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Stability of hydrogen-antihydrogen mixtures at low energies
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The stability of antimatter in contact with matter has been investigated. The interaction between hydrogen
and antihydrogen is considered as the prototype reaction. We have focused interest on the rates for proton-
antiproton and/or electron-positron annihilation during hydrogen-antihydrogen collisions at low energies. In
particular, we have concentrated on the calculation of the rates for the rearrangement reaction leading to
formation of protonium and positronium, ending inevitably in particle-antiparticle annihilation. The cross
section for the rearrangement collision has been calculated in a fully quantum-mechanical treatment. Addition-
ally, we have calculated cross sections for direct annihilation during the collision process, which was found to
be comparable to the rearrangement cross section. The elastic cross section and its low-energy limit, given by
the scattering length, have been calculated, allowing, by comparison to the inelastic processes, a prediction for
the efficiency of cooling antihydrogeria collisions with ultracold hydrogen atoms.
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[. INTRODUCTION mic background radiation due to relig rays from matter-
antimatter annihilation.

In the present paper, we investigate the stability of anti- In this paper, we present a detailed investigation of the
matter in contact with ordinary matter. The collisional inter- relevant cross sections and scattering lengths for a pair of
action between hydrogen H and antihydrogensHonsid- interacting hydrogen-antihydrogen atoms in their ground
ered as the prototype reaction. The problem has receivestates. In particular, we investigate the possibility of cooling
limited attention in the pagtl—7] but is rapidly gaining in- antihydrogervia contact with cold hydrogen, a method first
terest as recent advances in producing, trapping, and coolingggested by Shlyapnikost al. [5]. In the collision of an
antiprotons and positrons opened the possibility of antihyantihydrogen atom with a hydrogen atom, where both atoms
drogen formation at low temperatures. This may allow stud=re in their ground state, elastic scattering leads to thermali-
ies of antimatter and tests of fundamental physical principles ation and is responsible for the cooling. The feasibility of
such as theCPT invariance or the weak equivalence prin- cqjlisional cooling depends on the rate of thermalization of
ciple for antiparticles. Such experiments are in progress ainiinydrogen compared to its annihilation rate. In a recent
CERN AD (Antiproton Decelerator within the Apparatus paper{12], we have presented results for particle-antiparticle

f(%’HHIEIl%lr,]A)!Dr,i(r::tsiﬁ;r:jroEgXep:n'rlprzgtﬁATogAlg?ugﬁ(lj A;ggmi[ter an{]ihjlatir?n, thrc;)ugh thefearrqngemenlproi:efs, v;hich re-
Spectroscopy and Collisions Using Slow AntiprotonssfJ ts in the pro UCtI(?n of positronium Pe’e an prqtq—
(ASACUSA) collaborations. nium Pr=pp according to H-H—pp+e*e . The annihi-
The ATHENA[8,9] and ATRAP[10] experiments aim at lation then occurs within thbBoundparticle-antiparticle pairs
the production of antihydrogen atoms at low energies, Capthat are formed. Another loss process is annihilation “in
turing these atoms in a magnetic trap, and comparing th#ight,” directly from the scattering states of the colliding
energy levels of antihydrogen with those of hydrogen.System during the collision. Hence, both the strong nuclear
ASACUSA will carry out a program on antiproton- force and the Coulomb force give rise to inelastic processes.
Containing atoms and atomic physics with antiprotonS, notaBOth inelastic channels result in losses of antihydrogen, and
bly on antiprotons in collisions and high-precision spectrosthus, compete with the desired cooling process. Therefore, a
copy on antiprotonic specid¢41]. knowledge of thg rates for the elastic and inelastic collisions,
The prospects of laboratory experiments with cold antihy-S of paramount importance.
drogen reinforce the importance of questions regarding the At low energiesE, the elastic cross sectiarf'is constant,
stability of antimatter in contact with ordinary matter. Addi- While the inelastic cross sections vary as/E/[13]. For a
tionally, these questions are of interest in astrophysics, pathermalized sample described by a Maxwell-Boltzmann dis-
ticularly in the context of the matter-antimatter asymmetry intribution, this implies that the ratg,, for elastic collisions
the universe, and in interpretations of distortions of the cosbehaves aa ¢~ ﬁ (whereT is the temperatude while the
rate \j,e for inelastic collisions is constant. Hence, there
must exist a certain limiting temperature below whichg,
*Present address: Fachbereich Chemie, Univérslenstanz, >\, and consequently the loss of antihydrogen dominates
Fach M 721, D-78457 Konstanz, Germany. over the cooling process. The ratig,e/\¢ determines the
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lowest temperature attainable in the cooling of antihydrogen.

In the present paper, we mainly concentrate on the calcu- -0.8| —
lation of the scattering cross section for the inelastic rear- n=3
rangement reaction leading to annihilatieia the formation =D

0.9 =

s, =,

of protonium and positronium in bound states. This process
will be discussed in the following section. In Sec. Ill, anni- .
hilation “in flight” will be discussed. This will be followed =
by a calculation of the elastic cross section in Sec. IV. A -
discussion of the results with respect to their importance for § n=1
[0}
D

h=!

the design and possible implementation of an antihydrogen
cooling experiment follows in Sec. V. We will use atomic
units except where we explicitly state otherwise. In order to 12
give a sense of the corresponding scale of temperature, we

will sometimes express the kinetic energy of the antihydro- N=2o N=23 N=24
gen atoms in degrees Kelvin, defined by dividing the energy B B -

by Boltzmann’s constant. When expressed in degrees Kelvin, FIG. 1. Scattering thresholds with Pn principal quantum number
the kinetic energy will always refer to the frame where theN=22-24, and positronium principal quantum numbefthe lines
average velocity of the atoms is zero, i.e., the laboratoryshow the sum of the protonium and positronium binding energies.
frame. Any final state with energy below 1 a.u., corresponding to zero
collision energy, can be formed in zero-energy hydrogen-
antihydrogen collisions.

n=1

n=1

Il. THE REARRANGEMENT PROCESS

In this section, the rearrangement reaction In  the present case, uj=my/2=my/2 and u;
- = (MpMpg/ (Mpyt Mpg =Mpg=2.
H(1s)+H(1s)—Pn(NLM)+PgnIm) (1) Conservation of the total energy yields
. . . .. _ P P
will be considered, i.e., the collision of a hydrogen and an 6~ 1=+ EL 4

antinydrogen atomboth being in their & ground states

yielding protonium and positronium left in the stafds M For cold collisions, the initial energy; is very much smaller
andnlm, respective|y_ In this casd andn denote the prin- than all other relevant energies, and can thus be negleCtEd in
cipal quantum numbers, and | the angular momentum the energy balance. Since for the final channel to be open it
quantum numbers, ardd andm the magnetic quantum num- IS required thak;=0, Eq.(4) reduces to

bers. Since the two leptons are not identical particles, the

Pauli principle imposes no restriction on the allowed states m m

of the system. One may thus choose to express the spin of Ep+ER'=— — —p2<—1=>N< § > O

the leptons either in terms of their total spin, or in terms of 4n® 4N 4-1in

the individual spins of the leptons. The spatial wave function ) ) ) o

is independent of the spin state, so all the different spin state5he relation(s) restricts the possible values of the principal
will be degenerate. Therefore, we will omit the spin quantumdu@ntum numbersl andn. The largest allowed value of is

numbers below. The same is true for the hadrdghie, pro- ~ obtained fom=1, i.e., £13=—0.25. In this case, the maxi-
ton and antiprotonspins. mum principal quantum number in which protonium can be

formed is No=24, while the rearrangement channel is
closed if N>N,,,=24. In the interval 22&N=22, only
bound states of positronium are energetically accessible. In
We will work in the center-of-mass frame, where the fact, only two principal quantum numbers, namely; 1 and
asymptotic relative momenta in the initial and final channeln=2, can occur for the positronium atom in this case. For
arek; andk;, respectively. The energids; and E; in the  N<22, either a bound statévith arbitrary n) or a free
initial and final channel can most easily be obtained frome*-e~ pair can be formed. The structure of the final-state

A. Energy considerations

their asymptoticvalues. In this way one obtains binding energies is displayed in Fig. 1.

2 Returning to Eq(4), with ¢~0, we find that the energy
E—e+eHieHoc_ }_ E: N 1 ®) released in the reactidfl) is converted to kinetic energy of
RIS ISR 2 2 2 translational motion in the final channel. Due to the large
mass difference between protonium and positroniym (

kfz m 1 =mpgy, this energy will, to a very good approximation, be

Ei=e+ 5§”+ grﬁ’sz — —'32 -—, (3) left in the translational motion of the positronium alone. The

2t AN?  4n minimum amount of energy that has to be transferred to the

kinetic energy of the positronium atom is listed together with
where £ denotes internal energies, external, translational the corresponding value ®f ., in Table | for different val-
energies, angk the reduced mass of the channel fragmentsues ofn.
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TABLE I. .Ma?qmum protonium excitatiorN ,,, and minimum q,(kf)(R;re,rg): (R, x (R), (10)
amount of kinetic energy; i, that has to be transfered to the ' :

positronium for different final positronium excitations where ; is a solution of the leptonic eigenvalue equation

n N €t min Hy; = VIP(R) ¢ (1)
1 24 0.046 95 _ _ _
2 22 0.01094 depending parametrically on the distarResr ;. The lep-
3 21 0.068 69 tonic Hamiltonian, describing the interacting hydrogen-
4 21 0.056 54 antihydrogen system, is given by
21 0.04091

” 1, 1 1 1 1 1

H'eP= Vg—z e e e

Mpe Fpe Tpe Tpe Tee

B. Formulation of the scattering process (12)

1. The cross section In the present context of a collision of a hydrogen and an

The cross section for the rearrangement process iiltg. antihydrogen atom in their ground states, the wave function

is Ui (R;re,re) is equivalent to the leptonic ground-state wave
. function of the H-Hmolecule that is rotationally symmetric
orear— (27) S S(E—E)|T; |2 ©6) around the interhadronic axis. This wave function describes a
k2 5 b 3, state with zero projection of the total leptonic angular

I . .
momentum on the internuclear axis.

where f stands for the complete set of quantum numbers The hadronic wave functiow, (R) is a solution to the
specifying the final state of protonium and positronium, eachwave equation

in a specific internal state, and moving with a specific kinetic
energy, in a specific direction. The main task in the determi-
nation of the rearrangement cross section is the evaluation of
the transition matrix elemeriy;, which is given by

1
— —V&+Vi(R) xi(RI=Epx(R) (13
p

describing the motion of the hadrons. The potentigR) in
To={(Y (| Vi WD), (7)  Eq.(13) is given byV;(R)=VI(R)— 1/R. Therefore, in or-
' der to solve Eq(13), it is first necessary to solve E(L1) on
The wave function¥{") is the solution of the complete & sufficiently dense mesh &fvalues, which yields a numeri-
Hamiltonian ~ describing  an interacting hydrogen- &l discretized representation f(R). For x,(R), the nor-
antihydrogen system with total enerdgy, that fulfills the ~ Malization according to
boundary condition for incoming hydrogen and antihydrogen B , ,
atoms. The wave functioly'; is the solution of the eigen- (X lxig) = o(ei— &) 8(Qi— Q) (14)

value problem
was adopted.

H Y =E(Y;, ) Choosing thez axis as the scattering axise., k;=k;2),
we obtain for the partial-wave expansion )pil (R)

whereH; is the final-channel Hamiltonian describingran-
interacting protonium-positronium system. This corresponds

to a final-channel partitioning of the complete Hamiltonian H
according to H-H;+V;, where

1
X(RI= 5 2 (ki R Yio(Qr), (15

where f|_(k;,R)/R is the radial solution of Eq(13), and

~ 1 1 1 1 Y.m denotes a spherical harmonic. With the normalization
Vi=— —+—+——— (9)  adopted in Eq(14), the asymptotic form of | for R—x is
Tpe Tpe Tpe Tpe '
dgscribes the interaction bgtween proto.nium and positro— f (ki ,R)— 1 ﬂmiu_iei 8,
nium. Here, and in the following, the notatiop=|r;—r;| is : V2 VK
adopted for denoting the distance between partickssd]. .
. i
X iR———+
2. The initial- and final-state wave functions sin| kiR 2 5Li ' (16)

i iof () impli- , ,
The total scattering wave funcmﬁki may be simpli where o, is the angular momentum-dependent phase shift.

fieg)b_y using the distorted-wave approximation in which| the present paper, we are interested in collisions with very
Wy’ is replaced by an incoming distorted wave representeghyy kinetic energies in the initial channel, and thus, we need

by the Born-Oppenheimer approximation to take onlys-wave scattering into account, for which
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atom, i.e.,EzeergﬁS and Q) is the direction of the final

1
fo(ki R)— T '::' 1% sin(k; R+ 8p). (17) momentum.
o
3. Separation of the transition matrix
The swave approximat_ign is justified whelgR<1, which The application of the Born-Oppenheimer approximation
for R=1 implies ¢;<10"". to the initial-state wave function, together with the partition-

If we partition the Hamiltonian in the final channel and ing of the Hamiltonian in the final channel, leads to the sepa-
ignore the small recoil transferred to the protonium atom dugation of the transition matrix elemerit;;, defined in Eq.
to the large mass difference between protonium and positra7), into a leptonic and a hadronic contribution, as is evident
nium, the final-state wave function as an eigenfunction offrom rewriting T¢; with the aid of Eqs(10) and(18), as

H:, may be expressed in the form ~ -
o b Tii=(Peo,(Fe.,re) dnm(R)| Vil #i(Rire.ro) xi, (R))-
Yi(Rle,rd=®e o (fe.fdduu(R), (18 (20

The two contributions are coupled to each othierthe para-

where . u(R) is a hydrogenic wave function describing metric dependence of the Ileptonic wave function
the bound protonium, ande o (r.,r5) is the wave function I(SR ;Te,le) ON trt‘eh'”;erhadrl?(”'c distande e
describing a freely moving positronium in the staten with eparating thehydrogenlik¢ protonium wave function

momentuk; . (I)E,Qf(fe,fg) is given by into a radial and an angular part,

1_
d’NLM(R) uNL(R)YLM(QR) (21)

1 ., cm
(I)E,Qf(reirg): PN Mfkfelkfreeqsnlm(regi (19 ) ) )
(2m) and using the corresponding separauoninf(R) [see Eq.

om i (15)], we carry out the integration over the angular parRof
wherer ;=(re+re)/2. The indexE of ®g g (re.re) 1abels  ysing the orthogonality of the spherical harmonics, we ob-
the total translational and internal energy of the positroniuntain

Un(R)| - fo(ki,R)
Tri= 5L,05M,0< PeoFefe)—g7 (Vi #i(RiTe JE)TI (22
|
in the case ob-wave scattering. (2m* )4 2
The final calculation off ;; splits naturally into two parts. o= & f Tno(R)T (R)fo(k| ,RIAR .
First, the leptonic matrix element i f (26)

tei(RiQ) =(De o (re.re)[Vil#i(Rire.re))  (23)  since only a small amount of energy is released in the final
. ) ) ] channel(see Table )l the contributions from partial waves
is calculated as a function & Itis convenient to expand the | >0 are negligible. Moreover, symmetry under the combi-
leptonic matrix element in the angular momentumm; of  npation of lepton exchange and horizontal reflectiéhim-

the positronium atom plies that all odd partial waves in the final channel vanish.
Hence, keeping only the-wave contribution is a good ap-
. co
teiRiQ)= 2 TTRYn Q). (24 Proximaton
follf 2
rearr—
For moleculars, symmetrym;=0. Second, the total transi- a U UNO(R)t (R)fO(k' RdR .
tion matrix element is calculated by an integration ofRer (27)

according to

In the next section, we shall describe how the leptonic matrix
F~ elements were calculated.
Ti= 5L,05M,Ofo Uno(R)te i(R; Q) fo(ki ,R)AR. (25)

C. Computational details
Hence, at low energies, protonium can only be formed in the

L=0 state. Using Eqs(6), (24), and (25), and doing the 1. Computation of the initial-state wave function
replacement;— X fd(;, we then obtain the rearrange- In the spirit of the Born-Oppenheimer approximation that
ment cross section has been applied to the initial-channel wave function
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‘P(k_*)(R;re,rg) [see Eq(10)], the calculation qu,(kfr) natu- TABLE I.I. Comparison of the hydrog.en-antihydrolgen.ground-
' .. . . ' . state energie¥,;(R) in the Born-Oppenheimer approximation.

rally splits into two parts. First, the leptonic wave function

Ji(R;re,re) and the corresponding leptonic energ\'é‘?( R) R This work Ref.[7] Ref. [4]

are obtained by solving Eq11) for a number of interhad-

ronic distance®. In the present paper, E¢L1) is solved by  0.85 —1.428121 —1.4289

introducing explicitly correlated basis functions in prolate 0.90 —1.368 924 —1.3682

spheroidal coordinates. This approach allows a very efficien?.95 —1.317 803 -1.3174 —1.314522

and accurate treatment of leptonic correlation and has beenoo —1.273695 -1.2723 —1.271095

very successful when solving the leptonic eigenvalue probi.50 —1.060 987 —1.060 540

lem of molecular hydrogen. Due to the introduction of a2.00 —1.013413 —1.010219

finite, but nonorthogonal basis set, Efjl) becomes a finite  3.00 —1.001 344 —1.001 280

generalized matrix eigenvalue problem that can be solved by oo —1.000472 —1.000 463

standard diagonalization techniques. The resulting leptonig¢g oo —1.000008 —1.000008

wave function can be written as

N _ . . . . .
b= cije*“(fe*fa{eﬁ(”e*’7952155 ﬂgjvﬁ VIEP(R) by adding the interhadronic potential 1/R, with
=1 e e

that of Kotoset al. [4], which for a long time, was the most
B _ _ accurate potential available. Recently, it has been improved
+(—1)% g Alre~ n@gzjgﬂi ,721 775}/3“1, (28)  inthe shortRrange (0.8&<R<1.0) by Armouret al.[7] who

€ € included the channel describing positronium formation ex-
plicitly in their basis. The authors claimed that this was cru-
cial in order to be able to improve on the potential given in
Ref. [4], and indeed it seems to be effective i 0.9.
However, our ground-state potential is more accurate than
the ones previously available, including the one of Armour
et al, for R=0.9, although our approach does not include the
rearrangement channel explicitly. The correlation of the lep-
tonic pair is, however, present in our basis functions due to

whereN is the dimension of the basi§; , »; are the prolate
spheroidal coordinates of the leptons, givd 2r o/R. The
positive integersp;, p;, d;, d;, and u;, as well as the
nonlinear parameterg and 3 are fixed for a specific basis,
while the linear parametexg; are obtained from the matrix
diagonalization. Based on the variational principle, the non
linear parametergx and B have been optimized for every

value ofR by minimizing the(leptonig ground-state energy the explicit occurrence of the interleptonic distamgg.

|

VIF(R) Of H-H. _ i The potentialV;(R) that governs the motion of the had-
The trial function(28) is the same as the one used by s in the initial channel of the collision, is presented in Fig.

Kotos et al. [4], except that we used two, rather than four, > “as is seen from the figure, the ground state is purely at-

independent nonlinear parameters. Although the old basigactive, i.e., there are no potential wells or barriers that
with four nonlinear parameters seems to be superior o thggyg temporarily trap the atom-antiatom system, preventing
present one, since it is more flexible, it turns out that restrictine nadrons from coming close to each other and, ultimately
ing the number of nonlinear parameters to two, allowed us tqnpjhjlate. Armour and Zeman have calculated the first-order

use much larger basis sets before running into numericaly rections to the Born-Oppenheimer approximation to
problems caused by the use of basis functions that are near{y,(R) and found this correction to be smgli4]. This indi-
linearly dependent. In the most interesting rangeR(®.85 e

<R=3.6), it was possible to us®=908 basis functions.
For larger values oR, the dimensiorN was reduced tdN
=114 atR=13 in a number of steps. In addition to allowing
larger basis sets, the form of E@8) turned out to be much
less restrictive regarding the choice of the integer param-
eters. While the old basis usually requires a careful selection
of basis functions in order to prevent numerical problems,
the new basis allowed us to choose the integer parameters
according to general rules. TiN=908 basis was composed

by selecting sets of integer parametéts ,p; ,p; . d;.q;} in ,
the following way. Foru;=0, all sets withp; ,p;,q;,q;<6 0 — 2 3 4
andp; +EJ- dj +ajs8 were selected. In addition, all sets ful- Rlau]

filling p; ,p; .0 ,gj=2 were used foru; =12, and 3. For FIG. 2. The hadronic wave functions superimposed on the po-
Symmetry reasons, it |s_neCF_:ssar_y to 'ﬂCIUde only one 0{entialvi(R) formed by the leptons and the interhadronic attraction.
those sets that become identicalpif and p; as well asq;  Fyjl jine: the radial part of the hadronic scattering wave function
andq; are simultaneously exchanged. fo(ki ,R) for & =10"1% Long dashed: the radial par, { R) of the

In order to assess the accuracy of the leptonic wave fundinal Pn state; dashed: ground-state interaction potevit{&); dot-
tion, we compare in Table Il our result for the ground-stateted: (for comparisoh the proton-antiproton attractiotshifted by
potential curveV;(R), obtained from the leptonic energy &£5°=-0.25).

V(R) [a.u]

052712-5



JONSELL, SAENZ, FROELICH, ZYGELMAN, AND DALGARNO PHYSICAL REVIEW 464 052712

cates that the approach we adopted of calculating the initial- TABLE Ill. Convergence of the positronium ground-state en-
channel wave function within the Born-Oppenheimer ap-€rgy, its error relative to the exact ground-state ener@y25, and
proximation, is justified. _the convergence of t_he squargd leptonic matrix eleni@dt with
For small R values, the leptonic potentia\ﬂe”(R) ap- increasingumay Used in the basis sgtf. Eq. (28)] for R=1.0.
proaches from below its limiting value¥!*"(0)=—0.25,

Ps T
equal to the positronium binding energy. However, this lim-*m En Rel. error[%] [tei(1)?
iting value is reached already at a finite distaRee=0.8[7], ¢ ~0.1376 45.0 0.0722
reflecting the fact that, in the adiabatic approach, the had; ~0.1913 235 0.0573
ronic dipole potential ceases to bind the leptons below & ~0.2193 12.3 0.0530
certain critical separatioR;. In this respect, the situation 5 —0.2348 6.1 0.0494

resembles the three-body case, where it has been shown that
a proton-antiproton pair cannot bind an electron below a

critical separatiorR,=0.64[15]. In view of these findings, matrix elementg ;(R;€);) is a formidable task if the analytic
we construct the leptonic potentid®(R) by making a  form (19) of the final leptonic wave function is adopted. In
smooth interpolation between our numerical valueRat order to perform the integration, both wave functidgimsthe
=0.85 and the energy 0.25, which is the lowest eigenvalue initial and final channejshave to be expressed in a common
of Eq. (11) for R<0.8. coordinate system. Unfortunately, the final wave function
The calculation of the hadronic scattering wave functioncannot be easily expressed in the prolate spheroidal coordi-
requires, especially for low collisional energies, an accuratéate system, nor can the initial-state wave function easily be
leptonic potential for large values & It is very difficult to  transformed into a coordinate system that allows a simple
calculate long-range potentials by variational methods. Howelescription of the final-state wave function.
ever, asymptotic forms can be used. In the present case, the In order to facilitate the calculation of ;(R;{;) we also
effective asymptotic interaction potential has the formexpanded the leptonic wave functiohEVQf(re,rg) of the

H |
limg_..Vi¥(R)=Cg/R°+Cg/R®.  The constants Cg final channel in prolate-spheroidal coordinates. For this pur-

=—6.499 andCq=—124.399 are the same as for thg H pose, the leptonic final-channel Hamiltonian that describes a
molecule[16]. This asymptotic form was found to deviate by freely moving positronium atom

only 3x10 8 from our calculated energy @&=13. This
indicates the high accuracy of our potential and allows its 1 1
continuation beyond®R=13. HP=AP=—--V2-_V
After having obtained the potenti®(R), the radial part 2 2
of the hadronic Wave—functioo(ki(R), i.e., ok ,R), was _ _ . _
obtained by numerical integration of E(L3), starting from has been diagonalized in tlsamebasis Eq.(28) that was
R=0. The integration was continued up to a sufficiently“sed fgr diagonalizing the Ieptorllc part 01‘ the total Hamil-
large value ofR, at which the wave function takes to within tonianH'®". One can easily obtaihl ™ from H'*? by remov-
seven significant digits, the asymptotic behavior expectednd the terms that describe hadron-lepton interactions. It still
from Eq. (17). The asymptotic amplitude then fixes the nor- contains the center-of-mass motion, since the kinetic-energy
malization of the radial solutionsf,(k;,R). At R—0, oOperators foibothleptons are included.
fo(ki ,R) was matched to a Coulomb wave. The resulting The present approach leads to a discretization of the con-
radial wave functiorf o(k; ,R) is presented in Fig. 2, together tinuous spectrum of the moving positronium, resultingif
with the radial parfiyo(R) of the hadronic wave function in €igensolutionsbg, o corresponding to a discretized set of
the final channelcf. Eq. (21)] that describes the excited eigenvaluesE;. The following section describes how these
(N=24) bound state of protonium. discretized solutions have been used in the calculation of the
leptonic transition matrix elements. Before that, we comment
on the validity and accuracy of this approximation. The ap-
proach is formally correct and would yield the exact leptonic
The final-channel wave functiol {(R,re,r) is a free-  wave function in the limit of an infinite basis set, since the
wave solution to Eq.(8) describing the positronium- adopted basis is in principle flexible enough. In practice,
protonium pair moving freely with the relative energy. It however, the limitation tqu;<3 and the requirement of us-
can be written in the product form given by E48). Ignor- ing a finite basis leads to a loss in accuracy. The convergence
ing the small recoil and relativistic corrections, the hadronicof the positronium ground-state ener@f{s with increasing
part is given analytically by~the wave function describing themaximum valueu max Of 4, is displayed in Table Ill. We
excited state of protoniumgy w(R). Ignoring relativistic ~ find that the relative error ir£F° is approximately halved
effects, also the leptonic wave functiohE'Qf(re,rQ [see  each timew .y iS increased one step. In addition, there is a
Eq. (19)] is known analytically, since it describes a positro- small artificial R dependence of about 0.005.
nium atom moving with respect to protonium with the en-  The basis functions Eq28) are not adapted to the rota-
ergy ef=kf2/(2,uf). tional symmetry of Hamiltonian B in Eq. (29). Hence, the
However, using the numerical forrf28) of the initial-  discretized eigensolutions obtained cannot be classified ac-
state wave function, the calculation of the leptonic transitioncording to a particular direction of the final momentum, as

2 1
e rei

(29

2. Computation of the final-state wave function
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the wave-functiorfIDE,Qf in EqQ. (19) are, and neither accord- élfep(E): |im(|:||fep_E_i8)—1. (31)
ing to a particular final angular momentulmp. The use of e—~0
ansatz Eq(28) for the wave function will therefore by ne-
cessity yield the leptonic matrix elemestimmedover all
directions of the final momentu§};, or, equivalently, over -
all final angular momenta, . As discussed above in Sec. tor HfP, we obtain
II B 3, it is, however, a good approximation to represent this
sum over all angular momenta by the=0 term only. ~
There is another possible problematic limitation when ex- |tE,i(R)|2
pressing the wave function of the moving positronium by a
—Im[
a

Introducing the complete eigenstate expansion of the opera-

_ <'//i|\7f|q)Ej a X Pe, o, Vi)
im 2, E,—E-is

e—0

wave function of the type given in E§28), since this wave
function is by construction rotationally symmetric around the
interhadronic axis, i.e., it has-type symmetry. A positro-
nium atom that moves with respect to the center-of-mass of N N

the protonium(i.e., with respect to the center of the interhad- - f de<wilvf|¢)E'Qf><q)E'Qf|Vf| ¥i)
ronic axig will, however, not be restricted to that symmetry.

Nevertheless, since there is no term in the Hamlltqnlﬁ_ﬁ H :J' de(¢E,Qf|\7f|¢//i>|2, (32)
in Eq. (29 that couples states with different projections
along R of the total leptonic angular momentum
=3, I, etc,, it is possible to evaluate the solutions with
different values ofA independently of each other. Because
the initial-state wave function and the interaction potential ~l ,

spectrum of KP, and summation over all other quantum

V¢ are rotationally symmetric around the interhadronic axis, |\ bers specifying the final state, including the direction of

only fmgl-st.ate wave functlons W.'th the same rotg’glonal SYMine final momentum. In the present case, only the continuous
metry will give nonzero contributions to the transition matrix

. ~ | . . .
element. Therefore, the symmetry-restriceusatzfor the ~ SPECtrUm is present, as¢Pidescribes themoving positro-
wave function of the moving positronium and the limitation MuMm.-

where the symboE [ denotes the summation over the dis-
crete part and integration over the continuous part of the

to 3 -type symmetry are appropriate. The transition matrix eleme|1"t‘E,i(R)|2 can be obtained
as the ground-state expectation value given in(86), pro-
3. Calculation of the leptonic matrix element vided one can find a meaningful numerical evaluation of the

After the leptonic initial- and final-channel wave func- resolvent operator. This is done with the help of the
complex-coordinate method.

tions have been obtained, the leptonic transition matrix ele= Th inal Hamiltonian is t f d by the dilati
ment can be evaluated. For a selected initial collision energ% € original Hamiltonian 1S transtormed Dy the difation
. . . ~00 peration

€; and final protonium stathl the energyE at whichtg(R)

has to be calculated, follows directly from the energy con-

servation aE=E,—£y"=¢—1-&". A—A'=0(0)A0-(0); O(6)f(r)=e3f(e’), (39
Obviously, it is unlikely to get from the diagonalization of

HI*P [Eq. (29)], in a discrete basis, the solutions at the par- , -

ticular energyE; =E; besides, the discretized solutions, be-Whered is the complex dilation parameter. .

ing square integrable, are not properly normalized. To obtain | N€ leptonic transition matrix element in E@3) is in-

" . ~00 variant under the dilation transformation

the transition matrix eIemertLg’i(R) we apply the method

based on the use of complex coordinates as in [R&}. The

application of this approach to the present problem will be ; k. )= OH -1 g)® OO0~ a0

briefly described. ei(RQ)=((U") (9 Ej,9f| (OVU™HO)|U(0) i)
The idea is to extract the transition matrix element as the

imaginary part of the expectation value of the operator

V(G when applied to the leptonic ground state in the

initial channel The discretized approximation to such an analytically contin-
ued transition matrix element does not vanish, and can be
~ ~1.0 . . . S
|tE’i(R)|ZEE |té,i(R)|2:f dQq|te (R Q)|? obtained with the help of the blorthonormal* expansion in
't terms of square-integrable solutioﬂ!sgj ’Qf,d)gj o, corre-
~ Alep o sponding to complex eigenvalu€s, obtained by diagonal-
- ;Im{<¢‘|Vfo (E)Vil ¢, (30 izing the complex-dilated Hamilton operatdif®*.
R The transition matrix eIemenTtE,i(R) can then be ob-
where G™(E) is the resolvent operator of the leptonic final- tained from the dilated expression introduced in E3p),
channel Hamiltonian i.e., from

=(®F o [V{14). (34
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o S (W IVHRE o NP o [VETW)
[Tei(R)] :fde|<q)E,Qf|Vf|’r/fi>| =—Im 2 jdﬂf §—E ) (35

ko

which does not contain the limiting procedure with respect toenergy dependence, assuming for the low energies the form
& and converges to the proper limit owing to the analyticity o"®2"=0.09%; 2.

retained through complex scaling. Evidently, it is necessary In principle, there are many possible rearrangement chan-
to apply the complex-dilation transformation also to the totalnels determined by different principal quantum numbers
leptonic Hamiltonian kP in order to obtaing’ and ¢:* . =1 of the positronium, andli=< 24 of the protonium, as dis-
cussed above in Sec. Il A. The rearrangement process is,
to the maximum value ofi; used in Eq(28) is displayed in E&Vx]e\g;tgogﬂstfg 4t’1ya:]hde hﬂﬁzgiliieﬁgltggi;ﬁé F;L(:[O

Table Ill. We find that the trend of the convergence is similar . X .
to that of the positronium ground-state energy. Based on thg 0>° section for rearrangement into more tightly bound pro

known 6% relative error of the best value for the positroniumton'um stateg, we evaluated HG) W.'th te;(R)=1 for dif-

d state, we then estimate the erroffia; (R)|? due to ferent protonium states. The resulting squared overlap of the
ground state, , i initial and final hadronic wave functions was found to be 250
basis-set inaccuracies to be less than 25%.

Th lculati ding to E€35) o the absolut times smaller foN= 23 than forN=24. We therefore found
€ cajculation according to q3 ) gives the absolute it sufficient to include only theN=24, n=1 final state in
value squared of the leptonic matrix element summed over rearr

partial waves. Hence, we cannot separate the different partigl
waves, as needed in E(6). However, since we may ne- ment cross section to earlier results by Kotisal. [4], and

glect higher final partial waves we ha\tg,!ztgﬂ » which by \ioronin and Carbone[118]. The former calculation used
gives the leptonic matrix element needed in the fialave  5"gorn-Oppenheimer potential obtained in a way similar to
approximation Eq(27). ours, but used for the cross section a semiclassical estimate
based on the conservation of energy and angular momentum.
Voronin and Carbonell made an estimatesdf" based on a
calculation of hydrogemntiproton scattering, but with the
With the aid of the hadronic wave functions of the initial correct long-range hydrogen-antihydrogen potential in-
and final channel and the leptonic transition matrix elementcluded. We find that our results are significantly smaller than
it is finally possible to evaluate the total transition matrix those in the earlier works. The semiclassical result of Kotos
elementTy; with the aid of Eq.(25), and to obtain the cross et al, includes all partial waves, while the other two results
sections™@" for rearrangement using E¢6). The integrand are fors waves only, but higher partial waves are not suffi-
in Eq. (25 involves two rapidly oscillating functions, the cient to explain the difference between the results. Also, in
highly excited protonium state, and the low-energythe case of hydrogeantiprotonscattering, the semiclassical
hydrogen-antihydrogen wave functigsee Fig. 2 At very  method has been found to give too large a value for the
short distances, both systems interact withRart potential,  rearrangement cross sectifi8].
and hence, oscillate in phase, while the last lobe of the
bound-state wave function is 180° out of phase with the 10° ; ' ;
continuum state. The leptonic matrix elemﬁﬁﬁ(R), which
varies slowly withR, provides a weighting of the positive
and negative contributions to the overlap of the hadronic
wave functions. This situation gives rise to a cancellation
effect in the integral Eq(25), which makes the result very
sensitive to small changes iy(k; ,R). On the other hand,

TL(R) vanishes aR—0 because Vvanishes in this limit.
This limits the effect of possible inaccuraciesfig(k; ,R) at
small internuclear distances. We believe the molecular data ] .
used to calculatéy(k;,R) to be very accurate down tR 10" 10 10° 10
=0.85. The smooth interpolation betwe&0.80 andR Energy [a.u]
:0'8_5 F;an be d‘?”e in several different ways, bu_t the details FIG. 3. Comparison of the cross section for the rearrangement
of this interpolation were found to have a relatively small .5\cjated in this papdfull line) to a previous semiclassical calcu-
influence on the resulting cross section, changing the resufktion by Kotoset al. [4] (dotted ling and an estimate by Voronin
by ~5%. and Carbonel[18] (dashed ling The result by Kotoset al,, in-

Our results for the rearrangement cross section are prefudes all partial waves, while the other two comprise only the
sented in Fig. 3. As required, the rearrangement cross secti@fvave contribution. The results from other works have been

follows Wigner's threshold law characterized by an'?  adapted from graphs.

An example of the convergence |El£i(R)|2 with respect

In Fig. 3, we also compare our result for the rearrange-

D. Results for the rearrangement cross section

8
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Kotos et al.[4] estimated the rearrangement cross section
using the concept of a critical distanBe at which the lep- 10°
tons become no longer bound to the hadrons. Variational
calculations show that this occurs at a valueRoliess than
0.8 [4,7]. In the semiclassical model the rearrangement is
assumed to occur spontaneously with a probability of unity
on all those particle trajectories that have classical distances
of closest approach less than or equaRta

Our quantum-mechanical calculations do not support this
model, which does not take into account the nature of the 107 , ‘
final state. The reaction can occur at zero initial kinetic en- 1077 107 1 10
ergy, even at internuclear separations exceeRingWith the Collision energy e, [a.u]

escape of the leptons from the hadrons, the energy required g1 4. The cross section for annihilation in flight, obtained
for reaction will be provided by the binding energy of the yccording to Eq(41) with the correct scattering wave functions
bound states of protonium formed by the recombination ofsyji ine), and for comparison with plane wavégashed ling and

the proton and antiproton. We have shown that the prefereRgith Coulomb wave functiongdotted line. The graph has been
tial channel has principal quantum numbér24. It is the  extended to very high energies only to illustrate that the cross sec-
channel for which the initial and final wave numbers aretions ultimately converge. The low-energy behavior of the annihi-
most nearly equal. A critical distance is more appropriatelylation cross sections are 03880 5. (plane wave
determined by the extent of the overlap of the initial ando.144/e; (H-H), and 4.9<10"%/¢; (Coulomb wave

final-state wave functions, which Fig. 2 indicateRis 1.3.

In any case, the calculated matrix elements yield a probabil-

c,[au]

5

ity much less than unity so that a classical model will over- ADF: _ T1s = 8771;15 =1.69x10 7
estimate the rearrangement cross sections. A classical picture | p10d0)|? my
is in any case inadequate for the description of scattering in

y N P 9 ~6.80<10° ¥ eV n¥. (39

which only s waves participate.

In the same way the rate for annihilation in flight is given

I1I. ANNIHILATION IN FLIGHT by

A. Proton-antiproton annihilation op on o o2 0
. . AN =(xk(R)|V (R))=A _ , 4
In addition to the loss of antihydrogen caused by the re- a <Xk'( )Va |Xk'( ) |Xkl( ) (40

arrangement collisions, there will also be loga proton-

. LS : wherey,. (R) is the scattering wave function for the proton-
antiproton annihilation in flight according to in( ) g P

antiproton pair in the leptonic potential, defined in EtR).
H+H—e" +e~ +decay products, (36) Since all partial waves ofy, [see Eq.(15)] exceptL;=0,
vanish at the origin, only waves contribute. The annihila-
tion rate\bP in Eq. (40) is given per unit energy, and de-

i.e., with he formation of an intermedi rotonium . . . .
s‘?aie thout the formation of a termediate  protoniu pends on the incoming particle fluixthrough the normaliza-

We assume that the proton-antiproton annihilation occurdon of the sc.atterm.g wa\{e fun.ct|ox|ki. Such.normallzanon
only at the exact point of coalescence of the two particlesdependence is avoided, if we instead consider the cross sec-
The annihilation process may then be calculated using th#on. With the normalization adopted in E(L4), one has
pseudopotential —
— )\gp (2,”.)3 o 5
A== APP| X (0)]*. (41

_ _ E 2
VEP= APPS(R), 37) FoooK

B Here we have used the initial-state wave functigncalcu-
where the annihilation constaAfP can be determined from

experimental data, e.g., from the width of bound protonium
states. Using the pseudopotential, we may express the widl&l;%l
of the 1s protonium state in the form

lated withoutincluding VAP in the wave equatioiil3).
The resulting cross section is presented in Fig. 4. To illus-
te the asymptotic behavior of the cross section in the high-
and low-energy limits, we also present, in the same figure,
the cross sections obtained for a plane wave, and for a pure
T15=Ap3|55100(0)|2- (38) Coulomb interaction charactgristic of scattering of a bare
proton and antiproton, respectively. The former situation cor-
_ responds to full screening of oncoming hadrons, the latter to
The constanAPP may be calculated from E@38), using the  no screening. The exact result must fall in between these two
experimental valud';s=1130 eV from Ref[19], obtained limits.
from studying the cascade of protonium formed after stop- We see that for high incoming energies>10%, the cross
ping antiprotons in hydrogen, sections indeed converge to the asymptotic form characteris-
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Ps(1s) in the triplet 3S, state, the lifetime is 1410 7 s,
ro e while for the singlet!S, state the lifetime is 1.2810™ %0 s.
7 The origin of this difference is the charge-conjugation invari-
ance of the dominating electromagnetic decay into photons.
-200 ] The 1S, state isevenunder the charge-conjugation operation
' C, and hence it can decay into two photons, each having an
intrinsic charge-conjugation parity 1, while the3S, state is
-400 |4 : odd under the same operation, and hence, must decay into
three photons, which is a much slower process.
S T Sbo In order to accommodate both types of decays, we define
Raul ’ two annihilation constants A$°=4.9x10 °=2.0

, , , X103 eV n? for the C-even states, and®®=4.3x 10 °
S e er e Pt oric st v 310 2 e 1 for Codd sttes. Th peucopotertal
oA ' ' for electron-positron annihilation may then be constructed by

6 —7 8 _
g;ost:]ee(;l’ 107" (dasheyl 10°" (long dasheyl and 10° (dot separately projecting out the even and odd parities

fy(k,RYR [a.u]

tic of the plane-wave description. In this region, the influence Vii(reo) = %(1+ C)AS®8(rge)(1+C)
of the scattering potential on the cross section is negligible.
The outcome of the scattering is determined by the large
collision energy rather then by the interaction potential. +
In the energy region ICP—10% the hydrogen-
antihydrogen cross section is almost identical to the cross 1 _
section for a bare proton and antiproton. This means that the =5(1- Ped AS0(red (1 Peo)
atoms feel the deeper part of the interaction potential, i.e.,
the short-range part, where it is completely dominated by the
proton-antiproton attraction. The relatively flat long-range +
part of the potential, on the other hand, gives a negligible

perturbation at energies in this range. Here, Ps is the electron-positron exchange operafgg

For energies smaller then=10"°, the H-Hannihilation  — _ ¢ where the minus sign comes from the anticommuta-
cross section deviates from the annihilation cross section fQ'ivity of the fermionic field operators.
pure Coulomb attraction, and displays the/d/dependence  The hydrogen-antihydrogen system is invariant under
characteristic of the Wigner threshold law. The Wigner law ischarge conjugation of all four particles, but itrist invariant
valid only if the potential vanishes faster thaR1{13]. This  under charge conjugation of the leptons only. Expressing the
indicates that it is the effective long-range interaction, rathejpjtial-state wave function in terms of the coordinates
than the Coulomb attraction, which dominates the scattering.- re—reo, rM=(r,+rgy)/2, andR, it may be expanded in
and that the molecular or screening effects come into playpartial waveees even or odd under exchange of the leptons
The limiting energy 10° for the applicability of the Wigner [PocYn(Q, )=(—1)Y,(Q, )] as
law coincides approximately with the binding energy of the" & '™ d im({r
most loosely bound state, as will be discussed in Sec. IV.
Below this energy, the scattering properties are not only de- PR, r E)ZE ORI r Y m(Q, .
termined by the short-range proton-antiproton interaction, ki VT leerteel £ TIm T ee T eel TImi T ree
but the atoms feel the full interaction potential. This conclu- (43
sion is corroborated by studying the behavior of the scatter-
ing function x (R) at the origin (see Fig. 5. The wave In order to be single valued®(R,rgs,0) can be nonvan-

function shows nodes independent of the collision energyishing only forl=0. Hence, we conclude that, in the contact-
which establishes that it is factorizable into the forminteraction approximation, only the evér-0 partial wave
in(R):\/mXo(R), where xo(R) is energy independent contributes to electron-positron anmhllatl(_)n. Tgklng f’i|SO the
and the functiony(k;) can be related to the scattering am- symmetry un.der exchange of the leptonic SPA¥u ¢ INto
plitude. Such behavior is characteristic of low-energy scataccount we find that
tering in the presence of a shallow bound le\&)].

8(rea (1= PedW{ " x1u =0,

(1-C)A®5(rs0)(1—C)

N| =

(14 Pe)A%SS(re9)(1+Peg). (42

N -

B. Electron-positron annihilation

. . . . . - (), —
It is also possible that the electron and positron will anni- 8(red) (1+ P Wi’ x00=0. (44

hilate during the collision. To estimate this annihilation rate,

the treatment used in the previous section for the hadrons hd$ence, even though the hydrogen-antihydrogen system is not
to be modified because ground-state positronium has twan eigenstate with respect to charge conjugation of the lep-
very different lifetimes depending on its spin state. Fortons, the same selection rules as for the positronium ground
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state applies, i.e., two-photon decays for the singlet state, and
three-photon decays for the triplet states. 10" b
The ratio of triplet collisions to singlet collisions will de-
pend on the experimental conditions. For a statistical mix-
ture, the ratio is 3 to 1. In a magnetic trap, the electron spin
will be parallel to the magnetic field, while the positron spin,
being parallel to the magnetic moment, will point in the op-
posite direction. Hence, there will be singlet and triplet col-
lisions in equal proportions. We note that the annihilation
constantA$® for the singlet state is larger than that for 107 | L . L
proton-antiproton annihilation. On the other hand, as is evi- 10 1 lision e [au]m o
dent from Fig. 5, the proton-antiproton probability density is e
drastically enhanced &=0, where the proton-antiproton  FG. 6. Cross sections for the H-8ystem: elastic cross section
annihilation takes pIace, while the Ieptonic annihilation OC-obtained from the real part of the phase shift ofdglid), elastic
curs at a typical internuclear separatid~1. In fact, cross section including correction for the presence of inelastic scat-
|in(R=O)|2/|in(R~1)|2> 10° for low collision energies, tering (long dashel rearrangement cross sectigdotted, and
and hence, we conclude that proton-antiproton annihilatioroton-antiproton annihilation in flightdashegl At low energies,
dominates over electron-positron annihilation. A more dethe elastic cross section is 823 without the correction for inelastic

tailed evaluation of the latter process is undenj2g. scattering, and 829 including this correction, while the low-energy
behavior ofa™"is 0.094/¢;, and o2P~0.14A/;.

Cross—section ¢ [a.u.]

IV. THE ELASTIC CROSS SECTION AND LOW-ENERGY

BEHAVIOR energies where the real part of the phase shift goes through

zero, which are smoothed out by the presence of inelastic
The elastic cross section can be extracted using the rel&cattering.

tion As seen in Fig. 6, in the low-energy limit, the elastic cross

section is constant. This is to be expected from the general

theory of scattering of slow particles. At low energies, the

aa
a®(k)= P|1—S”(ki)|2, (450  phase shift may be expanded[48]
i
11,
whereS;; is the scattering matrix element related to the phase ki cotdg(ki) == —+ 5Terki+ ..., (49

shift via
. where a is the scattering length, andy is the effective
Sii (ki) = exp 2i o (ki) ]. (46) range. In the presence of inelastic scattering, the scattering
length, just as the phase shift, is a complex quardiy«a
—iB [22]. The scattering matrix eleme®;(k;) can be ex-
Sanded to first order irk;, and related to the scattering
length by

Here, as above, we only talkevave scattering into account.
The real part of the phase shift has been determined by fittin
the numerical radial solutionfg(k; ,R) at largeR to the form
Nsin(R+Re{ 8y(k;i)}). The elastic cross section obtained in
this way does not, however, take into account the presence of S;i (k) =1+ 2i o(ki)=1— 2ik;(a—i8). (50)
inelastic scattering. o oL !

In the presence of inelastic scattering, the phase 8pi6  The real parte of the scattering length and the effective
a complex quantity. The absorption faci®;| is related to  range were obtained by fitting them to the previously ob-

the imaginary part of the phase shift througt] tained real part of the phase shifts according to @§) in
the energy region 10'<g;<10 % This procedure gave

|Siil =exp(—21m &p). (47 —8.1 andr4=7.1. The relation of the real part of the scat-

tering length to the hadronic wave function is illustrated in

Unitarity gives the restriction €|S;|<1. We may extract
the imaginary part of the phase shift from the sum of the
rearrangement and in-flight annihilation cross sections

Fig. 7.

The imaginary pariB of the scattering length has been
obtained from its relation to the inelastic cross section. Sub-
stituting Eq.(50) into Eq. (48) gives the imaginary compo-

. v T i i i 1
U.ne|:P(1_|S“|2): —2[1—exp(—4 Iméy)]. (48) nent of the scattering length in terms of the inelastic cross
: :

: section

We may then correct the elastic cross section using the re- B= ﬁgma (51)
sults for the inelastic-scattering cross section. Bheave A7 '
elastic cross section with and without the correction for in-

elasticity is presented in Fig. 6. The effect of this correctionFor low energies, the sum of the inelastic cross sections be-
is small. The exceptions are the dips in the cross section dtave as 0.2&‘1’2, and therefore shows the energy depen-
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energy&,=4.6xX 10 °. This energy corresponds o=0.29,
which is outside the range of validity of the expansion Eq.
(49). An attempt to extend Eq49) to higher energies by
o=8.1 including ak* term in the expansion, resulted in the binding
energy &,=5.6x10"°, in approximate agreement with the
result from numerical integration.

The relatively large binding energy of the state nearest to
threshold can be understood from the form of the potential
V;(R) plotted in Fig. 2. Here we compare to the potential of
pure Coulombic attraction between the hadrons, which at

- . . . short distances is a good approximatiorM@R). The Cou-
0 5 R[‘a°u] 15 20 lomb potential supports an infinite series of near-threshold
o states. The H-Hpotential does, however, bend off quite
FIG. 7. Scattering lengtkr=8.1 for the H-Hcollisions and its ~ Sharply atR~1, and tends to a different threshold1,

f(k.R)

relation to the hadronic scattering wafig{k; ,R) (&;=10"19). which greatly reduces the number of near-threshold states
supported.
dence expected from Wigner’s threshold I#see Fig. 3. In the presence of a loosely bound state created by the
Using this form in Eq.(51) we find 8=0.8. The corrected scattering potential, the low-energy elastic cross section is
low-energy limit of the elastic cross section is then given by[13]
klimooe'(ki)=477|a|2=47r(a2+,82), (52 L 27 1T

o =— . 55
i €+]E| ®9

which tends to the constant vale€'=829. Comparing this

value to the inelastic cross sections, we find that elastic scatn the present case, this formula is not strictly valid because
tering dominates for energies larger than>7® 8. This  the most loosely bound state falls outside the range of valid-
means, for instance, that sympathetic cooling of antihydroity of the expansion Eq49). Nevertheless, as is seen from
genvia collisions with cold hydrogen will not be possible Fig. 6, the elastic cross section still changes character from
once the antihydrogen atoms are slowed down to this threshhe typical low-energy behavior at=10 °~|&,| as pre-

old energy, corresponding to a kinetic energy of 0.0&-  dicted by Eq.(55). A similar behavior was found for the
suming the hydrogen atoms to be at yest annihilation in flight, as was discussed in Sec. Il A.

Our results differ significantly from the results of a recent
calculation by Sinha and Ghosf23], which yielded an
elastic-scattering length of about 4(8stimated from their
graph and an elastic cross section@f'=280 in the limit of The loss of antihydrogen atoms due to collisions with
zero collision energy. The results were obtained using @ydrogen atoms is described by
close-coupling approach, with a basis that included a number

V. COLLISIONAL COOLING OF ANTIHYDROGEN

of states of the hydrogen atom, but only the ground-state dnt _

configuration of the antihydrogen atom. In view of the im- —— = —gnelynHpH (56)
. . . d v '

portance of the electron-positron correlation, we believe that t

this basis is too restrictive for an adequate description of _

low-energy scattering. In particular, it does not lead to thewheren" is the density of hydrogem" the density of anti-

attractive van der Waals interaction. hydrogen, and the relative velocity of the atoms. As was
For bound H-H one can introducec= —ik;, which is  shown in Sec. IV the rate of inelastic collisions, leading to

related to the binding energs;, of a state below threshold loss of antihydrogen, dominates over the rate of elastic col-

through[13] lisions for collisional energies less than .20~ 8. We shalll
examine the solutions to E¢66) in three limiting cases(i)
K= V2| (53 nHsnH (i) nf<nH, and(iii) nf=n".

In case(i) the high density of hydrogen atoms is not sig-
nificantly reduced by the collisions with antihydrogen, and is
hence, approximately constant. If the hydrogen and antihy-

i k COtSy(i k) = — k. (54)  drogen atoms have different initial temperatures, the elastic

scattering will lead to thermalization. In the present case,

Energies of bound states close to threshold may be obtainegherent>n", the final temperature of both types of atoms
putting the expansion E@49) into Eq. (54). For H-H scat-  will equal the initial temperature of hydrogen. Cold hydro-
tering we did, however, find that due to the large effectivegen atoms may hence be used for the cooling of antihydro-
range,r .= «, the resulting equation has no real solutions.gen atoms, provided that the losses are not too severe. This
This was confirmed by direct integration of the numericalprocess has been analyzed in REf, but with cross sections
potential, giving a most loosely bound state with bindingdifferent from ours.

The bound states appear at the poles ofSheatrix. In terms
of the phase shift this condition translates to
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8m - It is also interesting to look at the time scales for cooling.
The cooling rate depends on the density of hydrogen atoms.
Hydrogen atoms have been cooled down to 10K with
densities up to & 10® cm 3 [24]. According to Eq.(59),

for this density of hydrogen atoms, the cooling of antihydro-
gen from 10 to 0.1 K would take about 0.6 ms, indepen-
dently of the initial density of antihydrogen atoms as long as
] it is much less than that of hydrogen atoms.

Case (i), n"<n", corresponds to the situation where
some antihydrogen in a trap is lost due to a small background
= density of hydrogen. The storage times for antihydrogen will
1 N 100 10° depend on the temperature and the densities of atoms and
Surviving fraction of antiydrogen A antiatoms. Assuming a constant background density due to

FIG. 8. Cooling of antihydrogen atoms due to elastic collisionshydrogen atoms leaking into the trap, the decrease in the
with ultracold hydrogen as a function of the loss of antinydrogennumber of antiatoms is again given by EG7). Storage
atoms. Initial energy of the antihydrogef,=10 K (solid), E,  times forantiprotonsat 4.2 K have been measured to be on
=5 K (dasheti andEy,=1 K (dotted. the order of months or longg®5]. A recent calculation of

the rearrangement cross section in hydrogetiprotonscat-

Let X be the fraction of antihydrogen atoms that remaintering[18] gave a result about 40 times larger than our result
after a timet [\ (t)=n"(t)/n"(0)]. The relative velocitwy  for hydrogenantihydrogenscattering. Hence, under vacuum

is approximately given by the velocity of the antihydrogen in conditions sirplilsar to those in Refl25] (<250 atoms/crhor

the laboratory frame, since the hydrogen atoms have a mudiessure<10 ™ torr) storage times of antihydrogen should
lower temperature. Hence = (2E/mp) 2= (E/ u;)*, where be on the order of years. ,

E is the kinetic energy of the antihydrogen atoms in the !f hydrogen atoms cannot leak into the trap, any hydrogen
laboratory frame. Assuming also thEts10 5, so that the atoms present when the trap is loaded with antihydrogen will

low-energy forms of the cross sections are valid, integratior?f cOurse be removed through annihilation. Hence, the stored
of Eq. (56) gives antihydrogen is “self-cleaning,” and storage times are, as far

as annihilation is concerned, indefinite.
47 Bt In case(iii ), we consider the lifetime of a cloud consisting
A(t)zexp( B ) (57) of hydrogen and antihydrogen in equal proportions. For ex-
ample, spectroscopy on the-2s line could perhaps be done
The antihydrogen atoms will loose half of their energy inon a sample containing a mixture of hydrogen and antihy-
each binary collision. The loss of kinetic energy of an anti-drogen atoms, provided that the atoms and antiatoms can
hydrogen atom through repeated elastic collisions with hy<€oexist for a sufficiently long time. It would then not be

n
T

Final energy E/X [K]

-
T

drogen atoms is then given by necessary to determine the absolute energy of the line. Any
dE £ difference between matter and antimatter, implying a viola-
Myt =— anHa2E3’2/,uil/2. (59) tion of theCPT symmetry, would manifest itself asa dquple
dt 2 peak in the %-2s line. It should be much easier to distin-

o i guish two nearly overlapping peaks in a single data set,
If Eo anduv are the initial klnet_lc energy ar_wd velocity of the rather than to compare the absolute energies obtained from
antihydrogen atoms, the solution of E§8) is two separate experiments on hydrogen and on antihydrogen,
E(t)=Eo{1+mn"avot} 2, (59  respectively. _
Assuming than™=n"=n in Eq. (56), we obtain for low
Inverting the relation(57), the time variable in Eq(59) can  energies the solution
be substituted by the fractional loss of antihydrogen

-2 _ nO
E(k)=Eo[1— a24—Z°“‘|n>\ (60) " 2 gt 6D

Wheren, is the initial density. Hence, the time it takes before

Th Itis i f th ity of h
e result is independent of the density of hydrogen atom the density is halved is

Using the values o& and B obtained in Sec. IV, we have in
Fig. 8 plotted the energy after cooling as a function of the

loss of antihydrogen for initial energo=1, 5, and 10 K. = Hi ]
We see that largely independently of the initial energy, the 4mBng
antihydrogen is cooled down to 0.05-0.1 K, while loosing

90% of the atoms. The result agrees well with the estimate iffor an antihydrogen hydrogen density of 18toms/cm we

Sec. IV based on the crossing of the elastic and inelastiobtaint,,=26 min. Hence, it is possible for antihydrogen
cross sections. Below this limit, further cooling only occursand hydrogen to coexist in a trap for a considerable amount
at the expense of a very high loss of antiatoms. of time.

(62
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VI. CONCLUSIONS AND DISCUSSION rangement is\"®3"=7.6x 10" *® m3s 'n". At the low den-

The elastic cross section for the hydrogen—antihydrogeﬁities that are feasible i.n experiments, this rate is Io_vv, leading
collisions turns out to be rather large. The scattering length i€0 Storage times for mixtures of hydrogen and antihydrogen
8.1, which is 18 times larger than the hydrogen-hydrogerf the order of minutes.
scattering lengtithe latter is 0.45 for collisions in the singlet ~ While trying to find the relevant parameters for the coex-
state[26]). Since the effective atom-atom interaction at largeistence of hydrogen and antihydrogen and for the prospects
separations is the same for both systems the large differeng$ collisional cooling of antihydrogen, we found that the
in scattering length must be due to the very different inter-H-H system is a very instructive laboratory for the studies of
action potentialattractive vs repulsiveat short distances. As cold collisions, with many interesting features due to the
expected, the elastic cross section tends for low collisiorattractive nature of the short-range potential, the competition
energies to a constant val(gee Fig. 7, determined by the of different scattering processes, and the influence of the

scattering length. The limiting value of the elastic cross secmost loosely bound state below the Helissociation thresh-
tion is o®'=829. The low-energy scattering formulas remainold. In particular, the process of radiative association into a
valid up to an energy equal to the binding energy of the mospound H-Hstate, and its possible use as a diagnostic, is the
loosely bound state of the scattering potential. The bindingypject of another pap¢28].
energy of this state i§,=4.6x10 °.

We find that loss due to in-flight annihilatid86) and due
to the rearrangement reactioh) are comparable in magni-
tude. The sum of the inelastic cross sections become larger
than the elastic cross section for energies below< 1.9 8. The work of A.D. was supported by the Chemical Sci-
This means that the cooling of antihydrogeia collisions  ences, Geosciences, and Biosciences Division of the Office
with cold hydrogen is inefficient, once the antihydrogen at-of Basic Energy Sciences, Office of Science, U.S. Depart-
oms are slowed down below 0.05 K. Our estimates based oment of Energy. P.F. acknowledgesith gratitude the sup-
the rate equations suggest that further cooling is possiblport from the Swedish National Research CoufléiFR) and
only at the expense of large density losses. This is due to thigom the National Science Foundation through a grant for the
small value of the ratio of the cross sections for elastic andnstitute of Theoretical Atomic and Molecular Physics
inelastic scattering. The low-energy reaction rate is for anni{ITAMP) at Harvard University and Smithsonian Astrophysi-
hilation in flight \@"=1.2x10"%" m®s'n" and for rear- cal Observatory.
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