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Stability of hydrogen-antihydrogen mixtures at low energies
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The stability of antimatter in contact with matter has been investigated. The interaction between hydrogen
and antihydrogen is considered as the prototype reaction. We have focused interest on the rates for proton-
antiproton and/or electron-positron annihilation during hydrogen-antihydrogen collisions at low energies. In
particular, we have concentrated on the calculation of the rates for the rearrangement reaction leading to
formation of protonium and positronium, ending inevitably in particle-antiparticle annihilation. The cross
section for the rearrangement collision has been calculated in a fully quantum-mechanical treatment. Addition-
ally, we have calculated cross sections for direct annihilation during the collision process, which was found to
be comparable to the rearrangement cross section. The elastic cross section and its low-energy limit, given by
the scattering length, have been calculated, allowing, by comparison to the inelastic processes, a prediction for
the efficiency of cooling antihydrogenvia collisions with ultracold hydrogen atoms.
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I. INTRODUCTION

In the present paper, we investigate the stability of a
matter in contact with ordinary matter. The collisional inte
action between hydrogen H and antihydrogen H¯ is consid-
ered as the prototype reaction. The problem has rece
limited attention in the past@1–7# but is rapidly gaining in-
terest as recent advances in producing, trapping, and coo
antiprotons and positrons opened the possibility of anti
drogen formation at low temperatures. This may allow st
ies of antimatter and tests of fundamental physical princip
such as theCPT invariance or the weak equivalence pri
ciple for antiparticles. Such experiments are in progres
CERN AD ~Antiproton Decelerator!, within the Apparatus
for High Precision Experiments on Neutral Antimatt
~ATHENA!, Antihydrogen Trap ~ATRAP!, and Atomic
Spectroscopy and Collisions Using Slow Antiproto
~ASACUSA! collaborations.

The ATHENA @8,9# and ATRAP@10# experiments aim a
the production of antihydrogen atoms at low energies, c
turing these atoms in a magnetic trap, and comparing
energy levels of antihydrogen with those of hydroge
ASACUSA will carry out a program on antiproton
containing atoms and atomic physics with antiprotons, no
bly on antiprotons in collisions and high-precision spectr
copy on antiprotonic species@11#.

The prospects of laboratory experiments with cold anti
drogen reinforce the importance of questions regarding
stability of antimatter in contact with ordinary matter. Add
tionally, these questions are of interest in astrophysics,
ticularly in the context of the matter-antimatter asymmetry
the universe, and in interpretations of distortions of the c

*Present address: Fachbereich Chemie, Universita¨t Konstanz,
Fach M 721, D-78457 Konstanz, Germany.
1050-2947/2001/64~5!/052712~14!/$20.00 64 0527
i-

ed

ng
-
-
s

at

p-
e
.

-
-

-
e

r-

-

mic background radiation due to relicg rays from matter-
antimatter annihilation.

In this paper, we present a detailed investigation of
relevant cross sections and scattering lengths for a pai
interacting hydrogen-antihydrogen atoms in their grou
states. In particular, we investigate the possibility of cooli
antihydrogenvia contact with cold hydrogen, a method fir
suggested by Shlyapnikovet al. @5#. In the collision of an
antihydrogen atom with a hydrogen atom, where both ato
are in their ground state, elastic scattering leads to therm
zation and is responsible for the cooling. The feasibility
collisional cooling depends on the rate of thermalization
antihydrogen compared to its annihilation rate. In a rec
paper@12#, we have presented results for particle-antiparti
annihilation, through therearrangementprocess, which re-
sults in the production of positronium Ps[e1e2 and proto-

nium Pn[pp̄ according to H1H̄→pp̄1e1e2. The annihi-
lation then occurs within theboundparticle-antiparticle pairs
that are formed. Another loss process is annihilation
flight,’’ directly from the scattering states of the collidin
system during the collision. Hence, both the strong nucl
force and the Coulomb force give rise to inelastic process
Both inelastic channels result in losses of antihydrogen,
thus, compete with the desired cooling process. Therefor
knowledge of the rates for the elastic and inelastic collisio
is of paramount importance.

At low energiesE, the elastic cross sectionsel is constant,
while the inelastic cross sections vary as 1/AE @13#. For a
thermalized sample described by a Maxwell-Boltzmann d
tribution, this implies that the ratelel for elastic collisions
behaves aslel;AT ~whereT is the temperature!, while the
rate l inel for inelastic collisions is constant. Hence, the
must exist a certain limiting temperature below whichl inel
.lel , and consequently the loss of antihydrogen domina
over the cooling process. The ratiol inel /lel determines the
©2001 The American Physical Society12-1



e
lc
a

es
i-

. A
fo
ge
ic
t

,
ro
rg
lvi
he
or

a

-
th
te
in
o

io
at
um

e
ne

om

l
ts

d in
n it

al

-
be
is

. In

or

te

f

e
he
the
ith

ber

ies.
o
n-
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lowest temperature attainable in the cooling of antihydrog
In the present paper, we mainly concentrate on the ca

lation of the scattering cross section for the inelastic re
rangement reaction leading to annihilationvia the formation
of protonium and positronium in bound states. This proc
will be discussed in the following section. In Sec. III, ann
hilation ‘‘in flight’’ will be discussed. This will be followed
by a calculation of the elastic cross section in Sec. IV
discussion of the results with respect to their importance
the design and possible implementation of an antihydro
cooling experiment follows in Sec. V. We will use atom
units except where we explicitly state otherwise. In order
give a sense of the corresponding scale of temperature
will sometimes express the kinetic energy of the antihyd
gen atoms in degrees Kelvin, defined by dividing the ene
by Boltzmann’s constant. When expressed in degrees Ke
the kinetic energy will always refer to the frame where t
average velocity of the atoms is zero, i.e., the laborat
frame.

II. THE REARRANGEMENT PROCESS

In this section, the rearrangement reaction

H~1s!1H̄~1s!→Pn~NLM!1Ps~nlm! ~1!

will be considered, i.e., the collision of a hydrogen and
antihydrogen atom~both being in their 1s ground states!
yielding protonium and positronium left in the statesNLM
andnlm, respectively. In this caseN andn denote the prin-
cipal quantum numbers,L and l the angular momentum
quantum numbers, andM andm the magnetic quantum num
bers. Since the two leptons are not identical particles,
Pauli principle imposes no restriction on the allowed sta
of the system. One may thus choose to express the sp
the leptons either in terms of their total spin, or in terms
the individual spins of the leptons. The spatial wave funct
is independent of the spin state, so all the different spin st
will be degenerate. Therefore, we will omit the spin quant
numbers below. The same is true for the hadronic~i.e., pro-
ton and antiproton! spins.

A. Energy considerations

We will work in the center-of-mass frame, where th
asymptotic relative momenta in the initial and final chan
are k i and k f , respectively. The energiesEi and Ef in the
initial and final channel can most easily be obtained fr
their asymptoticvalues. In this way one obtains

Ei5e i1E 1s
H 1E 1s

H̄ 5e i2
1

2
2

1

2
5

ki
2

2m i
21, ~2!

Ef5e f1E N
Pn1E n

Ps5
kf

2

2m f
2

mp

4N2
2

1

4n2
, ~3!

whereE denotes internal energies,e external, translationa
energies, andm the reduced mass of the channel fragmen
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In the present case, m i5mH/2.mp/2 and m f
5(mPnmPs)/(mPn1mPs).mPs.2.

Conservation of the total energy yields

e i215e f1E N
Pn1E n

Ps. ~4!

For cold collisions, the initial energye i is very much smaller
than all other relevant energies, and can thus be neglecte
the energy balance. Since for the final channel to be ope
is required thate f>0, Eq. ~4! reduces to

E n
Ps1E N

Pn52
1

4n2
2

mp

4N2
<21⇒N<A mp

421/n2
. ~5!

The relation~5! restricts the possible values of the princip
quantum numbersN andn. The largest allowed value ofN is
obtained forn51, i.e.,E 1s

Ps520.25. In this case, the maxi
mum principal quantum number in which protonium can
formed is Nmax524, while the rearrangement channel
closed if N.Nmax524. In the interval 24>N>22, only
bound states of positronium are energetically accessible
fact, only two principal quantum numbers, namely,n51 and
n52, can occur for the positronium atom in this case. F
N,22, either a bound state~with arbitrary n) or a free
e1-e2 pair can be formed. The structure of the final-sta
binding energies is displayed in Fig. 1.

Returning to Eq.~4!, with e i'0, we find that the energy
released in the reaction~1! is converted to kinetic energy o
translational motion in the final channele f . Due to the large
mass difference between protonium and positronium (m f
.mPs), this energy will, to a very good approximation, b
left in the translational motion of the positronium alone. T
minimum amount of energy that has to be transferred to
kinetic energy of the positronium atom is listed together w
the corresponding value ofNmax in Table I for different val-
ues ofn.

FIG. 1. Scattering thresholds with Pn principal quantum num
N522–24, and positronium principal quantum numbern. The lines
show the sum of the protonium and positronium binding energ
Any final state with energy below21 a.u., corresponding to zer
collision energy, can be formed in zero-energy hydroge
antihydrogen collisions.
2-2
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STABILITY OF HYDROGEN-ANTIHYDROGEN MIXTURES . . . PHYSICAL REVIEW A 64 052712
B. Formulation of the scattering process

1. The cross section

The cross section for the rearrangement process in Eq~1!
is

s rearr5
~2p!4

ki
2 (

f
d~Ef2Ei !uTf i u2, ~6!

where f stands for the complete set of quantum numb
specifying the final state of protonium and positronium, ea
in a specific internal state, and moving with a specific kine
energy, in a specific direction. The main task in the deter
nation of the rearrangement cross section is the evaluatio
the transition matrix elementTf i , which is given by

Tf i5^Y f uV̂f uCki

(1)&. ~7!

The wave functionCki

(1) is the solution of the complete

Hamiltonian describing an interacting hydrogen-
antihydrogen system with total energyEi , that fulfills the
boundary condition for incoming hydrogen and antihydrog
atoms. The wave functionY f is the solution of the eigen
value problem

ĤfY f5EfY f , ~8!

whereĤ f is the final-channel Hamiltonian describing anon-
interactingprotonium-positronium system. This correspon
to a final-channel partitioning of the complete Hamiltonianˆ

according to Hˆ 5Ĥf1V̂ f , where

V̂ f52
1

r pe
1

1

r pē

1
1

r p̄e

2
1

r p̄ē

~9!

describes the interaction between protonium and pos
nium. Here, and in the following, the notationr i j 5ur j2r i u is
adopted for denoting the distance between particlesi and j.

2. The initial- and final-state wave functions

The total scattering wave functionCki

(1) may be simpli-

fied by using the distorted-wave approximation in whi
Cki

(1) is replaced by an incoming distorted wave represen

by the Born-Oppenheimer approximation

TABLE I. Maximum protonium excitationNmax and minimum
amount of kinetic energye f ,min that has to be transfered to th
positronium for different final positronium excitationsn.

n Nmax e f ,min

1 24 0.046 95
2 22 0.010 94
3 21 0.068 69
4 21 0.056 54
` 21 0.040 91
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(1)~R;re ,r ē!5c i~R;re ,r ē!xki
~R!, ~10!

wherec i is a solution of the leptonic eigenvalue equation

Ĥlepc i5Vi
lep~R!c i ~11!

depending parametrically on the distanceR[r pp̄. The lep-
tonic Hamiltonian, describing the interacting hydroge
antihydrogen system, is given by

Ĥlep52
1

2
¹e

22
1

2
¹ ē

2
2

1

r pe
1

1

r p̄e

1
1

r pē

2
1

r p̄ē

2
1

r eē

.

~12!

In the present context of a collision of a hydrogen and
antihydrogen atom in their ground states, the wave funct
c i(R;re ,r ē) is equivalent to the leptonic ground-state wa
function of the H-H̄molecule that is rotationally symmetri
around the interhadronic axis. This wave function describe
S state with zero projection of the total leptonic angu
momentum on the internuclear axis.

The hadronic wave functionxki
(R) is a solution to the

wave equation

S 2
1

mp
¹R

21Vi~R! Dxki
~R!5Eixki

~R! ~13!

describing the motion of the hadrons. The potentialVi(R) in
Eq. ~13! is given byVi(R)5Vi

lep(R)21/R. Therefore, in or-
der to solve Eq.~13!, it is first necessary to solve Eq.~11! on
a sufficiently dense mesh ofR values, which yields a numeri
cal discretized representation ofVi(R). For xki

(R), the nor-
malization according to

^xk
i8
uxki

&5d~e i2e i8!d~V i2V i8! ~14!

was adopted.
Choosing thez axis as the scattering axis~i.e., k i5ki ẑ),

we obtain for the partial-wave expansion ofxki
(R)

xki
~R!5

1

R (
Li

f Li
~ki ,R!YLi0

~VR!, ~15!

where f Li
(ki ,R)/R is the radial solution of Eq.~13!, and

YLM denotes a spherical harmonic. With the normalizat
adopted in Eq.~14!, the asymptotic form off Li

for R→` is

f Li
~ki ,R!→ 1

A2p
Am i

ki
A2Li11i LieidLi

3sinS kiR2
Lip

2
1dLi D , ~16!

wheredLi
is the angular momentum-dependent phase sh

In the present paper, we are interested in collisions with v
low kinetic energies in the initial channel, and thus, we ne
to take onlys-wave scattering into account, for which
2-3
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f 0~ki ,R!→ 1

A2p
Am i

ki
eid0 sin~kiR1d0!. ~17!

The s-wave approximation is justified whenkiR!1, which
for R.1 impliese i!1024.

If we partition the Hamiltonian in the final channel an
ignore the small recoil transferred to the protonium atom d
to the large mass difference between protonium and pos
nium, the final-state wave function as an eigenfunction
Ĥ f , may be expressed in the form

Y f~R,re ,r ē!5FE,V f
~re ,r ē!f̃NLM~R!, ~18!

where f̃NLM(R) is a hydrogenic wave function describin
the bound protonium, andFE,V f

(re ,r ē) is the wave function

describing a freely moving positronium in the statenlm with
momentumk f . FE,V f

(re ,r ē) is given by

FE,V f
~re ,r ē!5

1

~2p!3/2
Am fkfe

ik f reē

cm

fnlm~reē!, ~19!

wherereē
cm

5(re1r ē)/2. The indexE of FE,V f
(re ,r ē) labels

the total translational and internal energy of the positroni
.

e

i-

th

-
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atom, i.e.,E5e f1E n
Ps and V f is the direction of the final

momentum.

3. Separation of the transition matrix

The application of the Born-Oppenheimer approximati
to the initial-state wave function, together with the partitio
ing of the Hamiltonian in the final channel, leads to the se
ration of the transition matrix elementTf i , defined in Eq.
~7!, into a leptonic and a hadronic contribution, as is evid
from rewriting Tf i with the aid of Eqs.~10! and ~18!, as

Tf i5^FE,V f
~re ,r ē!f̃NLM~R!uV̂ f uc i~R;re ,r ē!xki

~R!&.
~20!

The two contributions are coupled to each othervia the para-
metric dependence of the leptonic wave functi
c i(R;re ,r ē) on the interhadronic distanceR.

Separating the~hydrogenlike! protonium wave function
into a radial and an angular part,

f̃NLM~R!5
1

R
ũNL~R!YLM~VR!, ~21!

and using the corresponding separation ofxki
(R) @see Eq.

~15!#, we carry out the integration over the angular part ofR.
Using the orthogonality of the spherical harmonics, we o
tain
Tf i5dL,0dM ,0K FE,V f
~re ,r ē!

ũNL~R!

R
UV̂ fUc i~R;re ,r ē!

f 0~ki ,R!

R L ~22!
nal
s
bi-

sh.
-

trix

at
on
in the case ofs-wave scattering.
The final calculation ofTf i splits naturally into two parts

First, the leptonic matrix element

tE,i~R;V f !5^FE,V f
~re ,r ē!uV̂ f uc i~R;re ,r ē!& ~23!

is calculated as a function ofR. It is convenient to expand th
leptonic matrix element in the angular momentuml f ,mf of
the positronium atom

tE,i~R;V f !5 (
l f ,mf

t̃ E,i
l fmf~R!Yl fmf

~V f !. ~24!

For molecularS symmetrymf50. Second, the total trans
tion matrix element is calculated by an integration overR
according to

Tf i5dL,0dM ,0E
0

`

ũN0~R!tE,i~R;V f ! f 0~ki ,R!dR. ~25!

Hence, at low energies, protonium can only be formed in
L50 state. Using Eqs.~6!, ~24!, and ~25!, and doing the
replacement( f→(N*dV f , we then obtain the rearrange
ment cross section
e

s rearr5
~2p!4

ki
2 (

N,l f
U E

0

`

ũN0~R! t̃ E,i
l f0~R! f 0~ki ,R!dRU2

.

~26!

Since only a small amount of energy is released in the fi
channel~see Table I! the contributions from partial wave
l f.0 are negligible. Moreover, symmetry under the com
nation of lepton exchange and horizontal reflection@4# im-
plies that all odd partial waves in the final channel vani
Hence, keeping only thes-wave contribution is a good ap
proximation,

s rearr5
~2p!4

ki
2 (

N
U E

0

`

ũN0~R! t̃ E,i
00 ~R! f 0~ki ,R!dRU2

.

~27!

In the next section, we shall describe how the leptonic ma
elements were calculated.

C. Computational details

1. Computation of the initial-state wave function

In the spirit of the Born-Oppenheimer approximation th
has been applied to the initial-channel wave functi
2-4
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Cki

(1)(R;re ,r ē) @see Eq.~10!#, the calculation ofCki

(1) natu-

rally splits into two parts. First, the leptonic wave functio
c i(R;re ,r ē) and the corresponding leptonic energiesVi

lep(R)
are obtained by solving Eq.~11! for a number of interhad-
ronic distancesR. In the present paper, Eq.~11! is solved by
introducing explicitly correlated basis functions in prola
spheroidal coordinates. This approach allows a very effic
and accurate treatment of leptonic correlation and has b
very successful when solving the leptonic eigenvalue pr
lem of molecular hydrogen. Due to the introduction of
finite, but nonorthogonal basis set, Eq.~11! becomes a finite
generalized matrix eigenvalue problem that can be solved
standard diagonalization techniques. The resulting lepto
wave function can be written as

c i5(
j 51

N

ci j e
2a(je1j ē)$eb(he2h ē)je

pjj
ē

p̄ jhe
qjh

ē

q̄ j

1~21!qj 1q̄ je2b(he2h ē)je
p̄jj

ē

pjhe
q̄jh

ē

qj%rm j , ~28!

whereN is the dimension of the basis,j i ,h i are the prolate
spheroidal coordinates of the leptons, andr52r eē/R. The
positive integerspj , p̄ j , qj , q̄ j , and m j , as well as the
nonlinear parametersa andb are fixed for a specific basis
while the linear parametersci j are obtained from the matrix
diagonalization. Based on the variational principle, the n
linear parametersa and b have been optimized for ever
value ofR by minimizing the~leptonic! ground-state energy
Vi

lep(R) of H-H̄.
The trial function ~28! is the same as the one used

Kołos et al. @4#, except that we used two, rather than fo
independent nonlinear parameters. Although the old b
with four nonlinear parameters seems to be superior to
present one, since it is more flexible, it turns out that restr
ing the number of nonlinear parameters to two, allowed u
use much larger basis sets before running into numer
problems caused by the use of basis functions that are ne
linearly dependent. In the most interesting range ofR(0.85
<R<3.6), it was possible to useN5908 basis functions
For larger values ofR, the dimensionN was reduced toN
5114 atR513 in a number of steps. In addition to allowin
larger basis sets, the form of Eq.~28! turned out to be much
less restrictive regarding the choice of the integer para
eters. While the old basis usually requires a careful selec
of basis functions in order to prevent numerical problem
the new basis allowed us to choose the integer parame
according to general rules. TheN5908 basis was compose
by selecting sets of integer parameters$m j ,pj ,p̄ j ,qj ,q̄ j% in
the following way. Form j50, all sets withpj ,p̄ j ,qj ,q̄ j<6
andpj1 p̄ j ,qj1q̄ j<8 were selected. In addition, all sets fu
filling pj ,p̄ j ,qj ,q̄ j<2 were used form j51, 2, and 3. For
symmetry reasons, it is necessary to include only one
those sets that become identical, ifpj and p̄ j as well asqj

and q̄ j are simultaneously exchanged.
In order to assess the accuracy of the leptonic wave fu

tion, we compare in Table II our result for the ground-sta
potential curveVi(R), obtained from the leptonic energ
05271
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lep(R) by adding the interhadronic potential21/R, with

that of Kołoset al. @4#, which for a long time, was the mos
accurate potential available. Recently, it has been impro
in the shortR range (0.8<R<1.0) by Armouret al. @7# who
included the channel describing positronium formation e
plicitly in their basis. The authors claimed that this was c
cial in order to be able to improve on the potential given
Ref. @4#, and indeed it seems to be effective forR,0.9.
However, our ground-state potential is more accurate t
the ones previously available, including the one of Armo
et al., for R>0.9, although our approach does not include
rearrangement channel explicitly. The correlation of the le
tonic pair is, however, present in our basis functions due
the explicit occurrence of the interleptonic distancer eē.

The potentialVi(R) that governs the motion of the had
rons in the initial channel of the collision, is presented in F
2. As is seen from the figure, the ground state is purely
tractive, i.e., there are no potential wells or barriers t
could temporarily trap the atom-antiatom system, prevent
the hadrons from coming close to each other and, ultimat
annihilate. Armour and Zeman have calculated the first-or
corrections to the Born-Oppenheimer approximation
Vi(R), and found this correction to be small@14#. This indi-

TABLE II. Comparison of the hydrogen-antihydrogen groun
state energiesVi(R) in the Born-Oppenheimer approximation.

R This work Ref.@7# Ref. @4#

0.85 21.428 121 21.4289
0.90 21.368 924 21.3682
0.95 21.317 803 21.3174 21.314 522
1.00 21.273 695 21.2723 21.271 095
1.50 21.060 987 21.060 540
2.00 21.013 413 21.010 219
3.00 21.001 344 21.001 280
5.00 21.000 472 21.000 463
10.00 21.000 008 21.000 008

FIG. 2. The hadronic wave functions superimposed on the
tentialVi(R) formed by the leptons and the interhadronic attractio
Full line: the radial part of the hadronic scattering wave functi
f 0(ki ,R) for e i510210; Long dashed: the radial partũ24,0(R) of the
final Pn state; dashed: ground-state interaction potentialVi(R); dot-
ted: ~for comparison! the proton-antiproton attraction~shifted by
E 1

ps520.25).
2-5
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cates that the approach we adopted of calculating the ini
channel wave function within the Born-Oppenheimer a
proximation, is justified.

For small R values, the leptonic potentialVi
lep(R) ap-

proaches from below its limiting valuesVi
lep(0)520.25,

equal to the positronium binding energy. However, this li
iting value is reached already at a finite distanceRc50.8 @7#,
reflecting the fact that, in the adiabatic approach, the h
ronic dipole potential ceases to bind the leptons below
certain critical separationRc . In this respect, the situatio
resembles the three-body case, where it has been shown
a proton-antiproton pair cannot bind an electron below
critical separationRc50.64 @15#. In view of these findings,
we construct the leptonic potentialVi

lep(R) by making a
smooth interpolation between our numerical value atR
50.85 and the energy20.25, which is the lowest eigenvalu
of Eq. ~11! for R<0.8.

The calculation of the hadronic scattering wave funct
requires, especially for low collisional energies, an accur
leptonic potential for large values ofR. It is very difficult to
calculate long-range potentials by variational methods. Ho
ever, asymptotic forms can be used. In the present case
effective asymptotic interaction potential has the fo
limR→`Vi

lep(R)5C6 /R61C8 /R8. The constants C6

526.499 andC852124.399 are the same as for the H2
molecule@16#. This asymptotic form was found to deviate b
only 331028 from our calculated energy atR513. This
indicates the high accuracy of our potential and allows
continuation beyondR513.

After having obtained the potentialVi(R), the radial part
of the hadronic wave-functionxki

(R), i.e., f 0(ki ,R), was
obtained by numerical integration of Eq.~13!, starting from
R50. The integration was continued up to a sufficien
large value ofR, at which the wave function takes to withi
seven significant digits, the asymptotic behavior expec
from Eq. ~17!. The asymptotic amplitude then fixes the no
malization of the radial solutionsf 0(ki ,R). At R→0,
f 0(ki ,R) was matched to a Coulomb wave. The resulti
radial wave functionf 0(ki ,R) is presented in Fig. 2, togethe
with the radial partũN0(R) of the hadronic wave function in
the final channel@cf. Eq. ~21!# that describes the excite
(N524) bound state of protonium.

2. Computation of the final-state wave function

The final-channel wave functionY f(R,re ,r ē) is a free-
wave solution to Eq. ~8! describing the positronium
protonium pair moving freely with the relative energye f . It
can be written in the product form given by Eq.~18!. Ignor-
ing the small recoil and relativistic corrections, the hadro
part is given analytically by the wave function describing t
excited state of protonium,f̃NLM(R). Ignoring relativistic
effects, also the leptonic wave functionFE,V f

(re ,r ē) @see
Eq. ~19!# is known analytically, since it describes a positr
nium atom moving with respect to protonium with the e
ergy e f5kf

2/(2m f).
However, using the numerical form~28! of the initial-

state wave function, the calculation of the leptonic transit
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matrix elementtE,i(R;V f) is a formidable task if the analytic
form ~19! of the final leptonic wave function is adopted. I
order to perform the integration, both wave functions~in the
initial and final channels! have to be expressed in a commo
coordinate system. Unfortunately, the final wave functi
cannot be easily expressed in the prolate spheroidal coo
nate system, nor can the initial-state wave function easily
transformed into a coordinate system that allows a sim
description of the final-state wave function.

In order to facilitate the calculation oftE,i(R;V f) we also
expanded the leptonic wave functionFE,V f

(re ,r ē) of the
final channel in prolate-spheroidal coordinates. For this p
pose, the leptonic final-channel Hamiltonian that describe
freely moving positronium atom

Ĥ f
lep5ĤPs52

1

2
¹e

22
1

2
¹ ē

2
2

1

r eē

, ~29!

has been diagonalized in thesamebasis Eq.~28! that was
used for diagonalizing the leptonic part of the total Ham
tonian Ĥ lep. One can easily obtainĤPs from Ĥ lep by remov-
ing the terms that describe hadron-lepton interactions. It
contains the center-of-mass motion, since the kinetic-ene
operators forboth leptons are included.

The present approach leads to a discretization of the c
tinuous spectrum of the moving positronium, resulting inL 2

eigensolutionsFEj ,V f
corresponding to a discretized set

eigenvaluesEj . The following section describes how thes
discretized solutions have been used in the calculation of
leptonic transition matrix elements. Before that, we comm
on the validity and accuracy of this approximation. The a
proach is formally correct and would yield the exact lepton
wave function in the limit of an infinite basis set, since t
adopted basis is in principle flexible enough. In practi
however, the limitation tom j<3 and the requirement of us
ing a finite basis leads to a loss in accuracy. The converge
of the positronium ground-state energyE n

Ps with increasing
maximum valuemmax of m j , is displayed in Table III. We
find that the relative error inE n

Ps is approximately halved
each timemmax is increased one step. In addition, there is
small artificialR dependence of about60.005.

The basis functions Eq.~28! are not adapted to the rota
tional symmetry of Hamiltonian Hˆ Ps in Eq. ~29!. Hence, the
discretized eigensolutions obtained cannot be classified
cording to a particular direction of the final momentum,

TABLE III. Convergence of the positronium ground-state e
ergy, its error relative to the exact ground-state energy20.25, and
the convergence of the squared leptonic matrix element~30! with
increasingmmax used in the basis set@cf. Eq. ~28!# for R51.0.

mmax E n
Ps Rel. error@%# u t̃ E,i(1)u2

0 20.1376 45.0 0.0722
1 20.1913 23.5 0.0573
2 20.2193 12.3 0.0530
3 20.2348 6.1 0.0494
2-6
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the wave-functionFE,V f
in Eq. ~19! are, and neither accord

ing to a particular final angular momentuml f . The use of
ansatz Eq.~28! for the wave function will therefore by ne
cessity yield the leptonic matrix elementsummedover all
directions of the final momentumV f , or, equivalently, over
all final angular momental f . As discussed above in Se
II B 3, it is, however, a good approximation to represent t
sum over all angular momenta by thel f50 term only.

There is another possible problematic limitation when
pressing the wave function of the moving positronium by
wave function of the type given in Eq.~28!, since this wave
function is by construction rotationally symmetric around t
interhadronic axis, i.e., it hasS-type symmetry. A positro-
nium atom that moves with respect to the center-of-mas
the protonium~i.e., with respect to the center of the interha
ronic axis! will, however, not be restricted to that symmetr
Nevertheless, since there is no term in the Hamiltonianˆ Ps

in Eq. ~29! that couples states with different projectio
along R of the total leptonic angular momentumL
5S, P, etc., it is possible to evaluate the solutions w
different values ofL independently of each other. Becau
the initial-state wave function and the interaction poten
V̂ f are rotationally symmetric around the interhadronic ax
only final-state wave functions with the same rotational sy
metry will give nonzero contributions to the transition matr
element. Therefore, the symmetry-restrictedansatzfor the
wave function of the moving positronium and the limitatio
to S-type symmetry are appropriate.

3. Calculation of the leptonic matrix element

After the leptonic initial- and final-channel wave fun
tions have been obtained, the leptonic transition matrix e
ment can be evaluated. For a selected initial collision ene
e i and final protonium stateN the energyE at which t̃ E,i

00 (R)
has to be calculated, follows directly from the energy co
servation asE5Ei2E N

Pn5e i212E N
Pn.

Obviously, it is unlikely to get from the diagonalization o
Ĥf

lep @Eq. ~29!#, in a discrete basis, the solutions at the p
ticular energyEj5E; besides, the discretized solutions, b
ing square integrable, are not properly normalized. To ob
the transition matrix elementt̃ E,i

00 (R) we apply the method
based on the use of complex coordinates as in Ref.@17#. The
application of this approach to the present problem will
briefly described.

The idea is to extract the transition matrix element as
imaginary part of the expectation value of the opera
V̂ f Ĝf

lepV̂ f when applied to the leptonic ground state in t
initial channel

u t̃ E,i~R!u2[(
l f

u t̃ E,i
l f0~R!u25E dV f utE,i~R;V f !u2

5
1

p
Im$^c i uV̂ f Ĝf

lep~E!V̂ f uc i&%, ~30!

where Ĝf
lep(E) is the resolvent operator of the leptonic fina

channel Hamiltonian
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lep~E!5 lim

e→0
~Ĥ f

lep2E2 i«!21. ~31!

Introducing the complete eigenstate expansion of the op
tor Ĥf

lep, we obtain

u t̃ E,i~R!u2

5
1

p
ImH lim

e→0
( E ^c i uV̂ f uFEj ,V f

&^FEj ,V f
uV̂ f uc i&

Ej2E2 i« J
5E dV f^c i uV̂ f uFE,V f

&^FE,V f
uV̂ f uc i&

5E dV f^FE,V f
uV̂ f uc i&u2, ~32!

where the symbol(* denotes the summation over the di
crete part and integration over the continuous part of
spectrum of Hˆ f

lep, and summation over all other quantu
numbers specifying the final state, including the direction
the final momentum. In the present case, only the continu
spectrum is present, as Hˆ

f
lep describes themoving positro-

nium.
The transition matrix elementu t̃ E,i(R)u2 can be obtained

as the ground-state expectation value given in Eq.~30!, pro-
vided one can find a meaningful numerical evaluation of
resolvent operator. This is done with the help of t
complex-coordinate method.

The original Hamiltonian is transformed by the dilatio
operation

Ĥ→Ĥu[Û~u!ĤÛ21~u!; Û~u! f ~r !5e3u/2f ~eur !, ~33!

whereu is the complex dilation parameter.
The leptonic transition matrix element in Eq.~23! is in-

variant under the dilation transformation

tE,i~R;V f !5^~Û†!21~u!FEj ,V f
uÛ~u!V̂ fÛ

21~u!uÛ~u!c i&

5^FEj ,V f

u* uV̂ f
uuc i

u&. ~34!

The discretized approximation to such an analytically con
ued transition matrix element does not vanish, and can
obtained with the help of the biorthonormal expansion

terms of square-integrable solutionsFEj ,V f

u ,FEj ,V f

u* , corre-

sponding to complex eigenvaluesEj , obtained by diagonal-
izing the complex-dilated Hamilton operatorĤ f

lep,u .

The transition matrix elementt̃ E,i(R) can then be ob-
tained from the dilated expression introduced in Eq.~32!,
i.e., from
2-7
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u t̃ E,i~R!u25E dV f u^FE,V f
uV̂ f uc i&u25

1

p
ImH (

j
E dV f

^c i
u* uV̂ f

uuFEj ,V f

u &^FEj ,V f

u* uV̂ f
uuc i

u&

Ej2E J , ~35!
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which does not contain the limiting procedure with respec
« and converges to the proper limit owing to the analytic
retained through complex scaling. Evidently, it is necess
to apply the complex-dilation transformation also to the to

leptonic Hamiltonian Hˆ lep in order to obtainc i
u andc i

u* .

An example of the convergence ofu t̃ E,i(R)u2 with respect
to the maximum value ofm i used in Eq.~28! is displayed in
Table III. We find that the trend of the convergence is simi
to that of the positronium ground-state energy. Based on
known 6% relative error of the best value for the positroniu
ground state, we then estimate the error inu t̃ E,i(R)u2 due to
basis-set inaccuracies to be less than 25%.

The calculation according to Eq.~35! gives the absolute
value squared of the leptonic matrix element summed o
partial waves. Hence, we cannot separate the different pa
waves, as needed in Eq.~26!. However, since we may ne
glect higher final partial waves we havet̃ E,i. t̃ E,i

00 , which
gives the leptonic matrix element needed in the finals-wave
approximation Eq.~27!.

D. Results for the rearrangement cross section

With the aid of the hadronic wave functions of the initi
and final channel and the leptonic transition matrix eleme
it is finally possible to evaluate the total transition mat
elementTf i with the aid of Eq.~25!, and to obtain the cros
sections rearr for rearrangement using Eq.~6!. The integrand
in Eq. ~25! involves two rapidly oscillating functions, th
highly excited protonium state, and the low-ener
hydrogen-antihydrogen wave function~see Fig. 2!. At very
short distances, both systems interact with anR21 potential,
and hence, oscillate in phase, while the last lobe of
bound-state wave function is 180 ° out of phase with
continuum state. The leptonic matrix elementt̃ E,i

00 (R), which
varies slowly withR, provides a weighting of the positiv
and negative contributions to the overlap of the hadro
wave functions. This situation gives rise to a cancellat
effect in the integral Eq.~25!, which makes the result ver
sensitive to small changes inf 0(ki ,R). On the other hand
t̃ E,i

00 (R) vanishes asR→0 because Vˆ
f vanishes in this limit.

This limits the effect of possible inaccuracies inf 0(ki ,R) at
small internuclear distances. We believe the molecular d
used to calculatef 0(ki ,R) to be very accurate down toR
50.85. The smooth interpolation betweenR50.80 andR
50.85 can be done in several different ways, but the det
of this interpolation were found to have a relatively sm
influence on the resulting cross section, changing the re
by ;5%.

Our results for the rearrangement cross section are
sented in Fig. 3. As required, the rearrangement cross se
follows Wigner’s threshold law characterized by ane i

21/2
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energy dependence, assuming for the low energies the f
s rearr50.09e i

21/2.
In principle, there are many possible rearrangement ch

nels determined by different principal quantum numbersn
>1 of the positronium, andN<24 of the protonium, as dis
cussed above in Sec. II A. The rearrangement process
however, dominated by the maximally excited final prot
nium state, i.e.,N524, and hence,n51. To estimate the
cross section for rearrangement into more tightly bound p
tonium states, we evaluated Eq.~6! with t̃ E,i

00 (R)51 for dif-
ferent protonium states. The resulting squared overlap of
initial and final hadronic wave functions was found to be 2
times smaller forN523 than forN524. We therefore found
it sufficient to include only theN524, n51 final state in
s rearr.

In Fig. 3, we also compare our result for the rearran
ment cross section to earlier results by Kołoset al. @4#, and
by Voronin and Carbonell@18#. The former calculation used
a Born-Oppenheimer potential obtained in a way similar
ours, but used for the cross section a semiclassical estim
based on the conservation of energy and angular momen
Voronin and Carbonell made an estimate ofs rearr based on a
calculation of hydrogen-antiproton scattering, but with the
correct long-range hydrogen-antihydrogen potential
cluded. We find that our results are significantly smaller th
those in the earlier works. The semiclassical result of Ko
et al., includes all partial waves, while the other two resu
are fors waves only, but higher partial waves are not suf
cient to explain the difference between the results. Also
the case of hydrogen-antiprotonscattering, the semiclassica
method has been found to give too large a value for
rearrangement cross section@18#.

FIG. 3. Comparison of the cross section for the rearrangem
calculated in this paper~full line! to a previous semiclassical calcu
lation by Kołoset al. @4# ~dotted line! and an estimate by Voronin
and Carbonell@18# ~dashed line!. The result by Kołoset al., in-
cludes all partial waves, while the other two comprise only t
s-wave contribution. The results from other works have be
adapted from graphs.
2-8
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STABILITY OF HYDROGEN-ANTIHYDROGEN MIXTURES . . . PHYSICAL REVIEW A 64 052712
Kołos et al. @4# estimated the rearrangement cross sec
using the concept of a critical distanceRc at which the lep-
tons become no longer bound to the hadrons. Variatio
calculations show that this occurs at a value ofR less than
0.8 @4,7#. In the semiclassical model the rearrangemen
assumed to occur spontaneously with a probability of un
on all those particle trajectories that have classical distan
of closest approach less than or equal toRc .

Our quantum-mechanical calculations do not support
model, which does not take into account the nature of
final state. The reaction can occur at zero initial kinetic e
ergy, even at internuclear separations exceedingRc . With the
escape of the leptons from the hadrons, the energy requ
for reaction will be provided by the binding energy of th
bound states of protonium formed by the recombination
the proton and antiproton. We have shown that the prefe
tial channel has principal quantum numberN524. It is the
channel for which the initial and final wave numbers a
most nearly equal. A critical distance is more appropriat
determined by the extent of the overlap of the initial a
final-state wave functions, which Fig. 2 indicates isR51.3.
In any case, the calculated matrix elements yield a proba
ity much less than unity so that a classical model will ov
estimate the rearrangement cross sections. A classical pi
is in any case inadequate for the description of scatterin
which only s waves participate.

III. ANNIHILATION IN FLIGHT

A. Proton-antiproton annihilation

In addition to the loss of antihydrogen caused by the
arrangement collisions, there will also be lossvia proton-
antiproton annihilation in flight according to

H1H̄→e11e21decay products, ~36!

i.e., without the formation of an intermediate protoniu
state.

We assume that the proton-antiproton annihilation occ
only at the exact point of coalescence of the two partic
The annihilation process may then be calculated using
pseudopotential

Va
pp̄5App̄d~R!, ~37!

where the annihilation constantApp̄ can be determined from
experimental data, e.g., from the width of bound protoni
states. Using the pseudopotential, we may express the w
of the 1s protonium state in the form

G1s5App̄uf̃100~0!u2. ~38!

The constantApp̄ may be calculated from Eq.~38!, using the
experimental valueG1s51130 eV from Ref.@19#, obtained
from studying the cascade of protonium formed after st
ping antiprotons in hydrogen,
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App̄5
G1s

uf̃100~0!u2
5

8pG1s

mp
3

51.6931027

56.80310237 eV m3. ~39!

In the same way the rate for annihilation in flight is give
by

la
pp̄5^xki

~R!uVa
pp̄uxki

~R!&5App̄uxki
~0!u2, ~40!

wherexki
(R) is the scattering wave function for the proto

antiproton pair in the leptonic potential, defined in Eq.~13!.
Since all partial waves ofxki

@see Eq.~15!# exceptLi50,
vanish at the origin, onlys waves contribute. The annihila
tion ratela

pp̄ in Eq. ~40! is given per unit energy, and de
pends on the incoming particle fluxF through the normaliza-
tion of the scattering wave functionxki

. Such normalization
dependence is avoided, if we instead consider the cross
tion. With the normalization adopted in Eq.~14!, one has

sa
pp̄5

la
pp̄

F
5

~2p!3

ki
2

App̄uxki
~0!u2. ~41!

Here we have used the initial-state wave functionxki
calcu-

latedwithout including Va
pp̄ in the wave equation~13!.

The resulting cross section is presented in Fig. 4. To ill
trate the asymptotic behavior of the cross section in the h
and low-energy limits, we also present, in the same figu
the cross sections obtained for a plane wave, and for a p
Coulomb interaction characteristic of scattering of a b
proton and antiproton, respectively. The former situation c
responds to full screening of oncoming hadrons, the latte
no screening. The exact result must fall in between these
limits.

We see that for high incoming energiese i.104, the cross
sections indeed converge to the asymptotic form characte

FIG. 4. The cross section for annihilation in flight, obtaine
according to Eq.~41! with the correct scattering wave function
~full line!, and for comparison with plane waves~dashed line!, and
with Coulomb wave functions~dotted line!. The graph has been
extended to very high energies only to illustrate that the cross
tions ultimately converge. The low-energy behavior of the ann
lation cross sections are 0.3631025/Ae i ~plane wave!,

0.14/Ae i (H-H̄), and 4.931024/e i ~Coulomb wave!.
2-9
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tic of the plane-wave description. In this region, the influen
of the scattering potential on the cross section is negligi
The outcome of the scattering is determined by the la
collision energy rather then by the interaction potential.

In the energy region 10252104, the hydrogen-
antihydrogen cross section is almost identical to the cr
section for a bare proton and antiproton. This means that
atoms feel the deeper part of the interaction potential,
the short-range part, where it is completely dominated by
proton-antiproton attraction. The relatively flat long-ran
part of the potential, on the other hand, gives a negligi
perturbation at energies in this range.

For energies smaller thene i51025, the H-H̄annihilation
cross section deviates from the annihilation cross section
pure Coulomb attraction, and displays the 1/Ae i dependence
characteristic of the Wigner threshold law. The Wigner law
valid only if the potential vanishes faster than 1/R2 @13#. This
indicates that it is the effective long-range interaction, rat
than the Coulomb attraction, which dominates the scatter
and that the molecular or screening effects come into p
The limiting energy 1025 for the applicability of the Wigner
law coincides approximately with the binding energy of t
most loosely bound state, as will be discussed in Sec.
Below this energy, the scattering properties are not only
termined by the short-range proton-antiproton interacti
but the atoms feel the full interaction potential. This conc
sion is corroborated by studying the behavior of the scat
ing function xki

(R) at the origin ~see Fig. 5!. The wave
function shows nodes independent of the collision ene
which establishes that it is factorizable into the for
xki

(R).Ag(ki)x0(R), wherex0(R) is energy independen

and the functiong(ki) can be related to the scattering am
plitude. Such behavior is characteristic of low-energy sc
tering in the presence of a shallow bound level@20#.

B. Electron-positron annihilation

It is also possible that the electron and positron will an
hilate during the collision. To estimate this annihilation ra
the treatment used in the previous section for the hadrons
to be modified because ground-state positronium has
very different lifetimes depending on its spin state. F

FIG. 5. The behavior of the hadronic scattering wave-funct
f 0(ki ,R)/R at the origin. Collision energiese i51024 ~solid!, 1025

~dotted!, 1026 ~dashed!, 1027 ~long dashed!, and 1028 ~dot-
dashed!.
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Ps(1s) in the triplet 3S1 state, the lifetime is 1.431027 s,
while for the singlet1S0 state the lifetime is 1.25310210 s.
The origin of this difference is the charge-conjugation inva
ance of the dominating electromagnetic decay into photo
The 1S0 state isevenunder the charge-conjugation operatio
C, and hence it can decay into two photons, each having
intrinsic charge-conjugation parity21, while the3S1 state is
odd under the same operation, and hence, must decay
three photons, which is a much slower process.

In order to accommodate both types of decays, we de
two annihilation constants A1

eē54.93102652.0
310235 eV m3 for the C-even states, andA2

eē54.331029

51.7310239 eV m3 for C-odd states. The pseudopotenti
for electron-positron annihilation may then be constructed
separately projecting out the even and odd parities

Va
eē~reē!5

1

2
~11C!A1

eēd~reē!~11C!

1
1

2
~12C!A2

eēd~reē!~12C!

5
1

2
~12Peē!A1

eēd~reē!~12Peē!

1
1

2
~11Peē!A2

eēd~reē!~11Peē!. ~42!

Here, Peē is the electron-positron exchange operator,Peē
52C, where the minus sign comes from the anticommu
tivity of the fermionic field operators.

The hydrogen-antihydrogen system is invariant un
charge conjugation of all four particles, but it isnot invariant
under charge conjugation of the leptons only. Expressing
initial-state wave function in terms of the coordinatesreē

5r ē2re , reē
cm5(re1r ē)/2, and R, it may be expanded in

partial waves even or odd under exchange of the lept
@PeēYlm(V r eē

)5(21)lYlm(V r eē
)# as

Cki

(1)~R,reē
cm,reē!5(

lm
Q lm~R,reē

cm,r eē!Ylm~V r eē
!.

~43!

In order to be single valued,Q lm(R,reē
cm,0) can be nonvan-

ishing only forl 50. Hence, we conclude that, in the contac
interaction approximation, only the evenl 50 partial wave
contributes to electron-positron annihilation. Taking also
symmetry under exchange of the leptonic spinsxS,MS

into
account we find that

d~reē!~12Peē!Cki

(1)x1MS
50,

d~reē!~11Peē!Cki

(1)x0050. ~44!

Hence, even though the hydrogen-antihydrogen system is
an eigenstate with respect to charge conjugation of the
tons, the same selection rules as for the positronium gro

n
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state applies, i.e., two-photon decays for the singlet state,
three-photon decays for the triplet states.

The ratio of triplet collisions to singlet collisions will de
pend on the experimental conditions. For a statistical m
ture, the ratio is 3 to 1. In a magnetic trap, the electron s
will be parallel to the magnetic field, while the positron sp
being parallel to the magnetic moment, will point in the o
posite direction. Hence, there will be singlet and triplet c
lisions in equal proportions. We note that the annihilati
constantA1

eē for the singlet state is larger than that f
proton-antiproton annihilation. On the other hand, as is e
dent from Fig. 5, the proton-antiproton probability density
drastically enhanced atR50, where the proton-antiproto
annihilation takes place, while the leptonic annihilation o
curs at a typical internuclear separationR;1. In fact,
uxki

(R50)u2/uxki
(R;1)u2.106 for low collision energies,

and hence, we conclude that proton-antiproton annihila
dominates over electron-positron annihilation. A more d
tailed evaluation of the latter process is underway@27#.

IV. THE ELASTIC CROSS SECTION AND LOW-ENERGY
BEHAVIOR

The elastic cross section can be extracted using the
tion

sel~ki !5
p

ki
2

u12Sii ~ki !u2, ~45!

whereSii is the scattering matrix element related to the ph
shift via

Sii ~ki !5exp@2id0~ki !#. ~46!

Here, as above, we only takes-wave scattering into accoun
The real part of the phase shift has been determined by fit
the numerical radial solutionsf 0(ki ,R) at largeR to the form
Nsin(kiR1Re$d0(ki)%). The elastic cross section obtained
this way does not, however, take into account the presenc
inelastic scattering.

In the presence of inelastic scattering, the phase shiftd0 is
a complex quantity. The absorption factoruSii u is related to
the imaginary part of the phase shift through@21#

uSii u5exp~22 Imd0!. ~47!

Unitarity gives the restriction 0<uSii u<1. We may extract
the imaginary part of the phase shift from the sum of
rearrangement and in-flight annihilation cross sections

s inel5
p

ki
2 ~12uSii u2!5

p

ki
2 @12exp~24 Imd0!#. ~48!

We may then correct the elastic cross section using the
sults for the inelastic-scattering cross section. Thes-wave
elastic cross section with and without the correction for
elasticity is presented in Fig. 6. The effect of this correct
is small. The exceptions are the dips in the cross sectio
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energies where the real part of the phase shift goes thro
zero, which are smoothed out by the presence of inela
scattering.

As seen in Fig. 6, in the low-energy limit, the elastic cro
section is constant. This is to be expected from the gen
theory of scattering of slow particles. At low energies, t
phase shift may be expanded as@13#

ki cotd0~ki !52
1

a
1

1

2
r effki

21 . . . , ~49!

where a is the scattering length, andr eff is the effective
range. In the presence of inelastic scattering, the scatte
length, just as the phase shift, is a complex quantitya5a
2 ib @22#. The scattering matrix elementSii (ki) can be ex-
panded to first order inki , and related to the scatterin
length by

Sii ~ki !.112id0~ki !.122ik i~a2 ib!. ~50!

The real parta of the scattering length and the effectiv
range were obtained by fitting them to the previously o
tained real part of the phase shifts according to Eq.~49! in
the energy region 1027<« i<10210. This procedure gavea
58.1 andr eff57.1. The relation of the real part of the sca
tering length to the hadronic wave function is illustrated
Fig. 7.

The imaginary partb of the scattering length has bee
obtained from its relation to the inelastic cross section. S
stituting Eq.~50! into Eq. ~48! gives the imaginary compo
nent of the scattering length in terms of the inelastic cr
section

b5
ki

4p
s inel. ~51!

For low energies, the sum of the inelastic cross sections
have as 0.23e i

21/2, and therefore shows the energy depe

FIG. 6. Cross sections for the H-H¯system: elastic cross sectio
obtained from the real part of the phase shift only~solid!, elastic
cross section including correction for the presence of inelastic s
tering ~long dashed!, rearrangement cross section~dotted!, and
proton-antiproton annihilation in flight~dashed!. At low energies,
the elastic cross section is 823 without the correction for inela
scattering, and 829 including this correction, while the low-ene
behavior ofs rearr is 0.09/Ae i , andsa

pp̄;0.14/Ae i .
2-11
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dence expected from Wigner’s threshold law~see Fig. 3!.
Using this form in Eq.~51! we find b50.8. The corrected
low-energy limit of the elastic cross section is then

lim
ki→0

sel~ki !54puau254p~a21b2!, ~52!

which tends to the constant valuesel5829. Comparing this
value to the inelastic cross sections, we find that elastic s
tering dominates for energies larger than 7.931028. This
means, for instance, that sympathetic cooling of antihyd
gen via collisions with cold hydrogen will not be possibl
once the antihydrogen atoms are slowed down to this thr
old energy, corresponding to a kinetic energy of 0.05 K~as-
suming the hydrogen atoms to be at rest!.

Our results differ significantly from the results of a rece
calculation by Sinha and Ghosh@23#, which yielded an
elastic-scattering length of about 4.8~estimated from their
graph! and an elastic cross section ofsel.280 in the limit of
zero collision energy. The results were obtained using
close-coupling approach, with a basis that included a num
of states of the hydrogen atom, but only the ground-s
configuration of the antihydrogen atom. In view of the im
portance of the electron-positron correlation, we believe t
this basis is too restrictive for an adequate description
low-energy scattering. In particular, it does not lead to
attractive van der Waals interaction.

For bound H-H̄, one can introducek52 ik i , which is
related to the binding energyEb of a state below threshold
through@13#

k5A2m i uEbu. ~53!

The bound states appear at the poles of theSmatrix. In terms
of the phase shift this condition translates to

ik cotd0~ ik!52k. ~54!

Energies of bound states close to threshold may be obta
putting the expansion Eq.~49! into Eq. ~54!. For H-H̄ scat-
tering we did, however, find that due to the large effect
range,r eff.a, the resulting equation has no real solution
This was confirmed by direct integration of the numeric
potential, giving a most loosely bound state with bindi

FIG. 7. Scattering lengtha58.1 for the H-H̄collisions and its
relation to the hadronic scattering wavef 0(ki ,R)(e i510210).
05271
t-

-

h-

t

a
er
te

at
f

e

ed

.
l

energyEb54.631025. This energy corresponds tok50.29,
which is outside the range of validity of the expansion E
~49!. An attempt to extend Eq.~49! to higher energies by
including ak4 term in the expansion, resulted in the bindin
energyEb55.631025, in approximate agreement with th
result from numerical integration.

The relatively large binding energy of the state neares
threshold can be understood from the form of the poten
Vi(R) plotted in Fig. 2. Here we compare to the potential
pure Coulombic attraction between the hadrons, which
short distances is a good approximation toVi(R). The Cou-
lomb potential supports an infinite series of near-thresh
states. The H-H̄potential does, however, bend off qui
sharply at R;1, and tends to a different threshold21,
which greatly reduces the number of near-threshold st
supported.

In the presence of a loosely bound state created by
scattering potential, the low-energy elastic cross section
given by @13#

sel5
2p

m i

11r effk

e i1uEbu
. ~55!

In the present case, this formula is not strictly valid beca
the most loosely bound state falls outside the range of va
ity of the expansion Eq.~49!. Nevertheless, as is seen fro
Fig. 6, the elastic cross section still changes character f
the typical low-energy behavior ate i.1025;uEbu as pre-
dicted by Eq.~55!. A similar behavior was found for the
annihilation in flight, as was discussed in Sec. III A.

V. COLLISIONAL COOLING OF ANTIHYDROGEN

The loss of antihydrogen atoms due to collisions w
hydrogen atoms is described by

dnH̄

dt
52s inelvnHnH̄, ~56!

wherenH is the density of hydrogen,nH̄ the density of anti-
hydrogen, andv the relative velocity of the atoms. As wa
shown in Sec. IV the rate of inelastic collisions, leading
loss of antihydrogen, dominates over the rate of elastic c
lisions for collisional energies less than 7.931028. We shall
examine the solutions to Eq.~56! in three limiting cases;~i!
nH@nH̄, ~ii ! nH!nH̄, and~iii ! nH5nH̄.

In case~i! the high density of hydrogen atoms is not si
nificantly reduced by the collisions with antihydrogen, and
hence, approximately constant. If the hydrogen and ant
drogen atoms have different initial temperatures, the ela
scattering will lead to thermalization. In the present ca
wherenH@nH̄, the final temperature of both types of atom
will equal the initial temperature of hydrogen. Cold hydr
gen atoms may hence be used for the cooling of antihyd
gen atoms, provided that the losses are not too severe.
process has been analyzed in Ref.@5#, but with cross sections
different from ours.
2-12
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Let l be the fraction of antihydrogen atoms that rema
after a timet @l(t)5nH̄(t)/nH̄(0)#. The relative velocityv
is approximately given by the velocity of the antihydrogen
the laboratory frame, since the hydrogen atoms have a m
lower temperature. Hence,v5(2E/mp̄)1/25(E/m i)

1/2, where
E is the kinetic energy of the antihydrogen atoms in t
laboratory frame. Assuming also thatE&1025, so that the
low-energy forms of the cross sections are valid, integrat
of Eq. ~56! gives

l~ t !5expS 2
4pbnHt

m i
D . ~57!

The antihydrogen atoms will loose half of their energy
each binary collision. The loss of kinetic energy of an an
hydrogen atom through repeated elastic collisions with
drogen atoms is then given by

dE

dt
52nHvsel

E

2
522pnHa2E3/2/m i

1/2. ~58!

If E0 andv0 are the initial kinetic energy and velocity of th
antihydrogen atoms, the solution of Eq.~58! is

E~ t !5E0$11pnHa2v0t%22. ~59!

Inverting the relation~57!, the time variable in Eq.~59! can
be substituted by the fractional loss of antihydrogen

E~l!5E0H 12
a2AE0m i

4b
ln lJ 22

. ~60!

The result is independent of the density of hydrogen ato
Using the values ofa andb obtained in Sec. IV, we have in
Fig. 8 plotted the energy after cooling as a function of t
loss of antihydrogen for initial energyE051, 5, and 10 K.
We see that largely independently of the initial energy,
antihydrogen is cooled down to 0.05–0.1 K, while loosi
90% of the atoms. The result agrees well with the estimat
Sec. IV based on the crossing of the elastic and inela
cross sections. Below this limit, further cooling only occu
at the expense of a very high loss of antiatoms.

FIG. 8. Cooling of antihydrogen atoms due to elastic collisio
with ultracold hydrogen as a function of the loss of antihydrog
atoms. Initial energy of the antihydrogenE0510 K ~solid!, E0

55 K ~dashed!, andE051 K ~dotted!.
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It is also interesting to look at the time scales for coolin
The cooling rate depends on the density of hydrogen ato
Hydrogen atoms have been cooled down to 100mK with
densities up to 631013 cm23 @24#. According to Eq.~59!,
for this density of hydrogen atoms, the cooling of antihydr
gen from 10 to 0.1 K would take about 0.6 ms, indepe
dently of the initial density of antihydrogen atoms as long
it is much less than that of hydrogen atoms.

Case ~ii !, nH!nH̄, corresponds to the situation whe
some antihydrogen in a trap is lost due to a small backgro
density of hydrogen. The storage times for antihydrogen w
depend on the temperature and the densities of atoms
antiatoms. Assuming a constant background density du
hydrogen atoms leaking into the trap, the decrease in
number of antiatoms is again given by Eq.~57!. Storage
times forantiprotonsat 4.2 K have been measured to be
the order of months or longer@25#. A recent calculation of
the rearrangement cross section in hydrogen-antiprotonscat-
tering @18# gave a result about 40 times larger than our res
for hydrogen-antihydrogenscattering. Hence, under vacuu
conditions similar to those in Ref.@25# (,250 atoms/cm3 or
pressure,10216 torr) storage times of antihydrogen shou
be on the order of years.

If hydrogen atoms cannot leak into the trap, any hydrog
atoms present when the trap is loaded with antihydrogen
of course be removed through annihilation. Hence, the sto
antihydrogen is ‘‘self-cleaning,’’ and storage times are, as
as annihilation is concerned, indefinite.

In case~iii !, we consider the lifetime of a cloud consistin
of hydrogen and antihydrogen in equal proportions. For
ample, spectroscopy on the 1s-2s line could perhaps be don
on a sample containing a mixture of hydrogen and anti
drogen atoms, provided that the atoms and antiatoms
coexist for a sufficiently long time. It would then not b
necessary to determine the absolute energy of the line.
difference between matter and antimatter, implying a vio
tion of theCPT symmetry, would manifest itself as a doub
peak in the 1s-2s line. It should be much easier to distin
guish two nearly overlapping peaks in a single data s
rather than to compare the absolute energies obtained
two separate experiments on hydrogen and on antihydro
respectively.

Assuming thatnH̄5nH5n in Eq. ~56!, we obtain for low
energies the solution

n~ t !5
n0

114pbn0t/m i
, ~61!

wheren0 is the initial density. Hence, the time it takes befo
the density is halved is

t1/25
m i

4pbn0
. ~62!

For an antihydrogen hydrogen density of 107 atoms/cm3 we
obtain t1/2526 min. Hence, it is possible for antihydroge
and hydrogen to coexist in a trap for a considerable amo
of time.

s
n
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VI. CONCLUSIONS AND DISCUSSION

The elastic cross section for the hydrogen-antihydro
collisions turns out to be rather large. The scattering lengt
8.1, which is 18 times larger than the hydrogen-hydrog
scattering length~the latter is 0.45 for collisions in the single
state@26#!. Since the effective atom-atom interaction at lar
separations is the same for both systems the large differ
in scattering length must be due to the very different int
action potential~attractive vs repulsive! at short distances. As
expected, the elastic cross section tends for low collis
energies to a constant value~see Fig. 7!, determined by the
scattering length. The limiting value of the elastic cross s
tion is sel5829. The low-energy scattering formulas rema
valid up to an energy equal to the binding energy of the m
loosely bound state of the scattering potential. The bind
energy of this state isEb54.631025.

We find that loss due to in-flight annihilation~36! and due
to the rearrangement reaction~1! are comparable in magni
tude. The sum of the inelastic cross sections become la
than the elastic cross section for energies below 7.931028.
This means that the cooling of antihydrogenvia collisions
with cold hydrogen is inefficient, once the antihydrogen
oms are slowed down below 0.05 K. Our estimates base
the rate equations suggest that further cooling is poss
only at the expense of large density losses. This is due to
small value of the ratio of the cross sections for elastic a
inelastic scattering. The low-energy reaction rate is for an
hilation in flight lainfl51.2310217 m3 s21nH and for rear-
.
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rangement isl rearr57.6310218 m3 s21nH. At the low den-
sities that are feasible in experiments, this rate is low, lead
to storage times for mixtures of hydrogen and antihydrog
of the order of minutes.

While trying to find the relevant parameters for the coe
istence of hydrogen and antihydrogen and for the prosp
of collisional cooling of antihydrogen, we found that th
H-H̄ system is a very instructive laboratory for the studies
cold collisions, with many interesting features due to t
attractive nature of the short-range potential, the competi
of different scattering processes, and the influence of
most loosely bound state below the H-H¯dissociation thresh-
old. In particular, the process of radiative association int
bound H-H̄state, and its possible use as a diagnostic, is
subject of another paper@28#.
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