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Dynamical stability of an ion in a linear trap as a solid-state problem of electron localization
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When an ion confined in a linear ion trap interacts with a coherent laser field, the internal degrees of
freedom, related to the electron transitions, couple to the vibrational degree of freedom of the ion. As a result
of this interaction, the quantum dynamics of the vibrational degree of freedom becomes complicated, and in
some ranges of parameters even chaotic. We analyze the vibrational ion dynamics using a formal analogy with
the solid-state problem of electron localization. In particular, we show how the resonant approximation used in
analysis of the ion dynamics, leads to a transition from a two-dimens{@alto a one-dimensional problem
(1D) of electron localization. The localization length in the solid-state problem is estimated in cases of weak
and strong interaction between the sites of the 2D cell by using the methods of resonance perturbation theory,
common in analysis of 1D time-dependent dynamical systems. We show that the localization length can be
used as an indicator of the effective temperature of the trapped ion, which can be experimentally measured.
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[. INTRODUCTION the solid-state system we exploit the space periodicity and
use the Bloch theorem.

The problem of quantum dynamics for Hamiltonian sys- The paper is organized as follows. In Sec. Il we describe
tems with time-periodic perturbation can be formulated inthe model used for description of an ion trapped in a linear
terms of an equivalent solid-state problem of electron localion trap and interacting with two laser fields with close fre-
ization on a lattice. Such kinds of connections were dis-duencies. In Sec. lll, we discuss the general procedure that
cussed for different models ifil,2] (see also references allows us to treat a 1D time-periodic system on the same
therein. However, most results are obtained for quantumPasis as a 2D solid-state model. In the case of a small per-
kicked systems, such as a quantum kicked rotor or a quantuffirbation, the resonance approximation is used in Sec. IV to
kicked oscillator. These systems are convenient for both anag_ecrease the effective d|men5|o_nal|'ty of the sqlld—state Sys-
lytical and numerical analysis because instead of differentialt™ from tvlvp to one. Th_e localization I(Tnglth_m trf:e Spl'd' f
equations one can use discrete quantum maps. At the sa tezt‘zhrgggs résgjiisr;[lirg?;zdcgrég;bx dli)rilgct?ngg-zg?igdticesys/lszteen?n
tlme_, the_ existence (.Jf pe_r|0d|c kicks suggests_ that _the exteri—n the situation when the interaction between the sites of the
nal field involves an infinite number of harmonics with equal

litud | hvsical situati h solid state is strong. In Sec. VI we discuss a connection of
amplitudes. In more common physical situations, there arg,q |4calization properties of our system with the effective

onl)_/ afgw harmonics in the perturbation._ln pa_LrticuIa_\r, SUChtemperature of an ion which can be measured experimen-
a situation occurs when an ion trapped in a linear ion traqa"y Concluding remarks are given in Sec. VIII.
interacts with two laser fields with close frequendi8s In
this case, the interngl glegree of fr_eedom qf the_:('reﬂated to Il. THE VIBRATIONAL HAMILTONIAN
the electron dynamig¢snteracts with the vibrational degree
of freedom. This interaction can result in complicated and In the following [3], we assume that two laser beams,
even chaotic dynamics of the vibrational degree of freedonflesignated the pumfp) and the Stokess]), with slightly
of the ion. The analysis of the stability of the ion in this different frequencies», and ws, respectively, interact with
system can be performed using a model of a quantum ha@n ion trapped in a linear ion trap. Both beams are assumed
monic oscillator perturbed by a monochromatic w#Sk to be plan_e polarlzed in tredirection with the amplitudes of

In this paper we show that the problem of stability of the the electric f|e.|dg§’_°) and gy , and the wave vectorg, and
monochromatically perturbed oscillator can be formulated irks- The Hamiltonian, including the effect of the harmonic
terms of localization of an electron in a two-dimensional€volution of the ion along the weak axis of the tréput
(2D) solid state system. The resonance approximation, confXcluding the interal free evolutianis
mon in treatment of time-periodic systems, is used to reduce "y ono
the effective dimensionality of the solid-state model in the L MaoX
case of relatively small interaction of the ion with the laser 2M 2
field. In order to compare two completely different systems, R R
a similarity in the formal description of the time-periodic wherep andx are thex-components of the momentum and
system and a space-periodic solid state is exploited; namelfhe coordinate of the ior,is the time,M is the mass of the
in the time-dependent system we use the time-periodicity ofon, w is the frequency of the ion vibrations in the linear trap,
the perturbation and employ a Floguet formalism, while ine=2xk|EPE* |, Q=w,—ws, k=(k,—k) &, & is a

4 Ecos{k%— ), 1
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unit vector in thex direction, andy=Amey/4v3A (v andA
being, respectively, the wavenumber and the Einsteo-
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de( 7)

ih dr

—h(m+1/2)c(7)

efficient for the transition between the upper and lower mani-

folds, A the laser detuning, ane, the permitivity of free

space.
In the dimensionless form the Hamiltoni&h reads

. H h? 92 X?
Hzmz—iw-i-?-i-GCOS{x—MT)
=Ho+V(X,7), 2

whereH, is the Hamiltonian of a linear oscillator,

X=k t '81 h HZ
=kx, 7= wt, €= ——, =—),
= —N+35. (3)

Hereh is a dimensionless Planck constaltis the (positive

o0

+e€ _2 (m|cog X—p7)|m+n)cp.n(7)

8

€ - .
=h(m+12cn(n)+5 > (€ “Frmin

n=-m

+eHTER ) Cmen(7).
In EQ. (8), Fym+n is the matrix elemeni4],
Fm,m+n=<m|elx|m+n>

inhn/ZG— h/4 ( h

T2 [(mr 1) (mt 2)- - (mLn) 5)’ ©

m
wherelL], is the Laguerre polynomial. Whem>1, the La-
guerre polynomials can be expressed in terms of the Bessel

intege) resonance number, andlis the detuning from the functionsJ,, [4] as

resonance.
The classical analog of the Hamiltonig®) is

X2 P2

H=7+?+6COS(X—,LLT), (4)

(10

n/2
L“m(g) =(2?m) Jo(v2mh),

where the argument of the Bessel functigfgmh=kr,,, is
the quantized dimensionless amplitude of oscillations of the

where P=kp/Mw is the dimensionless momentum. In the harmonic oscillator. Using Eq$9) and (10) the matrix ele-

action-angle variablesl (%), the classical Hamiltonia4)
takes the form

H=I+ecogkr(l)sind— 7], (5)

where X=kr(l)sin®9, P=kr(l)cosd, kr=X?+P?=2I

is the dimensionless amplitude of oscillatiohss the dimen-
sionless action measured in unitslgE M w/k?, and¥ is the
phase of oscillations.

IIl. CONNECTION WITH A 2D SOLID-STATE
LOCALIZATION PROBLEM

We write the solution to the Schdimger equation

N IV (X,7)

P =HW¥(X,7) (6)

in the form of a series over the eigenfunctigny= ¢,(X) of
the harmonic oscillator HamiltoniaH ,,

©

W(X,7)= >, cy(n)|n). (7)

n=0

Then we obtain the equations for the complex amplitudes

Cn(7),

ments can be written in the form

ni2n—h/4

i"m

(m+1)---(m+n)

-~

Jn(\2mh).

Frm+n= 11
, J (13)

Since the Hamiltoniait2) is periodic in time the solution
of the Schrdinger equatior(8) can be written as

ch(m=e""7a""Al(7), (12)

where o, is a quasienergy, measured in units Miv?/k?,
cl(7) is the quasienerg§QE) function, andA}(7) is a pe-
riodic function with the periodl =2/ u,

Ad(r+2mlp)=Al(7). (13

The quasienergy functions are the eigenfunctions of the evo-
lution operatorJ for one periodT of the external field,

O(Mef(n)=e"7a""ci (7). (14
The evolution operator for one period of the external field
O(T) is

0(T)=Fe VoH(Ddr (15)
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FIG. 1. (@) Some possible transitions on a 2D lattice given by
Eq. (18). (b) Possible transitions on a 2D lattice at smaliven by
Eq. (24); N=2.

whereT is the ordering operator, andl(7) in our problem is
given by Eq.(2). In our numerical calculations, presented
below, we consider only the QE states at the timse0, so
thatcd(0)=A%(0)=A% 1

Substitution of Eq(12) in Eq. (8) gives the equation for
Al

m-

AL(e)
Ad(0)=—ihu ;(ng +h(m+ 12A% ()
+§n;m (e_l I:m,m+n
+e9Fr ) An(e), e=ur. (16)
Expanding the functio®? () in a Fourier series,

we derive the following equation for the amplituda§; :

EqA h(m M')A |+ 2 (me+nAg1+nl+1
+F’rknm+nAg1+n,I—1)' (18)
whereEy=oy—h/2.

Equation(18) can be interpreted as a problem of electron
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IV. THE RESONANCE APPROXIMATION

When the interaction amplitude is smadl<1, the 2D
solid state model described by E{8) can be reduced to a
1D system, i.e., it can be described by an equation with only
one index. We divide both parts of E{.8) by x and, taking
into account tha<N and 1fz~1/N— §/N?, we obtain

E m
q
_/”A?nVI B h(ﬁ

€

+— > (F

21 n==m

om

N2

)

|5,

q
m,m+nAm+n,I+l

+F}

m,m+n

Atni-1)- (19)

We assume tha is small, so thavm/N2<1 for all con-
sidered values ofn, or 6=0. Then, in the zeroth order ap-
proximation we have from Eq19),

E.

It follows from Eq. (20) that if A% #0 then EQ/uh
=(m/N)—I. Since the ratldE(O)/,uh is deflned by modulus
1 [see Eq.(14)], we can write E(O)/,uh 0.2 Then Eq.(20)
takes the form

g©
ZLhAgn :
P )

m

N (20

(m— NI)Aml— (21
Hence,
AL;=0 for m#NI, (22)
AL =AYl for m=NI. (23
The next order approximation fan= NI yields
(Eq=hOm/N)AL =2 (Fo s+ i vAS ),
(24)

where Eq=E{" (we do not consider the higher order ap-
proximationg. As one can see from E1), in them direc-
tion only hops of distanchl are allowed. Thus, the 2D prob-
lem, given by Eq(18), is reduced in the case<1 to the 1D
problem described by Ed24).

The localization properties of the quantum states in the

localization on a 2D lattice. Indeed, one can consider theesonance approximation, given by E84), are defined by
complex coefficientd], | as the complex amplitudes of the the structure of the matrix elemenfs, .. If the matrix
probability of finding an electron on a 2D lattice at the siteelements are periodic functions of, all the eigenstates are
(m,1), where Bsm<®, —w<|<w, Some possible transi- extended and the spectrum is continuous. This situation is

tions in the systen(l18) are shown in Fig. (). The particle,
initially located at the site with indices,,ly), can jump to
the sites (ng£n,lgx£1), wheren is an integer number.

L the spectrumo, and QE functionsA], are known, one can
trace the evolution of the quantum system at the timgssT,
wheres=0,1,2 ... (see, for examplg5]).

common for solid-state systerf). In the system under con-
sideration, the matrix elemen($l) are nonperiodic. For this

2We assume thainf/N) —1 is an integer for some initial stat®,.
If not, one may introduce the quasieneigy=E,— xh{my/N} and
a new indexm’=m-{my/N}N, and solve Eqs(19) and (20) for
E(’, andm’ instead ofE, andm. Here{x} is the fractional part ok.
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FIG. 2. (a) The matrix elementéin arbitrary unit$, and(b)—(e) T T 00 900 T 140?
some characteristic QE functions, given by E24) with h=0.2, m

€=0.02, 6=0, N=2. Only even values afn are included.
FIG. 3. The characteristic QE functions delocalized over several

resonance cellfat evenm); =323, N=2, h=0.2, €=0.02,

reason, as will be shown belofsee also Refd.5,7]), the Jpe

guantum states are localized and the spectrum is discrete.

The matrix elements given by E€l1) oscillate as a func-
tion of m. At the pointsmy where the matrix elements are
close to zero,

eigenfunctions is shown in Fig. 3. The QE functions delocal-
ized over several resonant cells have maxima in the regions
near the boundaries of the cells marked in Fig. 3 by arrows.
—— Thus, if the initial state is located near the boundary of a
Fmg.mo+n~In(vV2mMoh) ~0, (29 resonance cell, say, at=66 in Figs. 2 and 3in the region
near the first arroyy then this state will propagate for a large
the transition probability is very small. As a consequencedistance inm, over the 1D sublattice. This distance can be
such points becomes the dynamical barriers to the probabimuch larger than the size of the single resonance[B¢ll
ity flow [7], and divide the Hilbert space, labeled by the The structure of the QE states can be better understood
index m, into relatively independent parts—resonance cell§from the plot of the means of the QE functions),
[8]. Most .of the eigenstates given by E(¢4) are concen- =z |A92m, versus their variancesA,=[Z|A%%(m
trated inside these cells. The localization lengthfor the —mg)2]"2, presented in Fig. (4). Each eigenfunctiod’, is
states in theth cell does not exceed the size of the cell. Therepresented by one point in the figure. One can see that most
cell boundaries are defined by E(S), i.e., Ni<Mi.;  of the eigenfunctions are localized inside the resonance cells
—m;, wherem; andm;; satisfy Eq.(25), so thaty2mh  sjnce their means are located inside the cells and their vari-
and2m;, ;h are, respectively, thith and {+ 1)th roots of  ances do not exceed the size of the cell. Each row in the

the Bessel function in E¢25). figure is formed by the eigenfunctions of one cell. If the
Some characteristic QE functions given by Eg4) are
illustrated in Figs. th)—2(e) for small e. The boundaries of — —
the resonance cells are marked by arrows. One can see fro1 “° | . @] ™
Figs. 2b)—2(e) that the eigenfunctions are localized inside
the cells, but, on the other hand, each eigenfunction is delo- ~]
calized overm inside a single cell. For example, for the gy 9200
initial states in Fig. ) with m=72 the transitions will oc- i . ' T
cur in the region 66 m<176 [inside the first cell in Fig. & [~—"" g
2(a)]. Note that for small values oé and whens=0 the 1 , -
localization properties of our system are independent.of w T / P SPPPPS -
This means that an arbitrarily small perturbatiernnitiates " ' ) -
transitions between the sites on the effective rectangular lat = N Ty -
tice. For small values of, these transitions take place on the 0 06\ 00 300 T A'"zo 30
1D sublattices shown in Fig.(h). ¢ ¢
Except for the localizedin the resonance celleigen- FIG. 4. The plot ofm, versusA, for N=2, h=0.2, e=0.02,

functions there exist a few eigenfunctions that are delocaland(a) §=0, (b) §=0.001. The boundaries of the resonance cells
ized over several resonant cells. One of these representatiaee marked by the arrows on the, axis.
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initial state is located inside the resonance cell, the eigen-
functions of this particular cell define the quantum dynamics.
These states make the quantum dynamics localized inside th
cell and, at the same time, delocalized over the states
inside the cell[7]. In the corresponding solid-state model
(24), the localization length for the states,iiim cell at small

e can be identified with the size of this resonance cell;
namely, A;=m;, ;—m;, where y2m;h and y2m,,.h are
two successive roots of the Bessel functi@b).

The QE functions delocalized over several resonant cells
are represented in Fig(a by the scattered points with large . 2 N R
variances. One such function, marked in Fi¢p)dy an ar- -1.87 : - 47
row, is shown in Fig. 3. The QE functions delocalized over
several resonant cells cannot be attributed to a definite reso- FIG. 5. The classical phase space fay =0, (b) §=0.001;
nance cell since their variances are larger than the size ®{=2, ¢=0.02. The boundaries of the resonance cells are marked
single cells. As a consequence, these functions cause deloy arrows.
calization of the states initially concentrated near the bound-

aries of the cells. However, as shown in Réf], the local- kr(1.)= 2T, are marked in Figs.(8 and 5b) by arrows.

ization length remains finite, because the matrix elementi A . . ) 2o
- : ! .. _As shown in Refs[8,9], in the quasiclassical limit theth
litudes d th in: = L
(11) are nonperiodic and their amplitudes decrease with i boundary of the classical cdilr; in Figs. 5a) and 8b) cor-

creasingm (asm™~ Y atm=1). ,
In the case when the detuning from the resondsee Eq.  '€SPonds to théth boundary of the quantum cetf; on the

(3)] is not equal to zero&+0), the character of the local- Mg @Xis in Figs. 4a) and 4b), so thatkr;=y2I;= y2hm.
ization depends on the position of the initial statg [see Each row of points in Fig. @) is formed by the eigen-
Fig. 4b)]. In the regionmy>m;,.,=€eN/hés all the states States responsible for the dynamics in the corresponding
remain exponentially localized im, since in this case Eq. quantum cell. From comparison with the classical dynamics

(b)

L8l

Kr
|

e

(24) has the solution in phase space we can now describe the localization proper-
ties of the quantum states discussed above. Each valoe of
Eq=(hém/N) Al= Sm,q - (26) in the quantum system corresponds to a quantized classical

actionl ,=mh, or to the quantized dimensionless oscillation
If my<m,,, the above discussed effect of localization overamplitude kr,,= y2mh. Each value of action, (or kry,)
the resonance cells takes place. In the intermediate casgprresponds to a set of classical trajectories. Moving along
when mo=mMmp,y, the character of the localization dependssome classical trajectory the particle with some initial value

on the position of the statey inside the resonance celFor  of action|,, can accept other values in the interval <1,
the parameters in Fig.(d) my,.,=200] If m, is located near L
the boundary of the resonance cell where the condit&&h ) _ _
is satisfied, Eq(24) has the localized solutiof26). Most ~ the unperturbed states with numbersin the intervalm,

delocalized functions have their meam at the center of a <M<m,. From the form of the trajectories in Fig(e5 one
resonance cell. can see that in the case of exact resonance all quantum states

As follows from Fig. 4b), in the regionmg=m,,,, the  Of the single quantum cell should be delocalized over the
QE functions delocalized over several resonant cells are afesonance cell, since in the phase space both the extremal
sent, since the variance of each function is much less than théluesl ,, andl ., that limit the resonance cell can belong to
size of the cell, whose boundaries are marked in Figl By ~ the same trajectory.
arrows. Moreover, the variances of the eigenstates in the Similar arguments can be used to analyze the quantum-
near-resonance case in Figby are substantially smaller classical correspondence in the near-resonance case. As fol-
than the variances in the exact resonance case shown in Figws from Fig. gb), at 5# 0 in the phase space there is only
4(a). Hence, at smalk, an increase of the value of the de- a finite number of resonance ceflsvo cells in Fig. §b)].
tuning 6 always leads to localization of the quantum states inThus, there is a finite number of quantum resonance cells in
the model discussed. the Hilbert space in Fig. () (the first two cell$. In the

Most of the localization properties of the eigenfunctions,off-resonant regiorthird to seventh cells in Fig.(#)] the
given by Eq.(24), are the quantum manifestation of the clas-degree of delocalization of eigenstates depends on the posi-
sical behavior in phase space. The classical phase spacetion of the state in the cell destroyed by the finite detuning
the variablegkr(l), 6)), whered=N+, mod 2w, generated In Fig. 5b) the least curved trajectories are located near the
by the exact classical Hamiltonidb), is shown in Fig. &a) separatrices, while the the most curved trajectories are lo-
for the exact resonance cas&<0) and in Fig. Bb) for the  cated near the centers of the destroyed cells. As a conse-
near-resonance casé=0.001). guence, in the quantum model the eigenfunctions in Rig). 5

As one can see from Fig(#&, in the case5=0 the clas- have their smallest variance in the region near the separa-
sical phase space is divided into resonance déllgure 3a)  trices and their largest variance near the centers of the de-
shows only the first seven cell§he boundaries of the cells, stroyed cells.

<Im,. The corresponding eigenstate will be delocalized over
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FIG. 7. The time-averaged probability distributida) e=0.02;
the averaging has been performed over 100 realizations in the time
interval 7=5000- 105000 (only the probability at everm is
shown. (b) e=3, where the averaging has been performed over
SR Lo n 100 realizations in the time interval=500—10500. Other param-
0 : o ' eters areh=0.2, §=0, N=2. The boundaries of the resonance
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|

FIG. 6. The classical phase space in the case. Other pa- inside the chaotic areffirst two cellg, but not inside the
rameters aré=0, N=2. The boundaries of the resonance cells aresingle cells, as in the case of smallin Fig. 4(a). In the

marked by arrows. chaotic regime, one can find a quantum particle with equal
probability in any unperturbed stateinside the chaotic sea,
V. THE LOCALIZATION LENGTH IN THE CASE OF independently of the position and form of the initial state

STRONG INTERACTION located in this regiorisee the first two cells in Figs.(),

In the previous sections we considered the dynamics onl$(@, and &b)]. Whene increases, more classical and quan-
at small perturbation amplitude<1. At large values ofe  tum cells become chaotic. This results in increasing the area
dynamical chaos appears in the class[ddl] and quantum of delocalization of the quantum chaotic states. Thus, in the
[5,11] monochromatically perturbed oscillators. As will be regime of chaos the localization length in the solid-state sys-
shown below, all quantum states in the chaotic area are déem may be identified with the size of the chaotic area in the
localized over the whole chaotic region. The chaotic dynammonochromatically perturbed oscillator. For example, for the
ics in the monochromatically perturbed oscillator corre-parameters in Figs. 6,(8, and 8b) the localization length
sponds to hops in different directions in the solid-statefor the states in the chaotic regionNs=m,, where2m,h
system, as shown in Fig(d). By estimating the size of the is the second root of the Bessel function in E25). [The
chaotic motion in the monochromatically perturbed oscillatorvalue m, is marked by the second arrow in each of Figs. 6,
we will estimate below the localization length in the corre-8(a), and §b).]
sponding solid-state model. It is necessary to note that, as was showr{ifi], the

In Fig. 6 the classical phase space is showrefei3. One  quantum and classical dynamics in the chaotic regime are
can see that in the first two cells the motion is mainly chaoticessentially independent of the detunifigvhene> 8. So the
while in the other cells the motion remains mainly regular.

The time-averaged quantum probability distribution —s 0.15
|Cn(7)|? is illustrated in Fig. 7a) for the case of smak and 1400
in Fig. 7(b) for the cases=3. The initial state was taken in
the form cm(0)=5mmo with my=230 [in the center of the

first cell in Figs. Ta) and 1b)]. As follows from Fig. 7a), 900 |

the quantum particle can tunngee also Ref.7]) from the ol

initial (first) cell to other resonance cells, unlike the classical £

case, where essentially all the trajectories in the phase spac ~ |

are confined inside the resonant c¢iee Fig. 5a)]. Dy
Whene increases, the probability distribution in Figby .

increases in most of the quantum cells, which corresponds tc —si~

chaotization of motion in the classical phase space. In Fig. o 100 20 0 400 o H ?OOT mT9°° T 140?

8(a) we show the plotny(o,) for the casee=3, and in Fig.

8(b) the characteristic QE function located in the chaotic area FIG. 8. (a) The plot ofmy, versuso, and(b) the characteristic

is illustrated. As one can see from Figag almost all QE  QE eigenfunction located in the chaotic region fer3 andh

states in the area of the first two cells are delocalized ove&0.2, =0, N=2. The boundaries of the resonance cells are

both the cells. In other words, the QE states are localizetharked by arrows.

—
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results concerning the chaotic dynamics valid in the nearlinear ion trap and interacting with two laser fields with close

resonance case also remain whefa0. frequencies. This system is modeled using a quantum oscil-
lator perturbed by a monochromatic wave. Since the spec-
VI. EXPERIMENTAL APPLICATIONS trum of the harmonic oscillator is linear, the two-dimensional

The localizati " f th h ticall lattice in the Hilbert space for the monochromatically per-
€ localization properties of the monochromatically per~y, ., oscillator is uniform, which allows formulatation of

turbed oscillator, discussed in this paper, allow us to describﬁje roblem of dvnamical stability in this svstem in terms of
the stability of an ion trapped in a linear ion trap. The ion can P y y y

be cooled down to the ground state of the trapping potentiatlhe problem of electron Iocal_lzatl_on ina 2D solid-state sys-
. The resonance approximation is used to decrease the

by the standard Doppler cooling and by the optical pumping}em . . . . . :
method. The external laser fields, which influence the elecEffective dimensionality of the corresponding solid-state sys-

tron transitions, result in perturbation of the vibrational dy-€M- This can be done in the case of a relatively small inter-
namics of the ion. This leads to heating of the ion in the trap@ction between the trapped ion and the laser fields. In the

As shown below, the effective temperature of the ion is deSolid-state model this case corresponds to weak interaction
fined by the value of the localization length. between the sites of the 2D lattice. Increasing the interaction

Let us represent the probability distribution of the ion in amplitude results in delocalization of the quantum states over
the formP,(7)=|C,|?*=exp(—hwn/7), whereT is the tem-  the sites of the 2D cell. The area of delocalization in the
perature measured in energy units and the indé&abels the solid-state system for strong interaction in the chaotic area
energy level of the unperturbed ion. In dimensionless unitsnay be identified with the size of the chaotic sea in the
the probability can be rewritten aB,(®)=exp(—hn/®), monochromatically perturbed oscillator. Our results provide
where the dimensionless temperatu®e=7/(Mw?/k?) is  understanding of the mechanism of stability of an ion
measured in the same units as the dimensionless wave anmnapped in a linear ion trap. They also allow one to estimate
plitude . On the other hand, one can express the probabilityhe characteristic dynamical regimes of the trapped ion and
distribution P, through the localization length asP,(\)  to choose parameters required for dynamical stability. We
=exp(=n/A). For example, for ionized calcium wittM  show that the value of the localization lengtrcharacterizes

=6.64x10 % g, ©=2wx500 kHz, and k=158  an experimentally measurable parameter—the temperature of
X 10° cm™%, the localization lengti =20 corresponds t0  the ion.

the dimensionless temperatuge=h\=2.4, or to the tem-
perature 4.6.10 % K. Increasing the wave amplitude re-
sults in growth of the size of the chaotic region and in in-
creasing the localization length. As a consequence, the
temperature of the system increases.
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