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Representation of the Kato electron-electron cusp condition
by wavelet-based density-operator expansions
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Since Kato proved his singularity condition for Coulomb potentials in 1957, there has been interest in the
creation of wave functions that meet the prescriptions of the cusp conditions, necessary for high-precision
quantum-mechanical calculations. It is well known, that wave-function expansions based on Slater determi-
nants of one-electron functions are poorly convergent with respect to satisfying the electron-electron cusp
condition. In this contribution we show that with the wavelet expansion of density operators even the local
form of the electron-electron cusp condition is easily representable by Slater determinants of one-electron
wavelet functions with a proper asymptotics of the expansion coefficients, which is explicitly calculated for
Haar wavelets.
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I. INTRODUCTION

Bingel has published his cusp conditions@1# for density
matrices based on Kato’s work@2# on singularities of the
N-electron wave function in the presence of Coulomb-l
potentials. Since then it has turned out that for high-precis
numerical calculations it is essential to satisfy the above
quirements. However, while the nuclear cusp condition
relatively easy to fulfill, the electron-electron cusp is e
tremely hard to represent by Slater determinants consis
of one-electron functions. As a compromise, explicitr i
2r j ) dependence can be introduced to the trialN-electron
wave function, as in, e.g., Ref.@3#.

Wavelets@4# are often used in many fields of scienc
especially in data compression and storage. It is also app
to decomposition and analysis of wave functions in Ref.@5#.
Wavelet-based multiresolution analysis is helpful in dens
functional theory, as well. We have introduced previously
expansion method of density operators based on Slater d
minants of wavelet one-electron functions@6#. It was shown
that for real physical systems both arbitrary fine and arbitr
rough details of the wave function and the density opera
are negligible.

In this publication we prove that this expansion offers
natural way for representing the electron-electron cusp c
dition. Since wavelets are quite well localized and can
transformed into each other by application of elementary
latations and translations, a simple equation for the cusp c
dition can be obtained from Bingel’s formula. Using the sp
cific set of Haar wavelets we solve this equation for sp
singlet states.

II. WAVELET EXPANSIONS

Wavelets’ theory involves representing general functio
in terms of simpler, fixed building blocks at different scal
and positions@4#.

The most powerful method of introducing wavelets
multiresolution analysis. For details, application and ma
ematical discussion see, e.g., Refs.@7–9#. In the following
discussion notationR is used for the set of real number
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whereasZ denotes the set of all integers.
The main idea is to introduce subspac

$Vm,L2(R)u m50,1,2, . . . % of square integrable function
with the following properties. SubspaceV0 is spanned by an
orthonormal basis set$s0(r 2bl)ur PR, l PZ% obtained by
equidistant shiftsb of a properly definedscaling function s0.
Expanding an arbitraryw(r ) by the above set of basis func
tions leads, of course, only to a rough, coarse-grained
proximation ofw(r ). Consequently, a refinement of the bas
set is necessary, which is achieved by a suitable dilatatioa
of the scaling function ass1(r )5Aas0(ar) and by shrinking
the grid distance toa21b, giving the subspaceV1 spanned by
$s1(r 2a21bl)ur PR,l PZ%. As this step should be a refine
ment, a necessary condition for the subspaces isV0,V1, i.e.,
the scaling functions0(r ) at resolution level 0 should be
expressed as a linear combination of the basis functi
s1l(r )5Aas0(ar2bl) at level 1.

Increasing the resolution additional subspac
V0,V1,V2,•••,Vm can be defined in a similar way, with
an orthonormal basis of scaling functions$sml(r )
5Aams0(amr 2bl)u l PZ% at each levelm. It can be shown
that in the fine resolution limit, asm→`, the setVm is dense
in the Hilbert spaceL2(R), if s0(r ) and parametersa andb
are chosen in a consistent way.

An orthonormal set ofwaveletbasis functions is defined
in the orthogonal complementWm of subspaceVm21 in Vm ,

Vm5Vm21% Wm . ~1!

The subspaceWm carries ‘‘new details’’ inVm relative to
Vm21. Any element of the orthonormal basis set$wml(r )
5Aam21w(am21r 2bl)u l PZ% of each ‘‘detail space’’
Wm , (m51,2, . . . ) isrelated to a universal functionw(r )
called mother waveletby dilatation and equidistant shifts
According to this construction,

%

n51

m

Wn% V05Vm and %

n51

`

Wn% V05L2~R!. ~2!
©2001 The American Physical Society06-1
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The collection of functions $s0l(r ),wnl(r )u l PZ;n
51,2, . . .% is an orthonormal basis inL2(R). At level m of
resolution the spaceVm approximatesL2(R) with two
equivalent orthonormal basis sets defined by$sml(r )u l PZ%
and$s0l(r ),wnl(r )u l PZ;n51,2, . . . ,m%, respectively. There
exists a unitary transformation between the two sets, wh
will be discussed later. The advantage of using wavelet b
sets is up to the fact that increasing the level of resolut
from m21 to m all previous basis functions remain una
fected, just completed by the basis set ofWm .

Wavelets have been found for many applications w
various properties and in higher dimensions, too. There e
differentiable as well as completely discontinuous~fractal-
like! wavelets. As an illustration we discuss here the prop
ties of the well-known Haar wavelets with the dilatation p
rametera52. The Haar scaling functions are defined as

sml~r !5
1

Ab
3HA2m if r P22mb@ l ,l 11!,

0 else
~3!

and themth level (m51,2, . . . ) Haar wavelets are

wml~r !5
1

Ab
35

A2m21 if r P22m11bF l ,l 1
1

2D ,

2A2m21 if r P22m11bF l 1
1

2
,l 11D ,

0 else.
~4!

If for convenience we introduce the notationw0l(r )
5s0l(r ), the wavelet basis set ofVm is simply $wnl(r )u l
PZ;n50,1,2, . . . ,m%.

In formulating the electron-electron cusp condition sp
plays an indispensable role, therefore we need to extend
basis set with spin variables. It is straightforward to intr
duce two-component wavelet spinors by the definition

wmls~r ,s!5wml~r !dss ~5!

with the possible values$↑,↓% of the spin indexs and spin
variables. From the physical point of view the statewmls
describes an electron with spins, localized in a confined
region of ordera2m11b at the positiona2m11bl. In the
following considerations we will introduce the shorthand n
tationsm5(m,l ,s), m5(m,l ), andx5(r ,s).

III. DECOMPOSITION OF WAVE FUNCTIONS

As we have mentioned above, multidimensional wave
have also been found in the literature@10–12#, thus consid-
ering x5(r ,s) where rPR3 the following discussions are
valid for 3D systems, as well.

Every N-particle wave functionC can be expanded as
linear combination ofN-particle Slater determinants

C~x1 , . . . ,xN!5(
m

cmxm~x1 , . . . ,xN!. ~6!
05250
h
is
n

st

r-
-

he
-

-

ts

Determinantsxm are built from one-particle basis function
of a complete orthonormal system

xm~x1 , . . . ,xN!5
1

AN!Uwm1
~x1! . . . wm1

~xN!

A � A

wmN
~x1! . . . wmN

~xN!
U ,

~7!

where multi-index m denotes the set of indicesm
5(m1 , . . . ,mN).

As any permutation of the indicesm1 , . . . ,mN leads to
the sameN-electron functionxm up to a possible factor o
(21), there appearN! equivalent terms in the summatio
~6!. The complex expansion coefficientscm1 ,m2 ,m3 , . . . ,mN

are
defined by taking into account the sign determined by
parity of the permutation necessary to transform the
quencem1 ,m2 ,m3 , . . . ,mN to a series of ordered indices
leading to

cm1 ,m2 ,m3 , . . . ,mN
52cm2 ,m1 ,m3 , . . . ,mN

. ~8!

If for any pair of indicesm i5m j , by definition the coeffi-
cient cm1 ,m2 ,m3 , . . . ,mN

50.

IV. DECOMPOSITION OF DENSITY MATRICES

A pure-stateN-particle density matrix arises from th
wave function of the system in the following way~see, e.g.,
Ref. @13#!:

gN~x1 , . . . ,xNux18 , . . . ,xN8 !

5C~x1 , . . . ,xN!C* ~x18 , . . . ,xN8 !. ~9!

It is clear from definition~9! that gN is square integrable
hermitic, and satisfies the Pauli-principle.

SubstitutingC by its wavelet decomposition~6!, after
straightforward algebraic manipulations, we arrive at the
pansion

gN~x1 , . . . ,xNux18 , . . . ,xN8 !

5(
m,n

amnAmn~x1 , . . . ,xNux18 , . . . ,xN8 !

1(
m,n

bmnBmn~x1 , . . . ,xNux18 , . . . ,xN8 !, ~10!

where we have introduced

Amn~x1 , . . . ,xNux18 , . . . ,xN8 !

5xm~x1 , . . . ,xN!xn* ~x18 , . . . ,xN8 !

1xn~x1 , . . . ,xN!xm* ~x18 , . . . ,xN8 !, ~11!
6-2
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Bmn~x1 , . . . ,xNux18 , . . . ,xN8 !

5 i @xm~x1 , . . . ,xN!xn* ~x18 , . . . ,xN8 !

2xn~x1 , . . . ,xN!xm* ~x18 , . . . ,xN8 !# ~12!

as a set of basis functions forgN . As it easily follows from
definitions~11! and~12! these basis functions meet the sym
metry properties ofgN , i.e., they are hermiticAmn5Amn

† ,
Bmn5Bmn

† , satisfy the Pauli principle, and additionallyAmn

5Anm , Bmn52Bnm . All amn andbmn are real numbers sat
isfying the properties

amn5anm , amm>0; bmn52bnm , bmm50. ~13!

Reduced density matrices are originated from
N-particle density matrix by a consecutive reduction of d
grees of freedom@14#. One step of the process is defined
the partial trace operation

gN21~x1 , . . . ,xN21ux18 , . . . ,xN218 !

5E gN~x1 , . . . ,xN21 ,xNux18 , . . . ,xN218 ,xN!dxN ,

~14!

where *gN21(x1 , . . . ,xN21ux1 , . . . ,xN21)dx1•••dxN21
51 was applied as a normalization condition. Step~14! is
also calledcontraction. As the partial trace operation is lin
ear, contraction is carried out on individual basis functio
Amn andBmn of Eq. ~10!. Straightforward calculations show
that contraction transforms the subspace spanned by
N-particle functionsAmn into the subspace generated by t
(N21)-particle basis functionsAmn . A similar statement
holds for the contraction of the subspace ofBmn functions as
well. The consequence of this fact is that any reduced~en-
semble! density matrix can be expanded in the form~10!
with real expansion coefficients, that meet the properties
equations~13!.

V. THE BINGEL FORMULA

The electron-electron cusp condition reflects a singula
of the wave function, and consequently, the spin-traced t
particle reduced density matrix

g2
s~r1 ,r2ur18 ,r28!5 (

s1 ,s2

g2~r1 ,s1 ,r2 ,s2ur18 ,s1 ,r28 ,s2!

~15!

of the N-electron system. The symmetry properties ofg2
s

follow from that of g2

g2
s~r1 ,r2ur18 ,r28!5g2

s~r2 ,r1ur28 ,r18!5@g2
s~r18 ,r28ur1 ,r2!#* .

~16!

Note, however, that generally

g2
s~r1 ,r2ur18 ,r28!Þ2g2

s~r2 ,r1ur18 ,r28! ~17!
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except for the case if all electrons carry the same spin~fer-
romagneticlike states with total spinS5N/2). Introducing
the new variables

R5
r11r2

2
, R85

r181r28

2
,

u5r12r2 , u85r182r28 , ~18!

Bingel has shown@1# for an N-electron system with tota
spin S,N/2 that Kato’s condition@2# implies if bothu and
u8 are small enough

g2
sS R1

u

2
,R2

u

2 UR81
u8

2
,R82

u8

2 D
'g2

s~R,RuR8,R8!S 11
uuu
2

1
uu8u
2 D1ud* 1u8d1•••,

~19!

whered is not determined by the Coulombic singularity. A
cording to Eq.~17!, g2

s(R,RuR8,R8)Þ0 in the general case
~a statement that would not hold for spinless particles!. Due
to the presence of the absolute value of vectorsu andu8 in
equation~19! a discontinuity appears in the derivative ofg2
that can be conveniently expressed in a compact form by
spherical average of the diagonal element ofg2

s

ḡ~R,u!5
1

4pE g2
sS R1

u

2
,R2

u

2 UR1
u

2
,R2

u

2D
3 sinuuduudfu , ~20!

whereu5uuu anduu ,fu are the polar angles of the vectoru.
As in the spherical averageu vanishes, we get from Eq.~19!
the linear approximation

ḡ~R,u!'g2
s~R,RuR,R!~11u!. ~21!

This requirement on the two-electron density matrix is lo
in the sense that the above equality must hold at any part
lar pointR of the space. Numerical checks@15,16# of many-
electron wave functions usually test the global fulfilment o
space averaged form of Eq.~21!. In this paper, however, we
give an explicit construction of the two-particle density m
trix that satisfies the much detailed local form~21! of the
cusp condition.

Expression~21! shows in a natural way that the electro
electron cusp condition is a typical appearance of multip
cative superstructures found by us previously@17# for the
electron density @i.e., g1

s(RuR)# in extended ~near-
mesoscopic! molecular and solid-state systems. The partic
lar feature of these densities is the different shape chara
istics of the states shown at different length scales,
changing the resolution of observations results in a varia
of the overall behavior of the density. Here, the overall b
havior ofg2

s is determined by the valuesg2
s(R,RuR,R) at the

center-of-massR of the electron pairs, whereas at resolutio
6-3
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where the separationu of the pairs is recognizable the facto
(11u) modifies the value ofg2

s .

VI. CUSP CONDITION FOR DENSITY-MATRIX
EXPANSIONS

Observing that spin tracing~15! is a linear operation, it
can be executed individually on each two-electron ba
functionsAmn andBmn of the expansion~10!. Consequently,

g2
s~r1 ,r2ur18 ,r28!5(

m,n
@amnAmn

s ~r1 ,r2ur18 ,r28!

1bmnBmn
s ~r1 ,r2ur18 ,r28!# ~22!

with m5(m1 ,m2) andn5(n1 ,n2). In the summation all in-
dices run independently, without restrictions, for all possi
values, resulting(2!)2 equivalent terms. The relations be
tween the expansion coefficients are defined similarly to
~8! as

am1 ,m2 ;n1 ,n2
52am2 ,m1 ;n1 ,n2

52am1 ,m2 ;n2 ,n1
5am2 ,m1 ;n2 ,n1

,

bm1 ,m2 ;n1 ,n2
52bm2 ,m1 ;n1 ,n2

52bm1 ,m2 ;n2 ,n1
5bm2 ,m1 ;n2 ,n1

,

am,m;n1 ,n2
5am1 ,m2 ;n,n5bm,m;n1 ,n2

5bm1 ,m2 ;n,n50.
~23!

The spin-traced density-matrix basis functionsAmn
s andBmn

s

are formed in analogy with Eq.~15!. Using definitions~11!,
~7! and the two-component spinor basis setwms(r ,s)
5wm(r )dss spin tracing results in

Amn
s ~r1 ,r2ur18 ,r28!5qm1m2n1n2

A ~r1 ,r2ur18 ,r28!ds1t1
ds2t2

2qm2m1n1n2

A ~r1 ,r2ur18 ,r28!ds2t1
ds1t2

~24!

with m5(m1 ,m2)5(m1s1 ,m2s2) and n5(n1 ,n2)
5(n1t1 ,n2t2), respectively. The functionsqA were intro-
duced as

qm1m2n1n2

A ~r1 ,r2ur18 ,r28!5 1
2 @wm1

~r1!wm2
~r2!wn1

* ~r18!wn2
* ~r28!

1wm2
~r1!wm1

~r2!wn2
* ~r18!wn1

* ~r28!

1wn1
~r1!wn2

~r2!wm1
* ~r18!wm2

* ~r28!

1wn2
~r1!wn1

~r2!wm2
* ~r18!

3wm1
* ~r28!#. ~25!

Similar considerations lead to

Bmn
s ~r1 ,r2ur18 ,r28!5qm1m2n1n2

B ~r1 ,r2ur18 ,r28!ds1t1
ds2t2

2qm2m1n1n2

B ~r1 ,r2ur18 ,r28!ds2t1
ds1t2

,

~26!
05250
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where

qm1m2n1n2

B ~r1 ,r2ur18 ,r28!5
i

2
@wm1

~r1!wm2
~r2!wn1

* ~r18!wn2
* ~r28!

1wm2
~r1!wm1

~r2!wn2
* ~r18!wn1

* ~r28!

2wn1
~r1!wn2

~r2!wm1
* ~r18!wm2

* ~r28!

2wn2
~r1!wn1

~r2!wm2
* ~r18!

3wm1
* ~r28!#. ~27!

All functions Amn
s , Bmn

s , qm1m2n1n2

A , andqm1m2n1n2

B meet the

symmetry properties~16! and ~17! of g2
s . Furthermore, we

have the index symmetries

qm1m2n1n2

A ~r1 ,r2ur18 ,r28!5qm2m1n2n1

A ~r1 ,r2ur18 ,r28!

5qn1n2m1m2

A ~r1 ,r2ur18 ,r28!,

qm1m2n1n2

B ~r1 ,r2ur18 ,r28!5qm2m1n2n1

B ~r1 ,r2ur18 ,r28!

52qn1n2m1m2

B ~r1 ,r2ur18 ,r28!,

~28!

but

qm1m2n1n2

A,B ~r1 ,r2ur18 ,r28!Þ2qm2m1n1n2

A,B ~r1 ,r2ur18 ,r28!.

~29!

Let us substitute expressions~25! and ~27! into equation
~22!. Since summation indices run independently, excha
ing of m1 for m2, as well ass1 for s2 in some terms is
possible, resulting

g2
s~r1 ,r2ur18 ,r28!5 (

m1 ,m2
n1 ,n2

@gm1m2n1n2

A qm1m2n1n2

A ~r1 ,r2ur18 ,r28!

1gm1m2n1n2

B qm1m2n1n2

B ~r1 ,r2ur18 ,r28!#,

~30!

where

gm1m2n1n2

A 52(
s1s2

am1s1 ,m2s2 ;n1s1 ,n2s2
,

gm1m2n1n2

B 52(
s1s2

bm1s1 ,m2s2 ;n1s1 ,n2s2
. ~31!

Here we have used the symmetry properties~23!. Expression
~30! indicates thatqA andqB serve as natural basis function
for expanding spin-traced density matrices. The expans
coefficientsgA andgB show the index symmetries

gm1m2n1n2

A 5gm2m1n2n1

A 5gn1n2m1m2

A ,
6-4
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gm1m2n1n2

B 5gm2m1n2n1

B 52gn1n2m1m2

B ~32!

as a consequence of Eqs.~13! and ~23!.
We define the spherical averageq̄A(R,u) andq̄B(R,u) of

the diagonal elements ofqA andqB, similarly to step~20!.
Thus, the cusp condition~21! turns into

(
m1m2
n1n2

@gm1m2n1n2

A q̄m1m2n1n2

A ~R,u!1gm1m2n1n2

B q̄m1m2n1n2

B ~R,u!#

'~11u! (
m1m2
n1n2

@gm1m2n1n2

A q̄m1m2n1n2

A ~R,0!

1gm1m2n1n2

B q̄m1m2n1n2

B ~R,0!#. ~33!

Frequently, real valued basis functions are used. In th
cases, according to definition~12!, the diagonal elements

Bmn~r1 ,s1 ,r2 ,s2ur1 ,s1 ,r2 ,s2!

52 Im$xm* ~r1 ,s1 ,r2 ,s2!xn~r1 ,s1 ,r2 ,s2!%50,

~34!

thus q̄m1m2n1n2

B (R,u)50.

VII. EXAMPLE: HAAR WAVELET EXPANSION
IN ONE-DIMENSIONAL SYSTEMS

The spherical average of any functionf (u) for a one-
dimensional vectoru turns simply into

f̄ ~u!5
f ~u!1 f ~2u!

2
5

f ~u!1 f ~2u!

2
. ~35!

The symmetry properties~16! of qA andqB involve

q̄m1m2n1n2

A,B ~R,u!5qm1m2n1n2

A,B S R1
u

2
,R2

u

2 UR1
u

2
,R2

u

2D ,

~36!

consequently, the cusp condition~33! can be rewritten using
the basis functionsqA,B directly.

Multiresolution analysis naturally offers an infinitel
dense grid, thus it is sufficient to satisfy the cusp condit
~33! in the grid points only. Since the grid points are equiv
lent, we chooseR50. Using the complete system of re
Haar wavelets, only expressions q̄m1m2n1n2

A (0,u)

5qm1m2n1n2

A (v,2vuv,2v) with v5uuu/2 need to be evalu

ated, and allq̄B50 based on the note at the end of t
previous section. The fundamental problem is finding app
priate expansion coefficientsgm1m2n1n2

A for which the form
05250
se

n
-

-

(
m1m2
n1n2

gm1m2n1n2

A qm1m2n1n2

A ~v,2vuv,2v !

'~112v ! (
m1m2
n1n2

gm1m2n1n2

A qm1m2n1n2

A ~0,0u0,0!

~37!

of the cusp condition is satisfied. As a first step we will sol
this task at a given resolution levelm by using the scaling
function basis set~3!. At this level of approximation

uuu'(
l

hmlsml~u! ~38!

with

hml5E uuusml* ~u!du5~22mb!3/2u l 1 1
2 u. ~39!

Clearly, (22mb)u l 1 1
2 u is the distance of the center of bas

function sml from the origin, or in other words, the averag
value of uuu in the domain ofsml , and (22mb)21/2 is the
value of the same basis function.

For vP„22mbl,22mb( l 11)…

sml8~v !5~22mb!21/2d l ,l 8

sml8~2v !5~22mb!21/2d2 l 21,l 8 . ~40!

Substituting these values into Eq.~25! the left-hand side of
equation~37!

~22mb!22~gl ,2 l 21,l ,2 l 21
A,m 1g2 l 21,l ,2 l 21,l

A,m !

52~22mb!22gl ,2 l 21,l ,2 l 21
A,m . ~41!

Here we introduced the shorthand notationgl 1l 2k1k2

A,m

5gml1 ,ml2 ;mk1 ,mk2

A and used the symmetry property~32!.

Similar considerations and application of Eq.~39! on the
right-hand side of Eq.~37! lead to the condition

gl ,2 l 21;l ,2 l 21
A,m '@112u l 1 1

2 u322mb#g0000
A,m . ~42!

As we see, the spherical average of the cusp condition~21!
does not provide information on coefficientsgl 1l 2k1k2

A,m with

arbitrary index combination.
However, similarly as above but with more tedious calc

lations, we can have a solution of the universal form of B
gel’s condition ~19! for R5(22mb)L, u/25v
P„22mbl,22mb( l 11)… and R85(22mb)K, u8/25v8
P„22mbk,22mb(k11)…. Evaluating the levelm basis func-
tions by Eq. ~40! and substituting to definitions~25! and
~27!, as well as using the index symmetries~32! we arrive at

gL1 l ,L2 l 21;K1k,K2k21
A,B,m '@11~ u l 1 1

2 u1uk1 1
2 u!

322mb#gLLKK
A,B,m . ~43!
6-5
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This approximation is valid independently both forA andB
type coefficients, as the separation of Eq.~19! to real and
imaginary parts corresponds to a separation of the cusp
dition to independentqA andqB expressions. Although, Eq
~43! holds for oddl 12 l 2 and k12k2 index differences, a
generalization for arbitrary index values is straightforward
the form

gl 1l 2k1k2

A,B,m '@11 1
2 ~ u l 12 l 2u1uk12k2u!322mb#gLLKK

A,B,m ,

~44!

whereL5@( l 11 l 211)/2# andK5@(k11k211)/2# with @x#
meaning the integer part ofx. The obtained formula show
that due to Bingel’s condition the singular part of the dens
matrix is completely determined by the elementsgLLKK

A,B,m .
Expression~44! describes the singular behavior of the e

pansion coefficientsgA and gB, but according to Eq.~19!
some additional terms depending ‘‘smoothly’’ on (l 12 l 2)
and (k12k2) do also appear in a linear approximation. T
cusp condition itself does not provide information on t
values ofgLLKK

A,m and gLLKK
B,m , except that they must depen

‘‘smoothly’’ on the indicesL andK. Generally, these param
eters can be used for energy minimization, with restrictio
only on the diagonal elements, asgLLLL

A,m is strictly connected
to the electron density andgLLLL

B,m 50 by Eq.~32!.
The electron-electron cusp is a consequence of the C

lomb interaction between them, which can be approxima
described as a simple two-electron problem in a backgro
of an almost constant external potential. Therefore, the
main of validity of Eq.~44! is expected to be in the order o
2a0, wherea0 is the Bohr radius and the factor 2 appea
due to the reduced mass of two electrons. The normaliza
condition on g2, however, prescribes@6# a fast ~probably
exponential! long-range decay of the coefficientsgA,m and
gB,m. A numerical study on the average behavior of the tw
particle correlation@16# confirms these expectations, with a
approximate linear dependence in the range ofuuu,a0.

VIII. TRANSITION BETWEEN COARSE AND FINE
REPRESENTATIONS

As increasing the resolution levelm to m11 should be a
refinement of the representation, the scaling functionssml is
necessarily a linear combination ofs(m11)l 8 , known asre-
finement equation@4# for m50

s0l~r !5(
l 8

221/2pl 822ls1l 8~r !, ~45!

where the set of expansion coefficientspk defines the scaling
function itself. In the case of Haar functions, e.g.,p05p1
51 andpk50 otherwise. It can also be shown that for t
refining wavelets

w1l~r !5(
l 8

221/2ql 822ls1l 8~r !, ~46!

with qk5(21)kp2k11* , which gives for Haar waveletsq0

51, q1521 and zero in all other cases.
05250
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The fine→coarse transition~45! and ~46! is a unitary
transformation of the basis functions, which has the inve
in the coarse→fine direction

s1l 8~r !5(
l

221/2@pl 822l
* s0l~r !1ql 822l

* w1l~r !#

5(
l

(
m50,1

Ul 8
mlwml~r !, ~47!

with

Ul 8
0l

5221/2pl 822l
* and Ul 8

1l
5221/2ql 822l

* . ~48!

Note, that we have applied here our previous convent
w0l5s0l .

In order to representg2
s at resolution levelm51 we can

equivalently use in Eqs.~25! and~27! the basis$s1l 8%, result-
ing in basis functionsq l

18 l
28k

18k
28

A,B,1
or the set$s0l ,w1l%, leading

to qm1m2n1n2

A,B with m5(m,l ). The corresponding equivalen

expansions are

g2
s5 (

l 18 ,l 28

k18 ,k28

@gl
18 l

28k
18k

28
A,1

q l
18 l

28k
18k

28
A,1

1gl
18 l

28k
18k

28
B,1

q l
18 l

28k
18k

28
B,1

#

5 (
m1 ,m2
n1 ,n2

@gm1m2n1n2

A qm1m2n1n2

A 1gm1m2n1n2

B qm1m2n1n2

B #.

~49!

Using transformation~47!, the lengthy but simple algebr
leads to

q l
18 l

28k
18k

28
A,1

5 (
m1 ,m2
n1 ,n2

@X
l
18 l

28k
18k

28

m1m2n1n2qm1m2n1n2

A

1Y
l
18 l

28k
18k

28

m1m2n1n2qm1m2n1n2

B #, ~50!

q l
18 l

28k
18k

28
B,1

5 (
m1 ,m2
n1 ,n2

@X
l
18 l

28k
18k

28

m1m2n1n2qm1m2n1n2

B

2Y
l
18 l

28k
18k

28

m1m2n1n2qm1m2n1n2

A #, ~51!

where the real transformation coefficientsX and Y are de-
fined by

U
l
18

m1U
l
28

m2~U
k

18

n1!* ~U
k

28

n2!* 5X
l
18 l

28k
18k

28

m1m2n1n21 i Y
l
18 l

28k
18k

28

m1m2n1n2 . ~52!

The coarse-level expansion coefficientsgm1m2n1n2

A,B can be

identified by substituting Eqs.~50! and ~51! into Eq. ~49!
6-6
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FIG. 1. Second-order density matrix at different placements of electron pairs. The center of pairs is characterized by the values~from left
to right!: R5R850 ~both at grid points!; R50, R850.5(22mb) ~the second pair is halfway between two grid points!; and R50,
R851.3b, which is never a grid point at any resolution levelm. All calculations were carried out at levelm52. Atomic units were used.
n

t

gm1m2n1n2

A 5 (
l 18 ,l 28

k18 ,k28

@X
l
18 l

28k
18k

28

m1m2n1n2gl
18 l

28k
18k

28
A,1

2Y
l
18 l

28k
18k

28

m1m2n1n2gl
18 l

28k
18k

28
B,1

#

~53!

gm1m2n1n2

B 5 (
l 18 ,l 28

k18 ,k28

@X
l
18 l

28k
18k

28

m1m2n1n2gl
18 l

28k
18k

28
B,1

1Y
l
18 l

28k
18k

28

m1m2n1n2gl
18 l

28k
18k

28
A,1

#.

~54!

In the case of the real-valued Haar basis functions allY50
and

g0l 1 ,0l 2 ;0k1 ,0k2

A,B

5
1

4 (
l150,1
l250,1

(
k150,1
k250,1

g2l 11l1 ,2l 21l2 ;2k11k1 ,2k21k2

A,B,1 .

~55!
05250
Substituting the cusp conform expression~44! for m51 into
the right-hand side of Eq.~55! we arrive at terms containing
gL8L8K8K8

A,B,1 , whereL8 is restricted tol 11 l 2 or l 11 l 211 and
a similar constraint is true forK8. A smooth dependence o
indices can be expressed asgL8L8K8K8'g01(L82K8)Dg
1•••, which results in the first order

gL811L811K8K8
A,B,1 'gL8L8K8K8

A,B,1
1DgA,B,

gL8L8K811K811
A,B,1 'gL8L8K8K8

A,B,1
2DgA,B,

gL811L811K811K811
A,B,1 'gL8L8K8K8

A,B,1 . ~56!

Using these approximations in Eq.~55! it can be realized tha
a relation similar to Eq.~44! holds for almost all index com-
FIG. 2. Ratio of the calculated second-order density matrix to the theoretical expectation 11uuu at resolutionsm51, m52 andm53,
from left to right. The center of electron pairs was chosen asR50, R850.5(22mb). Distances are given in atomic units.
6-7
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FIG. 3. Second-order density matrix as a function of electron separationsu andu8 at R5R850, in atomic units. The coarse resolutio
plot corresponds tom54, whereas the fine resolution picture was calculated form55.
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binations l 1 ,l 2 ,k1 ,k2 of the first-level expansion coeffi
cients, supposing that the following scaling transformat
equation is valid for the fine→coarse transition

gLLKK
A,B,0 54•g2L 2L 2K 2K

A,B,1 . ~57!

This result indicates that the local form of the correlati
cusp condition~19! is satisfied in a scale-invariant way b
Eqs.~44! and ~57!.

The opposite, coarse→fine, transformation is trivial for
even index values, however, continuity on indices implie
linear interpolation formula for odd labels

g2L11 2L11 2K 2K
A,B,1 5 1

2 ~g2L 2L 2K 2K
A,B,1 1g2L12 2L12 2K 2K

A,B,1 !, ~58!

g2L 2L 2K11 2K11
A,B,1 5 1

2 ~g2L 2L 2K 2K
A,B,1 1g2L 2L 2K12 2K12

A,B,1 !,
~59!

g2L11 2L11 2K11 2K11
A,B,1 5 1

2 ~g2L 2L 2K 2K
A,B,1

1g2L12 2L12 2K12 2K12
A,B,1 !.

~60!

Knowing the scaling function expansion coefficients~57!–
~60!, the wavelet coefficients can be calculated using
~44! and transformation rules~53! and ~54!.

The above considerations are also applicable to the t
sitions between arbitrary resolution levelsm andm11 lead-
ing to the scaling transformation~57! for gLLKK

A,B,m and
g2L 2L 2K 2K

A,B,m11 .
Since in the previous considerations we made some s

plification and assumptions, a numerical check of the res
is appropriate. In order to illustrate the validity of predictio
for a general coefficientgl 1l 2k1k2

A,B,m using expressions~44! and

~57!, we have calculatedg2
s(r1 ,r2ur18 ,r28) by Eq. ~30! for

several combinations of the one-dimensional variab
r 1 ,r 2 ,r 18 ,r 28 .
05250
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As the first step we considered the spherically avera
cusp condition where we have used in expression~36! R
5R8, u5u8 as the arguments ofg2

s , moreover, we have
chosen the grid pointR50. In Fig. 1 we have plotted
g2

s(R1u/2,R2u/2 uR81u/2,R82u/2) for various separa-
tions of the electron pairs, in order to show that the abo
specific choice forR and R8 does not affect the validity of
our results. As we can realize, the most unfavorable cas
in fact, the choiceR5R850 used in our theoretical consid
erations, all other possibilities, not taken explicitly into a
count, follow the behavior (11uuu) in a much smoother~al-
though sometimes irregular! way.

We also wish to prove the reduction of errors by incre
ing the resolution level. In Fig. 2 the values of the calcula
g2

s(R1u/2,R2u/2 uR81u/2,R82u/2) at different resolution
levels are compared to the theoretical expectation (11uuu).
Indeed, the ratio g2

s/(11uuu) tends to the constan
g2

s(R,R uR8,R8) that has been chosen as 1 for the pres
model calculation. The maximum errors appearing arou
u'0 decrease exponentially with increasingm.

Finally, the fulfilment of the general~i.e., not spherically
averaged! cusp condition ~19! is illustrated by plots of
g2

s(u/2,2u/2 uu8/2,2u8/2). In Fig. 3 we have applied an ex
ponential long-range decay of the coefficientsgA,m, accord-
ing to our previous note at the end of Sec. VII. The behav
(11uuu/21uu8u/2) is clearly detectable.

IX. DISCUSSION

It has been shown in this work that the introduction
multiresolution analysis into the expansion of wave functio
leads to a systematic refinement of representation of den
matrices. This process, in a certain sense, is a backw
renormalization transformation. The possibility of inver
transformation is permitted by the fact that the two-parti
density operator must satisfy Bingel’s cusp condition in t
small electron-separation limit. We would like to emphasi
however, that even if the concepts used throughout this c
tribution are focused on density matrices and are also c
nected to renormalization, they differ completely from t
6-8
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technique of ‘‘density-matrix renormalization’’ developed b
White @18,19# for other purposes.

Due to the well-localized behavior of scaling functio
the algebraic form of the two-electron density-operator c
condition is faithfully reflected by the index dependence
the expansion coefficientsgl 1l 2k1k2

A,B,m . As we have also shown

gA,B,m scales with increasing resolution level as;42m.
These behaviors allow a prediction of the (m11)th level
scaling function expansion coefficients from those of themth
level. The expected deviation of the predicted coefficie
from the exact values becomes negligible if the resolut
level tends to infinity.

Although, we have based the derivation and illustration
th

a-

el

05250
p
f
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the results on Haar scaling functions, preliminary calcu
tions using more sophisticated continuous scaling functi
show an even better agreement with the general correla
cusp condition~19!.
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dományos Kutata´si Alap ~OTKA!, Grants Nos. T032116 an
T029813. The support ofBergen Computational Physic
Laboratoryin the framework of theEuropean Community —
Access to Research Infrastructureaction of theImproving
Human Potential Programis also acknowledged.
i-

s

@1# W. Bingel, Theor. Chim. Acta5, 341 ~1966!.
@2# T. Kato, Commun. Pure Appl. Math.10, 151 ~1957!.
@3# L. Mitáš and R.M. Martin, Phys. Rev. Lett.72, 2438~1994!.
@4# C. K. Chui,An Introduction to Wavelets~Academic Press, San

Diego, 1992!.
@5# L. Leherte, N. Meurice, and D. P. Vercauteren, inProceedings

of the WSES/MIUE/HNA International Conference on Ma
ematics and Computers in Biology and Chemistry, edited by
M. Makrynaki ~World Scientific and Engineering Society, J
maica, 2000!.

@6# Sz. Nagy and J. Pipek, Int. J. Quantum Chem.84, 523 ~2001!.
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