n=e7n’, |e|<l1, (100  sufficient conditions for bounded oscillations are expressed
as
the solution close to the separatrix solution may be expressed
t
as lim f 2% &dt=0. (17)
+oo t—xxeJCq
= izi=7 +87 +8%7 +.... . -
z 20 ea=zrenTeL, (11) The boundedness of perturbed corrections means stability of

the system under deterministic perturbation. Here, and
Here,zi are theith order corrections. Substituting the above throughout the paper, the stable chaos is defined for the de-
expression into Eq(6) and comparing the coefficient func- terministic perturbation without any random disturbance. Al-
tion of everye' for both sides of the differential equation, we though the above conditions are nonintegrable, they contain

obtainz satisfy the equations the integrable necessary conditions
dZZ A2 te 0
T2"—(AH—1)ZOJr - 2=0. (12) f_m zdt=0. (18)

5 ) The first-order integrationi & 1) is the Melnikov function of
E_(AH_l)Z_JF ﬂzzz:e_ (i=1,2,3 ) the system, which equates zero, indicating the existence of
2 o2 el ey Melnikov chaos. This implies that the stable oscillations are
(13)  chaotic, but not all chaotic oscillations are stable because of
the nonsufficient property of the conditida8). Integrating
with the above equations, one may evidence the necessary condi-
tions as a series of relations of the initial conditions and
,dzo 3 9 parameters. For fixed initial conditions, modifying the pa-
“a=-7 E“LAEH_ EAEAZO' rameters may control the instability of the chaotic oscilla-
tions. Substituting the expressionsz@{ ande; into Eq.(18)
dz and integrating it yield the first-order condition

3
' 1 2 2
€E2=77 _3AEAZ()21_—A22021—AE Zp,
dt 2
87 (AH-1)yAH-1 2AE;H

3A2 JA?
We take the zero-order solution as the separatrix solution c
zo=1z, of Eq. (8), and the basic solutions of the unperturbed % w0 C0S——%  sech—2T
high-order equation&l3) with (¢;=0) are as follows VAH-1 2JyAH-1
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2AE (AH-1)JyAH—1 w2 the damping are large enough, the oscillgting dynamics can-
+ ) + AR=1 not be obtained from the previous analytical method. In this
AVAZ N section, by numerically integrating Eq®) and(4) with the
c fourth Runge-Kutta method with variable step widths, we
w wTT i i i i I 1
% 01 COS 9 gech —o. (19) S|mulgte the atomlc_ population oscillations that has fixed
JAH-1 2JAH-1 coupling K, and time-dependent trap asymmetyE

] N =g(AEg+AE;sinwt) and damping term-&7'z(t) in the
The independence of the above-necessary condition on thgynt side of Eq.(3).
time-independent trap asymmetyE, means that the cha- | the case of the time-independent symmetric trap poten-
otic oscillations are caused by the time-dependent trap asyng (AE=0), because of the damping, both Rabi oscillation

metry. However, this does not imply that the stability is ir- ;4 MQST reach an equilibrium state with zero population

relevant to the time-independent trap asymmetry, since thﬁ‘nbalance see Figs(H and (f): increasing the trap asvm-
sufficient-necessary conditiois7) and high-order necessary metry (AE)’ to 1.0 ?e;?s to tr(1e)7departuregof the eguilibyrium

conditions(18) with i>1 are correlated witAE, and other . X
parameters. For the same parameters, the distribution of st tate from zero population imbalance, sdeand(h) of Fig.

bility curves sensitively depends on the initial conditions. To " Ignorlng the daf“p'”g ef_fects, the.osu!latl.ons are regular,
display this dependence explicitly, we have chosen a serie@ey contain two different k_lnds, Rabi oscillation and MQST,
of values of the initial constarE, to plot Fig. 2 from Eq. 5€€(@, (&), (¢), and(g) of Fig. 4. _

(19), in which the curves become denser and denser with the N the case of the time-dependent asymmetric trap poten-
growing of the valueCy; this illustrates the existence of 4
chaos. The transition between the regular oscillations and thi \/
chaotic ones is described by the curves shown in Fig. 3.
Regions above the curves correspond to Melnikov chaotic
oscillations of the fractional population imbalance and those
below correspond to the regular oscillations. There exist twog™
chaotic regions separated by a special frequency that is de ©
termined by the physical parameters, and this frequency ma» I,
cause an unstable nonlinear resonance. When the dampir
becomes stronger and stronger, the regions of chaotic oscil L
lations become smaller and smaller, and the regular regior
becomes larger and larger.

IIl. NUMERICAL SIMULATION OF CHAOTIC AND 0 0 1 2 3 4 5 6
FREQUENCY-LOCKED ATOMIC POPULATION
OSCILLATIONS ®

When the atomic population oscillations are far away FIG. 3. The regions of chaotic oscillations for different values of
from the separatrix solution, or when the trap asymmetry anthe damping parametey’, with A=4.0, AE,=0, andH=0.5.
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FIG. 5. The stroboscopic Poincare sections nfi¢/dt) in the
nondissipative regime with(0)= 0.5, =4 and different values
of AE;.

ﬂ is exhibited. For smalAE; (1.000, 1.560, and 1.565), the

S time-averaged value of the fractional population imbalance is
nonzero, and the atoms are localized on one of the conden-
06 sates. However, for large enougfE,(1.700), the chaotic
I I sea is also symmetrical to the lime=0. This indicates that,
in the completely chaotic oscillation, the time-averaged

value of the fractional population imbalance is zero, and the

FIG. 4. The time evolution of the fractional population imbal-
ancez with A=10, the left column with initial conditiong(0)
=0.5 and ¢(0)=0.0, the right column withz(0)=0.8, ¢(0)
=0.0. (A) and (E) with AE=0.0 and#’=0.0; (B) and (F) with
AE=0.0 andn'=0.5;(C) and(G) with AE=1.0 and%n’ =0.0; (D)
and (H) with AE=1.0 andn'=0.5.

long-lived MQST or localization disappears.

The completely chaotic oscillations of the fractional
population imbalance evolving from Rabi oscillation and
MQST are presented in Fig. 7. The left column corresponds
to z(0)=0.5, w=4m, and AE,;=7.500; the right column

corresponds tz(0)=0.75, o=2, and AE;=1.700. The

tial (AE;#0), the chaotic oscillation appears. For simplicity,
we chooseAEy=0, the dimensionless parametet 1, the
initial phase¢(0)=0, and the atomic scattering length
=10. Sampling a single trajectory once within every period
of the variation of the trap asymmetry, we obtain the strobo-
scopic Poincare section. In the nondissipative regimé (
=0), with the increase of the time-dependent trap asymme-:
try AE,, the sections vary from a single island to a lot of
islands, and all islands are finally submerged by the chaotic
sea. This means the periodic oscillations change into quasi
periodic, and then chaotic. Figure 5 is the Poincare section:
of (z,dz/dt), with the initial conditionsz(0)=0.5, the pa-
rametersw =41, and different values ofAE,, the corre-
sponding oscillation in its beginning is a Rabi oscillation.
When AE;=3.000, there is only a single island. Then it is
separated into six islands asE; increase to 6.000. For
larger trap asymmetrAE;=6.750, the regular islands are
surrounded by the chaotic sea. For large enough trap asyn
metry AE;=7.500, the regular islands are all submerged by
the chaotic sea, and the sea is symmetrical with zero time-
averaged value of. Evolving from a MQST, the Poincare

dz/dt

T sl
©

dz/dt

0.3

0.0

-0.34

-0.64

-0.9

1.560

1.565

dz/dt

1.700

10 05

00

z

05

10

FIG. 6. The stroboscopic Poincare sections nfig/dt) in the

sections withz(0)=0.75, w=2m, and different values of nondissipative regime wita(0)=0.75, o=27 and different val-
AE, is showed in Fig. 6, where the similar chaotic dynamicsues ofAE;.
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first row is the time evolution of, the second row is the as small circles, so that the final oscillations are frequency
power spectra of the corresponding oscillation. Clearlylocked(FL). WhenAE;=3.000, there is only a single fixed
through the route of Rabi oscillation, the short-term localiza-point in the Poincare sections, the corresponding final oscil-
tion or MQST can be changed from one of the BEC's to thelation is a period-one limit-cycle with frequenay. While
other, and the corresponding power spectra is very noisy. for AE;=7.500, there exist five fixed points, and then the

In the dissipative regime{’ #0), because of the exis- final oscillation is a 1/5 FL motion, this means the oscillating
tence of the damping effects, the volume in phase space witrequency is (1/5p. Figure 9 presents similar dynamics
decrease through time evolution. A common phenomenon ievolving from a MQST withz(0)=0.75, w=2m, and %’
these dynamical systems is that they seem to behave chaot-0.001 for different parameteXE,. Where,(a) and (b) for
cally during some transient periods, but eventually fall ontoAE,=1.000, (c) and (d) for AE;=1.700. The transient
periodic stable attractors. This is known as the transienghaos and the FL oscillations appear too. WhaE,
chaos or chaotic transient. Superlong transient chaos occues1.000, the eventual oscillation is a period-one limit cycle
commonly in dissipative dynamical systems, where oscilla-

tions that start from arbitrary initial conditions oscillate cha- 10 , 030
otically for a very long time before they set into the final ‘ P
attractors, which are usually regular and stafdl6,17. In 05 s . ws{

our two-state BEC system, we also find transient chaos ant
final attractors. We will exhibit the attracting process of the § oo
transient chaos and the fixed points of the final attractors in

dz/dt

the Poincare sections of,dz/dt). The phase trajectories of 8 i 015 /

the final attractors are also shown. ) — ®)
For a fixed value of dampmg amplitud@', there exist % 02 00 02 o4 om0 005 oohe oo 0050

many types of attractors whekE, is changed. Fixing the 10 ‘ z 10

AE,, different initial conditions will lead to different final 4 X /“\/ VU

states. Staring from a Rabi oscillation, wi#(0)=0.5, 05 ’ os{ |

=4, n'=0.01, and different values &E,, the Poincare
sections of the attracting processes and the final attractorm 001
and the phase trajectories of the final attractors are presente

0.0

dz/dt

in Fig. 8. The left column shows the Poincare sections of the ™ % 9

attracting processes; the right column shows the phase tre | ' & @ /\/ \ /”I\/(D)
jectories and Poincare sections of the final sta@sand(b) 08 03 00 03 08 06 03 00 03 08
for AE;=3.000,(c) and(d) for AE;=7.500. In the Poincare z z

sections, after the transient chaos, the sampled points gradu- FIG. 8. The stroboscopic Poincare sectionsnti¢g/dt) in dis-
ally approach the final fixed points. The phase trajectories oipative regime and frequency-locked oscillations wi(f)=0.5,
final oscillations are closed curves, and the corresponding’=0.01, and different values aAE;. (A) and (B) with AE,
Poincare sections only contain fixed points that are denotee 3.000,(C) and (D) with AE;=7.500.
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o0 038 analysis of perturbated pendulurh3] and superconducting

o2 Josephson junctiofl4], we have discussed the stability of
041 the population oscillations near the separatrix by using the

o4 : o direct perturbation technique. A formally general solution of

0.0+

dz/dt
dz/dt

the perturbated system gave the correction to the separatrix
solution. Theoretical analysis revealed that the sufficient-
necessary conditions for bound oscillations contain Melni-

-0.64

10 , , B B : _® kov criterion for chaos. This indicates that the bounded os-
o e 05 08 07 08  (jlations are embedded in a chaotic attractor. The
0.2 10 z boundedness conditions imply the sensitive dependence of

the system on initial conditions. The regions of chaotic and
regular oscillations can be exchanged by varying the damp-
ing strength.

0.54

5 -k R However, when the oscillations are not close to the sepa-
081 » s oa 05 ratrix solution, and the system parameters are not in pertur-
-0.81 g, o ' L bative regime, the numerical method is unavoidable. The
1.0, B 0 , , , i chaotic population and frequency-locked oscillations are

04 0.5 06 0.7 08 03 0.4 05 0.6 07 0.8

simulated by straightforward numerical integration of the
motion equations. In the nondissipative regime, regular os-

FIG. 9. The stroboscopic Poincare sectionsofi¢/dt) in dis-  cillations gradually tend to become chaotic ones with the
sipative regime and frequency-locked oscillations wit0)  increased values akE;. In the case of completely chaotic
=0.75, w=2m,7'=0.001, and different values afE;. (A) and  oscillations, the long-lived localizations or MQST's are com-
(B) with AE;=1.000,(C) and (D) with AE;=1.700. pletely destroyed, and the short-term localization or MQST

. . . can be exchanged from one of the BEC's to the other through
with a nonzero time-averaged value of the fractional populag,e royte of the Rabi oscillation. In the corresponding Poin-
tion imbalancez, so the atoms are localized on one of the 56 section, the single regular island is separated into many
condensates. Amazingly, for largeE, (1.700, due to the  gpgq) jsjands, and all islands are finally submerged into the
damping effects, the final 1/6 FL oscillation possesses a nofgpaotic sea. In the dissipative regime, due to the damping
zero time-averaged value af Comparing with the non-  ggects; the volume of the phase space is reduced by time
damping regiméFig. €, one can see that a proper dampingeojution. Then the stationary chaos disappears, and tran-

r4 r4

can keep the MQST long lived. sient chaos is a common phenomenon before becoming regu-
lar, stable frequency-locked oscillations. Surprisingly, a
IV. SUMMARY AND DISCUSSIONS proper damping strength can keep the localization or MQST
long lived.

With both analytical and numerical methods, we have

studied the chaotic and frequency-locked oscillations be- Ex_penm(;ntal_ly, the_”Io_ng-term _averzTge lifetime of the
tween two coupled Bose-Einstein condensates in a timefansient chaotic osci a'qon requires ong-term measure-
ents, too. So the prediction of the relation between the

dependent asymmetric trap potential. The trap asymmetr o . .
has been chosen as Ea0), which can be realized by vary- verage lifetime of the transient and the physical parameters
' AE,, AE, andA) may be a practical problem. And if

ing the laser barrier position or the detuning of the Iasel( 7 . D
beam[1,4,5. The damping of the oscillations of the frac- °©N€ wants to observe the long-lived localization or MQST,

tional population imbalance is taken as the formyz(t), it understanding attraction basins of the eventual frequency-

commonly exists in two interacting condensates with tWO!ocked oscillations in parameter space will give some useful

different hyperfine levels in a single-well trapping potential mdicatior! for how to choose the physical parameters. These
(11,12 results will be reported elsewhere.
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