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Nonperturbative and perturbative treatments of parametric heating in atom traps
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We study the quantum description of parametric heating in harmonic potentials both nonperturbatively and
perturbatively, having in mind applications to atom traps. The first approach establishes an explicit connection
between classical and quantum descriptions; it also gives analytic expressions for properties such as the width
of fractional frequency parametric resonances. The second approach gives an alternative insight into the
problem and can be directly extended to take into account nonlinear effects. This is especially important for
shallow traps.
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I. INTRODUCTION Il. NONPERTURBATIVE TREATMENT OF HARMONIC
PARAMETRIC HEATING
Cooling techniques have allowed the trapping and ma-
nipulation of atoms by optical means. Such systems are used
to perform experimental tests of fundamental principles and The effective Hamiltonian that describes a harmonic os-
have important applications, such as very precise frequen@illator with fluctuations in the trap equilibrium position is

A. Time-dependent equilibrium position

standards or studies of cold atomic collisions or collective 2
effects. Fluctuations of the electromagnetic fields used to H= p_+ “Mod[q+eq(t)]?, (1)
trap or to modify the quantum state lead to decoherence in 2m 2 a

ion traps[1] and limit the trap stability in, e.g., far-off- .
resonance optical tragEORTS [2]. As a consequence, there Whergeq(tT) measure_zs_su_ch a fluctuation. When the standard
has been in recent years an increasing interest in understarftféationa’ and annihilationa operators are introduced, so
ing the dynamics of noise-induced heating in atom traps. that
In the harmonic model of the potential, fluctuations mani-
fest themselves as either variations of the spring constant or g= 1 / h (a+a')
on the equilibrium position. First-order perturbative studies 2Mwg '
[2,3] of harmonic parametric heating yield similar results to

those classically expected: position noise is resonant at the ) hmwo( "
p=—i\/ a—a'),
2

@

vibrational frequencyw, leading to a constant heating rate,
while intensity fluctuations are resonant at twice the vibra-
tional frequency 24 leading to an exponential growth of the this Hamiltonian can be written in the form
energy. Far-off-resonance optical traps are so sensitive to
these fluctuations that parametric excitation has been used to H=fiwg(a'a+1/2) +hfq(t)(a+al) +higyt) (3
accurately measure the trap parameférs6].

There are other interesting phenomena predicted by theith
classical theory of harmonic parametric excitation such as
resonance effects at fractional frequenci@s They arise Moy mw? )
from intensity modulations of frequency /n with n being fo(t)= ﬂfq(t)' 9q(D)= ﬁfq(t)- (4)
any integer number. The=2 resonance has actually been
observed in FORT$4—6] and resonances with<10 have  The evolution operatod (t) satisfies the equation
been classically studied in ion trapg].

The purpose of this paper is to analyze the quantum de- ~ U
scription of parametric heating in harmonic potentials both 'ﬁH:HU )
nonperturbatively and perturbatively. The first treatment
shows an explicit connection with the classical problem thatyith the initial condition
is valid only for harmonic potentials. It is based on well
known algebraic techniqug8]. It explains observed features u(0)=1. (6)
of parametric heating predicted both classically and quantum
mechanically. The second approach has the advantage thaDte to the fact thafa'a,a’,a, 1} form a closed algebra, it is
can be directly extended to anharmonic potentials. This iseasonable to writf9]
especially important for shallow traps.

U= e—i}\laTe—i}\zaei)\3aTae—i)\4_ (7)
*Email address: rocio@fenix.fisica.unam.mx Using the well known relation
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2
eMBe M= B+—[A B]+57[A[ABI]]

3

it can be directly shown that the’s satisfy the equations
M= —ikghy+fq(1),

Na=ikaho+fo(D),

X3=wo,

Na=Nahoh g —ikN g +0q(t), 9

with the solutions

_ t o
Al(t):eflwotf fq(tr)elwot dt’,
0

. -~
)\z(t)=e""0tJ0fq(t’)e"“’0t dt’=\71(1),

)\B(t) = thi

t .
t):J’O[wo)\Z)\l_i)\Z(tl))\l(t,)

+gq(t")1dt’, (10

which guarantee the initial conditiqi®). We are able, there-

fore, to evaluate the time evolution of any physical quantity.
For instance, it turns out that the energy operator evolves as

Et)=hwoU ™Y (t)(aTa+1/2)U(t)

=&(0)+hwo[ir,a—iNal+AoN]. (11)

If €4(t) is a fluctuating field, we are interested in averages

over a timeT short compared with the time scale over which

the measurable physical quantities change, but large com-
pared with the correlation time of the fluctuations. Let us

consider fluctuations with zero mean value

1 (7T
<eq(t))=?fo dt’ e4(t) =0, (12)

and with a stationary correlation function

1 (T
(eq(De(t+0))= ?JO dt’ eq(t") eq(t" + o) = n4(| o).
(13
Then

A ~ Moy [t t _ o
<5(t)>:5(0)+70f0dt’jodt//<€q(t/)eq(t;/)>e|wo(t ).
(14

PHYSICAL REVIEW A 64 053408

Introducing the one-sided spectrum of the position fluctua-
tions in the trap equilibrium position,

2 ©
Sﬁw%=;J;dUCOiwahmdUD. (15

and takingt>T, it follows:
(5(t)>=5(0)+gmwésq(w0), (16)

recovering the asymptotic expression found by Sawedral.

[2]. However, we have obtained it as valid in the nonpertur-
bative regime with only the assumption that the fluctuating
fields satisfy the equatior{4¢2) and(13). Notice that Eq(14)

is also valid whenever the state of the system is a Fock state.
This possibility has been studied in RET0] for the vacuum
state where a detailed analysis of the short time behavior for
different expressions of the correlation functiop\, is per-
formed.

On the other hand, if one considers driven fluctuations
with a well specifiede (t) instead of noise fields, the exact
equation for the energy evolutioiil) can be used. For in-
stance, if

€4(t) = €gCOSWt, a7
N1 and\, are trivially calculated and the energy of, say, a
coherent stat¢a) evolves as

1
(alZ0]a)= ﬁwo(|a|2 - L hogeofialdwg—00)

+* ((0g+ wo)t) ] —ia*[{* ((wg— wo)t)
2

t
+{(0g+ 0]} + Fhiwoes

X |§((wq+ wo)t)|2+|§((wq_ wO)t)|2

co t)—co t
+2 cog wot) o i Zs(wq ) , (18
(1)0— (1)q
where we have defined
__sin(y/2)
— Y2
{(y)=e vz (19

Equation(18) shows the expected resonancesatw, and
emphasizes the relevance of the parameger for charac-
terizing the expected heating rates.

B. Time-dependent frequency
In this case the effective Hamiltonian is

2
L

om (20)

1
+5Maf1-e(t)]e?
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which takes the form

fwoe(t)

H=thw(a'a+1/2)— (a+ah)?.

(21)
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&) =hwoUT(t)(aTa+1/2)U(1)
=fw[(1+2|M,|?)(a’a+1/2)—M;M,a'?

—M*M3%a?], (29

Analogously to the former case, the closed algebra nature of
{a'a+1/2a" a% guarantees that the evolution operator canas well as a nonperturbative expression for nonzero transi-

be written in the form

U(t) :eco(aTa+ 1/2)/29c,af2/2ec+a2/2 (22)
whenever the differential equations
iCo—2C_C,=2wo[1— 1/2¢(1)],
. , - 1
i(c_ —20_c+)e°0=§woe(t),
. 1
ic e ‘o= Ewoé(t) (23
are satisfied together with the initial conditions
co(0)=c_(0)=c,(0)=0. (29

A connection between the functiofsy,c, ,c_} and a pair

of solutionsh(t) and h,(t) of the classical equations of

motion
hi(t) + wp(1— e(t)) (1) =0 (25)
with the initial conditions
hi(0)=1, hy(0)=0,
h2(0)=0, hy(0)=—w, (26)
is explicitly given by[11]
Co=—2In(My),
c,=M3/My,
c_=—M;My, 27
where
Mli[(hl—ihz)— i<hz+ihl>},
2 o
M2=3[—<h1—ih2>— i<h2+ihl>}
2 wo
(28)

The M; and M, functions satisfy the conditiofM,|?
—|M,|?=1. Equations(22), and (25)—(28) show that the

tion probabilities between Fock statds and|s):

[M[<s
2k73|M1|k+s+1

[s/2]

> (=1)™{stk!
m=o M (s—2m)![ m+(k—s)/2]!

M 2m
[l
2

Kkluls)[=

2
: (30)

wheres andk have the same parity and for definiteness we
have takerk=s.
Let us focus on the particular case

€(t)= egcog wt), (31

corresponding to controlled parametric excitation. Then, the
classical equations of motion can be written in the Mathieu
canonical form

2

d<hy
——+[a—2qgcog22)]h,=0, (32
d?z

with z=wt/2, a=(2wy/w)?, and q=eyal2. It is well
known[12,13 that depending on the values efandq, the
solutionsh, are stable or unstable. In the context of paramet-
ric heating the transition curves separating regions of stabil-
ity and instability define the width of the corresponding reso-
nance. Forg<a the resonances are locatedaat n?, i.e.,
w=2wq/n. Their width can be found as a power seriegjn
using, e.g., Egs. 20.2.25 of R¢f.2]. Thus, the resonance at
w=2wq has a widthA,, ~ eywo/2 while the resonance

= wo has a widthA , ~ €5 /6.
Using the normal form of the unstable solutions of the
classical equations of motion, it is found that

Mi= (e 2go(t) + ul e v gy (—t), (33

with ¢y a periodic functionegg(t) = ¢o(t+27/w), and y
=7, +i7y; a complex number known as the characteristic ex-
ponent. In generaly can be obtained using numerical meth-
ods or, for small values af, by means of approximate ex-

theory of classical response of harmonic oscillators to nois@ressions such as 20.3.15 of Réf2]. The complex numbers

can be useful in the study of their quantum dynamics.

w; are determined by the initial conditiori®6) and the

Using Eq.(8), an expression for the time evolution of the general form of\; given by Eq.(28). Thus, for|y,w|t>1,

energy is found

the energy(29) behaves as
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FIG. 2. Nonperturbative evolution of the mean enefgft)) of
a time-dependent harmonic oscillator of natural frequengyin
units of (£(0)). The system is initially in a thermal state with a
temperatur&gT=57% wq and the intensity time dependence is given
FIG. 1. Nonperturbative time evolution of the probabileyn) DY €(t)=€ocos@t), €,=0.05, @=w,, so that the first fractional
of finding an atom in then Fock state due to parametric heating 'esonance condition is satisfied. Superposed to the exponential
with a time dependence(t) = e,cos(t), when e,=0.05 and the ~ 9rowth, the oscillatory behavior of the functigi(t) that appears in
first fractional resonance conditian=wy, is satisfied. The initial ~the Floquet solution to Mathieu equation is clearly manifested.
state of the system is a thermal one, E8f), with a temperature

kgT=5%wg. superposed to the oscillatory behavior of functigg(t), in
Eq.(33), is observed. These graphs have been obtained using
g(t)_)hwo[(l+2|Iu(2+)¢0(t)|2e\-y,\wt)(a1'a+ 1/2) a numerical solution of Mathieu equation.
) ) g2 @l vl ot g 12
My pi dp(t)e a Ill. PERTURBATIVE APPROACH TO PARAMETRIC
()% (H)* px2 ot a2 HEATING
—uy Tpy gp(t)errrat] (34) _ _ _
The nonperturbative approach to parametric heating made
in the resonance region. in the preceding section was useful to understand the con-
If the system is initially in thermal equilibrium with its nection between classical and quantum descriptions of heat-
environment ing, due to either controlled or stochastic variations of the

parameters defining a harmonic oscillator. Unfortunately, this
- approach is valid only for quadratic potentials while anhar-
00— hwg IkgT)(N+1/2 . L ) :
PT(t_O)_AnZO e(teokeD( 1 n)(n, monic effects may be crucial in experiments with shallow
confining potential$8,14]. The purpose of this section is to
study some high order perturbative effects due to variations

o

-1 2kBT ﬁwo . i :
A =ﬁ—sec KT (35 on the strength of a confining potential. The resulting equa-
“o B tions will be applied to a harmonic oscillator but with a

raightforward extension to anharmonic potentials. Besides,

is will allow us to understand fractional frequency reso-
nances from an alternative point of view.

T<g(t)>T:(1+2|M2|2)T<g(0)>T- (36) The system is described by a Hamiltonian

a direct calculation shows that the mean value of the energgﬁ
evolves as

. . . . 2
If resonance conditions are achieved, the energy will exhibit H= p—+V(x)(1+ e,(1), e(t)<1. 38)

an exponential growth with a rate determined both by the 2m
characteristic exponent and the resonance frequency:
Following standard time-dependent perturbation theory we

HE))yr—2el1 1§ o (1) [ E(0)) (37)  define the unperturbed Hamiltonian
In order to illustrate these ideas, Fig. 1 shows the time p2
evolution of the probabilityP(n) of finding an atom in the H0=ﬁ+V(x) (39

nth Fock state due to parametric heating with an intensity
€(t) = egcoswt, when e;=0.05 and the first fractional reso-
nance conditionw= wq is satisfied. The initial state of the
system is a thermal one, E(B5), with a temperaturdgT
=b5fiwg. In Fig. 2 the corresponding evolution for the mean ~
energy(&(t)) is shown; the same values for the parameters % d¥(t)) e (O[T () 40)
kgT, w, and e, are used. Essentially an exponential growth dt v ' '

and work in the interaction picture in which the equation of
motion of the state is
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The transformed stat#ﬂf(t)) in the interaction picture is
obtained from the Schrdinger picture state vector by a time-
dependent unitary operator

[T (1)) =€t (1)), (41
while the interaction operatdf(x) is given by
'\"/(X,t):eiHOt/ﬁv(X)efiHOt/fi. (42)

PHYSICAL REVIEW A 64 053408

(KDOW]S) = Syt 57 ot Vied £( 0 @)D

2

€0
+{(wys— w))]— (ﬁ

In this picture the evolution operator satisfies the integral

equation

U(t)=1—'—ftev(t)T/(x,t)U(t')dt'. (43

hlo

Let us consider the transition probability amplitude These expressions have physical meaning only if the changes

X; anvns[l( o )[g((wks+2w)t)
+{(wydt) — g((wkn"_ w)t)— g((wkn_ w)t)]
1
(wps— )

X[ {((wks—2w)t)+ {(wyst) = {((wynt @)1)

— (0= @)B)]|. (49

(k|U(t)[s) between given eigenstates of the unperturbedy the wave function induced by (t) are small in the inter-

Hamiltonian
H0|n>: En|n>- (44)
An iterative treatment of Eq43) gives
~ i t S
(KD (1)) = dks—5 Vis f dt’ e, (t')e s
0
1 t ot
— 2 vknvnsfodt’ev(t’)e'wkn
X f Cdtre, (1) glond 4 (45)
0
with Wgn= (Ek n)/h and
p2
Vin=(k|V|n)=Eyin—(K| ﬁ|n> (46)

Notice that ann-order perturbation treatment of heating
induced by stochastic nois€(t) requires the knowledge of
the spectrum of the (1..,2n)-point correlation functions,
((1)), ... {ex()ex(t+71) ... €e(t+7p-1)) defined in
complete analogy with Eq$12) and(13). This results from

the direct evaluation of the average rate to make a transitio® —

from a statek) to state|s) in a timeT,

1 -
Re =7 (kUM (T)[s). (47)

If heating is induced by a controlled modulation of the

confining potential
€,(t) = eocog wt), (48)

then up to second order iy

val (0f).
For a harmonic oscillator with frequenay,, one finds
that

= 2 2kt 1) gt VKK D) 32
+V(k+1)(k+2) 6 n—2].

As a consequence, the following produdtg,V,s may be
different from zero.

(1) Vi k=2Vi=2x= 4. IN EQ. (49), the resonant terms appear
in the combinationl ((4wg*x2w)t)— {((2we* w)t) so that
this transition is highly suppressed.

(i) VinVnk- Resonances are locatedat 0,2wq. For
~ 2w, the contribution of the transition amplitude is of the
form

(50

et
2ﬁ (O]

§(0)—§((w—2wo)t)>
i(0— o)
£(0)~ {((2wo— w)t)

i(w—wp)

|Vk,k+2|2(

+|Vk,k2|2( (51)
(i) Vi k+2Vi=2k=2 andVy Vi ¢+ ». These are transitions
that may be viewed as a combination of two virtual transi-
tions k—s—s and k—k—s. The corresponding resonance
frequency according to Eq49) is the fractional frequency
|wyd/2=wy. In fact the transition probability for a

modulating frequency~ wg is

€ \4t2 sir(w— wo)t/2

ez | € 22 \W BT

|<k|U |S>| (Zﬁ) |VkS| (ka VSS) —w0)2t2/4
4w2t2

1024

(k=) K(k—1) S s+2

St (w— wg)t/2
(w— wg)?t?/4 .
(52

+(k+1)(k+2) 8y s—2]
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In all cases, the nonresonant terg(so't), with o’ #0, 5201 4 P 52
give rise to an oscillatory behavior of the transition probabil- o | T T | T Vg(r) (Wg(ry )
ity which is consistent with that found using the exact evo- 2mir, or, Tory
lution of the transition probability 0|U|2)|°. If one consid- —EV (1, .4) (56)
ers sufficiently long timesw’t>1, having in mind thes oL
function representation cannot be solved, to our knowledge, in an analytical form.
However, a variational approach in terms of a properly cho-
2 sirf(wt/2) sen bidimensional harmonic oscillator basis set
O(w)= _“mTv (53 {z,b(N Ms)(r, ,$)} can be easily implemented. That is, we can
o write
it is clear that just the resonant terms have a significant con- Nmax
tribution. In such a limit the transition probability ratBs, \IféEk’m@(rL L)~ NZ ey N ) (57)

are constant.

Now, some of the general behavior of higher order cor- ¢)
rections can be inferred. Thus, the dominant transition probW"[h the coeff|C|ent$ determined by the Ritz variational
ability of a fractional frequency resonanee=2w,/n arises method. The frequency of the harmonic basis is taken as
at n-order perturbation theory. It can be interpreted as an
n-step procedure consisting ofvirtual transitions , where _s Vo 58)
n—1 of them do not change the state and one changes it. @r= W
Thus, we expect the expressigh2) to describe approxi-
mately the transition probabilitids—k=2 when the source in order to fit the Gaussian potential at its bottom.
has a frequencw= w,. This can be verified by comparing Heating induced by a modulation of the confining poten-
with the exact results of Sec. Il. tial with a time dependence given by Eg8) can be studied

using the equations obtained in Sec. Ill. The relevant matrix

IV. PERTURBATIVE TREATMENT OF ANHARMONIC elements are

EFFECTS: A USEFUL EXAMPLE .
Vkm¢;nm(’j): -<km¢|vg|nm:ﬁ>
In the case of a one-dimensior{&D) optical lattice along

the z axis, the Stark-shift potential is given by Vo L

= m¢m¢ 2 2 2 CkLCny

L=0 J=
]2 w(2)2
V(r, ,z)=Uge 2@ cod(kz) (54) I ((J+L)/2+1)

— | — |
with w(z) the beam radius arkdits wave number. Atoms are (I=[my/2)H (L~ |my|)/2)
trapped at the antinodes of the standing wave where the po- BLO+L2=[my| ( J—|myl  L—|myl

2 7 2

tential is usually approximated by a harmonic oscillator po-
tential V(r, ,2)= mw re 212+ mw,Zz?/2. This kind of approxi-
mation fails for descrlbmg some features of the atoms Il g
dynamics for shallow traps. Nevertheless, experimental con- -, ) (59)
ditions usually reveal an approximate separability of the 2 B?

transverse and longitudinal motion. In those circumstances
the potentials with J and L of the same parity8=(2%)/(mw,w?) and

F(a,B,v,x) the confluent hypergeometric functi¢hb]. The
V.(2)=Aco(kz), long time, o, t>1, evolution of the probability of finding a
(2) cos(k2) single atom in the statgn,m,), P(n,my) is determined by
the transition rateka¢ Eq. (47), through the expres-

(1+ B)[(J+L)/2]+l

—2r2 jw? Mg
Vg(r)=—Vee <1, V>0 (59  sion
result quite useful for modeling the confining interaction. : _ .
The one-dimensional stationary Sctirmger equation cor- P(n,my)=2, Rimg—nm, [ P(K;mg) =P(n,my)], (60

responding to the sinusoidal potential can be solved exactly
in terms of Mathieu functions. A perturbative approach tosubject to the condition
parametric heating must take into account the band structure
of the energy spectra for describing the excitation of atoms 2 P(n,m,)=1 61)
occupying the highest bound levels. A detailed treatment of mmg e '
this problem can be found in Rgf14].
The stationary Schainger equation for the Gaussian  In Fig. 3 we illustrate the kind of results that can be ob-
transverse potentiafy(r ) tained from this analysis. There we show the fractioof
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F[&] trap. In such experiments, the fractional frequency reso-
nances are usually observed and it is clear, within our for-

: malism, how to perform their quantum description. In par-
o ticular, using well known results of the theory of Mathieu
) functions, it was shown how to evaluate the fractional reso-
nances width and how to obtain explicit expressions for the
0.8 exponential growth of the energy.
0.7 The possibility of using the nonperturbative analysis to
: describe noise heating effects is a subject that deserves more
analysis. This idea has recently been exploitéd] in the
0.6 case of fluctuations in the trap center. In the case of intensity
fluctuations, the problem is more complicated since a rigor-
0.5 ® ous description would require us to study the correlation
(a3

1 2 3 4 functions of the classical solutiod&,h,} and their deriva-
FIG. 3. FractionF of trapped atoms as a function of the fre- tives {hy,h} as they appear in the expressions for the time

quencyw used to induce parametric heating in a shallow Gaussiaﬁavomtion of a gﬁven physical quant.ity. For instance, to study
the time evolution of the energy, it would be necessary to

trap. The trap paramete¥g= 15 w, andWZ:ﬁllsmwr were cho- . . . 2
sen to yield a low number of bound states. A broadering of theevaluate the classical correlation functight,|* andM ;M.

spectral lines of 0/lw, has been assumed. The modulation ampli_These correlation functions would depend on the noise cor-

tude isep=0.01V, and the time of application of this perturbation relations.

is 7=10°/w, . The initial state of the system is a thermal one with AN alternative would consist of using solutiofts; ,h,} of
keT=10h o, . the classical equations in order to describe in an effective

way the coupling between the harmonic oscillator and the
fluctuating fields. The usefulness of such an approach would

duce parametric heating in a shallow Gaussian trap. The tra'lbe limited by its ability to reproduce experimental effects.
or instance, classical harmonic oscillators with an intensity

— s
parameters/p=15w, and w”=7/15mw, were chosen 10 | ayation ¢(t)= e,cosw’t and subject to a damping force

yield a low number of bound states. As expected, the discrete

part of the spectra is not equidistant: the energy difference 7Xt|eatg to frac“?nal tl;]requherllgythref(()jnanceds onl)gdi;]s
between the lowestm, levels ranges from~7%w, to greater than a certain thresho at dependsy am e

~ % w,/2. We have assumed a broadening of the spectral Iirwgrder of the resonance. Such thresholds have been observed
2.

of 0.4 w,. In actual experiments line broadening could arise’” :lhet)clas)flca[[ cgllfhct[[ve m;ar:]lﬁnrof ﬁo?f :1: Fr:aul tre[ﬁ?; IEn th

from the coupling of axial and radial modes, beam instabili-ca" P€ €expecte at a similar pnenomena 0occurs N

ties, as well as collisions with residual gas or the atomquantum regime of motion. The experlmenta_l study of_these

sarr;ple We have taken a modulation amplituge 0.01V thresholds could be used to evaluate effective damping ef-
. . 0 R

and the time of application of this perturbation is fects In atom traps. . . N

— 10/, . The initial state of the system is a thermal one In this paper the perturbative analysis of heating induced

with kgT=10% w, . We notice that the response of the systemby variations of the Intensity of a potenugl was stuo_lled n
: . . ", detail for a harmonic oscillator. This analysis gave a different
to parametric heating as a function of frequency exhibits a

rich structure with the deepest resonance atl.8v. as well Insight into the problem. Fractional frequencies of order

X . . gppear innth order perturbation theory. From the quantum
as subharmonic and superharmonic resonances. Experlmet cory point of view, they are a direct consequencéohe
tally, the subharmonic resonanee~ w, has been observed y P » ey q

é:ct that the harmonic potential has diagonal matrix elements

trapped atoms as a function of the frequenrgcysed to in-

[4] while report; on the observatu_an of supgrharmomc radia K[V|K) different from zeroii) the equidistant spectrum of
resonances typical of anharmonic potentials could not b . .
e harmonic oscillator.

found. The extension of the perturbative analysis to other confin-
ing potentials is straightforward. In fact, this approach has
V. DISCUSSION AND OUTLOOK already been implemented for FORTs with shallow sinu-
. ) soidal potential§14]. The example of Gaussian potentials
In this work we have performed a perturbative and a nonhas heen explicitly studied. A complete treatment of the
perturbative analysis of quantum parametric oscillators. Th&tark-shift interaction, Eq(54), implies understanding the
first approach is based on standard algebraic techniques aggupling between radial and longitudinal modes. This can be

gives a direct connection between classical and quantum repne using the results mentioned above but requires a nu-

€(t) = egcoswt, the analytic solutions were used to evaluate
time-dependent observables such as the energy growth due to
parametric heating. This is especially important for far-off-
resonance trap§~ORT9 when the harmonic oscillator ap-
proximation is valid. In that case, parametric heating is used We thank J. Recamier, S. Hacyan, P. Nicola, and G.
as a technique to measure the characteristic frequency of tiodugno for stimulating discussions.
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