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Resonantddp formation in condensed deuterium
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The rate ofddu muonic-molecule resonant formation du atom collisions with a condensed deuterium
target is expressed in terms of a single-particle response function. In partiddjarformation in solid
deuterium at low pressures is considered. Numerical calculations of the rate in the case of fcc polycrystalline
deuterium at 3 K have been performed using the isotropic Debye model of a solid. It is shown that the
energy-dependemtdy, formation rates in the solid differ strongly from those obtained fgrgBseous targets,
even at highdu kinetic energies. Monte Carlo neutron spectra fradchfusion inddu molecules have been
obtained for solid targets with different concentrations of orthodeuterium and paradeuterium. The recent ex-
perimental results performed in low-pressure solid tar¢stististical mixture of ortho-p and para-B) are
explained by the presence of strong recoil-less resonance peaks in the vicinity of 2 meV and very slow
deceleration oflx atoms below 10 meV. Good agreement between the calculated and experimental spectra is
achieved when a broadening of Bbtational and vibrational levels in solid deuterium is taken into account. It
has been shown that resonatu formation with simultaneous phonon creation in the solid gives only about
10% contribution to the fusion neutron yield. The neutron time spectra calculated for pure grthwatPara-

D, targets are very similar. A practically constant value of the ntbdm formation rate, observed for different
experimental conditions, is ascribed to the fact that all the recent measurements have been performed at
temperature§ <19 K, much lower than the target Debye tempera®re~110 K. In result, the formation

rate, obtained in the limiT/®y<1, depends weakly on the temperature.
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[. INTRODUCTION with solid-state effects taken into account, which is the main
purpose of this paper.

A theoretical study of resonant formation of the muonic Our calculations are based on the theoretical results
moleculeddu in condensed deuterium targets is the main(transition-matrix elements, resonance enejgagained in
subject of this paper. Resonaidu formation, first observed the case ofldu formation in a single B molecule. In Sec. Il
by Dzhelepov and co-workefd], is a key process of muon the main formulas used for this case are briefly reported. A
catalyzed fusion & CF) in deuterium(see, e.g., reviews general formula for the energy-dependetdy formation
[2,3]). A muonic deuterium atord is created when a nega- fate in a i condensed target is derived in Sec. Ill, using the
tive muon~ is captured into an atomic orbital in a deute- Yan Hove formalism of the single-particle response function
rium target. Afterdu deexcitation to the & state and slow- 14l This formula is then applie@Sec. 1) for harmonic-

ing down, theddu molecule can be formed in du atom solid targets, in particular, for a cubic_ Brz_alvais lattice. A pho-
collision with one of the D target molecules. The resonant non expansion of the response function is used to study pho-

S : non contributions to the resonant formation. Numerical
formation is possible due to presence of a loosely bound

. . results for 3-K zero-pressure frozen-deuterium targets
state pfddg, characterized by the.rot'atlonal numhkes 1 (TRIUMF experimental conditiong11,13) with the fcc
and vibrational numbews =1, with binding energy e, -4

) ) polycrystalline structure are shown in Sec. V. The formation
~1.97 eV. This energy, according to the Vesman mechagyies have been calculated assuming the isotropic Debye
nism [4], is completely transferred to excited rotational- model of the solid and the values of the Debye temperature
vibrational states of the molecular compléddu)dee].  and lattice constant observed in neutron-scattering experi-
The scheme of calculation of tlidw formation rate in gas- ments.
eous deuterium has been developed for many ygars)| The calculated rates of resonatdu formation and back
and led to good agreement with the experiments performedecay have been used for Monte Carlo simulationsl df
in gaseous targetg9,10. On the other hand, this theory, fusion neutron and proton time spectra. Since the initial dis-
when directly applied to solid-deuterium targets, leads taributions of 1S muonic-atom energy contain contributions
strong disagreement with the experimental resulis-13.  from hotdu's (~1 eV) [15,16], the influence of slow de-
Therefore, it is necessary to calculate thiu formation rate  celeration ofdu atoms below 10 me\17] on these time
spectra is investigated in Sec. VI. The simulations take into
account the processes of incoherent and cohetgnatom
*Email address: andrzej.adamczak@ifj.edu.pl scattering in solid deuterium. In particular, Bragg scattering,
"Email address: faifman@imp.kiae.ru phonon scattering, rotational, and vibrational transitions in
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D, molecules are included. We consider a dependence of th&nd M is the reduced mass of the system. Integration of Eq.

resonant formation rate and time spectra on broadening d#) overk leads to

the rotational-vibrational D energy levels, due to the bind-

ing of molecules in the latticf18]. s ~ Mk My 1y 2 ko—k 5
Since it has been predicted in Ref49-21 that strong viKe K T it Vit(ei|%, kir=k(eir).  (6)

ddu formation takes place only in solid parag-Dstudy of

this process in pure ortho,Dand para-D targets is another SmceFS Tk andX\ are much lower 103 meV) than

aim of this work. The neutron spectra calculated for these

o solids are discussed in Sec. V1. Vesmans model can be applied and the energy-dependent

resonant formation rate has the Dirac-delta function profile

Il. RESONANT FORMATION IN A FREE MOLECULE )\SFK k(8)=2mN Bit| Vit(£)|28(e — &), (7)
Vi Vf
First we consider resonant formation of théu molecule ) ] ] o
in the following reaction: where N is the density of deuterium nuclei in the target.
According to Ref.[8] the coefficientsA;; and B;; in the
(dﬂ)F‘*‘(Dz)LiKﬁ[(ddM)%vdee]nyfy (1)  above equations are equal to
. . . _— 2K;+1
where D, is a free deuterium molecule in the initial A= AWgpé(Kj) mo—
rotational-vibrational statei{K;) with total nuclear spin. 2K¢+1°
The muonic atomdu has total spinF and center-of-mass
(CMS) kinetic energy e. The complex[(ddx)dee] is B — W 25+1 ®
created in the rovibrational state(K;) and the molecular TSP R 1
ion ddu, which plays the role of a heavy nucleus of the
complex, has total spis. The rate)\,, K, .k, Of the process where
above depends on the elastlc WldtlﬁS vk ok, Of 1
[(ddu)deg] complex decay22—25 in reactions - 1 F
Wse=(2F+1)§ 2 20,
—— (du)e+ (Do), 151
l“§'|:< viK;
[(ddw)¥ded], § "0 ) 2
—  stabilization processes, 3 for K;=0
X
f §K)=9 4 ©
where); is the total rate of the stabilization processes, i.e., 3 for Ki=1,

deexcitation and nuclear fusion ddu

and the curly brackets stand for the Wigngr $/ymbol. In
ptt+p+4.0 MeV formula (8) the usual Boltzmann factor describing the popu-
ddu—1{ u+3He+n+3.3 MeV (3) lation of rotational states in a gas target is omitted because
uPHetn+3.3 MeV. we galculate the formation rate sepgrately for each initial
rotational state. If the muonic atoms in a gas have a steady

jnetic-energy distributionf(e,T) at target temperature,

When fusion takes place, the muon is generally released arj@ ) b d the at tion leading t
can again begin the.CF cycle. However, sometimes the d- can be average over the atom motion feading to a

muon is captured into an atomic orbital of heliysticking), mean resonant raﬂev KiveKy (M.
which stops further reactions.

The value ofFSK vk, IS given in atomic units =% |Il. RESONANT FORMATION IN A CONDENSED TARGET

=Mme=1) by the formula Since a muonic deuterium atom can be approximately

&K geate'd as a s%mall neutronlike particleamet':hods.useq for the
SF , , 26/ escription of neutron scattering and absorption in con-
L vl ril ZWA'J Vie(e)"o(zii=2), (&) densed matter are applicable in the casdayt formation in
dense-deuterium targets. Below we adapt the method devel-
whereV;;(¢) is the transition-matrix element ang; is the oped by Lamb[26], and then generalized by Singwi and
resonance energy defined in R]. The factorA;; is due to  Sjolander[27] using the Van Hove formalism of the single-
averaging over initial and summing over final projections ofparticle response functios; [14], for calculation of the
spins and angular momenta of the system. Ve&tds the resonantddu-formation rates.

momentum of relativelx and D, motion, The HamiltonianH,,; of a system, consisting of du
atom in the B state and a heavy condensegltBrget, can be
e=k%2M, (5)  written down as follows:
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D,

FIG. 2. Position of impingingl . atom with respect to the con-
densed target.

Eigenfunctions of the operatoky,, andHD2 are denoted by
FIG. 1. System of coordinates used for the calculation of reso-wls and ¢ViKi, respectively. Using the relatioRd#=R|

nant formation of the complef(ddu)dee€] in a condensed- du D, )
deuterium target. + 05, the wave functiont',,, takes the form

1, Wio= (1) g, (@u)explik- eo)explik-R))|0),
Htot:WVRd#"'Hdﬂ(r1)+HD2(91)+V(V1191,92)+H, (14)

du

(10 which is similar to that used in the caseddu formation on
whereM,,, is thedu mass andRy,, denotes the position of a single B, except the factor exji- R;)|0). This factor de-
du center of mass in the coordinate frame connected witlpends only on positions of mass centers of the target mol-
the target(see Fig. 1 OperatorH, is the Hamiltonian of a  ecules.
freedu atom andr, is thedu internal vectorH D, denotes After formation of the[(ddu)dee] complex, the total

the internal Hamiltonian of a free Dmolecule. It is assumed Hamiltonian of the system is well approximated by the op-
thatddy formation takes place in collision with tHeh D,  eratorHy

target molecule. The position of its mass center in the target _

frame is denoted bR, ; ¢, is a vector connecting deuterons Hior=H = Haau(r,R)+Hc(@)+V(o,r,R)+H, (195
inside this molecule. Functiok stands for the potential of

the du-D, interaction[8], leading toddu resonant forma- whereHqq, is an internal Hamiltonian of thedu molecular
tion. Vectorg, connects thaw and D, centers of mass. We ion, and vectors andR are its Jacobi coordinates. Relative
neglect contributions to the potentidl from the molecules motion of ddu and d in the complex is described by a
other than thelth molecule because we assume here thaHamiltonianH, which depends on the respective internal
distances between different molecules in the target are mudfector ¢. The final HamiltonianH of the target, with the

grea_ter than the psi_ze. The kinetic energy of thedu atom eigenfunctioriﬁ) and energy eigenvall&, , is expressed by
and its momenturk in the target frame are connected by the (e formula

relation

e=K¥2Mg, . (11) Aot v2eS 2 vz, Sy,

2Mc R F 2Mp N G )
The HamiltonianH of a pure B target, corresponding to M 1

the initial target energ¥,, has the form — [ 4_Mmol Vé FH=AH+H, (16)

1 MC 2Mmo| !

= 2 1’ . .
H _; 2Mm0,VRJ+; EJ. Ui (12 whereM¢ is the mass of the complex. The respective coor-

!

dinate part¥, of the total final wave function of the system
whereR; is the position of th¢th molecule center of mass in is
the target framéFig. 2), U;;, denotes an interaction between
the jth andj’th molecule, andM ., is the mass of a single V= wjﬁjﬂ(r,R)wé’Kf(Q)lﬁ}, (17)
target molecule.
The coordinate pai¥,; of the initial wave function of the
system can be written as a product

where wj’fm and ngf denote eigenfunctions of the Hamil-

toniansHyq, andHc, respectively.

W, = 1S (r ) K exp(ik-Ry.)|0), 13 The energy-dependent resonaiate-formation rate

o= Yau(T1) ¥, (@) xRk Rq,)[0) 13 Sk, vk, (8) in the condensed target, for the initi@l) and

where |0) stands for the initial wave function of the con- final [n) target states and a fixat total spinF, is calcu-
densed D target, corresponding to the total energy. lated using the formula
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NSl i, (8)=2TNBye| Aig ol 28(2 — 8¢+ Eq— Ey), AH~(0[AH[0)=Agi=— (1~ M/ M¢)Er<0,
which is valid when the target relaxation time is much
smaller than theddu lifetime of the order of 10° s, the

e+Eq=gi;+Ep,, (19) matrix element in Eq(24) can be expressed as

with the resonance condition

taking into account the initial and final energy of the target. (NleXp(itE,)exp(ik-R))exp(—itEo)|0)

The resonant energy for a freg, 3 denoted by;; and the ~ . . .
transition-matrix element is given by ! =(nlexdit(H+AH)]expik-R)exp(—itH)|0)

Aio = (WL VW) (20) ~(n|exp(itAsj;)exp(itH)exp(ik- R))exp( —itH)|0)
Using Egs.(14) and (17) the matrix element{20) can be = (nlexplitAe;)exdik-R(1)]|0), (26)

written as a product whereR(t) denotes the Heisenberg operator @hdn for-

mula(25) is the mean kinetic energy of the target molecule at
temperaturer.

whereV (&) is the transition-matrix element calculated fora  Using the identityX,[n)(n|=1 in Eq. (24) we obtain
single D, molecule[8]. The rate(18) can be additionally .
averaged over a distributiqm10 of the initial target states at )\fiFKi YVfo(g)z NB”|V”(8)|ZJ dtexd—it(e—g/;)]
a given temperaturd and summed over the final target w

Aign={(nlexp(ik-R)[0)Vis(e), (21)

states, which leads to X (exd —ik-R,(0)]exdik- R (t)])T,
SF 2 = e 2 (27)
)\viKi,vaf(S):ZWNBif|Vif(8)| > Pn0|<n|eXF(|k'R||0>|
M-No where(- - - )1 denotes both the quantum-mechanical and sta-
X 8(e—eii+Eg—Ep). 22) tistical averaging at temperatufie with ¢j; being the reso-
nance energy
The factorB;; , defined by Eqs(8), is due to the averaging o= e+ Az, 29

over the initial projections and summation over the final pro-
jections of spin and rotational quantum numbers. This facto
takes also into account a symmetrization of the total wav
function ofdu+ D, system over three deuterium nuclei.

Now we introduce a time variableto eliminate thed
function in the equation above and then we involve time
dependent operators, which is familiar in scattering theor
(see, e.g., Ref$28,29). Using the Fourier expansion of the
6 function

Ehifted by Ae;;<0. Note that such a resonant-energy shift
Svas neglected in papef26,27], where absorption of neu-
trons andy rays by heavy nuclei were considered. An esti-
mation of the shift in the case of emission from a nucleus
“bound in a solid, similar to E¢25), was given in Ref[30].

Y A self-pair-correlation functiorG(r,t) is defined by the
following equation[14]:

o i (exi] —ik-Ry(0)Texifik-R (1))
Sle—¢ej+Eg—E,)=5— dt
b 2m) :fdsres(r,t)exp(ik-r), (29)

xexd —it(e—ei+Eo—En)],  (23) _ . . o
and the single-particle response functi§, w) is given by

one has the formula
SF 2 * 1 3 .
Aok, 'Vfo(s)zNBif|Vif| ﬂcdt Si(k,w)= o d3rdtGy(r,t)exdi(x r—wt)]. (30
Xexd —it(e—¢gif)] Thus, by virtue of Eqs(27) and(30), the resonant formation
rate in a condensed target can be expressed in terms of the
x> pn0<0|exp(—ik~R|)|ﬁ) response function
n,Nng
Aok, gk (8)=27NBy([Vig(2)[Si(i,0),  (3D)

x(n|exp(itE,)exp(ik - R))exp( —itE)|0).
(24) where the momentum transferand energy transfen to the
target are defined as follows:
Assuming that the perturbation operatbH is well ap-
proximated by its mean value k=k, w=es—ej. (32
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The advantage of the Van Hove method is that all properties 1 K2 o
of the target, for given momentum and energy transfers, are Si(k,®)= EGXF{ oM Y(W)}f dt
contained in the factos;(k,w). It is possible to rigorously mol o
calculateS; in the case of a perfect gas and in the case of a K2
harmonic solid. However, a liquid target or a dense gas target X exp(—i wt)exp( oML Y(*)— Y(t)]] ,
is a difficult problem to solve. mol
Proceeding as above, one can obtain a similar formula for (39

SF' - : —
Ik vk, In @ condensed targéin generaldy spinF"after i \ypich () denotes the limit ofy(t) at t—c. This for-
back decay can be different frodw spin F before the for-  mula can be expanded in a power series of the momentum

mation, transferx, which leads to
: d3k _ - (2W)"
IS K=27TA”J—|vif(s)|25i(,<,w'), Si(re,0) =exp(—2W)| 8(w) + 2 Gn(@. T)——|,
iRVl (277)3 n=1 L
(40)
w' =tl—e, ei=si+A%y, (33)  Where exp(-2W) is the Debye-Waller factor, familiar in the
theory of neutron scattering,
S, is the response function calculated for the stﬁt}eand K2 K> (= Z(w) I-(l )
2W= ——y(0)= fdvv coth = Bw|,
~ ~ ~ ~ 2Mmoly( ) 2Mmo| 0 w ZB
Agir=(n[AH[n)=—(Mc/Mpo—1)é&r, (34) (4)
~ R and the functiong,, are given by
where & denotes the mean kinetic energy of the complex
bound in the target. 1 Z(w)
g1(w,T)= ) —w [ns(w)+1],
IV. RESONANT FORMATION IN A HARMONIC SOLID
It has been shown by Van Hovgl4] that the self- gn(w,T):fw dw'gy(w—w',T)g,_1(w',T), (42

correlation function in the case of a gas or a solid with cubic
symmetry takes the general form

ficdwgn(w)=1.

mol 32 I\/lmol
Gyrit)=l—- ex;{— ——r?|. (35)
2my(t) 2y(1) In the case of a cubic-crystal structur®/2can also be ex-
. ) o . ) pressed as
For a cubic Bravais lattice, in which each atom is at a center
of inversion symmetryy(t) is given by the formula 1
y yy(t) is g y W= §<O|uz|0>K2, 43)
* w) .
y(O)=] dw— —ng(w)exp(—iw), (36)  whereu is the displacement of a molecule from its lattice

site. Substitution of Eq(40) in Eq. (31) leads to the follow-

. . L . ing formation rate:
whereZ(w) is the normalized vibrational density of states ¢

such that xfiii vk (8)=2mN Bif|Vit(&)|%exp(—2W)
. dwzZ(w)=1, Z(w)=0 for W>Wpqy, x| 8(w)+ X, go(w,T) |- (49
n=1 .
Z(—w)=2Z(w), (37) The first term in expansiot¥4) represents a sharp peak de-

scribing the §-profile recoil-less formation. The next terms
give broad distributions corresponding to subsequent multi-
phonon processes. In particular, the term with1l describes
formation connected with creation or annihilation of one
nB(W):[eXF(IBW)_l]il: B:(kBT)ilu (39 phonon.
If 2W<1 we deal with so-called strong bindin@6]

and the Boltzmann constant is denotedigy where only the few lowest terms in the above expansion are

The response functiof80), after substitution of Eq$35) important. On the other hand, in the limitW2>1 (weak
and(36) and integration over, can be written as follows:  binding) many multiphonon terms give comparable contribu-

ng(w) is the Bose factor,
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tions to Eq.(44). Therefore, for sufficiently large?, it is
convenient to use the impulse approximation in whigl)
is replaced by its value near=0

.2
y(t)%y(0)+|t—§€T. (45)
This leads to the asymptotic formula f&y
S N —
i(K,w)=—=exg — ,
i A\/; A
where
a=2+/26R, R= < 4
- § T/ - 2Mm0|' ( 7)

The mean kinetic energy; of a molecule in the solid, which
also determines the resonance energy B8}, is equal to

1
ng(w) + E . (48

3 )
5T=§f0 dwZ(w)w

PHYSICAL REVIEW A 64 052705

perturbations of the resonant-formation potenwadue to
these neighbors.

The deuterium crystals at zero pressure are quantum mo-
lecular crystals. The amplitude of zero-point vibration at 3 K
equals 15% of the nearest-neighbor distance. A single-
particle potential in this case is not harmonic and the stan-
dard lattice dynamics leads to imaginary phonon frequencies.
However, the standard dynamics can be applied after a renor-
malization of the interaction potential, taking into account
the short-range pair correlations between movement of the
neighborg 35]. As a result, the theoretical calculatiof&6]
of the phonon dispersion relations give a good agreement
with the neutron-scattering experimen8¥], and the Debye
model for solid deuterium can be used as a good approxima-
tion of the phonon energy distribution

3wwd if
Z(w)=
W=lo i

W<Wp
(50
wW>Wp ,

with the Debye energyp=kg®p and Debye temperature
0, taken from neutron experiments. Fb=3 K we use the
Debye model of an isotropic solid wit®,=108 K corre-
sponding to the maximal phonon energy,=9.3 meV.
Thus, we are dealing with the limit/@p<1, where

The energy&; contains a contribution from the zero-point
vibrations, approaching K3T/2 only at high temperatures
T>Wpmax/Kg . Function(46) is a Gaussian with response cen-
tered at the recoil energiR. Therefore in the weak-binding
region the resonant formation rate takes the Doppler form
obtained by Bethe and PlacZefor resonant absorption of
neutrons in gas targef81]. However, the resonance width

(47) in the solid at temperatur€ is different from the Dop- gre very good approximations of Eqé1), (48), and (49).

pler width in a Maxwellian gas\y,s=21kgTR unless the The Debye-Waller factor and mean kinetic enefgyat low-
temperature is sufficiently high. This phenomenon wasest temperatures are determined by contributions from the
pointed out by Lamb in his pap¢R6] concerning resonant zero-point ) vibration in the lattice, and therefore these
neutron absorption in solid crystals. By virtue of the equa-quantities do not tend to zero &t-0. The zero-point energy
tions above, one can introduce for the solid an effective temis not accessible energy but its effects are always present.

3, 9
V(OO)ZEWD , 5T=EWD~5.2 meV,

3
Teﬁ=§®D%40 K (51

peratureT The values of the resonance energies depend on initial and
final rotational and vibrational quantum numbers of the sys-

T :Eg Ik (49) tem. In solid hydrogens at low pressures these quantum num-

eff = 3=T "8 bers remain good quantum numbers, but excited energy lev-

els broaden into energy ban@®tons and vibronsdue to
coupling between neighboring moleculels8]. The calcula-
tions presented in the literature concern pure soljgd HD,
The following considerations concern the solid-deuteriumand D, targets and only lowest quantum numbers. The prob-
crystals used in the TRIUMF experimerit32,33, though lem of a heavier impurity, such as thedu)d complex in
the results presented below can be applied to targets obtain&t, has not been considered yet. However, knowing that the
in similar conditions [12,34. At TRIUMF, thin solid- width of the rotational bands can reach about 1 ni&8], a
deuterium layers have been formed by rapid freezing of gageossible influence of this effect on the calculated formation
eous D on gold foils atT=3 K and zero pressure. Accord- rates and fusion-neutron time spectra is discussed in the next
ing to Ref. [35] such deuterium layers have the face-section.
centered-cubic(fcc) polycrystalline structure. Since the At low temperatures all P molecules are in the ground
distance between the neighboring molecules is a few timegibrational statev;=0 andddu is formed via the excitation
greater than the diameter of g [holecule and the Van der of the complex to the state;=7. Unless a catalyst is ap-
Waals's force that binds the solid is weak, one can negleaplied, rapidly frozen deuterium is a mixture of ortho-
D, (K;=0) and para-b (K;=1). In the TRIUMF experi-
ments gaseous deuterium was pumped through a hot palla-
n fact, formula(46) is the limit of the Bethe formula in the case dium filter before freezing. Therefore the solid target was a
of a very narrow natural resonance width-0. statistical mixture(2:1) of the ortho and para statek(

V. RESONANT FORMATION IN FROZEN DEUTERIUM
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LS)

TABLE I. The lowest resonance energiesddu formation in

du scattering from a single Pmolecule €;;) and from 3-K solid- *g
deuterium target ;). These energies are given in the respective >
CMS systems. g
O
eir (MeV) & (meV) F K, Ky S R
~7.218 ~9.028 3 1 0 L 3
—3.667 —5.477 3 1 1 1 5
0.5368 -1.272 3 0 0 1 -
o .
3.422 1.612 % 1 2 % 0 01 02 03 04 05
11.18 9.368 3 0 2 1
42.10 40.30 L 1 0 : FIG. 4. Transition-matrix element¥;;(¢)|? for K;=1 andK;
4566 43.85 1 1 1 1 =0,1,2 versugsiu energy.
. . 2 2
49.86 48.05 z 0 0 z
52.74 50.94 1 1 2 1 significant contribution to the formation rate at lowest ener-
53.41 51.60 i 0 1 i gies. Other transition-matrix elements described in ]
60.50 58.69 i 0 2 i tend to zero wher —0 (see Figs. 3 and 4 obtained fl&r

=0 andK;=1).

The low energy ratese(=wp) are calculated using for-
=stat). Since the para-ortho relaxation without a catalyst ignula(44) with a few most significant terms of the response-
very slow (0.06%/b in solid deuteriun{38], the population function expansior{40) taken into account. Figure 5 shows
of these states is not changed during experiments of a fe#ie functionSj(x,e —¢/;) corresponding to the two dipole
days. transitions in para-R The subthreshold resonance, witfh

The lowest resonance energigs ande/; for fixed v;, vy ~—9.0 meV, gives contributions to the formation rate only
and different values of, K;, S, andK; are shown in Table through the phonon-creation processes. Epr=1.6 meV,
| [10]. A few of them have negative values, which means thathe nonphonon process is possible and it is represented by a
to satisfy the resonance conditien=¢;;, an energy excess vertical line. Different peaks in this figure describe processes
in thedu+ D, system should be transferred to external de-connected with different numbers of created phonons. In par-
grees of freedom. This is possible in dense targets, where thular, one-phonon processes, which are proportional to
energy of neighboring molecules can be increased. Such af(w) with the characteristic Debye cutoff, can be clearly
effect, due to triple collisions in gas targets, has been firstistinguished. Since the-phonon term in Eq(40) is propor-
discussed in Refl39]. In a solid, the energy excess is lost tional to 2", theddu formation rate tends to zero at-0.
through incoherent phonon creation. According to EgS), Note that phonon annihilation gives a negligible contribution
(28), and (51), in the considered 3-K solid deuterium all to the rate at very low target temperatufies ®p .
resonant energies; are shifted b)Aslf —1.81 meV. One In order to compare the calculated formation rates with
can see that all resonances f6=3 are placed at higher experiments, the summed rat)e%(s) are introduced,
energies, which is caused ldu hyperfme splitingAE"s
=48.5 meV. All resonance energie§<wp~10 meV are 1.2

o T T T
connected with formation from the upper spin state 3 of g £,=1.6 meV
du. However, only resonances corresponding to the dipole ‘L 1F .
transitionsK;=0—K;=1 andK;=1—K;=0,2 can give a \g [
» 08| E
— 3 T r r T [
,.g 06 k
c L
> L
© 0.4 |
E 2 [
£ 02|
< ev=—9.0 meV -
X 107 107 107 107"
o du energy (eV)
0o 0.1 0.2 0.3 0.4 0.5 FIG. 5. Response functio§(«,e —¢j;) (in arbitrary unit$ for
du energy (eV) the para-[) crystal at 3 K. The dashed line is obtained for the
subthreshold resonaneg ~—9.0 meV, the solid line corresponds
FIG. 3. Transition-matrix element¥;(e)|? for K;=0 andK; to ¢{;~1.6 meV. The vertical line represents the rigid-lattice term
=0,1,2 versusiy energy. 8(e—e{;)exp(—2W).
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] to—1 ]
*3 102f 122 1 SF SF'
bt 1 ,_
c 10 k E =" = ,2 F"fo'ViKi" (54
O 3 ]
§ 10 - ,;' Since the frequency of lattice vibrations~p/#%
& 102k E e ~10" wus 1) is many orders of magnitude greater than the
1072 R/ , , back-decay and fusion rates, energetic phonons created dur-
1w 1073 1072 10! ing the ddu formation process are dissipatedt & K the

du energy (eV) number of phonons with energieg=kgT~0.26 meV is
strongly suppressed by the Bose factgy(w). Therefore,
FIG. 6. Formation rataEi(s) for F=3 in 3-K ortho-D, (solid  back decay with phonon annihilation B0 is negligible.

line) and para-B (dashed ling The labels “1—2" and “0 —1" In particular, the phonon channel of decaydifw, formed
denote the rotational transitidy — Ky corresponding to the lowest from the du staterg due to subthreshold resonances, is
nonphonon processes. closed because this would require annihilation of a phonon

with energy of a few meV. In this case back decay is con-
. Sk nected with the spin-flip transition 6’ = 3. Since the cor-
)\Ki(s):KES Aok vi=0, »=7. (52 responding energy release of a few tens of meV is much
" greater than the Debye energyE"™>wp), theddu decay
In Fig. 6 the formation ratelsﬁi(s) in the solid ortho-B and ;ar;[gnc;i_C(:g;rt\ilgr?tggocggsecsntrlbutlons from - simultaneous
para-D, are shown foF = 3. In the case of resonances sat-  After integration of formula(33) over the direction of
isfying the conditione;;<wp we have 2V<1 and the ex- vectork one obtains
pansion(44) is used. The two strong peaks represent the
recoil-less formation process, without phonon excitations. SF Air [~ ~ ,
The delta-function profile of every peak is shown as a rect- ek T T | dki|Vig(e)*Si(k% "), (59
angle with a height equal to the formation rate strength di-
vided by the total decay width~(0.8x10"% meV). The  and then substitution of expansié40) and integration of the
strength, defined as the value of the factor standing beforgcoil-less term lead to
8(w) in the expansiori44), is equal to 0.1061 eVus ! for
the resonanc&;=0—K;=1 in solid ortho-B3. The transi- ,
tion Kj=1—K;=2 in para-D gives 0.07 544 eVus ! as Ffﬁ(f,viKi:
the resonance strength. Higher resonance energies involve
many multiphonon terms and therefore we use the S
asymptotic form(46) of S; for &/;>wp . All formation rates +> | dkkVis(e)|?
presented in the figures are normalized to liquid-hydrogen n=1Jo
density,No=4.25x 10?> atoms/crm. (20"
Though in Monte Carlo simulations, involving energy- X exp(—2W)gp(w’,T)
dependent rates of different processes, the “absolute” forma- n!
tion rates?\ﬁi(e) should be used, it is convenient to introduce

. - B
7| MKi¢| Vit ()] % exp( —2Wiy)

., (56

] _ — ) where
an effective formation ratleKi(s), which leads to the nuclear

dd fusion in the[(ddu)dee] complex. Back decay of the -~ T o T _ o
complex to thedu+ D, system, characterized by the quan- T 2M¢ (=), 2Wig=2W(kir),  kis= V2Meg.
tum numberK; andF’, strongly influences the fusion pro- (57)
cess because the back-decay rates are comparable with the

. . — _ . . . It is assumed in the formula above that the phonon-energy
~ 1 -
effective fusion rate\;~374 ws™ ~ [7]. Since in a solid tar spectrum of solid deuterium containipgddu)ded is simi-

get, rotational deexcitation of the asymmetric complex is . . :
) o lar to that of a pure deuterium lattice. The problem of lattice

much faster than back decay and fusion, it is assumed th . f lid-d ; | S
back decay takes place only from the stdte=0. The effec- ynamics of a quantum solid-deuterium crystal containing a
. d : . " . small admixture of a heavier isotope has not been considered
tive formation rate is then defined by the following formula: . .

yet in the literature, at least to the knowledge of the authors.

However, this approximation is reasonable since the Debye

XEi(S): 2 )\SIFKIVfo(S)Pfus, »=0, =7, (53 temperatures of solid hydrogen and deuterium at 3 K are

2

Kis N very similar [35], independently of the mass difference of
these isotopes. Therefore it is assumed that duringlthe
where the fusion fractiof;PfS”S is given by lifetime the mean kinetic energ§; of the complex reaches
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FIG. 7. Effective formation rat&,ﬁi(s) for F:g in 3-K solid FIG. 8. Effective formation rataKl(s) for F=3 in 3-K solid

ortho-D, and para-R. The labels “1—2" and “0 — 1" denote the ortho-D, and para-B. The label “gas” denotes the curve obtained

rotational transitionk,—K; corresponding to the lowest non- [Of 3-K gaseous deuteriunk(=0), usin%the asymptotic formula
phonon processes. (46) for the response functioff; with Toz=3 K.

the energyer characterizing a pure deuterium solid. Thus thefor 3 K ortho-D, gas is also plotted. The “gas” curve has

resonance energy shif4) is approximated by been calculated using the asymptotic form4l@) for S; with
Te#=3 K. This figure shows that in a real solid-deuterium

Az~ —(Mc/Mpo—1)E~—2.77 meV,  (58) target the rates are smeared much more than in a gas target

with the same temperature, because of zero-point vibrations.

Therefore even at relatively higthu energies of some 0.1

eV, one should not neglect the solid effects and use the for-

mation rates calculated for a 3-K Maxwellian gas.

which givese/;=gj;—2.77 meV.

The effective formation rates in 3-K solid deuterium for
F=2 are shown in Fig. 7. The phonon part of the rates
below a few meV is about two orders of magnitude lower
than the average rate of 2,Zs™ ! derived from the experi- VI. MONTE CARLO CALCULATIONS
ment[11,13. This means that at<wp the phonon contri- )
bution to the total resonant-formation rate is even smaller 1he calculated energy-dependemd. formation rates
than the nonresonamtdu formation rate ,~0.44 us ! have bgen apphgd in our Monte C.arlo S|mulat|or.1$Lc.(tF.|n
[9], and that the estimation of the phonon contribution given3-K solid-deuterium targets. The finaj energy distribution
in Ref.[20] is strongly overestimated. Therefore, the experi-aftér back decay, including simultaneous phonon-creation
mental results can only be explained by resordai for- processes, has been determlned_ th.rough a numencgl |n.tegra-
mation at energies=1 meV, where the rate exceeds sig- tion of Eq.(56). The calculatled d|str|but|'on is shovyr) in Fig.
nificantly the value of 1us . A cusp at 0.3 meV in para- 9 for S=z, K;=0, andF’=3. The rotational transitions to
D, is due to the formation with simultaneous one-phononK; =0.1,2 with no phonon-creation are seen as delta peaks.
creation, connected with the subthreshold resonaeel ~ The continuous energy spectrum describes phonon creation
—K;=0. This implies a significant difference between thecontribution to thedn energy. Note that, opposite thdu
resonant formation in ortho-Dand para-B below 1 meV. f_ormatlon rates, this phonon contributidgfor a given rota-
However, this difference is difficult to measure because of dional transition peakextends towards lower energies. The
broad distribution ofdx energy. Note that a similar sub-

threshold phonon effect in the case of resordint forma- 210 ' ' i
tion in solid deuterium has been discussed in R&1). > 0—1

In the solid target the fusion fractioR¥*~0.3 and the 8 2l 02 ]
total resonance widti>~0.8x 10 * meV for both S= 3 £
and S= 2. The back-decay ratéSF from S=1% to F'=1 _3
equals about 843us !. DecayS=3%—F'=1 is impossible. 0¥ 0—=>0;
In the case o5=2 we have obtained'SF ~281 us ! for s
F'=1 and I'SF~610 us ! for F'=2. Phonon-creation 0 F ;
processes give dominant contributions to the back-decay s
rates, e.g., the nonphonon part BFF', given by the first 05 007 04 0.06

term of expansioni56), equals 169us 1. Therefore thelu
energy spectrum, after back decay in the solid, is not dis-
crete. FIG. 9. Distribution of finaldx energy afterddu back decay
In Fig. 8 the effective rates in solid deuterium fBr= 3 from S=3,K;=0 to F'=3, K/=0,1,2. The three peaks describe
are presented. For the sake of comparison, the formation ratee rotational transitions without simultaneous phonon excitation.

final die energy (eV)
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FIG. 10. Total cross section fatu(F=3) scattering in a sta- _ . o '
tistical mixture of solid ortho-B and para-B. The label “1—0" FIG. 11. Cross section fatu(F=3) scattering in solid ortho-
denotes the rotational deexcitatiéh=0—1 of a target D mol-  D». The labels are identical to those in Fig. 10.

ecule. The curves * phonon” and “+phonon” stand fordy scat- . diff | h Il oh .
tering with phonon annihilation and creation, respectively. TheCrOSS sections difier strongly. The small phonon-creation

Bragg cross section is calculated for the fcc polycrystalline lattice CT0SS section below 1.1 meV, leadingdg energy loss, is
due to the incoherent amplitude. Coherent phonon creation is

averagedu energy afterddu back decay equals about 30 impossible belowsg. This limit is obtained in the case of
meV for the presented spectrum. the coherent one-phonon-creation process, for the total-
The dd fusion neutron and proton spectra depend on thenomentum conservation involving the small@sinzer9 in-
time evolution ofdu energy. This energy is determined by verse lattice vectot, which also fixes the position of the first
differential cross sections of different scattering processes gfeak of the Bragg scattering @g=1.1 meV. Forr=0 one-
du atoms in a given solid target, including elastic scatteringphonon creation is possible only if thu velocity is not
rotational and vibrational transitions, spin-flip reactions, andower than the sound velocity in the crystal, which is well
phonon processes. The scattering cross sections in a solid de@own in neutron physics. According to R¢88] the mean
calculated using the Van Hove method. Some results of suckound velocity in solid deuterium equals about 1.2
calculations fordu atoms in fcc solid deuterium have been X 10° cm/s and this corresponds tala energy of 15 meV.
presented and discussed in Ref2]. The incoherent pro- Therefore, neglecting the inverse-lattice contribution to the
cesses, such as spin-flip or rovibrational transitions, are desne-phonon-creation cross section in R&fl] leads to the
scribed by the self-pair-correlation functi@(r,t) defined severe underestimation dfu slowing down at lowest ener-
by Eq.(29). The Bragg scattering and coherent phonon scatgies and subsequent overestimatiordgf kinetic energy.
tering are connected with a pair correlation functi®(r,t) Above 1.7 meV, phonon creation already prevails over all
[14]. acceleration processes. However, the effective deceleration
In Fig. 10 is shown the total cross section fou(F rate belowwp is strongly suppressed by the dominating
=3) scattering in the statistical mixture of 3-K solid orthg-D Bragg elastic scattering. At energies above some 10 meV,
and para-B. Bragg scattering, with the Bragg cutoff ag subsequent rotational and then vibrational excitations of D
=1.1 meV, and incoherent elastic scattering do not changmolecules become important and they provide a very fast
thedu energy because of the very large mass of the considnechanism ofix deceleration at higher energies.
ered solid target. Below 1.7 meV tligw atom is effectively The total cross section fatu(F=3) scattering in a pure
accelerated, mainly due to the rotational deexcitation of para3-K ortho-D, target (see Fig. 11 is quite similar to that
D, molecules[21,42. This transition is enabled by muon shown in Fig. 10. A significant difference is the lack of ro-
exchange between deuterons du+ D, scattering. The tational deexcitation. Therefore phonon annihilation is the
curve “0—1"in Fig. 10, describing the rotational deexcita- only, and weak, acceleration mechanism. It dominates the
tion, includes contributions from simultaneous incoherentinelastic cross section below 1.4 meV.
phonon processes. This cross sectioga.5 meV equals Figure 12 presents the time evolution of average(F
0.22x10°?° cn?, which is about three times lessaking  =3) atom energye 5,4, Obtained from our Monte Carlo cal-
into account the statistical factor of 1/3 fir=1 stategthan  culations. It is assumed that the target is infinite and dhat
the estimation given in pap¢R1]. Phonon annihilation is a atoms have initially a Maxwellian energy distribution with a
much weakedu acceleration mechanism than rotational de-mean energy of 1 eV. A statistical initial population af
excitation. total spin is used and the theoretical nonresonant part of the
Since the coherent amplitude fdy. elastic scattering on total spin-flip rate\ s, 1, is multiplied by a single scaling
a single B molecule is greater by two orders of magnitude factor of 0.4, in order to keep agreement with the experimen-
than the incoherent amplitude, the coherent processes involtal values[10,43 of the spin-flip rate. The calculations have
ing conservation of momentum dominate low-eneidpy been performed for ortho-D) para-B and their statistical
scattering in solid deuterium. It is especially important belowmixture (sta). One can see that du mean energy of 10
a few meV, where the shapes of coherent and incoherembeV is reached after only 5 ns. Then, below the Debye en-
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FIG. 12. Calculated time evolution of averadg energye FIG. 14. Resonantdu-formation rate forF=73 in a statistical

for F=2 in 3 K solid ortho-D,, para-D, and their statistical mix- ~ Mixture of ortho-§) and para-B for the resonance peak widih®

ture (stad. A Maxwell distribution ofdu initial energy, with mean ~=0.5 meV. The Monte Carlo distribution ofi. energy att

energy of 1 eV, has been assumed. =10 ns andt=30 ns after the muon stop is plotté¢ith arbitrary
units).

ergy, deceleration becomes very slow. The lowest value of . o

£avg IS determined by the intersection point of the cross secMaximum average rate of about as™~ in the solid is due

tions of the acceleration processes and phonon-creation pré? the resonance-energy shift 6fL.8 meV. The experimen-

cess. In the case of a statistical mixturg~1.7 meV, for ~talresultof 3 us = can be explained becausg,yis greater

K=0 we havee,,~1.4 meV. Finally, for pure para-D than 1 meV. However, in order to obtain large fusion-neutron

with a contribution to the total cross section from the rota-and -proton yields through resonaddu formation, the

tional transiton K=1—0 three times greater than that Width I'S of the resonance peaks in the solid cannot be too
. . —1

shown in Fig. 10 4,~2.2 meV. Thusdy atoms are never Narrow. The peak resonant rates of a fewf s * have

thermalized and their energy is significantly greater than P€en obtained assuming discrete values of the rotagonal—

meV. For para-D the mean energy is always greater than thevibrational D, energies in solid deuterium and’

energy of the lowest resonance pegk=1.6 meV. How- ~10"3 meV. These resonant rates are many orders of mag-

" " . . . . -1
ever, even ife ,,qis smaller thar:/; , a significant fraction of  Nitude greater than the inelastic scattering rat0 us .
du atoms has energy=¢; because of a large admixture of In this casedu atoms are very quickljcompared to the

hot d atoms att=0 [15,16 and slow deceleration below du(F=2) lifetime] re_moyed from region_s of the resonance
10 meV. ' peaks and the contribution of the recoil-less resonances to

Since at energies of a few meV the lowest delta peaks ar?e neuhtron yt'ﬁldt It?] neghgtlble. Thl?j l}/lontetr?arlﬁ S|mulat|otnsf
dominant in resonant formation, their contributions to the ave shown that the neutron yieid from theé phonon part o

) 0 ;
mean effective formation rate are shown in Fig. 13 for gas-.the resonant rates gives only some 10% of the yield observed

and solid-deuteriuntstay targets, assuming steady Maxwell in the experiments. As a result, the calculated time spectra,
distributions ofd(F = 2) energ,y with differents The Obtained for small’S, are dominated by weak nonresonant
2 avg-

ddu formation, which disagrees with the experimental data.
Therefore, we have investigated the influence of a broaden-
' ' ing of the non-phonon resonant peaks due to the presence of
molecular rotational and vibrational bands in the solid, dis-
cussed in Ref[18]. Since in the literature there is no infor-
mation concerning the profile of such bands, we have as-
sumed a rectangular shape of the resonance peaks. The
resonance strengths have been fixed and their widths have
been changed within the limits 0.001-1 meV. It turns out
that good Monte Carlo results are obtained by
~0.5 meV, which is consistent with the rotational band-
widths of about 1 meV reported in R€f18]. This gives a
0 5 10 15 resonant formation rate of 294s ™! for the recoil-less peak
in ortho-D, and 214 us ! in para-D. In Fig. 14 one sees
the resonant formation rate at lowest energies ot

FIG. 13. The effective resonadu-formation rate as a func- = 0.5 meV and for a statistical mixture of ortho and para
tion of mean CMS energy:,,q of du(F=3%) atom for gas- and sta;tes. Also shown is the Monte Carlo distributiondgi(F
solid-deuterium targets. A steady Maxwell distributiondyf en- =) energy, calculated for timets=10 ns and=30 ns. A
ergy is assumed for a givesy,q. The contributions from the two Maxwell distribution of initialdx energy, withe,,=1 eV,
lowest resonant peaks to the formation rate are taken into accourias been assumed. Two minima in the energy distribu-

formation rate ( us™)
N W LS (8] [=> ~

mean du energy (meV)
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FIG. 15. The Monte Carlo fusion-neutron spectrum for a statis- FIG. 16. Calculated neutron spectra from 3-K solid orthp-D
tical mixture of 3-K solid ortho-B and para-D (solid ling). The  and para-R. A Maxwell distribution of initial du energy with
dashed line represents the spectrum obtained using an analytical,.=1 eV andl'S=0.5 meV has been assumed for the both tar-
steady-state-kinetics model wiNgz=3 us™’. The initialdu en-  gets.
ergy is given by a Maxwell distribution with mean energy of 1 eV.

The widthT'S of the nonphonon resonances is fixed at 0.5 meV. Athis work. A qualitative comparison of Monte Carlo spectra
3.2x 10" ° concentration of nitrogen is included. with the experimental data has already been performed in

Ref. [13]. In this case good fits were not obtained since at
tion appear quickly at the positions of the resonance peakgat time, the resonamtdu formation rates in solid Pand
since the respectiveldu formation rates are comparable dy scattering rates including coherent effects in the solid
with the total inelastic scattering rate of about 3G 1. were not yet available.

The dd fusion-neutron spectrum, calculated assuming the Our calculations show that strong resonaiku forma-
same initialdu energy and resonance profiles, is shown intion takes place both in ortho,Dand para-B. There are
Fig. 15. A 3.2< 10 ® concentration of nitrogen is included in certain differences between the neutron time spectra from
order to fit the TRIUMF target conditions. The dashed linethese targetésee Fig. 1% caused by the different positions
plotted in this figure has been calculated using the steadyand strengths of the lowest resonance peaks. Alsadjhe
state kinetics model with an effective formation ratg? ~ slowing-down process differs slightly in the two cases. The
=3 us ! and total spin-flip rate\ 5/, 1/= 36 ws ! taken  neutron yield at longer times is smaller for orthg-&ince in
from the fits to the experimental dafta3]. The slope of the this case the resonance peak is placed at a higher energy of
spectrum att=80 ns is determined by the rat gt 2.3 meV. Thereforedu atoms are removed faster from the

N3/, @nd thedu-scattering rate, which also changes theP®ak compared to the situation in parg-Where the reso-
population ofd . (F = 2) atoms in the vicinity of the resonant N@nce is observed at 1.6 meV. A greater méanenergy in
peaks. The steady-state kinetics model does not include tHR&ra-D (cf. Fig. 12 leads also to a stronger overlap of the
process ofdu deceleration. Therefore, fits using this model 'eSonance peak with thely energy distribution att
could entangle the deceleration rate with the formation ang20 NS. Strong resonamtdy formation in ortho-D has
spin-flip rates. The mean formation rate, calculated directhP€€n recently observed at RIKEN-RAL Muon Facility and at
in the Monte Carlo runs, is a function of time and it stays at' RIUMF [44]. The effective formation rate in ortho;Dde-

the level of 1-3 us 1. The spectrum slope at large times rived from these experiments, is Iower by abogt 25% t_han an
=100 ns, wherdu(F=2) atoms practically disappear, is experimental value of the rate fognd ina ;tatlstlcgl mixture.
due to nonresonantdy formation fromF=3 and to muon These results qonflrm our ca_lculatlons, which prec_zllc_:t a some-
transfer to nitrogen contamination. what lower fusion-neutron yield for targets containing more

The shape of the time spectra is practically unchange@tho-D. molecules.
when the mean energy,,, of the initial single Maxwell
distribution varies within the limits 0.01—-1 eV. On the other
hand, the spectra change substantially if a significant fraction
of du atoms att=0 has energy smaller than the energy of The methods used to describe resonant neutronyaray
the lowest resonant peak, which can be observed using @sorption in condensed matter have been directly applied to
more complicatede.g., two-Maxwell distribution. Assum- the calculation of resonamtdu formation and back-decay
ing thatI"S is greater than 0.5 meV we obtain results thatrates in condensed-deuterium targets. These rates are ex-
begin to differ significantly from the analytical curve calcu- pressed in terms of the Van Hove single-particle response
lated with the experimental parameters. In particular, the rafunction, which depends on the properties of a given target.
tios of neutron yields from the short and long times begin toln particular, we have derived the analytical formulas for the
disagree. Fits of the calculated spectra to the experimentahte in the case of resonamtiu formation in harmonic solid
data would enable a better determinationl'6fand a shape deuterium. The calculations show great differences between
of the initial du energy. However, this is not the purpose of resonantddu formation in 3-K solid deuterium and in 3-K

VII. CONCLUSIONS
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D, gas. In solid deuterium, the formation at a few meV, The Monte Carlo calculations show thadjt. deceleration
which determines the experimental results, is dominated bpelow the Debye energy is very slow and that mean energy
the presence of strong recoil-less resonant peaks. On thf thedu(F=3) atom is always significantly greater than 1
other hand, formation with simultaneous phonon creation isneV. The energy distribution afu’s during their lifetime is
important above the Debye energy. The resonance profiles Wery broad(at least a few me)/ therefore a strong overlap of
the solid at higher energies are similar to that indas, but  this distribution with the lowest resonance peaks takes place,
with the effective temperature equal to 40 K. This temperajeading to a large meaddu formation rate in solid deute-
ture is determined by the energy of zero-point vibration of arjum. However, an explanation of the experiments is possible
D, molecule in the lattice. Phonon creation is always impor-only if the broadening of rotational-vibrational molecular
tant in the case ofidu back decay because it is connected|evels in the solid is taken into account. We obtained reason-
with an energy release of a few tens of meV, which is muchgple results assuming that the strengths of the recoil-less
greater than the Debye energy. resonant peaks are constant and that the rotational bands in-
The condition T/@p<1 is fulfilled for any solid- crease the resonance peak width to 0.5 meV. Note that, ac-
deuterium target at low pressure. Therefore, the parameteﬁ%rding to Ref[ls]’ h|gh pressures lead to a greater broad-
determining solid-state effect®ebye-Waller factor, mean ening and even to a mixing of rotational states. This could
energy of B vibration in solig weakly depend on target complicate a comparison of theory and high-pressure experi-
temperatureT. They are expressed in terms of the Debyements. The phonon part of the resonant rate gives only about
energywp, which does not significantly change with the a3 10% contribution to the calculated neutron time spectra.
varying solid temperatur@. As a result, the resonauitdu The dd fusion-neutron spectra calculated for orthg-D
formation rates in solid deuterium for differefitare very  and para-B solid targets are quite similar. Small differences
similar and one may expect that the average formation ratepetween the spectra are due to the different energies and
derived from measurements performed at different temperastrengths of the lowest resonant peaks, and to a slightly
tures, will also be very close. This is confirmed by the resultigher meardu energy in para-B. These differences can be
of experiments carried out at TRIUMF and at JINR. clearly seen only in high-statistics experiments. Our calcula-
The structure of a solid-deuterium target depends on it§ions and recent experimert44] do not confirm the lack of
temperature and history. Targets maintaineda# K have  strong resonarddy formation in solid ortho-B predicted in
an hcp structurd35]. Though our calculations have been papers Refs[20,21).
performed for fcc crystals, the results obtained are also good
approximations of the resonant rates in hcp polycrystals
since the Debye temperature and nearest-neighbor distance ACKNOWLEDGMENTS
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