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Nonperturbative and perturbative treatments of parametric heating in atom traps

R. Jáuregui*
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20-364, 01000 Me´xico, México
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We study the quantum description of parametric heating in harmonic potentials both nonperturbatively and
perturbatively, having in mind applications to atom traps. The first approach establishes an explicit connection
between classical and quantum descriptions; it also gives analytic expressions for properties such as the width
of fractional frequency parametric resonances. The second approach gives an alternative insight into the
problem and can be directly extended to take into account nonlinear effects. This is especially important for
shallow traps.
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I. INTRODUCTION

Cooling techniques have allowed the trapping and m
nipulation of atoms by optical means. Such systems are u
to perform experimental tests of fundamental principles a
have important applications, such as very precise freque
standards or studies of cold atomic collisions or collect
effects. Fluctuations of the electromagnetic fields used
trap or to modify the quantum state lead to decoherenc
ion traps @1# and limit the trap stability in, e.g., far-off
resonance optical traps~FORTs! @2#. As a consequence, ther
has been in recent years an increasing interest in unders
ing the dynamics of noise-induced heating in atom traps

In the harmonic model of the potential, fluctuations ma
fest themselves as either variations of the spring constan
on the equilibrium position. First-order perturbative stud
@2,3# of harmonic parametric heating yield similar results
those classically expected: position noise is resonant at
vibrational frequencyv0 leading to a constant heating rat
while intensity fluctuations are resonant at twice the vib
tional frequency 2v0 leading to an exponential growth of th
energy. Far-off-resonance optical traps are so sensitiv
these fluctuations that parametric excitation has been use
accurately measure the trap parameters@4–6#.

There are other interesting phenomena predicted by
classical theory of harmonic parametric excitation such
resonance effects at fractional frequencies@7#. They arise
from intensity modulations of frequency 2v0 /n with n being
any integer number. Then52 resonance has actually bee
observed in FORTs@4–6# and resonances withn<10 have
been classically studied in ion traps@8#.

The purpose of this paper is to analyze the quantum
scription of parametric heating in harmonic potentials b
nonperturbatively and perturbatively. The first treatme
shows an explicit connection with the classical problem t
is valid only for harmonic potentials. It is based on we
known algebraic techniques@9#. It explains observed feature
of parametric heating predicted both classically and quan
mechanically. The second approach has the advantage t
can be directly extended to anharmonic potentials. This
especially important for shallow traps.
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II. NONPERTURBATIVE TREATMENT OF HARMONIC
PARAMETRIC HEATING

A. Time-dependent equilibrium position

The effective Hamiltonian that describes a harmonic
cillator with fluctuations in the trap equilibrium position is

H5
p2

2m
1

1

2
Mv0

2@q1eq~ t !#2, ~1!

whereeq(t) measures such a fluctuation. When the stand
creationa† and annihilationa operators are introduced, s
that

q5A \

2mv0
~a1a†!,

p52 iA\mv0

2
~a2a†!, ~2!

this Hamiltonian can be written in the form

H5\v0~a†a11/2!1\ f q~ t !~a1a†!1\gq~ t ! ~3!

with

f q~ t !5Amv0
3

2\
eq~ t !, gq~ t !5

mv0
2

2\
eq

2~ t !. ~4!

The evolution operatorU(t) satisfies the equation

i\
]U

]t
5HU ~5!

with the initial condition

U~0!51. ~6!

Due to the fact that$a†a,a†,a,1% form a closed algebra, it is
reasonable to write@9#

U5e2 il1a†
e2 il2aeil3a†ae2 il4. ~7!

Using the well known relation
©2001 The American Physical Society08-1
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elABe2lA5B1
l

1!
@A,B#1

l2

2!
†A,@A,B#‡

1
l3

3!
@A,†A,@A,B#‡#1••• ~8!

it can be directly shown that thel i ’s satisfy the equations

l̇152 i l̇3l11 f q~ t !,

l̇25 i l̇3l21 f q~ t !,

l̇35v0 ,

l̇45l̇3l2l12 i l̇2l11gq~ t !, ~9!

with the solutions

l1~ t !5e2 iv0tE
0

t

f q~ t8!eiv0t8dt8,

l2~ t !5eiv0tE
0

t

f q~ t8!e2 iv0t8dt85l1* ~ t !,

l3~ t !5v0t,

l4~ t !5E
0

t

@v0l2l12 i l̇2~ t8!l1~ t8!

1gq~ t8!#dt8, ~10!

which guarantee the initial condition~6!. We are able, there
fore, to evaluate the time evolution of any physical quant
For instance, it turns out that the energy operator evolve

Ê~ t !5\v0U21~ t !~a†a11/2!U~ t !

5 Ê~0!1\v0@ il2a2 il1a†1l2l1#. ~11!

If eq(t) is a fluctuating field, we are interested in averag
over a timeT short compared with the time scale over whi
the measurable physical quantities change, but large c
pared with the correlation time of the fluctuations. Let
consider fluctuations with zero mean value

^eq~ t !&5
1

TE0

T

dt8eq~ t8!50, ~12!

and with a stationary correlation function

^eq~ t !e~ t1s!&5
1

TE0

T

dt8eq~ t8!eq~ t81s!5hq~ usu!.

~13!

Then

^Ê~ t !&5 Ê~0!1
mv0

4

2 E
0

t

dt8E
0

t

dt9^eq~ t8!eq~ t9!&eiv0(t82t9).

~14!
05340
.
as

s

m-

Introducing the one-sided spectrum of the position fluct
tions in the trap equilibrium position,

Sq~v!5
2

pE0

`

ds cos~vs!hq~ usu!, ~15!

and takingt@T, it follows:

^E~ t !&5E~0!1
p

2
mv0

4Sq~v0!, ~16!

recovering the asymptotic expression found by Savardet al.
@2#. However, we have obtained it as valid in the nonpert
bative regime with only the assumption that the fluctuat
fields satisfy the equations~12! and~13!. Notice that Eq.~14!
is also valid whenever the state of the system is a Fock s
This possibility has been studied in Ref.@10# for the vacuum
state where a detailed analysis of the short time behavior
different expressions of the correlation functionl1l2 is per-
formed.

On the other hand, if one considers driven fluctuatio
with a well specifiedeq(t) instead of noise fields, the exac
equation for the energy evolution~11! can be used. For in-
stance, if

eq~ t !5e0cosvqt, ~17!

l1 and l2 are trivially calculated and the energy of, say,
coherent stateua& evolves as

^auÊ~ t !ua&5\v0S uau21
1

2D1
t

2
\v0e0$ ia@z„~vq2v0!t…

1z* „~vq1v0!t…#2 ia* @z* „~vq2v0!t…

1z„~vq1v0!t…#%1
t2

4
\v0e0

2

3F uz„~vq1v0!t…u21uz„~vq2v0!t…u2

12 cos~v0t !
cos~v0t !2cos~vqt !

v0
22vq

2 G , ~18!

where we have defined

z~y!5eiy /2
sin~y/2!

y/2
. ~19!

Equation~18! shows the expected resonances atv5vq and
emphasizes the relevance of the parametere0a for charac-
terizing the expected heating rates.

B. Time-dependent frequency

In this case the effective Hamiltonian is

H5
p2

2m
1

1

2
Mv0

2@12e~ t !#q2, ~20!
8-2
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which takes the form

H5\vo~a†a11/2!2
\v0e~ t !

4
~a1a†!2. ~21!

Analogously to the former case, the closed algebra natur
$a†a11/2,a†2,a2% guarantees that the evolution operator c
be written in the form

U~ t !5ec0(a†a11/2)/2ec2a†2/2ec1a2/2, ~22!

whenever the differential equations

i ċ022c2ċ152v0@121/2e~ t !#,

i ~ ċ222c2
2 ċ1!ec05

1

2
v0e~ t !,

i ċ1e2c05
1

2
v0e~ t ! ~23!

are satisfied together with the initial conditions

c0~0!5c2~0!5c1~0!50. ~24!

A connection between the functions$c0 ,c1 ,c2% and a pair
of solutionsh1(t) and h2(t) of the classical equations o
motion

ḧk~ t !1v0
2~12e~ t !!hk~ t !50 ~25!

with the initial conditions

h1~0!51, ḣ1~0!50,

h2~0!50, ḣ2~0!52v0 ~26!

is explicitly given by@11#

c0522 ln~M1!,

c15M2* /M1 ,

c252M2M1 , ~27!

where

M15
1

2 F ~h12 ih2!2
1

v0
~ ḣ21 i ḣ1!G ,

M25
1

2 F2~h12 ih2!2
1

v0
~ ḣ21 i ḣ1!G .

~28!

The M1 and M2 functions satisfy the conditionuM1u2

2uM2u251. Equations.~22!, and ~25!–~28! show that the
theory of classical response of harmonic oscillators to no
can be useful in the study of their quantum dynamics.

Using Eq.~8!, an expression for the time evolution of th
energy is found
05340
of
n

e

Ê~ t !5\v0U†~ t !~a†a11/2!U~ t !

5\v0@~112uM2u2!~a†a11/2!2M1M2a†2

2M1* M2* a2#, ~29!

as well as a nonperturbative expression for nonzero tra
tion probabilities between Fock statesuk& and us&:

z^kuUus& z25
uM2uk2s

2k2suM1uk1s11

3F (
m50

[s/2]
~21!mAs!k!

m! ~s22m!! @m1~k2s!/2#!

3S uM2u
2 D 2mG2

, ~30!

wheres andk have the same parity and for definiteness
have takenk>s.

Let us focus on the particular case

e~ t !5e0cos~vt !, ~31!

corresponding to controlled parametric excitation. Then,
classical equations of motion can be written in the Math
canonical form

d2hk

d2z
1@a22qcos~2z!#hk50, ~32!

with z5vt/2, a5(2v0 /v)2, and q5e0a/2. It is well
known @12,13# that depending on the values ofa andq, the
solutionshk are stable or unstable. In the context of param
ric heating the transition curves separating regions of sta
ity and instability define the width of the corresponding res
nance. Forq!a the resonances are located ata;n2, i.e.,
v52v0 /n. Their width can be found as a power series ine0
using, e.g., Eqs. 20.2.25 of Ref.@12#. Thus, the resonance a
v52v0 has a widthD2v0

;e0v0/2 while the resonancev

5v0 has a widthDv0
;e0

2v0/6.
Using the normal form of the unstable solutions of t

classical equations of motion, it is found that

Mi5m i
(1)egvt/2f0~ t !1m i

(2)e2gvt/2f0~2t !, ~33!

with f0 a periodic functionf0(t)5f0(t12p/v), and g
5g r1 ig i a complex number known as the characteristic
ponent. In general,g can be obtained using numerical met
ods or, for small values ofq, by means of approximate ex
pressions such as 20.3.15 of Ref.@12#. The complex numbers
m i

6 are determined by the initial conditions~26! and the
general form ofMi given by Eq.~28!. Thus, forug rvut@1,
the energy~29! behaves as
8-3
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Ê~ t !→\v0@~112um2
(1)f0~ t !u2eugr uvt!~a†a11/2!

2m2
(1)m1

(1)f0
2~ t !eugr uvta†2

2m2
(1)* m1

(1)* f0*
2~ t !eugr uvta2# ~34!

in the resonance region.
If the system is initially in thermal equilibrium with its

environment

r̂T~ t50!5A(
n50

`

e(\v0 /kBT)(n11/2)un&^nu,

A215
2kBT

\v0
sechS \v0

2kBTD ~35!

a direct calculation shows that the mean value of the ene
evolves as

T^Ê~ t !&T5~112uM2u2!T^Ê~0!&T . ~36!

If resonance conditions are achieved, the energy will exh
an exponential growth with a rate determined both by
characteristic exponent and the resonance frequency:

T^Ê~ t !&T→2eugr uvtum2
(1)f0~ t !uT

2^Ê~0!&T . ~37!

In order to illustrate these ideas, Fig. 1 shows the ti
evolution of the probabilityP(n) of finding an atom in the
nth Fock state due to parametric heating with an inten
e(t)5e0cosvt, whene050.05 and the first fractional reso
nance conditionv5v0 is satisfied. The initial state of th
system is a thermal one, Eq.~35!, with a temperaturekBT
55\v0. In Fig. 2 the corresponding evolution for the me
energy^E(t)& is shown; the same values for the paramet
kBT, v, ande0 are used. Essentially an exponential grow

FIG. 1. Nonperturbative time evolution of the probabilityP(n)
of finding an atom in then Fock state due to parametric heatin
with a time dependencee(t)5e0cos(vt), when e050.05 and the
first fractional resonance conditionv5v0 is satisfied. The initial
state of the system is a thermal one, Eq.~35!, with a temperature
kBT55\v0.
05340
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superposed to the oscillatory behavior of functionf0(t), in
Eq. ~33!, is observed. These graphs have been obtained u
a numerical solution of Mathieu equation.

III. PERTURBATIVE APPROACH TO PARAMETRIC
HEATING

The nonperturbative approach to parametric heating m
in the preceding section was useful to understand the c
nection between classical and quantum descriptions of h
ing, due to either controlled or stochastic variations of t
parameters defining a harmonic oscillator. Unfortunately, t
approach is valid only for quadratic potentials while anh
monic effects may be crucial in experiments with shallo
confining potentials@8,14#. The purpose of this section is t
study some high order perturbative effects due to variati
on the strength of a confining potential. The resulting eq
tions will be applied to a harmonic oscillator but with
straightforward extension to anharmonic potentials. Besid
this will allow us to understand fractional frequency res
nances from an alternative point of view.

The system is described by a Hamiltonian

H5
p2

2m
1V~x!~11ev~ t !!, ev~ t !!1. ~38!

Following standard time-dependent perturbation theory
define the unperturbed Hamiltonian

H05
p2

2m
1V~x! ~39!

and work in the interaction picture in which the equation
motion of the state is

i\
duC̃~ t !&

dt
5ev~ t !Ṽ~x,t !uC̃~ t !&. ~40!

FIG. 2. Nonperturbative evolution of the mean energy^E(t)& of
a time-dependent harmonic oscillator of natural frequencyv0 in
units of ^E(0)&. The system is initially in a thermal state with
temperaturekBT55\v0 and the intensity time dependence is giv
by e(t)5e0cos(vt), e050.05, v5v0, so that the first fractional
resonance condition is satisfied. Superposed to the expone
growth, the oscillatory behavior of the functionf(t) that appears in
the Floquet solution to Mathieu equation is clearly manifested.
8-4
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The transformed stateuC̃(t)& in the interaction picture is
obtained from the Schro¨dinger picture state vector by a time
dependent unitary operator

uC̃~ t !&5eiH 0t/\uC~ t !&, ~41!

while the interaction operatorṼ(x) is given by

Ṽ~x,t !5eiH 0t/\V~x!e2 iH 0t/\. ~42!

In this picture the evolution operator satisfies the integ
equation

Ũ~ t !512
i

\E0

t

ev~ t !Ṽ~x,t !Ũ~ t8!dt8. ~43!

Let us consider the transition probability amplitud
^kuU(t)us& between given eigenstates of the unperturb
Hamiltonian

H0un&5Enun&. ~44!

An iterative treatment of Eq.~43! gives

^kuŨ~ t !us&5dks2
i

\
VksE

0

t

dt8ev~ t8!eivkst8

2
1

\2 (
n

VknVnsE
0

t

dt8ev~ t8!eivknt8

3E
0

t8
dt9ev~ t9!eivnst91••• ~45!

with vkn5(Ek2En)/\ and

Vkn5:^kuVun&5Ekdkn2^ku
p2

2m
un&. ~46!

Notice that ann-order perturbation treatment of heatin
induced by stochastic noiseev

s(t) requires the knowledge o
the spectrum of the (1, . . . ,2n)-point correlation functions,
^ev

s(t)&, . . . ,̂ ev
s(t)ev

s(t1t1) . . . e(t1t2n21)& defined in
complete analogy with Eqs.~12! and~13!. This results from
the direct evaluation of the average rate to make a trans
from a stateuk& to stateus& in a timeT,

Rs←k5
1

T
z^kuŨ (n)~T!us& z2. ~47!

If heating is induced by a controlled modulation of th
confining potential

ev~ t !5e0cos~vt !, ~48!

then up to second order ine0
05340
l

d

n

^kuŨ (2)~ t !us&5dks1
i

2\
e0tVks@z„~vks1v!t…

1z„~vks2v!t…#2S e0

2\ D 2

t

3(
n

VknVnsF 1

i ~vns1v!
@z„~vks12v!t…

1z~vkst !2z„~vkn1v!t…2z„~vkn2v!t…#

1
1

i ~vns2v!

3@z„~vks22v!t…1z~vkst !2z„~vkn1v!t…

2z„~vkn2v!t…#G . ~49!

These expressions have physical meaning only if the chan
in the wave function induced byŨ(t) are small in the inter-
val (0,t).

For a harmonic oscillator with frequencyv0, one finds
that

Vkn5
\v0

4
@~2k11!dkn1Ak~k21!dk,n12

1A~k11!~k12!dk,n22#. ~50!

As a consequence, the following productsVknVns may be
different from zero.

~i! Vk,k62Vk62,k64. In Eq. ~49!, the resonant terms appea
in the combinationz„(4v062v)t…2z„(2v06v)t… so that
this transition is highly suppressed.

~ii ! VknVnk . Resonances are located atv50,2v0. For v
;2v0 the contribution of the transition amplitude is of th
form

e2t

2\v0
F uVk,k12u2S z~0!2z„~v22v0!t…

i ~v2v0! D
1uVk,k22u2S z~0!2z„~2v02v!t…

i ~v2v0! D G . ~51!

~iii ! Vk,k62Vk62,k62 andVk,kVk,k62. These are transitions
that may be viewed as a combination of two virtual tran
tions k→s→s and k→k→s. The corresponding resonanc
frequency according to Eq.~49! is the fractional frequency
v5uvksu/25v0. In fact the transition probability for a
modulating frequencyv;v0 is

z^kuU (2)us& z2;S e

2\ D 4 t2

v0
2

uVksu2~Vkk2Vss!
2

sin2~v2v0!t/2

~v2v0!2t2/4

;
e4v0

2t2

1024
~k2s!2@k~k21!dk,s12

1~k11!~k12!dk,s22#
sin2~v2v0!t/2

~v2v0!2t2/4
.

~52!
8-5
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In all cases, the nonresonant termsz(v8t), with v8Þ0,
give rise to an oscillatory behavior of the transition probab
ity which is consistent with that found using the exact ev
lution of the transition probabilityz^0uUu2& z2. If one consid-
ers sufficiently long times,v8t@1, having in mind thed
function representation

d~v!5
2

p
lim
t→`

sin2~vt/2!

tv2
, ~53!

it is clear that just the resonant terms have a significant c
tribution. In such a limit the transition probability ratesRs←k
are constant.

Now, some of the general behavior of higher order c
rections can be inferred. Thus, the dominant transition pr
ability of a fractional frequency resonancev52v0 /n arises
at n-order perturbation theory. It can be interpreted as
n-step procedure consisting ofn-virtual transitions , where
n21 of them do not change the state and one change
Thus, we expect the expression~52! to describe approxi-
mately the transition probabilitiesk→k62 when the source
has a frequencyv5v0. This can be verified by comparin
with the exact results of Sec. II.

IV. PERTURBATIVE TREATMENT OF ANHARMONIC
EFFECTS: A USEFUL EXAMPLE

In the case of a one-dimensional~1D! optical lattice along
the z axis, the Stark-shift potential is given by

V~r' ,z!5U0e22r'
2 /w(z)2

cos2~kz! ~54!

with w(z) the beam radius andk its wave number. Atoms are
trapped at the antinodes of the standing wave where the
tential is usually approximated by a harmonic oscillator p
tentialV(r' ,z)5mv r

2r'
2 /21mvzz

2/2. This kind of approxi-
mation fails for describing some features of the ato
dynamics for shallow traps. Nevertheless, experimental c
ditions usually reveal an approximate separability of
transverse and longitudinal motion. In those circumstan
the potentials

Vc~z!5A cos2~kz!,

Vg~r'!52V0e22r'
2 /w̄2

, V0.0 ~55!

result quite useful for modeling the confining interaction.
The one-dimensional stationary Schro¨dinger equation cor-

responding to the sinusoidal potential can be solved exa
in terms of Mathieu functions. A perturbative approach
parametric heating must take into account the band struc
of the energy spectra for describing the excitation of ato
occupying the highest bound levels. A detailed treatmen
this problem can be found in Ref.@14#.

The stationary Schro¨dinger equation for the Gaussia
transverse potentialVg(r')
05340
-
-

n-

-
-

n

it.

o-
-

s
n-
e
s
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re
s
f

F2
\2

2m S 1

r'

]

]r'

r'

]

]r'

1
]2

]f2D 1Vg~r'!GCg~r' ,f!

5ECg~r' ,f! ~56!

cannot be solved, to our knowledge, in an analytical for
However, a variational approach in terms of a properly ch
sen bidimensional harmonic oscillator basis s
$ch

(N,mf)(r' ,f)% can be easily implemented. That is, we c
write

Cg
(Ek ,mf)

~r' ,f!; (
N50

Nmax

ckN
(mf)ch

(N,mf)
~r' ,f! ~57!

with the coefficientsckN
(mf) determined by the Ritz variationa

method. The frequency of the harmonic basis is taken as

v r52A V0

mw̄2
~58!

in order to fit the Gaussian potential at its bottom.
Heating induced by a modulation of the confining pote

tial with a time dependence given by Eq.~48! can be studied
using the equations obtained in Sec. III. The relevant ma
elements are

Vkmf ;nm
f8
5:^kmfuVgunmf8 &

52dmfm
f8

V0

2 (
L50

Lmax

(
J50

Jmax

ckLcnJ

3
G„~J1L !/211…

„~J2umfu!/2…! „~L2umfu!/2…!

3
b [(J1L)/2]2umfu

~11b! [(J1L)/2]11
FS 2

J2umfu
2

,2
L2umfu

2
,

2
J1L

2
,
b221

b2 D ~59!

with J and L of the same parity,b5(2\)/(mv rw
2) and

F(a,b,g,x) the confluent hypergeometric function@15#. The
long time,v r t@1, evolution of the probability of finding a
single atom in the stateun,mf&, P(n,mf) is determined by
the transition ratesRkmf←n,mf

, Eq. ~47!, through the expres-
sion

Ṗ~n,mf!5(
k

Rkmf←nmf
@P~k,mf!2P~n,mf!#, ~60!

subject to the condition

(
n,mf

P~n,mf!51. ~61!

In Fig. 3 we illustrate the kind of results that can be o
tained from this analysis. There we show the fractionF of
8-6
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trapped atoms as a function of the frequencyv used to in-
duce parametric heating in a shallow Gaussian trap. The
parametersV0515\v r and w̄25\/15mv r were chosen to
yield a low number of bound states. As expected, the disc
part of the spectra is not equidistant: the energy differe
between the lowestmf levels ranges from;\v r to
;\v r /2. We have assumed a broadening of the spectral l
of 0.1\v r . In actual experiments line broadening could ar
from the coupling of axial and radial modes, beam instab
ties, as well as collisions with residual gas or the at
sample. We have taken a modulation amplitudee050.01V0,
and the time of application of this perturbation ist
5105/v r . The initial state of the system is a thermal o
with kBT510\v r . We notice that the response of the syste
to parametric heating as a function of frequency exhibit
rich structure with the deepest resonance atv;1.8v r as well
as subharmonic and superharmonic resonances. Experi
tally, the subharmonic resonancev;v r has been observe
@4# while reports on the observation of superharmonic rad
resonances typical of anharmonic potentials could not
found.

V. DISCUSSION AND OUTLOOK

In this work we have performed a perturbative and a n
perturbative analysis of quantum parametric oscillators. T
first approach is based on standard algebraic techniques
gives a direct connection between classical and quantum
sults. In the case of controlled driving terms of the for
e(t)5e0cosvt, the analytic solutions were used to evalua
time-dependent observables such as the energy growth d
parametric heating. This is especially important for far-o
resonance traps~FORTs! when the harmonic oscillator ap
proximation is valid. In that case, parametric heating is u
as a technique to measure the characteristic frequency o

FIG. 3. FractionF of trapped atoms as a function of the fr
quencyv used to induce parametric heating in a shallow Gauss

trap. The trap parametersV0515\v r andw̄25\/15mv r were cho-
sen to yield a low number of bound states. A broadering of
spectral lines of 0.1\v r has been assumed. The modulation amp
tude ise050.01V0, and the time of application of this perturbatio
is t5105/v r . The initial state of the system is a thermal one w
kBT510\v r .
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trap. In such experiments, the fractional frequency re
nances are usually observed and it is clear, within our
malism, how to perform their quantum description. In pa
ticular, using well known results of the theory of Mathie
functions, it was shown how to evaluate the fractional re
nances width and how to obtain explicit expressions for
exponential growth of the energy.

The possibility of using the nonperturbative analysis
describe noise heating effects is a subject that deserves
analysis. This idea has recently been exploited@10# in the
case of fluctuations in the trap center. In the case of inten
fluctuations, the problem is more complicated since a rig
ous description would require us to study the correlat
functions of the classical solutions$h1 ,h2% and their deriva-
tives $ḣ1 ,ḣ2% as they appear in the expressions for the ti
evolution of a given physical quantity. For instance, to stu
the time evolution of the energy, it would be necessary
evaluate the classical correlation functionsuM2u2 andM1M2.
These correlation functions would depend on the noise c
relations.

An alternative would consist of using solutions$h1 ,h2% of
the classical equations in order to describe in an effec
way the coupling between the harmonic oscillator and
fluctuating fields. The usefulness of such an approach wo
be limited by its ability to reproduce experimental effec
For instance, classical harmonic oscillators with an intens
variation e(t)5e0cosv8t and subject to a damping force
2g ẋ lead to fractional frequency resonances only ife0 is
greater than a certain threshold that depends ong and the
order of the resonance. Such thresholds have been obse
in the classical collective motion of ions in Paul traps@8#. It
can be expected that a similar phenomena occurs in
quantum regime of motion. The experimental study of the
thresholds could be used to evaluate effective damping
fects in atom traps.

In this paper the perturbative analysis of heating induc
by variations of the intensity of a potential was studied
detail for a harmonic oscillator. This analysis gave a differe
insight into the problem. Fractional frequencies of orden
appear innth order perturbation theory. From the quantu
theory point of view, they are a direct consequence of~i! the
fact that the harmonic potential has diagonal matrix eleme
^kuVuk& different from zero;~ii ! the equidistant spectrum o
the harmonic oscillator.

The extension of the perturbative analysis to other con
ing potentials is straightforward. In fact, this approach h
already been implemented for FORTs with shallow sin
soidal potentials@14#. The example of Gaussian potentia
has been explicitly studied. A complete treatment of t
Stark-shift interaction, Eq.~54!, implies understanding the
coupling between radial and longitudinal modes. This can
done using the results mentioned above but requires a
merical effort beyond the scope of this paper.
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@14# R. Jáuregui, N. Poli, G. Roati, and G. Modugno, Phys. Rev.
64, 033403~2001!.

@15# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series
and Products~Academic Press, London, 1994!, Eq. ~7.414!.
8-8


