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Electron translation and asymptotic couplings in low-energy atomic collisions
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The calculation of cross sections for inelastic and charge-exchange atomic collisions encounters a principal
difficulty. The coordinates used to describe the collision event are usually not appropriate for the description of
the collision partners long before and after the collision. As a consequence, the coupling matrix elements that
govern inelastic transitions can remain nonzero for large internuclear distance. We present a simple procedure
to deal with this situation in the framework of a full quantum-mechanical treatment. It applies to radial as well
as rotational coupling mechanisms. We demonstrate the practical applicability by numerical examples.
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I. INTRODUCTION

Inelastic and charge-exchange collisions between at
or ions at low energy govern the behavior of gaseous me
in many cases. This concerns a wide range of question
practical importance from astrophysics and the fusion plas
edge to laser media and industrial applications of plas
physics. The numerical calculation of cross sections app
as a straightforward way to provide the data that are requ
for a quantitative understanding of these media. The com
tation of cross sections usually proceeds in two steps,
quantum chemical treatment of the collisional quasimo
cule, and the subsequent treatment of the heavy particle
namics. The second step encounters a severe difficulty, h
ever. The matrix elements coupling different electronic sta
may remain nonzero at large internuclear distance@1–3#. As
this seems to imply inelastic transitions under the influe
of an arbitrarily distant collision partner, the correspondi
formulation of the theory is often regarded as defective.
fact, the nonvanishing asymptotic couplings reflect a less
vious but more fundamental shortcoming. The coordina
used to describe the collision complex are usually not su
for the description of the free atoms@4#, and the correspond
ing representation of the asymptotic wave function is the
fore not suited for a straightforward interpretation.

For high-energy collisions, where the motion of the nuc
may be treated classically, a solution is well known, name
the inclusion of ‘‘electron translation factors’’~ETF’s! @1,2#
in the expansion of the electronic wave function. For lo
energy collisions, the use of classical approximations is
adequate, rather, a full quantum treatment of both the e
tronic and the nuclear motion is required. Full quantum
proaches are usually based on an expansion of the scatt
wave function in terms of a set of electronic basis functio
leading to a system of coupled channel equations. A strai
forward generalization of the ETF method to the coup
channels approach does not exist. Several alternative
proaches@5–10# have been discussed, practical applicatio
of these proposals have remained limited, however. Rat
empirical methods are widely applied, in which for instan
artificial modifications of the coupling matrix elements a
constructed. The question has been discussed for more
40 years. Being known as a difficult problem for so lo
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time, the problem was more and more considered to be
solvable. The statement that it is ‘‘not possible to extrac
meaningfulS matrix’’ @11# from the solution of the coupled
equations correctly reflected the state of the art at the t
when the statement was made. Unfortunately, it was
quently understood as an absolute truth. We have shown
previous paper@12#, however, how to construct a meaningf
Smatrix. The present paper extends this approach by con
ering rotational in addition to radial coupling mechanisms

Whereas previous approaches concentrated on a se
for better-suited coordinates or for a formulation witho
asymptotic couplings, we formulate the coupled equatio
using standard coordinates. The asymptotic couplings are
removed in our formulation. Rather, we concentrate on
question how the solutions of the coupled equations mus
interpreted in the asymptotic region. It turns out that a c
rect interpretation can be achieved by a straightforward
simple reprojection procedure.

Besides the problem discussed so far, there exists a
ond problem, an apparent ambiguity in the definition of c
tain coupling matrix elements. The question is often d
cussed in connection with the present one, but may be so
independently. As observed by numerous authors, e.g.@3,13#,
one obtains different values for certain matrix elements wh
one chooses different origins for the electron coordina
This seems to make the calculation of cross sections amb
ous. However, as shown by Bottrell@14#, the changes are
compensated by additional terms in the coupled equatio
which were usually ignored. The ambiguity in the couplin
matrix elements does not lead to a corresponding ambig
in the coupled equations, therefore. In practice, Bottrell’s
sult leads to the following simple rule: When the standa
form of the coupled equations@Eq. ~5! below# is used, the
matrix elements have to be calculated using Jacobi coo
nates, that is, with the origin of the electron coordinates
the center of mass of the nuclei. An arbitrary choice of t
coordinate origin is not justified. The details were work
out in our previous paper@12#. We use Bottrell’s result,
therefore, without further discussion.

II. THE COUPLED EQUATIONS

We consider at present only systems with one active e
tron, and we treat them as one electron systems, conside
©2001 The American Physical Society01-1
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every nucleus with its nonactive electrons as a single par
A or B. We use Jacobi coordinatesr andR for the three-body
problem;R connects the two heavy particles,r measures the
position of the electron with respect to the center of mass
the heavy particles. Omitting the kinetic-energy operator
the center of mass of the total system, the Hamiltonian re

H52
\2

2M

]2

]R2
2

\2

2m

]2

]r2
1Hint~r ,R!, ~1!

with the reduced massesm5me(MA1MB)/(me1MA
1MB) andM5MAMB / (MA1MB) andme , MA , andMB
the masses of the three particles.Hint contains the interac
tions; we consider only electrostatic interactions, for simp
ity. The electronic Hamiltonian,

Hel52
\2

2m

]2

]r2
1Hint~r ,R!, ~2!

depends onR only as parameter. We introduce a set of ele
tronic basis functionsc j Ls(r ,R). They are allowed to vary
with the internuclear distance, but are supposed to be b
fixed. For the precise definition of this notion, we introdu
spherical coordinatesR, q, w for R and a body fixed co-
ordinate systemj, h, z for r , see Fig. 1. When expresse
in these coordinates, body fixed functions depend
j, h, z, and R, but not onq and w. The functions are
distinguished by a running indexj and by the usual angula
projection quantum numberL50,1, . . . , (S, P, . . . ,
states!. The quantum numbers561 indicates the reflection
m

op
tio
a

l.

05270
le

f
f

ds

-

-

dy

n

symmetry at the body fixedjz plane. States withL.0 occur
in pairs with s561, the two components transform int
each other by a rotation around thez axis. The scattering
wave function can be written as a sum of termsC(r ,R)
5CMJst

J (r ,R), each of which is characterized by the follow

ing good quantum numbers:~1! The total angular momentum
quantum numbersJ and MJ with MJ>0, ~2! the reflection
symmetry quantum numbers561, such thatC multiplies
by s under the reflection of both coordinatesr andR at the
space-fixedxz plane, and~3! the type quantum numbert5
61. The type quantum number is closely related to the p
ity, but is more convenient in the present context. Eve
single term may be expanded in the form

C~r ,R!5(
j L

I j L F j L~R!/R ~3!

with

I j L5cos~MJw!QMJLq
J ~q!c j Ls

1 i sin~MJw!QMJL2q
J ~q!c j L2s . ~4!

The functionsQMJL61
J (q) are generalized spherical ha

monics @15–17#, q stands for the productst. Note the par-
ticular caseQMJ021

J 50. The factorsI j L represent the elec

tronic motion and the angular part of the heavy parti
motion. TheF j L describe the radial motion of the atom
they have to obey a system of coupled equations
F2
\2

2M

d2

dR2
1Vj L~R!1

\2

2MR2
@J~J11!2L2#2EGF j L

52 (
j 8Þ j

^c j LtuHeluc j 8Lt&F j 8L1
\2

M (
j 8Þ j

K c j LtU ]

]RUc j 8LtL dFj 8L

dR

2
\

MR2 (
j 8

A~J1L11!~J2L!^c j Ltu2 iL huc j 8L11t&F j 8L11

2
\

MR2 (
j 8

A~J2L11!~J1L!^c j Ltu iL huc j 8L21t&F j 8L21

2
1

2M (
j 8

^c j LtuLj
21Lh

2 uc j 8Lt&F j 8L1
\2

2M (
j 8

K c j LtU ]2

]R2Uc j 8LtL F j 8L . ~5!
n

Remember thatL takes nonnegative values only; the ter
with F j 8L21 does not occur forL50. Lh andLj are theh
and j components of the electronic angular momentum
erator. The matrix element notation denotes an integra
over the electron coordinates, the matrix elements rem
functions ofR. The functionsc j Ls may be chosen to be rea
-
n
in

In this case,̂ c j 8Lsu]/]Ruc j Ls&52^c j Lsu]/]Ruc j 8Ls& and
in particular^c j Lsu]/]Ruc j Ls&50, which has already bee
used in Eq. ~5!. Similarly, ^c j Lsu2 iL huc j 8L61s&
5^c j 8L61su iL huc j Ls& is real. The potentials are given by

Vj L~R!5^c j LsuHeluc j Ls&. ~6!
1-2
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ELECTRON TRANSLATION AND ASYMPTOTIC . . . PHYSICAL REVIEW A 64 052701
They are the same for both componentss561 of the L
Þ0 states. Equation~5! exists in two versions, correspondin
to the two possible values of the type quantum number. N
that for t511, there occur noS2 states in Eq.~3! and no
corresponding couplings in Eq.~5!, and similarly for t5
21, no S1 states and no corresponding couplings. In pr
tice, many collision processes start in aS1 state; the scatter
ing wave function may then entirely be constructed fro
terms withs5t511. For the derivation of Eqs.~3! to ~5!
see@15#. The theory is formulated for other coordinates
this paper, but the starting Hamiltonian has the same form
at present, and the mathematical steps leading from
Hamiltonian to the coupled equations are identical. Furth
the coupling matrix elements are now expressed by funct
with well-defined reflection symmetrys, at variance with the
formulation in @15#.

We deal here with kinetic energies of the heavy particl
which are of the same order of magnitude as the typ
kinetic energies of the electron. The wave-numbersK for the
heavy particles andk for the electron have therefore a rat
of typically k/K'Am/M . Normally, the basis functions var
slowly with the internuclear distance, such that appro
mately

]

]R
c j Ls<

1

a
c j Ls , ~7!

with a'1/k the typical dimension of the atoms. Under th
condition, the first term on the right-hand side of Eq.~5! is of
the same order as the terms on the left, the next three te
are by a factor ofAm/M smaller, and the last ones by
factor of m/M . The theory to be developed is of the fir

FIG. 1. Coordinates.q andw describe the direction of the vec
tor R that connects the heavy particles.x, y, andz are space-fixed
and j, h, z body-fixed electron coordinates. Thez, z, andj axes
are in a plane, theh axis is at right angles.
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order in Am/M . Terms, which are of the order ofm/M
smaller than the leading terms, will be neglected. The
sumption expressed by Eq.~7! is not automatically fulfilled,
but a corresponding choice of the basis~diabatic or nearly
diabatic! can always be made. For the region of large d
tances, which is the subject of the present paper, the assu
tion holds for any reasonable choice of the basis, see Eq~8!
below.

Equation~5! is an adequate starting point for a numeric
treatment. The potentials and the matrix elements mus
known in advance, for instance from a quantum chemi
treatment of the system. The off-diagonal matrix elements
Hel and]/]R are denoted as radial~or homogeneous!, those
of iL h as rotational~centrifugal, Coriolis, or heterogeneou!
coupling matrix elements.

III. ASYMPTOTIC COUPLINGS

The electronic basis functions vary with the internucle
distanceR, in general. Two requirements seem obviou
They should become atomic eigenfunctions at largeR and
they should no more depend onR at the same time. The firs
requirement can easily be fulfilled, the innocent second
cannot, however. Atomic eigenfunctions travel with t
atom, and they have, therefore, the form

c~r ,R!5 f ~j,h,z2g j LR! ~8!

with

g j L52
MB

MA1MB
or g j L5

MA

MA1MB
~9!

for functions travelling with atomA or B, respectively. We
will exclusively use basis functions that have the form of E
~8! at large distances. They clearly depend onR and can
therefore give rise to nonvanishing radial coupling mat
elements at largeR. Introducing atom-centered coordinate
jat5j, hat5h, andzat5z2g j LR, one finds

^c j Lsu]/]Ruc j 8Ls&5^c j Lsu]/]Ruc j 8Ls& at

2g j 8L^c j Lsu]/]zatuc j 8Ls&. ~10!

The matrix element on the left is that one, which enters
coupled equations. The partial differentiation is carried o
with the electronic wave function expressed in the coor
natesj, h, andz, andR. The first term on the right is cal
culated usingjat , hat , zat , andR instead; this matrix ele-
ment vanishes at largeR, because the wave functions hav
the form of Eq.~8!. The second term on the right is nonze
at largeR when both wave functions travel with the sam
atom and a dipole transition between them is allowed
follows that, in general, the]/]R coupling matrix elements
in Eq. ~5! go to a nonzero constant value asR→`. Similarly,

^c j Lsu iL huc j 8L61s&

5^c j Lsu iL h
atuc j 8L61s&

1g j 8L61^c j Lsu]/]jatuc j 8L61s&3\R. ~11!
1-3
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A. K. BELYAEV, D. EGOROVA, J. GROSSER, AND T. MENZEL PHYSICAL REVIEW A64 052701
The matrix element on the left, which enters the coup
equations, is calculated with the angular momentum re
ring to the center of mass of the nuclei. In contrast, the fi
matrix element on the right is obtained with the angular m
mentum referring to the nucleus, which carries the elect
away. Here, both terms on the right can remain nonzer
largeR. The first term couples the magnetic substates of
atomic level. Its physical significance is well understood
describes the decoupling of the electronic wave funct
from the rotating molecular axis@15#. The second term is
similar to the second term in Eq.~10! and can be nonzero
under the same conditions. Both matrix elements have c
stant values for largeR. In the coupled equations, they pro
vide terms that vary as 1/R2 and 1/R, respectively. Atomic
eigenfunctions have the property@12#

^c j LsuHeluc j 8Ls&50 for j 8Þ j . ~12!

Actually, the Hamiltonian of the free atom is not exact
Hel , because the reduced electron mass is slightly differ
Equation~12! is not exact, therefore. However, the error
smaller than the leading terms in Eq.~5! by a factor of the
order ofm/M and can therefore be neglected. The last t
terms in Eq.~5! can remain nonzero as well asR becomes
large; again, these terms are of the order ofm/M compared
to the leading terms and will therefore be neglected. We d
with asymptotic couplings originating from the second, thi
and fourth terms on the right-hand side of Eq.~5!.

Using the relation (m/\2)@rat ,Hel#5]/]rat , one finds

^c j Lsu]/]ratuc j 8L8s&5~m/\2!~Vj 8L82Vj L!

3^c j Lsuratuc j 8L8s&, ~13!

which relates the asymptotic couplings to atomic dipole tr
sition matrix elements. Again, Eq.~13! is not exact, but the
errors are small of the orderm/M and will be disregarded.

IV. THE ASYMPTOTIC SOLUTION

We consider in this section the region of very large d
tances, where all terms in the coupled equations can be
placed by their limit forR→`. This means, in particular
that the centrifugal potential and the rotational asympto
coupling terms are zero. The only coupling terms that rem
are the asymptotic]/]R couplings, there values are given b
the second term on the right-hand side of Eq.~10!. The
coupled channel equations are easily solved by a pertu
tion approach under these conditions@12#. To the first order
in the small quantityAm/M , the general solution is

F j L5(
j 8

K j 8L
21/2

@ t j L, j 8L
1 aj 8L

1 exp~ iK j 8LR!

1t j L, j 8L
2 aj 8L

2 exp~2 iK j 8LR!# ~14!

with

t j L, j 8L
6

5d j j 86 iK j 8Lg j 8L~m/M !^c j Ltuzatuc j 8Lt&. ~15!
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K j 8L5A2M @E2Vj 8L(`)#/\ are the channel wave number
theaj 8L

6 are arbitrary. The corresponding wave-functionC is
obtained by inserting Eq.~14! into Eq.~3!. The result can be
expressed as follows:

C5(
j L

K j L
21/2~aj L

1 C j L
1 1aj L

2 C j L
2 ! ~16!

with

C j L
6 5exp~6 iK j LR!/R(

j 8
t j 8L, j L

6 I j 8L~r ,R!. ~17!

This can be shown to be equal to

C j L
6 5exp~6 iK j LRat!/RatI j L~r ,Rat! ~18!

to the first order inAm/M . Rat connects the bare heav
particle with the center of mass of the atom, in contrast toR,
which connects the bare heavy particles. The difference
tween the two coordinates is small, of the order ofm/M
times the atomic radius. However, the small difference
multiplied by the large atomic wave-numberK j L in the ex-
ponential in Eq.~18!, resulting in a non-negligible correc
tion. The nondiagonal elements of thet j 8L, j L

6 in Eq. ~17! can
directly be traced to the appearance ofRat in place ofR in
the exponential in Eq.~18!. The identity of Eqs.~17! and
~18! is the central idea of the present approach. Equation~17!
forms an expansion of Eq.~18! in terms of the set of elec
tronic basis states; the two expressions are rigorously ide
cal only as long as a complete set is used. The proo
worked out in more detail in@12#; for the present, more
general formulation, the relations^c j 8Lsuzatuc j Ls&
5^c j 8L2suzatuc j L2s& andQMJ021

J 50 are required in addi-

tion.
Equation~18! provides a correct description for the mo

tion of two noninteracting atoms with the electron in a
atomic eigenstate, that is, Eq.~18! and therefore as well Eq
~17!, describe the true channels of the scattering probl
Equation~16! provides a corresponding decomposition of t
wave function, the amplitudesaj L

6 are the amplitudes of the
incoming and outgoing currents in the different channe
Equation~14! finally shows how the amplitudesaj L

6 are re-
lated to the solutionsF j L of the coupled equations.

One is used to think that for largeR, a single term in an
expansion as Eq.~3! represents a channel of the scatteri
problem. This is not true for the present case. A single te
in Eq. ~3! would correspond to Eq.~18!, but with Rat re-
placed byR, or as well to Eq.~17!, but with t j 8L, j L

6 replaced
by d j 8 j . Due to the presence of the asymptotic radial co
plings, this would not even solve the coupled equations
the asymptotic region. The asymptotic radial couplings
obviously required to guarantee for the correct asympto
form of the wave function.

V. THE SOLUTION AT INTERMEDIATE DISTANCE

For the calculation of cross sections, it is necessary
solve the coupled channel equations for the entire rang
1-4
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ELECTRON TRANSLATION AND ASYMPTOTIC . . . PHYSICAL REVIEW A 64 052701
accessible distances fromR near zero to largeR. The result
of the preceding section provides the correct asympt
form and allows us to extract the correct channel amplitu
aj L

6 from the solution of the coupled equations. This is
limited practical use, however, because it requires the kno
edge of a solution, which covers the range fromR50 to
extremely large distances. We will now derive an analy
form for the general solution, which is valid for intermedia
distances, and that can be used to connect a numerical
tion from intermediate distances to infinity.

We solve Eq.~5! in the intermediate region by a perturbativ
WKB approach. The perturbation treatment is complica
by the fact that some of the potentialsVj L(R) converge to
the same limit asR→`. A small coupling is sufficient to
cause a large perturbation in this situation. Asymptotic
generacy occurs for instance between the substateL
50, . . . ,L j of an atomic level with electronic angular mo
mentumL j . We deal in the following with a region ofR
values, in which the potential differences between asympt
cally degenerate levels are already negligible,

Vj L~R!2Vj 8L8~R!50 wheneverVj L~`!2Vj 8L8~`!50,
~19!

and in which all coupling matrix elements can be replaced
the corresponding asymptotic expressions. The nonvanis
coupling matrix elements are therefore

^c j Ltu]/]Ruc j 8Lt&

52g j 8L~m/\2!~Vj 8L2Vj L!^c j Ltuzatuc j 8Lt&` ,

^c j Ltu iL huc j 8L61t&

5g j 8L61 ~m/\!R ~Vj 8L612Vj L!^c j Ltujatuc j 8L61t&`

1^c j Ltu iL h
atuc j 8L61t&` . ~20!

The approximation described by Eqs.~19! and~20! will turn
out to be justified already at moderate distances. Coupl
between asymptotically degenerate levels occur only by
matrix elements ofLh

at in this situation. The centrifugal po
tential and the rotational coupling terms are now no lon
neglected, unlike in Sec. IV. Similarly, long range~e.g., Cou-
lomb! potentialsVj L are allowed. We remove in a first ste
the couplings between the asymptotically degenerate st
We consider the matrix

Wj L, j 8L85d j j 8dLL8@Vj L1\2/~2MR2!„J~J11!2L2
…#

1\/~MR2!@dL21L8A~J2L11!~J1L!

3^c j Ltu iL h
atuc j L8t&`

1dL11L8A~J1L11!~J2L!

3^c j Ltu2 iL h
atuc j L8t&`#, ~21!

which collects the effective potential and all couplings b
tween asymptotically degenerate terms. We turn now t
matrix and vector notation in which, for instance, the rad
functions F j L are collected in a vectorF and W has the
05270
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matrix elements defined in Eq.~21!. We define a unitary
matrix U by the requirement that it transforms the matrixW
into a diagonal matrixW̃

U W U†5W̃. ~22!

BecauseW couples only asymptotically degenerate termsU
connects only asymptotically degenerate states. Under
present conditions,U is independent of the internuclear di
tance. As the coupling terms inW are of the order ofAm/M
compared to the typical potential energies, the diago
terms inW̃ differ from the diagonal terms inW by correc-
tions of the same order only, as well; the differences van
asR→`. Introducing a new set of functions

F̃5UF, ~23!

one obtains a system of coupled equations for the new fu
tions F̃, which is similar to Eq.~5!. The coupling matrix
elements are replaced by their transforms under the matriU,
the effective potentials are replaced byW̃, and there are no
couplings between asymptotically degenerate states
more. In this form, the coupled equations are easily sol
by perturbation techniques. The approximate general s
tion reads, after transformation back to the functionsF,

F~R!5t1 U† k̃21/2exp~ iF̃! U a1

1t2 U† k̃21/2exp~2 iF̃! U a2. ~24!

k̃ andF̃ are diagonal matrices with elements

k̃n~R!5A2M @E2W̃n~R!#/\ ~25!

and

F̃n5k̃n~`!R2E
R

`

@k̃n~R!2k̃~`!#dR, ~26!

and the matricest6 have elements

t j L, j 8L8
6

5d j j 8dLL86 ik j 8L8g j 8L8

m

M
^c j Ltuzatuc j 8L8t&dL8L

2A~J1L11!~J2L!g j 8L8

m

M

1

R

3^c j Ltujatuc j 8L8t&dL8L11

1A~J2L11!~J1L!g j 8L8

m

M

1

R

3^c j Ltujatuc j 8L8t&dL8L21 , ~27!

with k j L5A2M (E2Wj L j L)/\. The components of the vec
torsa6 are arbitrary constants. As in Eq.~5!, the last term in
Eq. ~27! does not occur forL50. Equation~24! holds to the
first order inAm/M , as before. In addition, the WKB ap
proximation is applied, which means that the derivatives
1-5
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A. K. BELYAEV, D. EGOROVA, J. GROSSER, AND T. MENZEL PHYSICAL REVIEW A64 052701
the wave numbers (k j L and k̃n) are neglected. This is ex
pected to be an excellent approximation under the pre
conditions, certainly for the range of distances conside
here. Similarly, the derivatives of thet matrix elements are
neglected. Note also that the use of the WKB formulat
makes the explicit introduction of a logarithmic phase te
for Coulombic potentials unnecessary; the logarithmic te
arises automatically from the integral in Eq.~26!.

VI. THE S AND R MATRICES

As R→`, Eq. ~24! becomes identical to Eq.~14! ~Note
that U commutes withk andF asR→`). The components
of the vectorsa6 in Eq. ~24! are therefore the amplitudes o
the incoming and outgoing currents, as in Eqs.~14! and~16!.
We define theS matrix as usual to relate the amplitudes
the incoming and outgoing currents,

a15~21!J11 S a2. ~28!

We suppose that at a distanceR0, the R matrix is known,
which relates the valuesF j L and the derivativesdFj L /dR of
the radial functions atR0, in matrix notation

F5R dF/dR at R5R0 . ~29!

In the examples, which we present in the next sections,R is
obtained from the numerical solution of Eq.~5! between
small distances andR0 . R0 must be so large that Eqs.~19!
and~20! apply forR.R0. We use Eq.~29! together with Eq.
~24! to find the relation between theS and R matrices. A
straightforward calculation yields

S5~21!Jexp~2 iF!k1/2~t12 iR t1k!21

3~t21 iR t2k!k21/2exp~2 iF!, ~30!

with

k5U† k̃ U, k61/25U† k̃61/2U,

and

exp~2 iF!5U†exp~2 iF̃! U. ~31!

Equation~30! is our central result; it allows us to extract th
correctS matrix from the numerical solution of the couple
equations.

For the interpretation, regard a form of Eq.~30!, in which
t6 andU are replaced by unit matrices

S5~21!Jexp~2 iF!k1/2~12 iR k!21

3~11 iR k!k21/2exp~2 iF!, ~32!

where1 is the unit matrix. This is the relation between theS
andR matrices, which applies in the absence of asympto
couplings. The interpolation between intermediate and la
distances occurs by WKB functions in this version, as
fore. The comparison demonstrates that the way in which
take the asymptotic couplings into account, is a straight
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ward and simple extension of standard procedures. Equa
~30! differs from Eq.~32! in two ways:

~1! The asymptotic couplings between the substates
one atomic energy level are taken into account by the app
ance of the matrixU in the formulas. These couplings have
well-known physical significance. In the region where E
~24! applies, the actual electronic wave functions do not
tate with the molecular axis@15#; the transformations unde
U are necessary to describe this behavior in terms of b
functions, which rotate with the axis at all distances.

~2! The asymptotic radial couplings and the asympto
1/R rotational coupling terms are taken into account by
appearance of thet matrix. They correct for the use of th
asymptotically inadequate coordinateR in place of Rat .
Note that this was not explicitly shown for the rotation
contributions, but appears reasonable in view of the simi
ity with the radial terms, see Eqs.~10! and ~11!.

VII. NUMERICAL EXAMPLES

We studied the collision processes

H~1s!1He→H~2s,2p!1He,

H1Na~3s!→H1Na~3p,4s!,

as examples. For a numerical treatment of the coupled ch
nel equations, the electronic basis must be reduced to a fi
number of states. We used the lowest adiabatic molec
states as a basis. In order to formulate the coupled equat
the potentials and the coupling matrix elements betw
these states must be provided. We used a quantum chem
program working on the configuration interaction lev
@18,19# for this purpose. We show the adiabatic potenti
and the couplings for the HHe system in Fig. 2, the HNa d
can be found in Ref.@20#. The solution of the truncated
coupled equations is carried out with an existing@20# nu-
merical program, which yields theR matrix at a distanceR0.
The S matrix finally has to be calculated with Eq.~30!. For
this step, also thet andU matrices must be constructed. It
remarkable that this does not require any additional inform
tion. Thet matrix elements can be taken from the compu
large R values of the corresponding coupling matrix el
ments, making use of Eq.~13!. This holds similarly for the
matrix W, which serves for the definition of the U matrix.

The HHe system is treated with a basis of threeS states
(X, A, andC) and oneP state (B). The excited levelsA, B,
and C are asymptotically degenerate, converging to
H(2s,2p) manifold. The asymptotic radial couplings con
necting theX state with both excitedS statesA and C are
clearly recognized in the figure. Clearly,^1suzatu2s&50; fol-
lowing Eq. ~10!, this seems to imply that only one of th
radial couplings,XA or XC, should remain nonzero at larg
R. However, theA andC eigenstates are linear combinatio
of the 2s and 2p states at largeR, allowing nonzero
asymptotic couplings in both cases. The radial coupling
tween theA andC states is found to go to zero for largeR;
this is indeed expected from Eq.~13!. Two types of
asymptotic behavior for the rotational coupling matrix e
1-6



t

n

o
n

b

ec
t

at

ob

ob
ot

c

e

by
he
e

ec-
H

ic

e
lli-
e-
he
ion
s
the

ion

ion

ELECTRON TRANSLATION AND ASYMPTOTIC . . . PHYSICAL REVIEW A 64 052701
ments occur. TheAB andCB matrix elements go to constan
values, in agreement with Eqs.~11! and~13!. TheXB matrix
element increases linearly withR asR becomes large, agai
as expected. Only the beginning of the linear increase
shown in the figure. The construction of thet-, W, and U
matrices is straightforward.t connects all statesX, A, B, and
C, U mixes the asymptotically degenerate statesA, B, andC
states with each other. Note that the HHe system is m
complex than many other cases: the asymptotically dege
ate statesA and C do not have a well-defined parity asR
→`. The general theory includes this situation.

Figure 3 shows numerical results for the transition pro
abilities, that is, the absolute squares of theS-matrix ele-
ments, calculated with variable upper limitR0 of the numeri-
cal integration. The solid lines are calculated with the corr
expression for theSmatrix, Eq.~30!. Except for the smalles
R0 values, they show no variation withR0, as expected for a
meaningful transition probability; the small variations
small R0 occur, because the assumptions in Eqs.~19! and
~20! do no longer apply. The dashed lines are transition pr
abilities obtained with the simplified formula Eq.~32!. They
show oscillations; the way in which these results are
tained, corresponds to a situation, in which the asympt
terms are fully taken into account forR,R0, but are
switched off beyondR0. The results seem to imply periodi
inelastic transitions; this demonstrates clearly that Eq.~32!
and the underlying interpretation do not apply to the pres

FIG. 2. The potentials~a! and the radial~b! and rotational~c!
coupling matrix elements for the HHe system.
05270
is

re
er-

-

t

-

-
ic

nt

situation. The wavelength of the oscillations is governed
the energy gap between the states, which are mixed by tt
matrix, and by the particle velocity. The oscillations in th
HHe system reflect the 1s-2s,2p energy gap in this way.

For the HNa system, we consider here only singlet el
tronic basis states; the states converging to
1Na(3s,3p,4s) were used in the calculations. Asymptot
radial couplings occur between the 3s and 3pS and the 4s
and 3pS states, rotational 1/R coupling terms between 3s
and 3pP and 4s and 3pP, and rotational 1/R2 couplings
between 3pS and 3pP. A major difference to the HHe cas
is that the active electron travels now with the heavy co
sion partner. Theg factors are considerably smaller ther
fore, resulting in correspondingly smaller values of t
asymptotic couplings. Figure 4 shows calculated transit
probabilities similar to Fig. 3. The correct formula yield
once more results that are independent of the range of

FIG. 3. Transition probabilities for the HHe system as a funct
of the upper integration limit. Solid lines: from Eq.~30!, dashed
lines: from Eq.~32!. Kinetic energy 50 eV,J522.

FIG. 4. Transition probabilities for the HNa system as a funct
of the upper integration limit. Solid lines: from Eq.~30!, dashed
lines: from Eq.~32!. Kinetic energy 50 eV,J5160.
1-7
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numerical integration, whereas the use of the inadequate
mula results in the typical oscillations. Their frequencies
flect the 3s-3p and 4s-3p energy gaps~note in this connec-
tion the complicated oscillation pattern of the 4s curve!. The
lowest dashed line in the figure shows a slow variation
perimposed on the oscillations. This is found to be caused
the replacement of theU matrix by the unit matrix. The
variation reflects the fact the population of the 3p substates
has become constant at these distances, but that the qu
zation axis, which is used to describe their population, c
tinues to rotate. Accordingly, the dashed upper line in
figure shows a similar variation, however, with the oppos
sign~which is less clearly visible due to the larger magnitu
of the oscillations!.

VIII. DISCUSSION

The examples demonstrate the practical applicability
the general procedure. The fact that the calculated trans
probabilities do not vary with the upper limit of the nume
cal integration demonstrates that the mathematical pro
dures proposed to calculateS-matrix elements work satisfac
torily. Actually, upon closer inspection, small residu
variations can be found in the curves, which are too sma
manifest themselves in the present version of the figu
They are due to the neglect of second order, i.e.,m/M , terms
throughout the paper. The numerical results fully justify th
procedure.

The method differs considerably from previous a
proaches. All previous methods relied on modifications
the coupled equations. In contrast, we use the unmod
standard form of the coupled equations, including asympt
couplings. We rather show how to interpret the solution c
rectly. We rely in particular on the identity of Eqs.~17! and
~18! in this connection, which holds rigorously only as lon
as we use a complete basis of electronic basis states. In
tice, the use of a complete basis is not possible, nume
computations require the use of a truncated finite basis
the numerical examples, we use basis sets of only four st
The magnitude of the missing terms in Eq.~17! is easily
estimated by looking up tabulated optical transition pro
abilities. These numbers usually become quickly small wh
going to higher states. We expect, therefore, that a sma
moderate electronic basis will be sufficient in many cases
already pointed out in Ref.@12#, however, the necessity o
truncation can lead to severe problems. This is particula
true when the number of bound atomic states is small, as
instance, for negative ions.

The following practical limitations should finally be men
tioned:

~1! For very small energies, the couplings considered
this paper become very small: In Eq.~5!, the derivatives
dF/dR become smaller and smaller, and similarly, the ty
cal values of the square roots in the rotational coupl
terms. The couplings may eventually become as small as
last two terms in Eq.~5!, which were neglected in the prese
formulation. We have then a situation with extremely sm
cross sections, which are governed by all coupling terms
formulation of the theory, which includes also terms of t
orderm/M is desirable in order to account for this case.
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~2! The theory is formulated for systems with one acti
electron. The extension to systems with more electron
desirable.

~3! By Eq. ~8!, ungerade or gerade molecular states
not permitted as basis states. This complicates the app
tion to homogeneous collision pairs; however, a choice
basis functions obeying Eq.~8! is certainly possible also in
this case.

~4! Ionization processes cannot be dealt with by this
proach.

IX. CONCLUSION

The procedure described in the present paper allows
unambiguous calculation ofS-matrix elements, and hence
cross sections in a situation with nonvanishing radial a
rotational asymptotic couplings. Two subsequent steps
essential. First, we show that the standard expansion of
wave function requires a reinterpretation in order to prov
a meaningful description of the asymptotic motion of t
collision partners. The new interpretation is given by E
~16!–~18!. This would be sufficient to obtain a meaningfulS
matrix, but it would require a~in general numerical! solution
of the coupled equations from small to extremely large d
tances. Therefore, we present in the second step, an ana
WKB-type solution of the coupled equations. This soluti
can be used to continue a numerical solution from interm
diate distances to infinity. We present on this basis a ma
formula Eq.~30!, which permits the straightforward calcula
tion of theS matrix when solutions for small and intermed
ate distances have been computed. The new formul
slightly more complicated than the corresponding relat
that holds in the absence of electron translation effects.
corrections require the knowledge of the quantities, wh
must be provided in any case for the computation of
inelastic process, potentials and radial and rotational c
pling matrix elements; the knowledge of additional quantit
is not required.

We demonstrated the practical applicability of the meth
by two examples. Results obtained by a numerical integ
tion of the coupled equations between small distances an
upper boundary of the order of 20 a.u. are sufficient to obt
unique results for the transition probability. In contrast, tra
sition probabilities obtained by empirical methods, e.g.,
cutting off the undesired terms, give ambiguous resu
where, for instance, the calculated transition probabilities
cillate as a function of the integration range. Results obtai
in this way deviate between a few percent and a factor
more than two from the results of the correct procedure.

The availabilty of this method rises a number of que
tions. It will be of much interest to gain experience by com
paring numerical cross-section data based on the pre
method with experimental data, as well as with numeri
results from other approaches. It would be particularly int
esting to compare classical trajectory calculations~valid at
high energy! to the present method, in order to see wheth
the two different methods are able to make similar pred
tions. It would be of interest as well, to study the conve
gence of the method using an increasing number of b
1-8
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functions. The study of isotope effects~e.g., D1Na in place
of H1Na! is expected to be of particular significance. Due
the different origin of the electron coordinates, the coupl
matrix elements are different for the two cases; this mi
modify the scaling laws@21# for isotope substituted colli-
sions.
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