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Three-dimensional kicked hydrogen atom
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~Received 17 March 2001; published 2 October 2001!

We present an effective computational method and quantum results for the three-dimensional propagation of
wave packets in the hydrogen atom driven by a train of short unidirectional electric-field pulses. We studied the
dynamics of wave packets that are initially in a Stark state with different parabolic quantum numbers and
observed quantum localization in the high-frequency domain.
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I. INTRODUCTION

In the early 20th century, physicists realized that desc
ing atoms in purely classical terms is doomed to failu
Since then, the connection between classical mechanics
quantum mechanics has interested researchers. The
structure observed in low-dimensional nonintegrable cla
cal systems has renewed and strengthened this interes
the study of highly excited atoms has put a fresh face on
connections between classical and quantum mechanics
particular interest is the study of quantum systems wh
classical counterpart exhibits chaos. This situation is reali
for the kicked hydrogen atom. This system consists of a
drogen atom subject to a train of periodic field pulses, wh
duration is short compared with the orbital period of t
classical electron. The fascinating advantage of this sys
is, in addition, that it could be treated both experimenta
and, as we will show in this paper, computationally in t
full three-dimensional space.

Over the past few years experimental results~see, e.g.,
@1,2#! have been compared with classical studies exhibitin
remarkable correspondence between classical and qua
systems. To date these classical theoretical studies have
mainly accompanied by a unidimensional treatment of
quantum system. For more details see, e.g.,@1–7#, and ref-
erences therein. The experimental technique consisted o
ser exciting an alkali-metal Rydberg electron with princip
quantum numbern'400 and measuring its survival prob
ability, which yields a good agreement with classical traje
tory Monte Carlo simulations. For quantum dynamical c
culations the quantum system was approximated by a o
dimensional model and@3# the wave function expanded in
large basis set of Sturmian pseudostates. With these cal
tions quantum localization was uncovered, a process wh
is typical for periodically driven systems like the kicked r
tor @8,9#.

The three-dimensional kicked quantum system has b
treated@10# by a simple exactly solvable two-state, wea
field model due to numerical problems. Three-dimensio
hydrogen Rydberg states, subject to a sequence of per
and random pulses, have been studied in Ref.@11#. They
used as basis expansion a superposition of hydrogen e
states and Sturmian states. The disadvantage of bound h
gen eigenstates is, that for a complete description, the ne
sary continuum states are missing. This shortcoming co
be partially overcome by using Sturmian eigenfunctions,
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cause these functions built a complete basis without ta
the continuum into account. Continuum states are no p
ciple numerical problem for procedures based on space
cretization techniques, as used in this paper. In Ref.@12# the
three-dimensional~3D! kicked system with alternating
pulses, has been studied. This is numerically simpler beca
due to the alternating pulses, the angular momentum rem
significantly smaller compared to unidirectional pulses.

Our discretization method provides a convenient and
curate procedure for the propagation of wave packets in th
dimensions. For the three-dimensional case it is based
space discretization consisting of a combined discre
variable and a finite-element scheme as described in Se
This ansatz could be also combined with a suitable phen
enological potential, which mimics the multielectron co
@13#. The time propagation will be solved by a time discre
zation based on a Cayley-like ansatz@14,15#. In Sec. III we
compare our results with those presented in Ref.@10#. Quan-
tum localization was found for the unidimensional appro
mation of the full quantum system@3#. Ever since then, the
question arises if these findings are also true for the th
dimensional system@16#. The answer could be provided b
our method and some results will be shown in Sec. III.~The
code is free and available upon request@17#.!

II. METHOD

d-shaped pulses are a widely used approximation
electric-field pulses that are much shorter than the class
orbital period. The Hamiltonian of the kicked hydrogen ato
reads in atomic units

H5
p2

2
2

1

r
1Vext with Vext5r•F(

k50

S21

d~ t2kT!,

~1!

whereS is the number of kicks applied,T its period, andF is
the external field. For a given pulse shapeF(t) the momen-
tum transfer integrated over the pulse duration is given b

Dp52E F~ t !dt ~2!

and thus the external potential by
©2001 The American Physical Society03-1
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Vext52r•Dp(
k50

S21

d~ t2kT!. ~3!

Between the pulses we have a conservative system
the wave packet will be propagated due to the simple fi
free conservative Hamiltonian of the hydrogen atom. If t
field-direction is the same for all pulses, e.g., along theẑ
axis, we have rotational symmetry around this axis, a
hence the corresponding component, here thez component,
of the angular momentum is conserved. The electric fi
causes a strong coupling of bound states to the contin
leading to ionization. This is the main source of the comp
tational challenge, but can be straightforwardly mastered
space-discretization methods. Due to the discretization
wave packet will not be approximated by a globally defin
basis or by bound states and thus the well-known problem
finding a suitable bases ‘‘simply’’ reduces to selecting, firs
sufficiently large coordinate space, which allows wa
packet propagation without reflection at the borders, and
ond, by selecting suitable interpolation polynomials on
space grid.

Between the pulses the wave packet evolves accordin
the time-dependent Schro¨dinger equation

Hc~r ,t !5 i
]c~r ,t !

]t
, ~4!

with H5p2/221/r the Hamiltonian of the field-free hydro
gen atom. For the spatial integration we combined
discrete-variable method@18# with the finite-element tech
nique, which has been successfully applied to various ato
systems in quest of astrophysical, quantumchaotical
wave-packet propagational problems~see, e.g., Refs
@14,19,15#!. The wave functionc(r ,t) is then represented b
a set ofN time-dependent functions

ck~ t !5c~r k ,t !, k51, . . . ,N, ~5!

and the Schro¨dinger equation~4! is mapped onto a system o
coupled ordinary differential equations.

A formal solution for the time development of the di
cretized wave functionsck(t) evolving under a time-
independent Hamiltonian is given by

ck~ t1dt !5e2 iHdtck~ t !. ~6!

The time propagatore2 iHdt is approximated by a Cayle
expansion

e2 idtH'S 11
i

2
Hdt D 21S 12

i

2
Hdt D , ~7!

which preserves unitarity and is correct in orderdt2. Insert-
ing Eq. ~7! into Eq. ~6! leads to an implicit system of alge
braic equations

S 11
i

2
Hdt Dck~ t1dt !5S 12

i

2
Hdt Dck~ t !, ~8!

which have to be solved for each time stepdt.
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To explain the computational procedure for periodicd
pulses, we restrict the following discussion onto the Sch¨-
dinger equation for a single pulse directed along thez axis:

]c~r ,t !

]t
52 iHc~r ,t !2 iF• ẑd~ t2T!. ~9!

Several pulses are then simply computed by repeating
computational steps described below for a single pulse. T
the same method allows also to compute systems with n
periodic, in the time randomly distributed pulses, pulses
varying strength, or pulses directed in opposite directions

The formal solution of Eq.~9! reads

c~r ,t !5e2 i tHc~r ,0!1E
0

t

e2 i (t2s)H~2 iF• ẑ!c~r ,s!

3d~s2T!ds, ~10!

which yields after integration

S 11
i

2
F• ẑDc~T1 !5S 12

i

2
F• ẑDc~T2 !, ~11!

with c(r ,T2) the wave function immediately before th
pulse andc(r ,T1) directly after the pulse. This time
integration scheme is illustrated in Fig. 1. Equation~11! de-
scribes exactly the influence of ad pulse onto the wave
function independently from the strengthF of this pulse.
Thus the computational scheme is only approximated by
assumption that the kicked system can be described bd
pulses, by the necessarily finite discretization of the wa
function and by propagating the wave function in betwe
two pulses via the Cayley expansion, Eq.~8!.

The electric field causes a strong coupling between bo
states and the continuum. Therefore the integration rad
has to be chosen with care to avoid elastic scattering at
integration border. To weaken this problem we have imp
mented a masking function as proposed in Ref.@20#. By this
masking function, the tails of the wave packet that are dr
ing into the continuum, and thus would be elastically r
flected at the integration border, are significantly damp
out. The masking function is given by

FIG. 1. Our time-integration scheme: between the pulses we
the Cayley method with the field-free hydrogen Hamiltonian. T
wave function after the pulsec(T1) can be calculated by solving

(11 i /2F• ẑ)c(T1)5(12 i /2F• ẑ)c(T2), with c(T2) the wave
function immediately before the pulse.
3-2
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THREE-DIMENSIONAL KICKED HYDROGEN ATOM PHYSICAL REVIEW A64 053403
f ~r !5sin4F p~r 2r max!

2~r M2r max!
G ~12!

for r larger than the masking radiusr M , otherwisef (r )51.
The masking function is illustrated in Fig. 2. In our calcul
tions we used mainly (r max2r M)/r max'0.1 and multiplied
the wave packet with this masking function after each ti
stepdt. With this method reflections at the integration bord
are prevented, but also parts of the wave packet that
correctly ‘‘kicked’’ back into the integration area by the ele
tric pulses are as well damped out. By monitoring the no
of the wave packet after each computational step, we ch
if the integration radius is sufficiently large. Thus to obta
convergence, both, the size of the integration area and
size of the masking radius have to be carefully controlled

III. RESULTS AND DISCUSSION

Dhar et al. @10# studied the time development of a par
bolic Stark state with principal quantum numbern59, para-
bolic quantum numberk50, andm50, see Fig. 3, under the
influence of periodic pulses with a frequency equal to
transition frequency of then59→10 manifold. Thus the
corresponding pulse period isT55357. The selected field
strength wasF5231023. The computation was carried ou
in a small basis of bounded hydrogenic eigenstates. T
obtained a resonance between then59 andn510 states (n
is the principal quantum number!. This is uncovered in Fig
4~a!, in which we show the overlap of the propagated wa
packet with then59 andn510 manifold for fixed magnetic
quantum numberm50. To compare our result with Re
@10#, we used exactly the same initial state, and for the re
ers’ convenience the same notation on the left-hand sid
Eq. ~13!. In the parabolic quantum numberun,k,m& this state
is given by

un59&5u9,0,0&. ~13!

Our results are in exact agreement with their results~Ref.
@10#, Fig. 1!, which gives added confidence in our metho

In addition we present in Fig. 4~b! the autocorrelation
function C(t)5u^c(t)uc(0)&u for the parabolic unkm&
5u9,0,0& state mentioned above and in Fig. 4~c! for a hydro-
genic state with the quantum numbersn59, l 50, andm
50. For the parabolic quantum numberk50, severall val-

FIG. 2. To prevent reflections at the integration boundary
wave function is folded with the following masking function:f (r )
5sin4@p(r2rmax)/2(rM2rmax)#.
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influence of the angular momentum distribution of the init
wave function on its time development. In Fig. 4~d! we have
plotted the expectation value of the angular momentum a
function of the time for the hydrogenicu900& state. Due to
the kicks, this wave packet exhibits a periodic behavior.
the maxima the wave packet is running through a nea
spherical shape. It is well known that constant electric fie
have a weaker affect on spherical states~high angular mo-
mentum!. Simplified, a similar behavior is also shown in Fi
4~d! and thus the maxima~large angular momentum! are
significantly broader than the minima. Thus, a wave pac
with large angular momentum expectation value is less
fected by the kicks compared to wave packets with sm
angular momentum.

Reinholdet al. @3# studied the kicked atom in the high
frequency domain, with scaled frequencyñ516.8. The fre-
quency scales for the Coulomb problem withñ5n/n3,
where n is the principal quantum number. By comparin
one-dimensional classical and quantum-mechanical calc
tions they could uncover quantum localization. In the clas
cal calculations the dynamics of an ensemble of partic
initially starting on different points in phase space but on
same torus, was computed.

In order to compare classical and quantum-mechan
calculations the question arises what quantum-mechan
state should be used for the initial wave packet? In u
dimensional calculations, the particles move along a sin
axis. There is, of course, no other possibility. Therefore, to
as close as possible to the studies presented in Ref.@3#, we
used for comparison with the three-dimensional syste
strongly on thez-axis, localized parabolic Stark states, th
with high parabolic quantum numbers. The probability de

e

FIG. 3. The probability density of several Stark states. From
to bottom:unkm&5u20,19,0&, u20,1,0&, andu9,0,0&. The higher the
parabolic quantum numberk, the stronger the localization along th
z axis.
3-3
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M. KLEWS AND W. SCHWEIZER PHYSICAL REVIEW A64 053403
sity of some Stark states is shown in Fig. 3. In Fig. 5
present the recurrence probability for a series of differ
quantum numbersn, k5n21, and m50 in the high-
frequency regime (ñ516.8, D p̃50.01, the momentum
scales with D p̃5Dp/n). The casesn55, n520 and n
550 were studied for the 1D case in Ref.@3# and are almost
indistinguishable from the 3D calculations for low princip
quantum numbers. The higher the quantum number is,
larger the difference in the amplitudes of the autocorrelat
function, while the frequency of the oscillations rema
nearly unchanged. But obviously the same mechanism
quantum localization occurs also in the three-dimensio
case.

In Fig. 6 we show the autocorrelation function for seve
Stark states of the samen-manifold but with different para-
bolic quantum numbers. We used the same driving field a
Fig. 5. With decreasing parabolic quantum numberk, the
states become stronger located on the negativez axis. Locat-
ing the state on the negativez axis is the equivalent of locat
ing the state on the positivez axis but using kicks with
opposite field direction. For the one-dimensional system,
dynamics completely changed with the field direction@1#. By
running through different parabolic quantum numbers o

FIG. 4. The parabolic stateunkm&5u9,0,0& and the hydrogenic
state unlm&5u9,0,0& under the influence of a driving field with
the frequency equal to the transition frequency between then59
and the n510 states.~Field period T55357t0, field strength
F5231023). ~a! The probabilities ( l 50

8 u^9,l ,0uc(t)&u2 and
( l 50

9 u^10,l ,0uc(t)&u2 with uc(0)&5un59& @see Eq.~13!#. ~b! The
autocorrelation functionu^c(t)un59,k50,m50&u and~c! the auto-
correlation functionu^c(t)un59,l 50,m50&u in dependence of the
number of kicks.~d! The expectation value of the angular mome
tum ^ l &(t) for the initial wave packetuc0&5un59,l 50,m50&.
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would thus naı¨vely expect a similar behavior, but this tre
mendous change observed in the one-dimensional sys
could not be observed here. Obviously there is one differe
between a uni- and a multidimensional system. In a o
dimensional system the left-hand and the right-hand sid
strictly separated by the Coulomb singularity. For multid

FIG. 5. The recurrence probabilityu^c(t)uc0&u2 of some Stark
statesun,k5n21,m50& for different principle quantum number
n55, 10, 20, 30, 40, and 50 under the influence of a high-freque

train of pulses withñ516.8 andD p̃50.01.

FIG. 6. The autocorrelation function for Stark states under

fluence of a high-frequency train of pulses withñ516.8 andD p̃
50.01. The principle quantum number isn520 and the parabolic
quantum numbersk519, 13, 7, and 1~from top to bottom!.
3-4
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THREE-DIMENSIONAL KICKED HYDROGEN ATOM PHYSICAL REVIEW A64 053403
mensional systems this is no longer true. For the elec
there is from the very beginning a nonzero probability
presence around the Coulomb singularity and thus not on
flux towards or away from the singularity, but also arou
the singularity. Hence there is a qualitative change by go
from one-dimensional to multidimensional systems. Simp
fied, the electron has more kinematical possibilities to mo
in phase space, and can no longer be confined to one
space by the Coulomb singularity. In addition the possibi
to study states that are equally localized on both, the th
dimensional system offers the negative and the positivz
axis and thus, driving the ‘‘electron’’ in the direction of th
core on one side and against the core on the other side.
to our discretization technique we could also synthesize
other shape for the initial wave packet@21#.
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By space discretization we were able to perform quantu
mechanical calculations for the three-dimensional kicked
drogen atom. This method is fast converging and flexib
We already included phenomenological potentials to sim
late the wave-packet propagation in alkali-metal atoms
comparison with the results for hydrogen will be publish
elsewhere. Due to the space discretization in our method
are free to use any shape for the initial wave packet. T
only limits are due to the available computer. All calculatio
presented here were performed on low-cost single-proce
PC’s with a maximum memory requirement of approx
mately 600 MB.
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