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Electron translation and asymptotic couplings in low-energy atomic collisions
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The calculation of cross sections for inelastic and charge-exchange atomic collisions encounters a principal
difficulty. The coordinates used to describe the collision event are usually not appropriate for the description of
the collision partners long before and after the collision. As a consequence, the coupling matrix elements that
govern inelastic transitions can remain nonzero for large internuclear distance. We present a simple procedure
to deal with this situation in the framework of a full quantum-mechanical treatment. It applies to radial as well
as rotational coupling mechanisms. We demonstrate the practical applicability by numerical examples.
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[. INTRODUCTION time, the problem was more and more considered to be un-
solvable. The statement that it is “not possible to extract a

Inelastic and charge-exchange collisions between atom@eaningfulS matrix” [11] from the solution of the coupled
or ions at low energy govern the behavior of gaseous medigduations correctly reflected the state of the art at the time
in many cases. This concerns a wide range of questions §fNen the statement was made. Unfortunately, it was fre-

practical importance from astrophysics and the fusion plasmguemly undersitlozt])dhas an abiolut(ta truth. tVVe thave shqwr]l 'P a
edge to laser media and industrial applications of plasm revious papey_zj, however, how to construct a meaningiu

physics. The numerical calculation of cross sections appeal matrix. The present paper extends this approach by consid-

as a straightforward way to provide the data that are requirear"\}shmtat'onal In addition to r:;d|al couphrl[g ;n((-:‘jchamsms. h
for a quantitative understanding of these media. The compy_ '\ c/€aS Previous approacnes concentraled on a searc

tation of cross sections usually proceeds in two steps, th r better_—suned .coordlnates or for a formulation W'th(.)Ut
asymptotic couplings, we formulate the coupled equations

guantum chemical treatment of the collisional quasimole-">: . ; .
cule, and the subsequent treatment of the heavy particle d ISINg staqdard coordmatgs. The asymptotic couplings are not
: emoved in our formulation. Rather, we concentrate on the

namics. The second step encounters a severe difficulty, ho tion how th luti fth led i b
ever. The matrix elements coupling different electronic state§uestion how the solutions ot in€ coupied equations must be
interpreted in the asymptotic region. It turns out that a cor-

may remain nonzero at large internuclear distdrice3]. As ' . . .
this seems to imply inelastic transitions under the influencdSCt Interpretation can be achieved by a straightforward and
simple reprojection procedure.

of an arbitrarily distant collision partner, the corresponding Besides the problem discussed so far, there exists a sec-

formulation of the theory is often regarded as defective. In d probl t ambiquity in the definit f
fact, the nonvanishing asymptotic couplings reflect a less ob2Nd Pro ?m, an ?pparlen a"t] 'g_llfr']w in et' efini 'Of': 0 ffr'
vious but more fundamental shortcoming. The coordinate%aln coupiing matrix elements. 1he question 1S often ais-

used to describe the collision complex are usually not suite(?udssed '3 c?lnnicnotr)] with :jhg present one, btuht ma[yabe?’]solved
for the description of the free atorfié], and the correspond- independently. As observed by numerous authors{&,43,

ing representation of the asymptotic wave function is there®"® obtains different values for certain matrix elements when
fore not suited for a straightforward interpretation one chooses different origins for the electron coordinates.

For high-energy collisions, where the motion of the nuclei ' Nis seems to make the calculation of cross sections ambigu-
may be treated classically, a solution is well known, namely,ous' However, as shpyvn by Bottrg{tl4], the changes are
the inclusion of “electron translation factorsETF's) [1,2] cor_npensated by ad;jmonal terms in t_he.cogpled equations,
in the expansion of the electronic wave function. For Iow-Wh'C.h were usually ignored. The ambiguity in t_he couplmg
energy collisions, the use of classical approximations is nofnatrix elements does not lead to a corresponding ambiguity

adequate, rather, a full quantum treatment of both the eled” the coupled equationfs, the_refore. n .practice, Bottrells re-
tronic and the nuclear motion is required. Full quantum ap—SUIt leads to the followmg_3|mple rule: Whe.” the standard
proaches are usually based on an expansion of the scatteriﬁ m of the coupled equatiorig. (5) belovy] IS used,. the .
wave function in terms of a set of electronic basis functions 12X elem_ents.have to .b(? calculated using Jacop| coordi-
leading to a system of coupled channel equations. Astraigh{]ates’ that is, with the origin of'the elec'tron coordmates at
forward generalization of the ETF method to the coupled he center of mass of the nuclei. An arbitrary choice of the

channels approach does not exist. Several alternative aSpordmate origin is not justified. The details were worked

proacheg5-10 have been discussed, practical applicationsOUt in our previous papefl2]. We use Botrell's result,

of these proposals have remained limited, however. Rathep?erefore, without further discussion.

empirical methods are widely applied, in which for instance, Il. THE COUPLED EQUATIONS

artificial modifications of the coupling matrix elements are

constructed. The question has been discussed for more than We consider at present only systems with one active elec-

40 years. Being known as a difficult problem for so longtron, and we treat them as one electron systems, considering
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every nucleus with its nonactive electrons as a single particlsymmetry at the body fixeél{ plane. States withh >0 occur

A or B. We use Jacobi coordinatesandR for the three-body
problem;R connects the two heavy particlesmeasures the

in pairs with c==*=1, the two components transform into
each other by a rotation around tljeaxis. The scattering

position of the electron with respect to the center of mass ofvave function can be written as a sum of tertigr,R)
the heavy particles. Omitting the kinetic-energy operator szllfﬂ,,Jst(r,R), each of which is characterized by the follow-

the center of mass of the total system, the Hamiltonian readiﬁg good quantum numberét) The total angular momentum

(92

@

with the reduced massesn=mg(M+Mg)/(Mg+ M4
+Mg) andM =M Mg/ (Mp+Mpg) andm,, M,, andMg

the masses of the three particlés,; contains the interac-
tions; we consider only electrostatic interactions, for simplic-
ity. The electronic Hamiltonian,

quantum numbers and M ; with M ;=0, (2) the reflection
symmetry quantum number= *+1, such thatt multiplies

by s under the reflection of both coordinateandR at the
space-fixedkz plane, and3) the type quantum number=

+1. The type quantum number is closely related to the par-
ity, but is more convenient in the present context. Every
single term may be expanded in the form

W(r,R)=2, Iy Fjx(R)/R 3)
K2 g2 JA
He|=—%ﬁ+Hint(f,R), 2 with
depends orR only as parameter. We introduce a set of elec- I A=COEM;@)O, \o( )t
tronic basis functionsy;,,(r,R). They are allowed to vary " ’ Mot e
with the internuclear distance, but are supposed to be body +i Sin(MJ(P)®‘|3/|JA—q(19)‘//jAfs- (4

fixed. For the precise definition of this notion, we introduce
spherical coordinateR, 9, ¢ for R and a body fixed co-
ordinate systeng, #, ¢ forr, see Fig. 1. When expressed

The functions@ﬂ,lJAﬂ(ﬁ) are generalized spherical har-

in these coordinates, body fixed functions depend ofonics[15-17, q stands for the producit. Note the par-

¢, 7, ¢, andR, but not on9 and ¢. The functions are

ticular case@)ﬂ,,Jo,fO. The factordj, represent the elec-

distinguished by a running indgxand by the usual angular tronic motion and the angular part of the heavy particle

projection quantum numberA=0,1,...

c, I, ...,

motion. TheF;, describe the radial motion of the atoms,

state$. The quantum number= + 1 indicates the reflection they have to obey a system of coupled equations

hZ

M gR?

d? #2

+V),(R)+ RZ[J(J+

2M

fi
_.2 <¢jAt|Hel|¢j'At>Fj'A+M

i#i

h

2

1)—A?]—E|Fj\
jgj <¢jAt ﬁ ¢j'At> dr

MR? 7

h

2 VOFAFD@= AN Wad =1L a4 10F a4

MRS

1 2,2
oM 2 <'/fjAt||-§+ L,]| 'r/fj'At>FJ"A+
j

2 VA= A+ D@ AN Wil | a-1)Fjra—a

hZ
N >

j ’

072

®

<l//jAt

E l//jrAt> Fj’A-

Remember that\ takes nonnegative values only; the term
with F;,, _; does not occur foA =0. L, andL, are thep

and & components of the electronic angular momentum opused

In this Case<¢j/A(,|(9/(9R| l/le[,>: _<I/IJA0|(9/3R| lr/lj ’A(r> and

in particular(y;, ,|9/dR| ;) =0, which has already been

in Eq. (5. Similarly, (#jr.l—iL,|jr+10)

erator. The matrix element notation denotes an integratiorF (#j/x+14liL ;| ;1) is real. The potentials are given by
over the electron coordinates, the matrix elements remain

functions ofR. The functionsy; , , may be chosen to be real.

VJ'A(R):<(/,J'A0'|HEI|l//jA(r>' (6)
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order in ym/M. Terms, which are of the order af/M
smaller than the leading terms, will be neglected. The as-
sumption expressed by E/) is not automatically fulfilled,
but a corresponding choice of the ba&iabatic or nearly
¢ diabatig can always be made. For the region of large dis-
tances, which is the subject of the present paper, the assump-
tion holds for any reasonable choice of the basis, seddq.
below.

Equation(5) is an adequate starting point for a numerical
treatment. The potentials and the matrix elements must be
known in advance, for instance from a quantum chemical
treatment of the system. The off-diagonal matrix elements of
Hq andd/dR are denoted as radigdr homogeneoysthose

. of iL ,, as rotationalcentrifugal, Coriolis, or heterogenequs
coupling matrix elements.

. ASYMPTOTIC COUPLINGS

The electronic basis functions vary with the internuclear
distance R, in general. Two requirements seem obvious:
¢ They should become atomic eigenfunctions at laRyand
they should no more depend &uat the same time. The first
FIG. 1. Coordinatesd and ¢ describe the direction of the vec- "equirement can easily be fulfilled, the innocent second one
tor R that connects the heavy particlesy, andz are space-fixed C€annot, however. Atomic eigenfunctions travel with the
and¢, 7, ¢ body-fixed electron coordinates. Tkel, andé axes ~ atom, and they have, therefore, the form
are in a plane, they axis is at right angles.

P(r,R)=1(&n,{—vjAR) (8
They are the same for both components +1 of the A ith
# 0 states. Equatio(b) exists in two versions, corresponding wi
to the two possible values of the type quantum number. Note Mg M,
that fort=+1, there occur n& ~ states in Eq(3) and no = =
a3 YiA Ma+Mpg or  7ja Ma+Mg ©

corresponding couplings in Ed5), and similarly fort=
—1, noX" states and no corresponding couplings. In prac-

tice, many collision processes start iXd state; the scatter- for functions travelling with aton? or B, respectively. We
S y lon p . ' will exclusively use basis functions that have the form of Eq.
ing wave function may then entirely be constructed from

terms withs=t=+1. For the derivation of Eqs3) to (5) (8) at large distances. They clearly depend Rrand can

. ) . _therefore give rise to nonvanishing radial coupling matrix
5?3[15]- The theory is _formulat_ed fpr other coordinates in elements at larg®. Introducing atom-centered coordinates
this paper, but the starting Hamiltonian has the same form a — ¢ — . andZ..={— yi\R, one finds
at present, and the mathematical steps leading from theat” & 7at™ 7 at Yiat
Hamiltonian to the coupled equations are identical. Further; , , — ! at
the coupling matrix elements are now expressed by function il ORIy 00) = (Winol ORI )
with well-defined reflection symmetury, at variance with the =Y A Wjnol 10 ad i1 po)- (10
formulation in[15].

We deal here with kinetic energies of the heavy particlesThe matrix element on the left is that one, which enters the
which are of the same order of magnitude as the typicatoupled equations. The partial differentiation is carried out
kinetic energies of the electron. The wave-numbéfsr the  with the electronic wave function expressed in the coordi-
heavy particles and for the electron have therefore a ratio nates¢, », and{, andR. The first term on the right is cal-
of typically k/K~ \/m/M. Normally, the basis functions vary culated using;, 7at, {at, andR instead; this matrix ele-
slowly with the internuclear distance, such that approxi-ment vanishes at large, because the wave functions have
mately the form of Eq.(8). The second term on the right is nonzero

at largeR when both wave functions travel with the same
d 1 atom and a dipole transition between them is allowed. It
ﬁ‘ﬁjAas g‘ﬂjAa* () follows that, in general, thé/dR coupling matrix elements

in Eq. (5) go to a nonzero constant valueRs-> . Similarly,

with a~1/k the typical dimension of the atoms. Under this ]
condition, the first term on the right-hand side of E5).is of <¢jAzr|"- n| Yira=10)
the same order as the terms on the left, the next three terms = (Yo lIL g, )
are by a factor ofym/M smaller, and the last ones by a JAel= g 171 AL
factor of m/M. The theory to be developed is of the first + YA+ 1{¥jacl 0 0€ad hjr A+ 10) XAR. (11
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The matrix element on the left, which enters the COUp|e(kj,A=\/2M[E—VJ,A(oc)]/h are the channel wave numbers,
equations, is calculated with the angular momentum referfhea,r,A are arbitrary. The corresponding wave-functiris

ring to the center of mass of the nuclei. In contrast, the firsg) . i o by inserting Eq14) into Eq.(3). The result can be
matrix element on the right is obtained with the angular mo- o

) : . expressed as follows:
mentum referring to the nucleus, which carries the electron
away. Here, both terms on the right can remain nonzero at

large R. The first term couples the magnetic substates of an T=2 KM@ v +ra, vy (16)
atomic level. Its physical significance is well understood; it JA

describes the decoupling of the electronic wave functionyitp

from the rotating molecular axigl5]. The second term is

similar to the second term in Egl0) and can be nonzero . ) .

under the same conditions. Both matrix elements have con- q’TA:qui'KiAR)/RZ GoaalinamR). (17)
stant values for larg&. In the coupled equations, they pro- !

vide terms that vary as B? and 1R, respectively. Atomic  This can be shown to be equal to

eigenfunctions have the propeffti2] .
Wia=exp(£iKjaRap)/Rad ja(r,Rap) (18)

(WirolHeldyran) =0 for j'#]. 12 to the first order inym/M. R, connects the bare heavy
Actually, the Hamiltonian of the free atom is not exactly Particle with the center of mass of the atom, in contrast fo
H., because the reduced electron mass is slightly differentVhich connects the bare heavy particles. The difference be-
Equation(12) is not exact, therefore. However, the error is tWeen the two coordinates is small, of the ordernofM
smaller than the leading terms in E@) by a factor of the tlme_s Fhe atomic radius. Hc_)wever, the small_dlfference is
order ofm/M and can therefore be neglected. The last twoMultiplied by the large atomic wave-numbk, in the ex-
terms in Eq.(5) can remain nonzero as well &becomes ponential in Eq.(18), resulting in a rlon-negllg|ble correc-
large; again, these terms are of the ordemsM compared tion. The nondiagonal elements of tfje, ;, in Eq.(17) can
to the leading terms and will therefore be neglected. We dealirectly be traced to the appearanceRyf in place ofR in
with asymptotic couplings originating from the second, third,the exponential in Eq(18). The identity of Eqs(17) and

and fourth terms on the right-hand side of E§). (18) is the central idea of the present approach. Equédfign
Using the relation §/%2)[r 4 ,He 1=/ dr 5, one finds forms an expansion of Eq18) in terms of the set of elec-
tronic basis states; the two expressions are rigorously identi-
(z,//jA,,|¢9/(?rat|z//j,A,(,):(m/hz)(Vj,A,—VJ-A) cal only as long as a complete set is used. The proof is

worked out in more detail if12]; for the present, more
X(Pinollad irare)  (13) general formulation, the relations(; s q|latl ¥jro)

=(thir\_ ‘A_o) and®j, , ;=0 are required in addi-
which relates the asymptotic couplings to atomic dipole tran-. (Wia—olCarl ¥ia—0) Mj0-1 q

sition matrix elements. Again, E413) is not exact, but the t'o?:_' on(18 " descrintion for th
errors are small of the orden/M and will be disregarded. . quation(18) provides a correct description for the mo-
tion of two noninteracting atoms with the electron in an

atomic eigenstate, that is, E(.8) and therefore as well Eq.
IV. THE ASYMPTOTIC SOLUTION (17), describe the true channels of the scattering problem.
We consider in this section the region of very large dis-Equation(16) provides a corresponding decomposition of the
tances, where all terms in the coupled equations can be ré@ve function, the amplitudes;, are the amplitudes of the
placed by their limit forR—c. This means, in particular, incoming and outgoing currents in the dlffere+nt channels.
that the centrifugal potential and the rotational asymptoticEquation(14) finally shows how the amplitudes;, are re-
coupling terms are zero. The only coupling terms that remaifated to the solution§;, of the coupled equations.
are the asymptotié/ JR couplings, there values are given by ~ One is used to think that for larg® a single term in an
the second term on the right-hand side of Efj0). The expansion as Eq3) represents a channel of the scattering
coupled channel equations are easily solved by a perturb@l’otﬂem. This is not true for the present case. A single term
tion approach under these conditigi]. To the first order in Eq. (3) would correspond to Eq(18), but with Ry, re-
in the small quantityym/M, the general solution is placed byR, or as well to Eq(17), but witht;, , , replaced
by 6;.;. Due to the presence of the asymptotic radial cou-
plings, this would not even solve the coupled equations in

_ =12+ + .
FiA_z, KJ'AZ[tJA,j'Aaj'AeXp('Ki’AR) the asymptotic region. The asymptotic radial couplings are
! obviously required to guarantee for the correct asymptotic
+y a8 X~ KA R)] (14)  form of the wave function.
with V. THE SOLUTION AT INTERMEDIATE DISTANCE

. , For the calculation of cross sections, it is necessary to
Gaja™ 8jj F1K A v A(MM) (el Ladl 9740 (1) solve the coupled channel equations for the entire range of
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accessible distances froRinear zero to larg® The result matrix elements defined in Eq21). We define a unitary
of the preceding section provides the correct asymptotienatrix U by the requirement that it transforms the matik
form and allows us to extract the correct channel amplitudeshto a diagonal matrixv
ajiA from the solution of the coupled equations. This is of -
limited practical use, however, because it requires the knowl- uUwut=
edge of a solution, which covers the range frét+0 to -
extremely large distances. We will now derive an analyticBecause/V couples only asymptotically degenerate terks,
form for the general solution, which is valid for intermediate connects only asymptotically degenerate states. Under the
distances, and that can be used to connect a numerical solpresent conditiond) is independent of the internuclear dis-
tion from intermediate distances to infinity. tance. As the coupling terms W are of the order of/m/M
compared to the typical potential energies, the diagonal
Jerms inW differ from the diagonal terms itV by correc-
tions of the same order only, as well; the differences vanish
asR— . Introducing a new set of functions

l

=

. (22

We solve Eq(5) in the intermediate region by a perturbative
WKB approach. The perturbation treatment is complicate
by the fact that some of the potentials, (R) converge to

the same limit aR—. A small coupling is sufficient to

cause a large perturbation in this situation. Asymptotic de- ~
generacy occurs for instance between the substates F=UF, (23
=0,... L; of an atomic level with electronic angular mo-
mentumL;. We deal in the following with a region oR i ~ TIT ) )
values, in which the potential differences between asymptotitions F, which is similar to Eq.(5). The coupling matrix

one obtains a system of coupled equations for the new func-

cally degenerate levels are already negligible, elements are replaced by their transforms under the miafrix
the effective potentials are replaced W and there are no
Via(R)=Vj/x(R)=0 wheneverV;j, (=) =V (*)=0, couplings between asymptotically degenerate states any

(19 more. In this form, the coupled equations are easily solved

and in which all coupling matrix elements can be replaced b;%?gnpg;%rsba;'f(t)gr fg;‘;ﬁg:’rﬁzﬁJﬁiaiipg)ﬂg%engfgnesral solu-
the corresponding asymptotic expressions. The nonvanishin ’ ’

coupling matrix elements are therefore

(Wiad 9l IR Py p1)
= — ¥ A(MIAZ) (VA= Vi)W adl Lad ¥ At o s

(iadiL | jra=1e)

F(R):Z+ET~£71/2quié) 9a+
+Z’ETE*1’2exp(— @) Ua™. (24)

K andé are diagonal matrices with elements

=Yjrar1 (MA)R(Vjrpw1= Vi) (@ad Eadl YA+ 16) Kn(R)=\2M[E~W,(R)]/% (25)
+<¢jAt|”—?7t| ¢j'At1t>oo- (20) and
The approximation described by E¢$9) and(20) will turn ~ © -
out to be justified already at moderate distances. Couplings ® = kn(°)R— L [&n(R) = k() ]dR, (26)

between asymptotically degenerate levels occur only by the

mat_rix elements of_f; in this sit_uation. The centrifugal po- 4nd the matrices™ have elements

tential and the rotational coupling terms are now no longer -

neglected, unlike in Sec. IV. Similarly, long ran¢geg., Cou- . _ m

lomb) potentialsV;, are allowed. We remove in a first step TfA,jrA/Z5jj/5AA'ilKj/A'3’j/A'M<l//,’At|§at| irnre) Oara
the couplings between the asymptotically degenerate states.

We consider the matrix m1

Wi iar =83 S [Via + A2 (2MR2) (I +1)— A?)] MR
+h/(MR2)[5A,1Ar\/(J—A+1)(J+A) X<ijt|§at|wj’A’t>5A’A+1
. at m1l
XCad iL S a0 +\/(J—A+l)(J+A)yJ—,A,M§
Fo VIHATD=A) X{iad éad jrar0) Oara—1, (27)
X{(iad =1L iar0)0], (21

with «j, = V2M(E—W,j,)/%. The components of the vec-
which collects the effective potential and all couplings be-torsa™ are arbitrary constants. As in E(), the last term in
tween asymptotically degenerate terms. We turn now to &d.(27) does not occur foA =0. Equation(24) holds to the
matrix and vector notation in which, for instance, the radialfirst order in\m/M, as before. In addition, the WKB ap-
functions Fj, are collected in a vectoF and W has the proximation is applied, which means that the derivatives of
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the wave numbersk|, and ;) are neglected. This is ex- ward and simple extension of standard procedures. Equation
pected to be an excellent approximation under the presef80) differs from Eq.(32) in two ways:

conditions, certainly for the range of distances considered (1) The asymptotic couplings between the substates of
here. Similarly, the derivatives of the matrix elements are ©ne atomic energy level are taken into account by the appear-

neglected. Note also that the use of the WKB formulationance of the matriXJ in the formulas. These couplings have a
makes the explicit introduction of a logarithmic phase termwell-known physical significance. In the region where Eq.
for Coulombic potentials unnecessary; the logarithmic ternf24) applies, the actual electronic wave functions do not ro-

arises automatically from the integral in EQ6).

VI. THE SAND R MATRICES

As R—o, Eq. (24) becomes identical to Eq14) (Note
thatU commutes withw and® asR— ). The components
of the vectorsa™ in Eq. (24) are therefore the amplitudes of
the incoming and outgoing currents, as in Ed<l) and(16).

tate with the molecular axigl5]; the transformations under
U are necessary to describe this behavior in terms of basis
functions, which rotate with the axis at all distances.

(2) The asymptotic radial couplings and the asymptotic
1/R rotational coupling terms are taken into account by the
appearance of the matrix. They correct for the use of the
asymptotically inadequate coordinak in place of R,;.
Note that this was not explicitly shown for the rotational

We define theS matrix as usual to relate the amplitudes of contributions, but appears reasonable in view of the similar-

the incoming and outgoing currents,

at=(-1)7"'sa. (29
We suppose that at a distanBg, the R matrix is known,
which relates the valuds; , and the derivativedF;, /dR of
the radial functions aR,, in matrix notation

F=RdFdR at R=R. (29)
In the examples, which we present in the next secti®is,
obtained from the numerical solution of E¢5) between
small distances anR,. Ry must be so large that Eq&L9)
and(20) apply forR>R,. We use Eq(29) together with Eqg.
(24) to find the relation between th® and R matrices. A

straightforward calculation yields

§:(_1)Jexq_i9)£l/2(z+_i5 Z+£)_1

X(1 +iR 7 k) Yeexp(—id), (30)
with
K= U‘rj( U, Ki—l/2: UT7<i1/2U,
and
exp(—i®)=U"exp( —i®) U. (31)

Equation(30) is our central result; it allows us to extract the
correctS matrix from the numerical solution of the coupled
equations.

For the interpretation, regard a form of E§0), in which
7~ andU are replaced by unit matrices

S=(~1’exp(~i®)x*A(1-iR )
X(1+iR )k Yeexp—id), (32

wherel is the unit matrix. This is the relation between the

ity with the radial terms, see Eq€L0) and (11).

VIl. NUMERICAL EXAMPLES

We studied the collision processes
H(1s)+He—H(2s,2p) + He,
H+ Na(3s)—H+ Na(3p,4s),

as examples. For a numerical treatment of the coupled chan-
nel equations, the electronic basis must be reduced to a finite
number of states. We used the lowest adiabatic molecular
states as a basis. In order to formulate the coupled equations,
the potentials and the coupling matrix elements between
these states must be provided. We used a quantum chemical
program working on the configuration interaction level
[18,19 for this purpose. We show the adiabatic potentials
and the couplings for the HHe system in Fig. 2, the HNa data
can be found in Ref[20]. The solution of the truncated
coupled equations is carried out with an exist{i&p] nu-
merical program, which yields the matrix at a distanc®,.
The S matrix finally has to be calculated with EB0). For
this step, also the andU matrices must be constructed. It is
remarkable that this does not require any additional informa-
tion. The 7 matrix elements can be taken from the computed
large R values of the corresponding coupling matrix ele-
ments, making use of Eq13). This holds similarly for the
matrix W, which serves for the definition of the U matrix.
The HHe system is treated with a basis of thEestates
(X, A, andC) and onell state B). The excited levelg\, B,
and C are asymptotically degenerate, converging to the
H(2s,2p) manifold. The asymptotic radial couplings con-
necting theX state with both excite@ statesA andC are
clearly recognized in the figure. Clearly,s|{,:|2s) = 0; fol-
lowing Eq. (10), this seems to imply that only one of the
radial couplings XA or XC, should remain nonzero at large
R. However, theA andC eigenstates are linear combinations

and R matrices, which applies in the absence of asymptotiof the 25 and 2 states at largeR, allowing nonzero
couplings. The interpolation between intermediate and largasymptotic couplings in both cases. The radial coupling be-
distances occurs by WKB functions in this version, as between theA andC states is found to go to zero for large
fore. The comparison demonstrates that the way in which wéhis is indeed expected from Eql13). Two types of
take the asymptotic couplings into account, is a straightforasymptotic behavior for the rotational coupling matrix ele-
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o
. FIG. 3. Transition probabilities for the HHe system as a function
§ of the upper integration limit. Solid lines: from E¢30), dashed
e lines: from EQ.(32). Kinetic energy 50 e\VJ=22.
(=)}
',—g;_ situation. The wavelength of the oscillations is governed by
§ the energy gap between the states, which are mixed by the
T 101 — <XJiL,|B> 1 matrix, and by the particle velocity. The oscillations in the
S -5 — <AliL,|B> . HHe system reflect thest2s,2p energy gap in this way.
g 20l --- <C|iL, B> ] For the HNa system, we consider here only singlet elec-
o - tronic basis states; the states converging to H

1 10

Internuclear distance R (a.4.) +Na(3s,3p,4s) were used in the calculations. Asymptotic

radial couplings occur between the &nd 32 and the 4
FIG. 2. The potential$a) and the radialb) and rotational(c) and 33 states, rotational K coupling terms betweens3
coupling matrix elements for the HHe system. and PII and 4 and FII, and rotational B? couplings

, between 2, and 3pIl. A major difference to the HHe case
ments occur. Th&B andCB matrix elements go to constant ig hat the active electron travels now with the heavy colli-

values, in agreement with EqL1) and(13). TheXB matrix  gjon partner. They factors are considerably smaller there-
element increases linearly wiR asR becomes large, again ¢4re resulting in correspondingly smaller values of the
as expected. Only the beginning of the linear increase igqymntotic couplings. Figure 4 shows calculated transition
shown in the figure. The construction of the, W, andU  ,papilities similar to Fig. 3. The correct formula yields

matrices is straightforward: connects all stateX, A, B, and  5ce more results that are independent of the range of the
C, U mixes the asymptotically degenerate state8, andC
states with each other. Note that the HHe system is more
complex than many other cases: the asymptotically degener %% H.+Na(@s) - H + Na3po)
ate statesA and C do not have a well-defined parity &
—o0, The general theory includes this situation. N N AN N AN

Figure 3 shows numerical results for the transition prob-._ 06| ~ ’
abilities, that is, the absolute squares of Benatrix ele-
ments, calculated with variable upper liriiy of the numeri-
cal integration. The solid lines are calculated with the correct
expression for th&matrix, Eq.(30). Except for the smallest
Ry values, they show no variation witR,, as expected for a
meaningful transition probability; the small variations at H+ Na(3s) - H+ Na(ds)
small Ry occur, because the assumptions in Ed®) and 0.02 = = =
(20) do no longer apply. The dashed lines are transition prob-
abilities obtained with the simplified formula E?2). They H+ Na(3s) — H + Na(3pr)
show oscillations; the way in which these results are ob- et T TP PP P gesocosoooo ST
tained, corresponds to a situation, in which the asymptotic 18 2 s 30 % 40

. Upper integration limit R, (a.u..)

terms are fully taken into account foR<R,, but are
switched off beyondR,. The results seem to imply periodic  FIG. 4. Transition probabilities for the HNa system as a function
inelastic transitions; this demonstrates clearly that B§)  of the upper integration limit. Solid lines: from E¢30), dashed
and the underlying interpretation do not apply to the preseniines: from Eq.(32). Kinetic energy 50 eVJ=160.

0.04 |

Transition probability [S, |
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numerical integration, whereas the use of the inadequate for- (2) The theory is formulated for systems with one active
mula results in the typical oscillations. Their frequencies re-electron. The extension to systems with more electrons is
flect the 3-3p and 4s-3p energy gapsnote in this connec- desirable.

tion the complicated oscillation pattern of the durve). The (3) By Eq. (8), ungerade or gerade molecular states are
lowest dashed line in the figure shows a slow variation sunot permitted as basis states. This complicates the applica-
perimposed on the oscillations. This is found to be caused byion to homogeneous collision pairs; however, a choice of
the replacement of th&) matrix by the unit matrix. The basis functions obeying E@8) is certainly possible also in
variation reflects the fact the population of thp 8ubstates this case.

has become constant at these distances, but that the quanti-(4) lonization processes cannot be dealt with by this ap-
zation axis, which is used to describe their population, conproach.

tinues to rotate. Accordingly, the dashed upper line in the

figure shows a similar variation, however, with the opposite

sign(which is less clearly visible due to the larger magnitude IX. CONCLUSION

of the oscillation The procedure described in the present paper allows the

VIIl. DISCUSSION unambiguqus ctalculat.ion _c$maj[rix elemeqts,_ and hgnce,
cross sections in a situation with nonvanishing radial and

The examples demonstrate the practical applicability ofotational asymptotic couplings. Two subsequent steps are
the general procedure. The fact that the calculated transitioessential. First, we show that the standard expansion of the
probabilities do not vary with the upper limit of the numeri- wave function requires a reinterpretation in order to provide
cal integration demonstrates that the mathematical procea meaningful description of the asymptotic motion of the
dures proposed to calcula®ematrix elements work satisfac- collision partners. The new interpretation is given by Eqgs.
torily. Actually, upon closer inspection, small residual (16)—(18). This would be sufficient to obtain a meaningsil
variations can be found in the curves, which are too small tanatrix, but it would require &n general numericalsolution
manifest themselves in the present version of the figureof the coupled equations from small to extremely large dis-
They are due to the neglect of second order, mgM, terms  tances. Therefore, we present in the second step, an analytic
throughout the paper. The numerical results fully justify thisWKB-type solution of the coupled equations. This solution
procedure. can be used to continue a numerical solution from interme-

The method differs considerably from previous ap-diate distances to infinity. We present on this basis a matrix
proaches. All previous methods relied on modifications offormula Eq.(30), which permits the straightforward calcula-
the coupled equations. In contrast, we use the unmodifietion of the S matrix when solutions for small and intermedi-
standard form of the coupled equations, including asymptotiate distances have been computed. The new formula is
couplings. We rather show how to interpret the solution corslightly more complicated than the corresponding relation
rectly. We rely in particular on the identity of EgEl7) and  that holds in the absence of electron translation effects. The
(18) in this connection, which holds rigorously only as long corrections require the knowledge of the quantities, which
as we use a complete basis of electronic basis states. In prattust be provided in any case for the computation of the
tice, the use of a complete basis is not possible, numericahelastic process, potentials and radial and rotational cou-
computations require the use of a truncated finite basis. Ipling matrix elements; the knowledge of additional quantities
the numerical examples, we use basis sets of only four stateis. not required.
The magnitude of the missing terms in Ed.7) is easily We demonstrated the practical applicability of the method
estimated by looking up tabulated optical transition prob-by two examples. Results obtained by a numerical integra-
abilities. These numbers usually become quickly small whertion of the coupled equations between small distances and an
going to higher states. We expect, therefore, that a small aspper boundary of the order of 20 a.u. are sufficient to obtain
moderate electronic basis will be sufficient in many cases. Asinique results for the transition probability. In contrast, tran-
already pointed out in Ref12], however, the necessity of sition probabilities obtained by empirical methods, e.g., by
truncation can lead to severe problems. This is particularleutting off the undesired terms, give ambiguous results,
true when the number of bound atomic states is small, as fowhere, for instance, the calculated transition probabilities os-

instance, for negative ions. cillate as a function of the integration range. Results obtained
The following practical limitations should finally be men- in this way deviate between a few percent and a factor of
tioned: more than two from the results of the correct procedure.

(1) For very small energies, the couplings considered in The availabilty of this method rises a number of ques-
this paper become very small: In E¢p), the derivatives tions. It will be of much interest to gain experience by com-
dF/dR become smaller and smaller, and similarly, the typi-paring numerical cross-section data based on the present
cal values of the square roots in the rotational couplingmethod with experimental data, as well as with numerical
terms. The couplings may eventually become as small as thresults from other approaches. It would be particularly inter-
last two terms in Eq(5), which were neglected in the present esting to compare classical trajectory calculati¢valid at
formulation. We have then a situation with extremely smallhigh energy to the present method, in order to see whether
cross sections, which are governed by all coupling terms. Ahe two different methods are able to make similar predic-
formulation of the theory, which includes also terms of thetions. It would be of interest as well, to study the conver-
orderm/M is desirable in order to account for this case. gence of the method using an increasing number of basis
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functions. The study of isotope effedis.g., D+Na in place ACKNOWLEDGMENTS
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the different origin of the electron coordinates, the coupling Financial support from the Volkswagenstiftung, from
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