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Resonantddµ formation in condensed deuterium
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The rate ofddm muonic-molecule resonant formation indm atom collisions with a condensed deuterium
target is expressed in terms of a single-particle response function. In particular,ddm formation in solid
deuterium at low pressures is considered. Numerical calculations of the rate in the case of fcc polycrystalline
deuterium at 3 K have been performed using the isotropic Debye model of a solid. It is shown that the
energy-dependentddm formation rates in the solid differ strongly from those obtained for D2 gaseous targets,
even at highdm kinetic energies. Monte Carlo neutron spectra fromdd fusion in ddm molecules have been
obtained for solid targets with different concentrations of orthodeuterium and paradeuterium. The recent ex-
perimental results performed in low-pressure solid targets~statistical mixture of ortho-D2 and para-D2) are
explained by the presence of strong recoil-less resonance peaks in the vicinity of 2 meV and very slow
deceleration ofdm atoms below 10 meV. Good agreement between the calculated and experimental spectra is
achieved when a broadening of D2 rotational and vibrational levels in solid deuterium is taken into account. It
has been shown that resonantddm formation with simultaneous phonon creation in the solid gives only about
10% contribution to the fusion neutron yield. The neutron time spectra calculated for pure ortho-D2 and para-
D2 targets are very similar. A practically constant value of the meanddm formation rate, observed for different
experimental conditions, is ascribed to the fact that all the recent measurements have been performed at
temperaturesT&19 K, much lower than the target Debye temperatureQD'110 K. In result, the formation
rate, obtained in the limitT/QD!1, depends weakly on the temperature.
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I. INTRODUCTION

A theoretical study of resonant formation of the muon
moleculeddm in condensed deuterium targets is the m
subject of this paper. Resonantddm formation, first observed
by Dzhelepov and co-workers@1#, is a key process of muon
catalyzed fusion (m CF) in deuterium~see, e.g., reviews
@2,3#!. A muonic deuterium atomdm is created when a nega
tive muonm2 is captured into an atomic orbital in a deut
rium target. Afterdm deexcitation to the 1S state and slow-
ing down, theddm molecule can be formed in adm atom
collision with one of the D2 target molecules. The resona
formation is possible due to presence of a loosely bo
state ofddm, characterized by the rotational numberJ51
and vibrational numberv51, with binding energyu«Jv511u
'1.97 eV. This energy, according to the Vesman mec
nism @4#, is completely transferred to excited rotationa
vibrational states of the molecular complex@(ddm)dee#.
The scheme of calculation of theddm formation rate in gas-
eous deuterium has been developed for many years@5–8#
and led to good agreement with the experiments perform
in gaseous targets@9,10#. On the other hand, this theory
when directly applied to solid-deuterium targets, leads
strong disagreement with the experimental results@11–13#.
Therefore, it is necessary to calculate theddm formation rate
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with solid-state effects taken into account, which is the m
purpose of this paper.

Our calculations are based on the theoretical res
~transition-matrix elements, resonance energies! obtained in
the case ofddm formation in a single D2 molecule. In Sec. II
the main formulas used for this case are briefly reported
general formula for the energy-dependentddm formation
rate in a D2 condensed target is derived in Sec. III, using t
Van Hove formalism of the single-particle response funct
@14#. This formula is then applied~Sec. IV! for harmonic-
solid targets, in particular, for a cubic Bravais lattice. A ph
non expansion of the response function is used to study p
non contributions to the resonant formation. Numeric
results for 3-K zero-pressure frozen-deuterium targ
~TRIUMF experimental conditions@11,13#! with the fcc
polycrystalline structure are shown in Sec. V. The format
rates have been calculated assuming the isotropic De
model of the solid and the values of the Debye tempera
and lattice constant observed in neutron-scattering exp
ments.

The calculated rates of resonantddm formation and back
decay have been used for Monte Carlo simulations ofdd
fusion neutron and proton time spectra. Since the initial d
tributions of 1S muonic-atom energy contain contribution
from hot dm ’s (;1 eV) @15,16#, the influence of slow de-
celeration ofdm atoms below 10 meV@17# on these time
spectra is investigated in Sec. VI. The simulations take i
account the processes of incoherent and coherentdm atom
scattering in solid deuterium. In particular, Bragg scatteri
phonon scattering, rotational, and vibrational transitions
©2001 The American Physical Society05-1



f t
g
-

r
s

l

e

.e

a
e

o

Eq.

dent
le

t.

u-
use
tial
ady

o a

ely
the

on-

vel-
d
-

ANDRZEJ ADAMCZAK AND MARK P. FAIFMAN PHYSICAL REVIEW A 64 052705
D2 molecules are included. We consider a dependence o
resonant formation rate and time spectra on broadenin
the rotational-vibrational D2 energy levels, due to the bind
ing of molecules in the lattice@18#.

Since it has been predicted in Refs.@19–21# that strong
ddm formation takes place only in solid para-D2, study of
this process in pure ortho-D2 and para-D2 targets is anothe
aim of this work. The neutron spectra calculated for the
two solids are discussed in Sec. VI.

II. RESONANT FORMATION IN A FREE MOLECULE

First we consider resonant formation of theddm molecule
in the following reaction:

~dm!F1~D2!n iKi

I →@~ddm!S
Jvdee#n fK f

, ~1!

where D2 is a free deuterium molecule in the initia
rotational-vibrational state (n iKi) with total nuclear spinI .
The muonic atomdm has total spinF and center-of-mass
~CMS! kinetic energy «. The complex @(ddm)dee# is
created in the rovibrational state (n fK f) and the molecular
ion ddm, which plays the role of a heavy nucleus of th
complex, has total spinS. The rateln iKi ,n fK f

SF of the process

above depends on the elastic widthGn fK f ,n iKi

SF of

@(ddm)dee# complex decay@22–25# in reactions

@~ddm!S
Jvdee#n fK fH ——→

Gn fK f ,n iKi

SF

~dm!F1~D2!n iKi

I

→
l̃ f

stabilization processes,
~2!

wherel̃ f is the total rate of the stabilization processes, i
deexcitation and nuclear fusion inddm

ddm→H m1t1p14.0 MeV

m13He1n13.3 MeV

m3He1n13.3 MeV.

~3!

When fusion takes place, the muon is generally released
can again begin themCF cycle. However, sometimes th
muon is captured into an atomic orbital of helium~sticking!,
which stops further reactions.

The value ofGn fK f ,n iKi

SF is given in atomic units (e5\

5me51) by the formula

Gn fK f ,n iKi

SF 52pAi f E d3k

~2p!3
uVi f ~«!u2d~« i f 2«!, ~4!

whereVi f («) is the transition-matrix element and« i f is the
resonance energy defined in Ref.@8#. The factorAi f is due to
averaging over initial and summing over final projections
spins and angular momenta of the system. Vectork is the
momentum of relativedm and D2 motion,

«5k2/2M, ~5!
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andM is the reduced mass of the system. Integration of
~4! over k leads to

Gn fK f ,n iKi

SF 5
Mki f

p
Ai f uVi f ~« i f !u2, ki f 5k~« i f !. ~6!

SinceGn fK f ,n iKi

SF andl̃ f are much lower (;1023 meV) than

«, Vesman’s model can be applied and the energy-depen
resonant-formation rate has the Dirac-delta function profi

ln iKi ,n fK f

SF ~«!52pNBi f uVi f ~«!u2d~«2« i f !, ~7!

where N is the density of deuterium nuclei in the targe
According to Ref.@8# the coefficientsAi f and Bi f in the
above equations are equal to

Ai f 54WSFj~Ki !
2Ki11

2K f11
,

Bi f 52WSF

2S11

2F11
, ~8!

where

WSF5~2F11!H 1

2
1 F

1 S 1

2J ,

j~Ki !5H 2

3
for Ki50

1

3
for Ki51,

~9!

and the curly brackets stand for the Wigner 6j symbol. In
formula ~8! the usual Boltzmann factor describing the pop
lation of rotational states in a gas target is omitted beca
we calculate the formation rate separately for each ini
rotational state. If the muonic atoms in a gas have a ste
kinetic-energy distributionf («,T) at target temperatureT,
Eq. ~7! can be averaged over the atom motion leading t
mean resonant rateln iKi ,n fK f

SF (T).

III. RESONANT FORMATION IN A CONDENSED TARGET

Since a muonic deuterium atom can be approximat
treated as a small neutronlike particle, methods used for
description of neutron scattering and absorption in c
densed matter are applicable in the case ofddm formation in
dense-deuterium targets. Below we adapt the method de
oped by Lamb@26#, and then generalized by Singwi an
Sjölander@27# using the Van Hove formalism of the single
particle response functionSi @14#, for calculation of the
resonant-ddm-formation rates.

The HamiltonianH tot of a system, consisting of adm
atom in the 1S state and a heavy condensed D2 target, can be
written down as follows:
5-2
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RESONANTddm FORMATION IN CONDENSED DEUTERIUM PHYSICAL REVIEW A 64 052705
H tot5
1

2Mdm
¹Rdm

2 1Hdm~r1!1HD2
~%1!1V~r1 ,%1 ,%2!1H,

~10!

whereMdm is thedm mass andRdm denotes the position o
dm center of mass in the coordinate frame connected w
the target~see Fig. 1!. OperatorHdm is the Hamiltonian of a
free dm atom andr1 is thedm internal vector;HD2

denotes

the internal Hamiltonian of a free D2 molecule. It is assumed
that ddm formation takes place in collision with thel th D2
target molecule. The position of its mass center in the ta
frame is denoted byRl ; %1 is a vector connecting deuteron
inside this molecule. FunctionV stands for the potential o
the dm-D2 interaction@8#, leading toddm resonant forma-
tion. Vector%2 connects thedm and D2 centers of mass. We
neglect contributions to the potentialV from the molecules
other than thel th molecule because we assume here t
distances between different molecules in the target are m
greater than the D2 size. The kinetic energy« of thedm atom
and its momentumk in the target frame are connected by t
relation

«5k2/2Mdm . ~11!

The HamiltonianH of a pure D2 target, corresponding to
the initial target energyE0, has the form

H5(
j

1

2Mmol
¹Rj

2 1(
j

(
j 85” j

U j j 8 , ~12!

whereRj is the position of thej th molecule center of mass i
the target frame~Fig. 2!, U j j 8 denotes an interaction betwee
the j th and j 8th molecule, andMmol is the mass of a single
target molecule.

The coordinate partC tot of the initial wave function of the
system can be written as a product

C tot5cdm
1S~r1!cD2

n iKi~%1!exp~ ik•Rdm!u0&, ~13!

where u0& stands for the initial wave function of the con
densed D2 target, corresponding to the total energyE0.

FIG. 1. System of coordinates used for the calculation of re
nant formation of the complex@(ddm)dee# in a condensed-
deuterium target.
05270
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Eigenfunctions of the operatorsHdm andHD2
are denoted by

cdm
1S and cD2

n iKi , respectively. Using the relationRdm5Rl

1%2, the wave functionC tot takes the form

C tot5cdm
1S~r1!cD2

n iKi~%1!exp~ ik•%2!exp~ ik•Rl !u0&,

~14!

which is similar to that used in the case ofddm formation on
a single D2, except the factor exp(ik•Rl)u0&. This factor de-
pends only on positions of mass centers of the target m
ecules.

After formation of the@(ddm)dee# complex, the total
Hamiltonian of the system is well approximated by the o
eratorH tot8

H tot'H tot8 5Hddm~r ,R!1HC~%!1V~%,r ,R!1H̃, ~15!

whereHddm is an internal Hamiltonian of theddm molecular
ion, and vectorsr andR are its Jacobi coordinates. Relativ
motion of ddm and d in the complex is described by
HamiltonianHC , which depends on the respective intern
vector %. The final HamiltonianH̃ of the target, with the
eigenfunctionuñ& and energy eigenvalueẼn , is expressed by
the formula

H̃5
1

2MC
¹Rl

2 1(
j 5” l

1

2Mmol
¹Rj

2 1(
j

(
j 85” j

U j j 8

52S 12
Mmol

MC
D 1

2Mmol
¹Rl

2 1H5DH1H, ~16!

whereMC is the mass of the complex. The respective co
dinate partC tot8 of the total final wave function of the system
is

C tot8 5cddm
Jv ~r ,R!cC

n fK f~%!uñ&, ~17!

wherecddm
Jv and cC

n fK f denote eigenfunctions of the Hami
toniansHddm andHC , respectively.

The energy-dependent resonant-ddm-formation rate
ln iKi ,n fK f

SF («) in the condensed target, for the initialu0& and

final uñ& target states and a fixeddm total spinF, is calcu-
lated using the formula

-

FIG. 2. Position of impingingdm atom with respect to the con
densed target.
5-3
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ANDRZEJ ADAMCZAK AND MARK P. FAIFMAN PHYSICAL REVIEW A 64 052705
ln iKi ,n fK f

SF ~«!52pNBi f uAi0,f nu2d~«2« i f 1E02Ẽn!,

~18!

with the resonance condition

«1E05« i f 1Ẽn , ~19!

taking into account the initial and final energy of the targ
The resonant energy for a free D2 is denoted by« i f and the
transition-matrix element is given by

Ai0,f n5^C tot8 uVuC tot&. ~20!

Using Eqs.~14! and ~17! the matrix element~20! can be
written as a product

Ai0,f n5^ñuexp~ ik•Rl !u0&Vi f ~«!, ~21!

whereVi f («) is the transition-matrix element calculated for
single D2 molecule @8#. The rate~18! can be additionally
averaged over a distributionrn0

of the initial target states a
a given temperatureT and summed over the final targ
states, which leads to

ln iKi ,n fK f

SF ~«!52pNBi f uVi f ~«!u2(
n,n0

rn0
u^ñuexp~ ikW•Rl u0&u2

3d~«2« i f 1E02Ẽn!. ~22!

The factorBi f , defined by Eqs.~8!, is due to the averaging
over the initial projections and summation over the final p
jections of spin and rotational quantum numbers. This fac
takes also into account a symmetrization of the total w
function of dm1D2 system over three deuterium nuclei.

Now we introduce a time variablet to eliminate thed
function in the equation above and then we involve tim
dependent operators, which is familiar in scattering the
~see, e.g., Refs.@28,29#!. Using the Fourier expansion of th
d function

d~«2« i f 1E02Ẽn!5
1

2pE2`

`

dt

3exp@2 i t ~«2« i f 1E02Ẽn!#, ~23!

one has

ln iKi ,n fK f

SF ~«!5NBi f uVi f u2E
2`

`

dt

3exp@2 i t ~«2« i f !#

3(
n,n0

rn0
^0uexp~2 ik•Rl !uñ&

3^ñuexp~ i tẼn!exp~ ik•Rl !exp~2 i tE0!u0&.

~24!

Assuming that the perturbation operatorDH is well ap-
proximated by its mean value
05270
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DH'^0uDHu0&[D« i f 52~12Mmol /MC!ET,0,
~25!

which is valid when the target relaxation time is mu
smaller than theddm lifetime of the order of 1029 s, the
matrix element in Eq.~24! can be expressed as

^ñuexp~ i tẼn!exp~ ik•Rl !exp~2 i tE0!u0&

5^ñuexp@ i t ~H1DH !#exp~ ik•Rl !exp~2 i tH !u0&

'^ñuexp~ i tD« i f !exp~ i tH !exp~ ik•Rl !exp~2 i tH !u0&

5^ñuexp~ i tD« i f !exp†ik•Rl~ t !‡u0&, ~26!

whereRl(t) denotes the Heisenberg operator andET in for-
mula~25! is the mean kinetic energy of the target molecule
temperatureT.

Using the identity(nuñ&^ñu51 in Eq. ~24! we obtain

ln iKi ,n fK f

SF ~«!5NBi f uVi f ~«!u2E
2`

`

dt exp†2 i t ~«2« i f8 !‡

3^exp@2 ik•Rl~0!#exp@ ik•Rl~ t !#&T ,

~27!

where^•••&T denotes both the quantum-mechanical and s
tistical averaging at temperatureT, with « i f8 being the reso-
nance energy

« i f8 5« i f 1D« i f , ~28!

shifted byD« i f ,0. Note that such a resonant-energy sh
was neglected in papers@26,27#, where absorption of neu
trons andg rays by heavy nuclei were considered. An es
mation of the shift in the case ofg emission from a nucleus
bound in a solid, similar to Eq.~25!, was given in Ref.@30#.

A self-pair-correlation functionGs(r ,t) is defined by the
following equation@14#:

^exp@2 ik•Rl~0!#exp@ ik•Rl~ t !#&T

5E d3rGs~r ,t !exp~ ik•r !, ~29!

and the single-particle response functionSi(k,v) is given by
the formula

Si~k,v!5
1

2pE d3rdtGs~r ,t !exp@ i ~k•r2vt !#. ~30!

Thus, by virtue of Eqs.~27! and~30!, the resonant formation
rate in a condensed target can be expressed in terms o
response function

ln iKi ,n fK f

SF ~«!52pNBi f uVi f ~«!u2Si~k,v!, ~31!

where the momentum transferk and energy transferv to the
target are defined as follows:

k5k, v5«2« i f8 . ~32!
5-4
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RESONANTddm FORMATION IN CONDENSED DEUTERIUM PHYSICAL REVIEW A 64 052705
The advantage of the Van Hove method is that all proper
of the target, for given momentum and energy transfers,
contained in the factorSi(k,v). It is possible to rigorously
calculateSi in the case of a perfect gas and in the case o
harmonic solid. However, a liquid target or a dense gas ta
is a difficult problem to solve.

Proceeding as above, one can obtain a similar formula

Gn fK f ,n iKi

SF8 in a condensed target~in general,dm spinF8 after

back decay can be different fromdm spin F before the for-
mation!,

Gn fK f ,n iKi

SF8 52pAi f E d3k

~2p!3
uVi f ~«!u2S̃i~k,v8!,

v85 «̃ i f8 2«, «̃ i f8 5« i f 1D«̃ i f , ~33!

S̃i is the response function calculated for the stateuñ& and

D«̃ i f [^ñuDHuñ&52~MC /Mmol21!ẼT , ~34!

where ẼT denotes the mean kinetic energy of the comp
bound in the target.

IV. RESONANT FORMATION IN A HARMONIC SOLID

It has been shown by Van Hove@14# that the self-
correlation function in the case of a gas or a solid with cu
symmetry takes the general form

Gs~r ,t !5F Mmol

2pg~ t !G
3/2

expF2
Mmol

2g~ t !
r 2G . ~35!

For a cubic Bravais lattice, in which each atom is at a cen
of inversion symmetry,g(t) is given by the formula

g~ t !5E
2`

`

dw
Z~w!

w
nB~w!exp~2 iwt !, ~36!

whereZ(w) is the normalized vibrational density of stat
such that

E
0

`

dwZ~w!51, Z~w!50 for w.wmax,

Z~2w![Z~w!, ~37!

nB(w) is the Bose factor,

nB~w!5@exp~bw!21#21, b5~kBT!21, ~38!

and the Boltzmann constant is denoted bykB .
The response function~30!, after substitution of Eqs.~35!

and ~36! and integration overr , can be written as follows:
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Si~k,v!5
1

2p
expF2

k2

2Mmol
g~`!G E

2`

`

dt

3exp~2 ivt !expH k2

2Mmol
@g~`!2g~ t !#J ,

~39!

in which g(`) denotes the limit ofg(t) at t→`. This for-
mula can be expanded in a power series of the momen
transferk, which leads to

Si~k,v!5exp~22W!Fd~v!1 (
n51

`

gn~v,T!
~2W!n

n! G ,

~40!

where exp(22W) is the Debye-Waller factor, familiar in the
theory of neutron scattering,

2W5
k2

2Mmol
g~`!5

k2

2Mmol
E

0

`

dw
Z~w!

w
cothS 1

2
bwD ,

~41!

and the functionsgn are given by

g1~w,T!5
1

g~`!

Z~w!

w
@nB~w!11#,

gn~w,T!5E
2`

`

dw8g1~w2w8,T!gn21~w8,T!, ~42!

E
2`

`

dwgn~w!51.

In the case of a cubic-crystal structure 2W can also be ex-
pressed as

2W5
1

3
^0uu2u0&k2, ~43!

whereu is the displacement of a molecule from its lattic
site. Substitution of Eq.~40! in Eq. ~31! leads to the follow-
ing formation rate:

ln iKi ,n fK f

SF ~«!52pNBi f uVi f ~«!u2exp~22W!

3Fd~v!1 (
n51

`

gn~v,T!
~2W!n

n! G . ~44!

The first term in expansion~44! represents a sharp peak d
scribing thed-profile recoil-less formation. The next term
give broad distributions corresponding to subsequent mu
phonon processes. In particular, the term withn51 describes
formation connected with creation or annihilation of o
phonon.

If 2W!1 we deal with so-called strong binding@26#
where only the few lowest terms in the above expansion
important. On the other hand, in the limit 2W@1 ~weak
binding! many multiphonon terms give comparable contrib
5-5
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ANDRZEJ ADAMCZAK AND MARK P. FAIFMAN PHYSICAL REVIEW A 64 052705
tions to Eq.~44!. Therefore, for sufficiently largek2, it is
convenient to use the impulse approximation in whichg(t)
is replaced by its value neart50

g~ t !'g~0!1 i t 2
2

3
ET . ~45!

This leads to the asymptotic formula forSi

Si~k,v!5
1

DAp
expF2S v2R

D D 2G , ~46!

where

D52A2

3
ETR, R5

k2

2Mmol
. ~47!

The mean kinetic energyET of a molecule in the solid, which
also determines the resonance energy shift~25!, is equal to

ET5
3

2E0

`

dwZ~w!wFnB~w!1
1

2G . ~48!

The energyET contains a contribution from the zero-poi
vibrations, approaching 3kBT/2 only at high temperature
T@wmax/kB . Function~46! is a Gaussian with response ce
tered at the recoil energyR. Therefore in the weak-binding
region the resonant formation rate takes the Doppler fo
obtained by Bethe and Placzek1 for resonant absorption o
neutrons in gas targets@31#. However, the resonance widt
~47! in the solid at temperatureT is different from the Dop-
pler width in a Maxwellian gasDgas52AkBTR unless the
temperature is sufficiently high. This phenomenon w
pointed out by Lamb in his paper@26# concerning resonan
neutron absorption in solid crystals. By virtue of the equ
tions above, one can introduce for the solid an effective te
peratureTeff

Teff5
2

3
ET /kB . ~49!

V. RESONANT FORMATION IN FROZEN DEUTERIUM

The following considerations concern the solid-deuteri
crystals used in the TRIUMF experiments@32,33#, though
the results presented below can be applied to targets obta
in similar conditions @12,34#. At TRIUMF, thin solid-
deuterium layers have been formed by rapid freezing of g
eous D2 on gold foils atT53 K and zero pressure. Accord
ing to Ref. @35# such deuterium layers have the fac
centered-cubic~fcc! polycrystalline structure. Since th
distance between the neighboring molecules is a few tim
greater than the diameter of a D2 molecule and the Van de
Waals’s force that binds the solid is weak, one can neg

1In fact, formula~46! is the limit of the Bethe formula in the cas
of a very narrow natural resonance widthG→0.
05270
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perturbations of the resonant-formation potentialV due to
these neighbors.

The deuterium crystals at zero pressure are quantum
lecular crystals. The amplitude of zero-point vibration at 3
equals 15% of the nearest-neighbor distance. A sing
particle potential in this case is not harmonic and the st
dard lattice dynamics leads to imaginary phonon frequenc
However, the standard dynamics can be applied after a re
malization of the interaction potential, taking into accou
the short-range pair correlations between movement of
neighbors@35#. As a result, the theoretical calculations@36#
of the phonon dispersion relations give a good agreem
with the neutron-scattering experiments@37#, and the Debye
model for solid deuterium can be used as a good approxi
tion of the phonon energy distribution

Z~w!5H 3w2/wD
3 if w<wD

0 if w.wD ,
~50!

with the Debye energywD5kBQD and Debye temperatur
QD taken from neutron experiments. ForT53 K we use the
Debye model of an isotropic solid withQD5108 K corre-
sponding to the maximal phonon energywD59.3 meV.
Thus, we are dealing with the limitT/QD!1, where

g~`!5
3

2
wD

21 , ET5
9

16
wD'5.2 meV,

Teff5
3

8
QD'40 K ~51!

are very good approximations of Eqs.~41!, ~48!, and ~49!.
The Debye-Waller factor and mean kinetic energyET at low-
est temperatures are determined by contributions from
zero-point D2 vibration in the lattice, and therefore thes
quantities do not tend to zero atT→0. The zero-point energy
is not accessible energy but its effects are always presen

The values of the resonance energies depend on initial
final rotational and vibrational quantum numbers of the s
tem. In solid hydrogens at low pressures these quantum n
bers remain good quantum numbers, but excited energy
els broaden into energy bands~rotons and vibrons! due to
coupling between neighboring molecules@18#. The calcula-
tions presented in the literature concern pure solid H2, HD,
and D2 targets and only lowest quantum numbers. The pr
lem of a heavier impurity, such as the (ddm)d complex in
D2, has not been considered yet. However, knowing that
width of the rotational bands can reach about 1 meV@18#, a
possible influence of this effect on the calculated format
rates and fusion-neutron time spectra is discussed in the
section.

At low temperatures all D2 molecules are in the groun
vibrational staten i50 andddm is formed via the excitation
of the complex to the staten f57. Unless a catalyst is ap
plied, rapidly frozen deuterium is a mixture of ortho
D2 (Ki50) and para-D2 (Ki51). In the TRIUMF experi-
ments gaseous deuterium was pumped through a hot p
dium filter before freezing. Therefore the solid target wa
statistical mixture~2:1! of the ortho and para states (Ki
5-6
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5stat). Since the para-ortho relaxation without a catalys
very slow ~0.06%/h! in solid deuterium@38#, the population
of these states is not changed during experiments of a
days.

The lowest resonance energies« i f and« i f8 for fixed n i , n f

and different values ofF, Ki , S, andK f are shown in Table
I @10#. A few of them have negative values, which means t
to satisfy the resonance condition«5« i f , an energy exces
in the dm1D2 system should be transferred to external d
grees of freedom. This is possible in dense targets, where
energy of neighboring molecules can be increased. Suc
effect, due to triple collisions in gas targets, has been
discussed in Ref.@39#. In a solid, the energy excess is lo
through incoherent phonon creation. According to Eqs.~25!,
~28!, and ~51!, in the considered 3-K solid deuterium a
resonant energies« i f8 are shifted byD« i f '21.81 meV. One
can see that all resonances forF5 1

2 are placed at highe
energies, which is caused bydm hyperfine splittingDEhfs

548.5 meV. All resonance energies« i f8 &wD'10 meV are
connected with formation from the upper spin stateF5 3

2 of
dm. However, only resonances corresponding to the dip
transitionsKi50→K f51 andKi51→K f50,2 can give a

FIG. 3. Transition-matrix elementsuVi f («)u2 for Ki50 andK f

50,1,2 versusdm energy.

TABLE I. The lowest resonance energies ofddm formation in
dm scattering from a single D2 molecule (« i f ) and from 3-K solid-
deuterium target (« i f8 ). These energies are given in the respect
CMS systems.

« i f (meV) « i f8 (meV) F Ki K f S

27.218 29.028 3
2 1 0 1

2

23.667 25.477 3
2 1 1 1

2

0.5368 21.272 3
2 0 0 1

2

3.422 1.612 3
2 1 2 1

2

4.088 2.279 3
2 0 1 1

2

11.18 9.368 3
2 0 2 1

2

42.10 40.30 1
2 1 0 1

2

45.66 43.85 1
2 1 1 1

2

49.86 48.05 1
2 0 0 1

2

52.74 50.94 1
2 1 2 1

2

53.41 51.60 1
2 0 1 1

2

60.50 58.69 1
2 0 2 1

2
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significant contribution to the formation rate at lowest en
gies. Other transition-matrix elements described in Ref.@40#
tend to zero when«→0 ~see Figs. 3 and 4 obtained forKi

50 andKi51).
The low energy rates («&wD) are calculated using for

mula ~44! with a few most significant terms of the respons
function expansion~40! taken into account. Figure 5 show
the functionSi(k,«2« i f8 ) corresponding to the two dipole
transitions in para-D2. The subthreshold resonance, with« i f8
'29.0 meV, gives contributions to the formation rate on
through the phonon-creation processes. For« i f8 '1.6 meV,
the nonphonon process is possible and it is represented
vertical line. Different peaks in this figure describe proces
connected with different numbers of created phonons. In p
ticular, one-phonon processes, which are proportional
Z(w) with the characteristic Debye cutoff, can be clea
distinguished. Since then-phonon term in Eq.~40! is propor-
tional to k2n, theddm formation rate tends to zero at«→0.
Note that phonon annihilation gives a negligible contributi
to the rate at very low target temperaturesT!QD .

In order to compare the calculated formation rates w
experiments, the summed rateslKi

F («) are introduced,

FIG. 4. Transition-matrix elementsuVi f («)u2 for Ki51 andK f

50,1,2 versusdm energy.

FIG. 5. Response functionSi(k,«2« i f8 ) ~in arbitrary units! for
the para-D2 crystal at 3 K. The dashed line is obtained for th
subthreshold resonance« i f8 '29.0 meV, the solid line correspond
to « i f8 '1.6 meV. The vertical line represents the rigid-lattice te
d(«2« i f8 )exp(22W).
5-7
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lKi

F ~«!5 (
K f ,S

ln iKin fK f

SF , n i50, n f57. ~52!

In Fig. 6 the formation rateslKi

F («) in the solid ortho-D2 and

para-D2 are shown forF5 3
2 . In the case of resonances sa

isfying the condition« i f8 <wD we have 2W,1 and the ex-
pansion~44! is used. The two strong peaks represent
recoil-less formation process, without phonon excitatio
The delta-function profile of every peak is shown as a re
angle with a height equal to the formation rate strength
vided by the total decay width ('0.831023 meV). The
strength, defined as the value of the factor standing be
d(v) in the expansion~44!, is equal to 0.1061 eVms21 for
the resonanceKi50→K f51 in solid ortho-D2. The transi-
tion Ki51→K f52 in para-D2 gives 0.07 544 eVms21 as
the resonance strength. Higher resonance energies inv
many multiphonon terms and therefore we use
asymptotic form~46! of Si for « i f8 .wD . All formation rates
presented in the figures are normalized to liquid-hydrog
density,N054.2531022 atoms/cm3.

Though in Monte Carlo simulations, involving energ
dependent rates of different processes, the ‘‘absolute’’ form
tion rateslKi

F («) should be used, it is convenient to introdu

an effective formation ratel̄Ki

F («), which leads to the nuclea

dd fusion in the@(ddm)dee# complex. Back decay of the
complex to thedm1D2 system, characterized by the qua
tum numbersKi8 andF8, strongly influences the fusion pro
cess because the back-decay rates are comparable wit
effective fusion ratel̄ f'374 ms21 @7#. Since in a solid tar-
get, rotational deexcitation of the asymmetric complex
much faster than back decay and fusion, it is assumed
back decay takes place only from the stateK f50. The effec-
tive formation rate is then defined by the following formul

l̄Ki

F ~«!5 (
K f ,S

ln iKin fK f

SF ~«!P S
fus, n i50, n f57, ~53!

where the fusion fractionP S
fus is given by

FIG. 6. Formation ratelKi

F («) for F5
3
2 in 3-K ortho-D2 ~solid

line! and para-D2 ~dashed line!. The labels ‘‘1→2’’ and ‘‘0 →1’’
denote the rotational transitionKi→K f corresponding to the lowes
nonphonon processes.
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P S
fus5

l̄ f

GS
, GS5l̄ f1(

F8
GSF8,

GSF85 (
Ki8 ,K f50

Gn fK f ,n iKi8
SF8 . ~54!

Since the frequency of lattice vibrations (;wD /\
;107 ms21) is many orders of magnitude greater than t
back-decay and fusion rates, energetic phonons created
ing the ddm formation process are dissipated. At 3 K the
number of phonons with energiesw*kBT'0.26 meV is
strongly suppressed by the Bose factornB(w). Therefore,
back decay with phonon annihilation atT!QD is negligible.
In particular, the phonon channel of decay ofddm, formed
from the dm stateF5 3

2 due to subthreshold resonances,
closed because this would require annihilation of a phon
with energy of a few meV. In this case back decay is co
nected with the spin-flip transition toF85 1

2 . Since the cor-
responding energy release of a few tens of meV is m
greater than the Debye energy (DEhfs@wD), theddm decay
rate is dominated by contributions from simultaneo
phonon-creation processes.

After integration of formula~33! over the direction of
vectork one obtains

Gn fK f ,n iKi

SF8 5
Ai f

p E
0

`

dkk2uVi f ~«!u2S̃i~k2,v8!, ~55!

and then substitution of expansion~40! and integration of the
recoil-less term lead to

Gn fK f ,n iKi

SF8 5
Ai f

p FMk̃i f uVi f ~ «̃ i f8 !u2 exp~22W̃i f !

1 (
n51

` E
0

`

dkk2uVi f ~«!u2

3exp~22W̃!gn~v8,T!
~2W̃!n

n! G , ~56!

where

2W̃5
k2

2MC
g~`!, 2W̃i f 52W̃~ k̃i f !, k̃i f 5A2M «̃ i f8 .

~57!

It is assumed in the formula above that the phonon-ene
spectrum of solid deuterium containing@(ddm)dee# is simi-
lar to that of a pure deuterium lattice. The problem of latti
dynamics of a quantum solid-deuterium crystal containin
small admixture of a heavier isotope has not been consid
yet in the literature, at least to the knowledge of the autho
However, this approximation is reasonable since the De
temperatures of solid hydrogen and deuterium at 3 K
very similar @35#, independently of the mass difference
these isotopes. Therefore it is assumed that during theddm

lifetime the mean kinetic energyẼT of the complex reaches
5-8
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RESONANTddm FORMATION IN CONDENSED DEUTERIUM PHYSICAL REVIEW A 64 052705
the energyET characterizing a pure deuterium solid. Thus t
resonance energy shift~34! is approximated by

D«̃ i f '2~MC /Mmol21!ET'22.77 meV, ~58!

which gives«̃ i f8 5« i f 22.77 meV.
The effective formation rates in 3-K solid deuterium f

F5 3
2 are shown in Fig. 7. The phonon part of the ra

below a few meV is about two orders of magnitude low
than the average rate of 2.7ms21 derived from the experi-
ment @11,13#. This means that at«!wD the phonon contri-
bution to the total resonant-formation rate is even sma
than the nonresonantddm formation ratelnr'0.44 ms21

@9#, and that the estimation of the phonon contribution giv
in Ref. @20# is strongly overestimated. Therefore, the expe
mental results can only be explained by resonantddm for-
mation at energies«*1 meV, where the rate exceeds si
nificantly the value of 1ms21. A cusp at 0.3 meV in para
D2 is due to the formation with simultaneous one-phon
creation, connected with the subthreshold resonanceKi51
→K f50. This implies a significant difference between t
resonant formation in ortho-D2 and para-D2 below 1 meV.
However, this difference is difficult to measure because o
broad distribution ofdm energy. Note that a similar sub
threshold phonon effect in the case of resonantdtm forma-
tion in solid deuterium has been discussed in Ref.@41#.

In the solid target the fusion fractionP S
fus'0.3 and the

total resonance widthGS'0.831023 meV for both S5 1
2

and S5 3
2 . The back-decay rateGSF8 from S5 1

2 to F85 1
2

equals about 843ms21. DecayS5 1
2 →F85 1

2 is impossible.
In the case ofS5 3

2 we have obtainedGSF8'281 ms21 for
F85 1

2 and GSF8'610 ms21 for F85 3
2 . Phonon-creation

processes give dominant contributions to the back-de
rates, e.g., the nonphonon part ofGSF8, given by the first
term of expansion~56!, equals 169ms21. Therefore thedm
energy spectrum, after back decay in the solid, is not
crete.

In Fig. 8 the effective rates in solid deuterium forF5 1
2

are presented. For the sake of comparison, the formation

FIG. 7. Effective formation ratel̄Ki

F («) for F5
3
2 in 3-K solid

ortho-D2 and para-D2. The labels ‘‘1→2’’ and ‘‘0 →1’’ denote the
rotational transitionKi→K f corresponding to the lowest non
phonon processes.
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for 3 K ortho-D2 gas is also plotted. The ‘‘gas’’ curve ha
been calculated using the asymptotic formula~46! for Si with
Teff53 K. This figure shows that in a real solid-deuteriu
target the rates are smeared much more than in a gas t
with the same temperature, because of zero-point vibrati
Therefore even at relatively highdm energies of some 0.1
eV, one should not neglect the solid effects and use the
mation rates calculated for a 3-K Maxwellian gas.

VI. MONTE CARLO CALCULATIONS

The calculated energy-dependentddm formation rates
have been applied in our Monte Carlo simulations ofm CF in
3-K solid-deuterium targets. The finaldm energy distribution
after back decay, including simultaneous phonon-crea
processes, has been determined through a numerical inte
tion of Eq. ~56!. The calculated distribution is shown in Fig
9 for S5 1

2 , K f50, andF85 1
2 . The rotational transitions to

Ki850,1,2 with no phonon-creation are seen as delta pe
The continuous energy spectrum describes phonon crea
contribution to thedm energy. Note that, opposite toddm
formation rates, this phonon contribution~for a given rota-
tional transition peak! extends towards lower energies. Th

FIG. 8. Effective formation ratel̄Ki

F («) for F5
1
2 in 3-K solid

ortho-D2 and para-D2. The label ‘‘gas’’ denotes the curve obtaine
for 3-K gaseous deuterium (Ki50), using the asymptotic formula
~46! for the response functionSi with Teff53 K.

FIG. 9. Distribution of finaldm energy afterddm back decay
from S5

1
2 ,K f50 to F85

1
2 , Ki850,1,2. The three peaks describ

the rotational transitions without simultaneous phonon excitatio
5-9
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ANDRZEJ ADAMCZAK AND MARK P. FAIFMAN PHYSICAL REVIEW A 64 052705
averagedm energy afterddm back decay equals about 3
meV for the presented spectrum.

The dd fusion neutron and proton spectra depend on
time evolution ofdm energy. This energy is determined b
differential cross sections of different scattering processe
dm atoms in a given solid target, including elastic scatteri
rotational and vibrational transitions, spin-flip reactions, a
phonon processes. The scattering cross sections in a soli
calculated using the Van Hove method. Some results of s
calculations fordm atoms in fcc solid deuterium have bee
presented and discussed in Ref.@42#. The incoherent pro-
cesses, such as spin-flip or rovibrational transitions, are
scribed by the self-pair-correlation functionGs(r ,t) defined
by Eq. ~29!. The Bragg scattering and coherent phonon sc
tering are connected with a pair correlation functionG(r ,t)
@14#.

In Fig. 10 is shown the total cross section fordm(F
53

2) scattering in the statistical mixture of 3-K solid ortho-D2
and para-D2. Bragg scattering, with the Bragg cutoff at«B
51.1 meV, and incoherent elastic scattering do not cha
thedm energy because of the very large mass of the con
ered solid target. Below 1.7 meV thedm atom is effectively
accelerated, mainly due to the rotational deexcitation of pa
D2 molecules@21,42#. This transition is enabled by muo
exchange between deuterons indm1D2 scattering. The
curve ‘‘0→1’’ in Fig. 10, describing the rotational deexcita
tion, includes contributions from simultaneous incoher
phonon processes. This cross section at«52.5 meV equals
0.22310220 cm2, which is about three times less~taking
into account the statistical factor of 1/3 forK51 states! than
the estimation given in paper@21#. Phonon annihilation is a
much weakerdm acceleration mechanism than rotational d
excitation.

Since the coherent amplitude fordm elastic scattering on
a single D2 molecule is greater by two orders of magnitu
than the incoherent amplitude, the coherent processes inv
ing conservation of momentum dominate low-energydm
scattering in solid deuterium. It is especially important bel
a few meV, where the shapes of coherent and incohe

FIG. 10. Total cross section fordm(F5
3
2 ) scattering in a sta-

tistical mixture of solid ortho-D2 and para-D2. The label ‘‘1→0’’
denotes the rotational deexcitationK50→1 of a target D2 mol-
ecule. The curves ‘‘2phonon’’ and ‘‘1phonon’’ stand fordm scat-
tering with phonon annihilation and creation, respectively. T
Bragg cross section is calculated for the fcc polycrystalline latt
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cross sections differ strongly. The small phonon-creat
cross section below 1.1 meV, leading todm energy loss, is
due to the incoherent amplitude. Coherent phonon creatio
impossible below«B . This limit is obtained in the case o
the coherent one-phonon-creation process, for the to
momentum conservation involving the smallest~nonzero! in-
verse lattice vectort, which also fixes the position of the firs
peak of the Bragg scattering at«B51.1 meV. Fort50 one-
phonon creation is possible only if thedm velocity is not
lower than the sound velocity in the crystal, which is we
known in neutron physics. According to Ref.@38# the mean
sound velocity in solid deuterium equals about 1
3105 cm/s and this corresponds to adm energy of 15 meV.
Therefore, neglecting the inverse-lattice contribution to
one-phonon-creation cross section in Ref.@21# leads to the
severe underestimation ofdm slowing down at lowest ener
gies and subsequent overestimation ofdm kinetic energy.

Above 1.7 meV, phonon creation already prevails over
acceleration processes. However, the effective decelera
rate belowwD is strongly suppressed by the dominatin
Bragg elastic scattering. At energies above some 10 m
subsequent rotational and then vibrational excitations of2
molecules become important and they provide a very
mechanism ofdm deceleration at higher energies.

The total cross section fordm(F5 3
2 ) scattering in a pure

3-K ortho-D2 target ~see Fig. 11! is quite similar to that
shown in Fig. 10. A significant difference is the lack of r
tational deexcitation. Therefore phonon annihilation is t
only, and weak, acceleration mechanism. It dominates
inelastic cross section below 1.4 meV.

Figure 12 presents the time evolution of averagedm(F
53

2) atom energy«avg, obtained from our Monte Carlo cal
culations. It is assumed that the target is infinite and thatdm
atoms have initially a Maxwellian energy distribution with
mean energy of 1 eV. A statistical initial population ofdm
total spin is used and the theoretical nonresonant part of
total spin-flip ratel3/2,1/2 is multiplied by a single scaling
factor of 0.4, in order to keep agreement with the experim
tal values@10,43# of the spin-flip rate. The calculations hav
been performed for ortho-D2, para-D2 and their statistical
mixture ~stat!. One can see that adm mean energy of 10
meV is reached after only 5 ns. Then, below the Debye

e
.

FIG. 11. Cross section fordm(F5
3
2 ) scattering in solid ortho-

D2. The labels are identical to those in Fig. 10.
5-10
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RESONANTddm FORMATION IN CONDENSED DEUTERIUM PHYSICAL REVIEW A 64 052705
ergy, deceleration becomes very slow. The lowest value
«avg is determined by the intersection point of the cross s
tions of the acceleration processes and phonon-creation
cess. In the case of a statistical mixture«avg'1.7 meV, for
K50 we have«avg'1.4 meV. Finally, for pure para-D2,
with a contribution to the total cross section from the ro
tional transition K51→0 three times greater than th
shown in Fig. 10,«avg'2.2 meV. Thus,dm atoms are neve
thermalized and their energy is significantly greater tha
meV. For para-D2 the mean energy is always greater than
energy of the lowest resonance peak« i f8 51.6 meV. How-
ever, even if«avg is smaller than« i f8 , a significant fraction of
dm atoms has energy«>« i f8 because of a large admixture o
hot dm atoms att50 @15,16# and slow deceleration below
10 meV.

Since at energies of a few meV the lowest delta peaks
dominant in resonant formation, their contributions to t
mean effective formation rate are shown in Fig. 13 for g
and solid-deuterium~stat! targets, assuming steady Maxwe
distributions ofdm(F5 3

2 ) energy with different«avg. The

FIG. 12. Calculated time evolution of averagedm energy«avg

for F5
3
2 in 3 K solid ortho-D2, para-D2, and their statistical mix-

ture ~stat!. A Maxwell distribution ofdm initial energy, with mean
energy of 1 eV, has been assumed.

FIG. 13. The effective resonant-ddm-formation rate as a func
tion of mean CMS energy«avg of dm(F5

3
2 ) atom for gas- and

solid-deuterium targets. A steady Maxwell distribution ofdm en-
ergy is assumed for a given«avg. The contributions from the two
lowest resonant peaks to the formation rate are taken into acco
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maximum average rate of about 6ms21 in the solid is due
to the resonance-energy shift of21.8 meV. The experimen
tal result of 3 ms21 can be explained because«avg is greater
than 1 meV. However, in order to obtain large fusion-neutr
and -proton yields through resonantddm formation, the
width GS of the resonance peaks in the solid cannot be
narrow. The peak resonant rates of a few 104 ms21 have
been obtained assuming discrete values of the rotatio
vibrational D2 energies in solid deuterium andGS

;1023 meV. These resonant rates are many orders of m
nitude greater than the inelastic scattering rate;10 ms21.
In this casedm atoms are very quickly@compared to the
dm(F5 3

2 ) lifetime# removed from regions of the resonan
peaks and the contribution of the recoil-less resonance
the neutron yield is negligible. The Monte Carlo simulatio
have shown that the neutron yield from the phonon part
the resonant rates gives only some 10% of the yield obse
in the experiments. As a result, the calculated time spec
obtained for smallGS, are dominated by weak nonresona
ddm formation, which disagrees with the experimental da
Therefore, we have investigated the influence of a broad
ing of the non-phonon resonant peaks due to the presenc
molecular rotational and vibrational bands in the solid, d
cussed in Ref.@18#. Since in the literature there is no info
mation concerning the profile of such bands, we have
sumed a rectangular shape of the resonance peaks.
resonance strengths have been fixed and their widths h
been changed within the limits 0.001–1 meV. It turns o
that good Monte Carlo results are obtained forGS

'0.5 meV, which is consistent with the rotational ban
widths of about 1 meV reported in Ref.@18#. This gives a
resonant formation rate of 294ms21 for the recoil-less peak
in ortho-D2 and 214 ms21 in para-D2. In Fig. 14 one sees
the resonant formation rate at lowest energies forGS

50.5 meV and for a statistical mixture of ortho and pa
states. Also shown is the Monte Carlo distribution ofdm(F
5 3

2 ) energy, calculated for timest510 ns andt530 ns. A
Maxwell distribution of initialdm energy, with«avg51 eV,
has been assumed. Two minima in thedm energy distribu-nt.

FIG. 14. Resonant-ddm-formation rate forF5
3
2 in a statistical

mixture of ortho-D2 and para-D2 for the resonance peak widthGS

50.5 meV. The Monte Carlo distribution ofdm energy at t
510 ns andt530 ns after the muon stop is plotted~in arbitrary
units!.
5-11
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ANDRZEJ ADAMCZAK AND MARK P. FAIFMAN PHYSICAL REVIEW A 64 052705
tion appear quickly at the positions of the resonance pe
since the respectiveddm formation rates are comparab
with the total inelastic scattering rate of about 30ms21.

Thedd fusion-neutron spectrum, calculated assuming
same initialdm energy and resonance profiles, is shown
Fig. 15. A 3.231026 concentration of nitrogen is included i
order to fit the TRIUMF target conditions. The dashed li
plotted in this figure has been calculated using the stea
state kinetics model with an effective formation ratel̄stat

3/2

53 ms21 and total spin-flip ratel3/2,1/2536 ms21 taken
from the fits to the experimental data@13#. The slope of the
spectrum att&80 ns is determined by the ratesl̄stat

3/2 ,
l3/2,1/2, and thedm-scattering rate, which also changes t
population ofdm(F5 3

2 ) atoms in the vicinity of the resonan
peaks. The steady-state kinetics model does not include
process ofdm deceleration. Therefore, fits using this mod
could entangle the deceleration rate with the formation
spin-flip rates. The mean formation rate, calculated dire
in the Monte Carlo runs, is a function of time and it stays
the level of 1–3 ms21. The spectrum slope at large timest
*100 ns, whendm(F5 3

2 ) atoms practically disappear, i
due to nonresonantddm formation fromF5 1

2 and to muon
transfer to nitrogen contamination.

The shape of the time spectra is practically unchan
when the mean energy«avg of the initial single Maxwell
distribution varies within the limits 0.01–1 eV. On the oth
hand, the spectra change substantially if a significant frac
of dm atoms att50 has energy smaller than the energy
the lowest resonant peak, which can be observed usin
more complicated~e.g., two-Maxwell! distribution. Assum-
ing that GS is greater than 0.5 meV we obtain results th
begin to differ significantly from the analytical curve calc
lated with the experimental parameters. In particular, the
tios of neutron yields from the short and long times begin
disagree. Fits of the calculated spectra to the experime
data would enable a better determination ofGS and a shape
of the initial dm energy. However, this is not the purpose

FIG. 15. The Monte Carlo fusion-neutron spectrum for a sta
tical mixture of 3-K solid ortho-D2 and para-D2 ~solid line!. The
dashed line represents the spectrum obtained using an anal

steady-state-kinetics model withl̄stat
3/253 ms21. The initial dm en-

ergy is given by a Maxwell distribution with mean energy of 1 e
The widthGS of the nonphonon resonances is fixed at 0.5 meV
3.231026 concentration of nitrogen is included.
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this work. A qualitative comparison of Monte Carlo spect
with the experimental data has already been performed
Ref. @13#. In this case good fits were not obtained since
that time, the resonantddm formation rates in solid D2 and
dm scattering rates including coherent effects in the so
were not yet available.

Our calculations show that strong resonantddm forma-
tion takes place both in ortho-D2 and para-D2. There are
certain differences between the neutron time spectra f
these targets~see Fig. 16!, caused by the different position
and strengths of the lowest resonance peaks. Also thedm
slowing-down process differs slightly in the two cases. T
neutron yield at longer times is smaller for ortho-D2 since in
this case the resonance peak is placed at a higher ener
2.3 meV. Therefore,dm atoms are removed faster from th
peak compared to the situation in para-D2, where the reso-
nance is observed at 1.6 meV. A greater meandm energy in
para-D2 ~cf. Fig. 12! leads also to a stronger overlap of th
resonance peak with thedm energy distribution att
*20 ns. Strong resonantddm formation in ortho-D2 has
been recently observed at RIKEN-RAL Muon Facility and
TRIUMF @44#. The effective formation rate in ortho-D2, de-
rived from these experiments, is lower by about 25% than
experimental value of the rate found in a statistical mixtu
These results confirm our calculations, which predict a som
what lower fusion-neutron yield for targets containing mo
ortho-D2 molecules.

VII. CONCLUSIONS

The methods used to describe resonant neutron andg-ray
absorption in condensed matter have been directly applie
the calculation of resonantddm formation and back-decay
rates in condensed-deuterium targets. These rates are
pressed in terms of the Van Hove single-particle respo
function, which depends on the properties of a given targ
In particular, we have derived the analytical formulas for t
rate in the case of resonantddm formation in harmonic solid
deuterium. The calculations show great differences betw
resonantddm formation in 3-K solid deuterium and in 3-K

-

cal

FIG. 16. Calculated neutron spectra from 3-K solid ortho-2

and para-D2. A Maxwell distribution of initial dm energy with
«avg51 eV andGS50.5 meV has been assumed for the both t
gets.
5-12
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D2 gas. In solid deuterium, the formation at a few me
which determines the experimental results, is dominated
the presence of strong recoil-less resonant peaks. On
other hand, formation with simultaneous phonon creation
important above the Debye energy. The resonance profile
the solid at higher energies are similar to that in D2 gas, but
with the effective temperature equal to 40 K. This tempe
ture is determined by the energy of zero-point vibration o
D2 molecule in the lattice. Phonon creation is always imp
tant in the case ofddm back decay because it is connect
with an energy release of a few tens of meV, which is mu
greater than the Debye energy.

The condition T/QD!1 is fulfilled for any solid-
deuterium target at low pressure. Therefore, the parame
determining solid-state effects~Debye-Waller factor, mean
energy of D2 vibration in solid! weakly depend on targe
temperatureT. They are expressed in terms of the Deb
energywD , which does not significantly change with th
varying solid temperatureT. As a result, the resonantddm
formation rates in solid deuterium for differentT are very
similar and one may expect that the average formation ra
derived from measurements performed at different temp
tures, will also be very close. This is confirmed by the resu
of experiments carried out at TRIUMF and at JINR.

The structure of a solid-deuterium target depends on
temperature and history. Targets maintained atT*4 K have
an hcp structure@35#. Though our calculations have bee
performed for fcc crystals, the results obtained are also g
approximations of the resonant rates in hcp polycrys
since the Debye temperature and nearest-neighbor dist
are similar for these two lattices. In general, the formu
derived in this paper can be used in a wide range of ta
temperature and density, with appropriate experimental
ues of the Debye temperature and lattice constant taken
account.
l.
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The Monte Carlo calculations show thatdm deceleration
below the Debye energy is very slow and that mean ene
of the dm(F5 3

2 ) atom is always significantly greater than
meV. The energy distribution ofdm ’s during their lifetime is
very broad~at least a few meV!, therefore a strong overlap o
this distribution with the lowest resonance peaks takes pla
leading to a large meanddm formation rate in solid deute
rium. However, an explanation of the experiments is poss
only if the broadening of rotational-vibrational molecul
levels in the solid is taken into account. We obtained reas
able results assuming that the strengths of the recoil-
resonant peaks are constant and that the rotational band
crease the resonance peak width to 0.5 meV. Note that,
cording to Ref.@18#, high pressures lead to a greater broa
ening and even to a mixing of rotational states. This co
complicate a comparison of theory and high-pressure exp
ments. The phonon part of the resonant rate gives only ab
a 10% contribution to the calculated neutron time spectra

The dd fusion-neutron spectra calculated for ortho-D2
and para-D2 solid targets are quite similar. Small differenc
between the spectra are due to the different energies
strengths of the lowest resonant peaks, and to a slig
higher meandm energy in para-D2. These differences can b
clearly seen only in high-statistics experiments. Our calcu
tions and recent experiments@44# do not confirm the lack of
strong resonantddm formation in solid ortho-D2 predicted in
papers Refs.@20,21#.
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