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Three-dimensional kicked hydrogen atom

M. Klews and W. Schweizer
Institut fir Astronomie und Astrophysik, Abteilung Theoretische Astrophysik, UniveTsiténgen, D-72076 Thingen, Germany
(Received 17 March 2001; published 2 October 2001

We present an effective computational method and quantum results for the three-dimensional propagation of
wave packets in the hydrogen atom driven by a train of short unidirectional electric-field pulses. We studied the
dynamics of wave packets that are initially in a Stark state with different parabolic quantum numbers and
observed quantum localization in the high-frequency domain.
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[. INTRODUCTION cause these functions built a complete basis without taken
the continuum into account. Continuum states are no prin-
In the early 20th century, physicists realized that describ<iple numerical problem for procedures based on space di-
ing atoms in purely classical terms is doomed to failure cretization techniques, as used in this paper. In Ref| the
Since then, the connection between classical mechanics affree-dimensional(3D) kicked system with alternating
quantum mechanics has interested researchers. The rigilses, has been studied. This is numerically simpler because
structure observed in low-dimensional nonintegrable classidue to the alternating pulses, the angular momentum remains
cal systems has renewed and strengthened this interest api@nificantly smaller compared to unidirectional pulses.
the study of highly excited atoms has put a fresh face on the Our discretization method provides a convenient and ac-
connections between classical and quantum mechanics. ©Frate procedure for the propagation of wave packets in three
particular interest is the study of quantum systems whoséimensions. For the three-dimensional case it is based on a
classical counterpart exhibits chaos. This situation is realizegPace discretization consisting of a combined discrete-
for the kicked hydrogen atom. This system consists of a hyvariable and a finite-element scheme as described in Sec. Il.
drogen atom subject to a train of periodic field pulses, whosd his ansatz could be also combined with a suitable phenom-
duration is short compared with the orbital period of the€nological potential, which mimics the multielectron core
classical electron. The fascinating advantage of this systenh13]. The time propagation will be solved by a time discreti-
is, in addition, that it could be treated both experimentallyzation based on a Cayley-like ansét#,15. In Sec. Ill we
and, as we will show in this paper, computationally in thecompare our results with those presented in Rid]. Quan-
full three-dimensional space. tum localization was found for the unidimensional approxi-
Over the past few years experimental resitee, e.g., Mmation of the full quantum systef8]. Ever since then, the
[1,2]) have been Compared with classical studies exh|b|t|ng g]uestion arises if these findings are also true for the three
remarkable correspondence between classical and quantudfinensional systerfil6]. The answer could be provided by
systems. To date these classical theoretical studies have be@g method and some results will be shown in Sec.(Tthe
mainly accompanied by a unidimensional treatment of thecode is free and available upon requigst].)
guantum system. For more details see, d1p-7], and ref-
erences therein. The experimental technique consisted of la- Il. METHOD
ser exciting an alkali-metal Rydberg electron with principal '
guantum numben~400 and measuring its survival prob-  §-shaped pulses are a widely used approximation for
ability, which yields a good agreement with classical trajec-electric-field pulses that are much shorter than the classical
tory Monte Carlo simulations. For quantum dynamical cal-orbital period. The Hamiltonian of the kicked hydrogen atom
culations the quantum system was approximated by a oneeads in atomic units
dimensional model anB] the wave function expanded in a
large basis set of Sturmian pseudostates. With these calcula- 02 1 s-1
tions quantum localization was uncovered, a process which  H="—-=4v_. with Ve.=r-F> &(t—kT),
is typical for periodically driven systems like the kicked ro- 2 k=0
tor [8,9]. (1)
The three-dimensional kicked quantum system has been
treated[10] by a simple exactly solvable two-state, weak- whereSis the number of kicks applied; its period, andF is
field model due to numerical problems. Three-dimensionathe external field. For a given pulse shdfg) the momen-
hydrogen Rydberg states, subject to a sequence of periodigm transfer integrated over the pulse duration is given by
and random pulses, have been studied in REf]. They
used as basis expansion a superposition of hydrogen eigen-
states and Sturmian states. The disadvantage of bound hydro- Ap=— f F(t)dt 2
gen eigenstates is, that for a complete description, the neces-
sary continuum states are missing. This shortcoming could
be partially overcome by using Sturmian eigenfunctions, beand thus the external potential by
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S-1 Pulse Pulse Pulse
Vex= —r-AkaO S(t—kT). ©)

Between the pulses we have a conservative system and Cayley Cayley

the wave packet will be propagated due to the simple field
free conservative Hamiltonian of the hydrogen atom. If the

field-direction is the same for all pulses, e.g., along the ' } ‘ f

axis, we have rotational symmetry around this axis, and A+ 3F-9(T+) =1 - 5F - 2)9(T-)

hence the corresponding component, hereztitemponent, o .

of the angular momentum is conserved. The electric field FIG. 1. Our time-integration scheme: between the pulses we use

causes a strong coupling of bound states to the Continuume Cayley method with the field-free hydrogen Hamiltonian. The
wave function after the pulsg(T+) can be calculated by solving

leading to ionization. This is the main source of the compu-"="" N . . i
tational challenge, but can be straightforwardly mastered byl i/2F-2)¥(T+)=(1-i/2F-2)§(T—), with y(T—) the wave
space-discretization methods. Due to the discretization thinction immediately before the pulse.

wave packet will not be approximated by a globally defined , , .

basis or by bound states and thus the well-known problem of 10 €xplain the computational procedure for periodic
finding a suitable bases “simply” reduces to selecting, first, aPUlses, we restrict the following discussion onto the Sehro
sufficiently large coordinate space, which allows wavedinger equation for a single pulse directed alongztexis:

packet propagation without reflection at the borders, and sec-

ond, by selecting suitable interpolation polynomials on the IP(r,t) — —iH (r t)—iF-i&(t—T) 9)
space grid. at ' '
Between the pulses the wave packet evolves according to
the time-dependent Schiimger equation Several pulses are then simply computed by repeating the
computational steps described below for a single pulse. Thus,
Ho(r ) =i aP(r,t) 4) the same method allows also to compute systems with non-
' at ' periodic, in the time randomly distributed pulses, pulses of

_ o ] varying strength, or pulses directed in opposite directions.
with H=p?/2—1/r the Hamiltonian of the field-free hydro- The formal solution of Eq(9) reads

gen atom. For the spatial integration we combined the

discrete-variable methofll8] with the finite-element tech- . t .

nique, which has been successfully applied to various atomic  #(r,t)=e """y (r,0)+ J e N —iF.2)y(r,s)
systems in quest of astrophysical, quantumchaotical and 0

wave-packet propagational problem&ee, e.g., Refs. X 8(s—T)ds, (10)
[14,19,19). The wave functionj(r,t) is then represented by
a set ofN time-dependent functions

l,bk(t):l,b(rk,t), k=l, s ,N, (5)

and the Schrdinger equatiorf4) is mapped onto a system of
coupled ordinary differential equations.

A formal solution for the time development of the dis- \ith 4(r, T—) the wave function immediately before the
cretized wave functionsy,(t) evolving under a time- pyise andy(r,T+) directly after the pulse. This time-
independent Hamiltonian is given by integration scheme is illustrated in Fig. 1. Equatidd) de-

i scribes exactly the influence of & pulse onto the wave
dt+ o =e M), © function indepyendently from the stfengfh of this pulse.

which yields after integration

1+i§|:-2> ¢(T+):(1—%F.2) HT-), (1D

The time propagatoe 'H% is approximated by a Cayley Thus the computational scheme is only approximated by the
expansion assumption that the kicked system can be described by
pulses, by the necessarily finite discretization of the wave
—i6tH

e

function and by propagating the wave function in between
)7 ™) o pulses via the Cayley expansion, E§).

The electric field causes a strong coupling between bound
which preserves unitarity and is correct in ord#f. Insert-  states and the continuum. Therefore the integration radius
ing Eq.(7) into Eq. (6) leads to an implicit system of alge- has to be chosen with care to avoid elastic scattering at the
braic equations integration border. To weaken this problem we have imple-

mented a masking function as proposed in R2f]. By this
[ masking function, the tails of the wave packet that are drift-
1_§H5t)‘ﬁk(t)* ®) ing into the continuum, and thus would be elastically re-
flected at the integration border, are significantly damped
which have to be solved for each time st&p out. The masking function is given by

i 1
1+§H5t) (1—§H§t

2

1+ '—Hat)lpk(w St)=
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FIG. 2. To prevent reflections at the integration boundary the e }
wave function is folded with the following masking functiof(r) .};g\?\.:t'ff“‘l ’..f.'
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(=1 may)

2("M_rmax)

for r larger than the masking radiug, , otherwisef(r)=1.
The masking function is illustrated in Fig. 2. In our calcula-
tions we used mainly r(ax—rm)/fmac=0.1 and multiplied
the wave _pack_et with this mas!«ng functhn after_each ime  £15. 3, The probability density of several Stark states. From top
stepét. With this method reflections at the integration border; bottom:|nkm)=|20,19,0, |20,1,0, and|9,0,0). The higher the
are prevented, but also parts of the wave packet that arg;ranolic quantum numbir the stronger the localization along the
correctly “kicked” back into the integration area by the elec- , 4yis.

tric pulses are as well damped out. By monitoring the norm

of the wave packet after each computational step, we check ved and th h . h h
if the integration radius is sufficiently large. Thus to obtain U€S are mixed and thus these two figures show the strong

convergence, both, the size of the integration area and tHgfluence of the angular momentum distribution of the initial
size of the masking radius have to be carefully controlled. Wave function on its time development. In Figdf#we have
plotted the expectation value of the angular momentum as a

function of the time for the hydrogeni®00) state. Due to
Ill. RESULTS AND DISCUSSION the kicks, this wave packet exhibits a periodic behavior. At
Dhar et al. [10] studied the time development of a para- the maxima the wave packet is running through a nearly
bolic Stark state with principal quantum numiser 9, para- spherical shape. It is well knowp that constant electric fields
bolic quantum numbek=0, andm=0, see Fig. 3, under the have a weaker affect on spherical statligh angular mo-
influence of periodic pulses with a frequency equal to thgnentum. Simplified, a5|_m|Iar behavior is also shown in Fig.
transition frequency of thex=9—10 manifold. Thus the #(d and thus the maximalarge angular momenturare
corresponding pulse period &=5357. The selected field S|gn|f|cantly broader than the minima. T_hus, a wave packet
strength wag =2x 10~ 3. The computation was carried out with large angu!ar momentum expectation value is less af-
in a small basis of bounded hydrogenic eigenstates. The{fcted by the kicks compared to wave packets with small
obtained a resonance between the9 andn=10 statesg ~ 2ngular momentum. _ _ _ _
is the principal quantum numbefThis is uncovered in Fig. Reinholdet al. [3] studied the k|cked~atom in the high-
4(a), in which we show the overlap of the propagated wavefrequency domain, with scaled frequengy-16.8. The fre-
packet with then=9 andn= 10 manifold for fixed magnetic quency scales for the Coulomb problem with=v/n?,
quantum numbem=0. To compare our result with Ref. where n is the principal quantum number. By comparing
[10], we used exactly the same initial state, and for the readene-dimensional classical and quantum-mechanical calcula-
ers’ convenience the same notation on the left-hand side afons they could uncover quantum localization. In the classi-
Eg. (13). In the parabolic quantum numbjer,k,m) this state  cal calculations the dynamics of an ensemble of particles,
is given by initially starting on different points in phase space but on the
same torus, was computed.
In=9)=19,0,0). (13 In order to compare classical and gquantum-mechanical
calculations the question arises what quantum-mechanical
Our results are in exact agreement with their res(Rsf.  state should be used for the initial wave packet? In uni-
[10], Fig. 1), which gives added confidence in our method. dimensional calculations, the particles move along a single
In addition we present in Fig.(B) the autocorrelation axis. There is, of course, no other possibility. Therefore, to be
function C(t)=|{(t)|¥(0))| for the parabolic|nkm)  as close as possible to the studies presented in[Befwe
=19,0,0) state mentioned above and in Figcyfor a hydro-  used for comparison with the three-dimensional system,
genic state with the quantum numbers9, =0, andm  strongly on thez-axis, localized parabolic Stark states, thus
=0. For the parabolic quantum number 0, several val-  with high parabolic quantum numbers. The probability den-

f(r)=sin* (12
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FIG. 4. The parabolic statekm)=|9,0,0) and the hydrogenic
state [nIm)=|9,0,0) under the influence of a driving field with
the frequency equal to the transition frequency betweemth8
and the n=10 states.(Field period T=535%,, field strength
F=2x10°). (a The probabilities = _,(9,,0|y(t))|?> and
27_0l(104,0[(1))|* with [¢(0))=|n=9) [see Eq.(13)]. (b) The
autocorrelation functiof #(t)|n=9k=0,m=0)| and(c) the auto-
correlation functior{(t)|n=9,=0m=0)| in dependence of the
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FIG. 5. The recurrence probability(t)|yo)|? of some Stark
states|n,k=n—1,m=0) for different principle quantum numbers
n=>5, 10, 20, 30, 40, and 50 under the influence of a high-frequency

train of pulses withw=16.8 andAp=0.01.

would thus narely expect a similar behavior, but this tre-
mendous change observed in the one-dimensional system

number of kicks(d) The expectation value of the angular momen- could not be observed here. Obviously there is one difference

tum (1)(t) for the initial wave packelyy)=|n=9)=0m=0).

between a uni- and a multidimensional system. In a one-
dimensional system the left-hand and the right-hand side is

sity of some Stark states is shown in Fig. 3. In Fig. 5 westrictly separated by the Coulomb singularity. For multidi-
present the recurrence probability for a series of different

guantum numbersn, k=n—1, and m=0 in the high-
frequency regime %=16.8, Ap=0.01, the momentum

scales withAp=Ap/n). The casesn=5, n=20 and n
=50 were studied for the 1D case in RE8] and are almost

1F

indistinguishable from the 3D calculations for low principal
guantum numbers. The higher the quantum number is, the
larger the difference in the amplitudes of the autocorrelation
function, while the frequency of the oscillations remain
nearly unchanged. But obviously the same mechanisms of
guantum localization occurs also in the three-dimensional
case.

In Fig. 6 we show the autocorrelation function for several
Stark states of the samemanifold but with different para-
bolic quantum numbers. We used the same driving field as in
Fig. 5. With decreasing parabolic quantum numbketthe
states become stronger located on the negatasds. Locat-
ing the state on the negatizeaxis is the equivalent of locat-
ing the state on the positive axis but using kicks with
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FIG. 6. The autocorrelation function for Stark states under in-
opposite field direction. For the one-dimensional system, th@luence of a high-frequency train of pulses with16.8 andAp
dynamics completely changed with the field directi@h By =~ =0.01. The principle quantum numberris=20 and the parabolic
running through different parabolic quantum numbers onejuantum numberk=19, 13, 7, and ifrom top to botton.
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mensional systems this is no longer true. For the electron By space discretization we were able to perform quantum-
there is from the very beginning a nonzero probability of mechanical calculations for the three-dimensional kicked hy-
presence around the Coulomb singularity and thus not only drogen atom. This method is fast converging and flexible.
flux towards or away from the singularity, but also aroundWe already included phenomenological potentials to simu-
the singularity. Hence there is a qualitative change by goindate the wave-packet propagation in alkali-metal atoms. A
from one-dimensional to multidimensional systems. Simpli-cComparison with the results for hydrogen will be published
fied, the electron has more kinematical possibilities to move!sewhere. Due to the space discretization in our method we
in phase space, and can no longer be confined to one-hd}f€ free to use any shape for the initial wave packet. The
space by the Coulomb singularity. In addition the possibilityonly limits are due to the available computer. A_II calculations
to study states that are equally localized on both, the threé:?re,sem?d here were performed on lOW.'COSt smgle-proces;or
dimensional system offers the negative and the positive FC'S With a maximum memory requirement of approxi-
axis and thus, driving the “electron” in the direction of the mately 600 MB.
core on one side and against the core on the other side. Due

to our discretization technique we could also synthesize any

other shape for the initial wave pacKexl]. Discussions with C. Lubich are gratefully acknowledged.
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