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Representation of the Kato electron-electron cusp condition
by wavelet-based density-operator expansions
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Since Kato proved his singularity condition for Coulomb potentials in 1957, there has been interest in the
creation of wave functions that meet the prescriptions of the cusp conditions, necessary for high-precision
guantum-mechanical calculations. It is well known, that wave-function expansions based on Slater determi-
nants of one-electron functions are poorly convergent with respect to satisfying the electron-electron cusp
condition. In this contribution we show that with the wavelet expansion of density operators even the local
form of the electron-electron cusp condition is easily representable by Slater determinants of one-electron
wavelet functions with a proper asymptotics of the expansion coefficients, which is explicitly calculated for
Haar wavelets.
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. INTRODUCTION whereasZ. denotes the set of all integers.
The main idea is to introduce subspaces

Bingel has published his cusp conditioflg for density  {v,CL?R)| m=0,1,2 ...} of square integrable functions
matrices based on Kato’s woiR] on singularities of the with the following properties. Subspatg is spanned by an
N-electron wave function in the presence of Coulomb-likegrthonormal basis sdtso(r—bl)|reR, |7} obtained by
potentials. Since then it has turned out that for high—precisior@quidistam shift$ of a properly definedcaling function g.
numerical calculations it is essential to satisfy the above reExpanding an arbitrang(r) by the above set of basis func-
quirements. However, while the nuclear Ccusp condition i&ions leads, of course, 0n|y to a rough, Coarse-grained ap-
relatively easy to fulfill, the electron-electron cusp is eX-proximation ofe(r). Consequently, a refinement of the basis
tremely hard to represent by Slater determinants consistinget is necessary, which is achieved by a suitable dilatation
of one-electron functlons._As a compromise, expliait (- of the scaling function as,(r) = Jaso(ar) and by shrinking
—rj) dependence can be introduced to the tNaklectron  the grid distance ta~'b, giving the subspacé; spanned by
wave function, as in, e.g., Refi3]. {s;(r—a " !bl)|reR,l € Z}. As this step should be a refine-

Wavelets[4] are often used in many fields of science, ment, a necessary condition for the subspac¥g sV, i.e.,
especially in data compression and storage. It is also appliege scaling functiorsy(r) at resolution level 0 should be

to decomposition and analysis of wave functions in R8f.  expressed as a linear combination of the basis functions
Wavelet-based multiresolution analysis is helpful in densnysll(r): Jas,(ar—bl) at level 1.

functional theory, as well. We have introduced previously an Increasing  the resolution additional  subspaces
expansion method of density operators based on Slater detg%cvlcvzc. ..CV,, can be defined in a similar way, with
minants of wavelet one-electron functiof. It was shown an orthonormal bgsis of scaling functiongs I&r)

that for real physical systems both arbitrary fine and arbitrary_ aMso(a™ —bl)|l < Z} at each levem. It can be ;nhown
rough details of the wave function and the density operatorfhat in t?]e fine resolution limit. ag1—s oo t.he setV,, is dense

are negligible. : : 2 :
. C . . in the Hilbert spacea “(R), if so(r) and parametera andb
In this publication we prove that this expansion offers 83re chosen in a consistent way.

n_a_tural way for representing the electron-e_lectron CUSP CON- Al orthonormal set ofvaveletbasis functions is defined
dition. Since wavelets are quite well localized and can beIn the orthogonal complemek.,, of subspace/ in v
transformed into each other by application of elementary di- m m-1 m:
latations and translations, a simple equation for the cusp con-

dition can be obtained from Bingel's formula. Using the spe- V=V 1@ Wp,. 1)
cific set of Haar wavelets we solve this equation for spin-

singlet states. ] o ]
The subspac&V,, carries “new details” inV, relative to

Vi—1.- Any element of the orthonormal basis d@t,,(r)

=\Ja" 'w(a™ r—bl)|leZ} of each “detail space”
Wavelets’ theory involves representing general functionsVy,, (m=1,2,...) isrelated to a universal functiow(r)

in terms of simpler, fixed building blocks at different scalescalled mother waveletoy dilatation and equidistant shifts.

Il. WAVELET EXPANSIONS

and positiong4]. According to this construction,
The most powerful method of introducing wavelets is
multiresolution analysis. For details, application and math- m o
ematical discussion see, e.g., Rdf5-9]. In the following ® W,®Vo=V,, and & W,®Vy=L%R). (2
discussion notatioR is used for the set of real numbers, n=1 n=1
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The collection of functions {sy(r),wn(r)|l eZ;n Determinantsy,, are built from one-particle basis functions
=1,2,...} is an orthonormal basis ih%(R). At level mof  of a complete orthonormal system
resolution the space/,, approximatesL?(R) with two

equivalent orthonormal basis sets defined{by,(r)|l € 7} W, (%) W, (Xy)
and{sy (r),w,(N|leZ;n=1,2, ... m}, respectively. There 1 T 1

exists a unitary transformation between the two sets, which  x (X1, ... Xy)= — : : ,
will be discussed later. The advantage of using wavelet basis VNE W, (%) W, (Xn)

sets is up to the fact that increasing the level of resolution N Tt N @

from m—1 to m all previous basis functions remain unaf-
fected, just completed by the basis setdf,.

Wavelets have been found for many applications wit
various properties and in higher dimensions, too. There exist \#1: - - - AN) - . .
differentiable as well as completely discontinudfisctal- As any permutation Of the indices, . . . HN leads to
like) wavelets. As an illustration we discuss here the properin€® sameN-electron functiony,, up to a possible factor of
ties of the well-known Haar wavelets with the dilatation pa-(—1), there appeaN! equivalent terms in the summation

hwhere multi-index x4 denotes the set of indicesu

rametera=2. The Haar scaling functions are defined as  ()- The complex expansion coefficierds, ., ,,. ... u, are
defined by taking into account the sign determined by the
1 J2m if re2 mp[l,1+1), parity of the permutation necessary to transform the se-
Smi(r)=—==X (3) quencemq,ur,p3, ...,y 0 @ series of ordered indices,
Vb 1o else leading to
and themth level (m=1,2, . ..)Haar wavelets are _ 8
Curimgmg, ., i~ Cromgmg, . AN ®
1
m-1 ; -m+1
V2 if re2”™ b1+ 5], If for any pair of indicesy;=w;, by definition the coeffi-
1 cientc =0.
w rN=—x . 1 Mg gy - MN
mi(F) Jb —\2m 1 if re2 Mt p I+§,I+1 ,

0 else IV. DECOMPOSITION OF DENSITY MATRICES

(4) A pure-stateN-particle density matrix arises from the

) _ _ wave function of the system in the following wagee, e.g.,
If for convenience we introduce the notatiowg(r) Ref.[13]):

=sq(r), the wavelet basis set of,, is simply {w, (1)l

eZ;n=0,1,2 ... m}. (x xulX! x0)
In formulating the electron-electron cusp condition spin INURL e ANTRL - e AN

plays an indispensable role, therefore we need to extend the =W(Xg, . X)THE(X, XA (9)

basis set with spin variables. It is straightforward to intro-

duce two-component wavelet spinors by the definition . N . .
P P y It is clear from definition(9) that yy is square integrable,

hermitic, and satisfies the Pauli-principle.
Substituting¥ by its wavelet decompositio6), after
straightforward algebraic manipulations, we arrive at the ex-

Winis(F,0) =W (1) 8s, 5

with the possible value§?, |} of the spin indexs and spin

variable o. From the physical point of view the state, pansion

describes an electron with sps localized in a confined

region of ordera”™*1p at the positiona ™*!bl. In the YKL, e XNIXT, e XY

following considerations we will introduce the shorthand no-

tationsu=(m,l,s), m=(m,l), andx=(r,o). ZE QA (X1, - - Xl - X))
" v

IIl. DECOMPOSITION OF WAVE FUNCTIONS

i o . + b, B (X1, .o XnIXT, e X)), 10
As we have mentioned above, multidimensional wavelets ;1, B X nba v (10

have also been found in the literatye0—12, thus consid-
ering x=(r,o) wherer e R® the following discussions are
valid for 3D systems, as well.

Every N-particle wave functionV can be expanded as a

where we have introduced

linear combination oN-particle Slater determinants ApXa, - XX X)
:X[.L(le e 1XN)X:(X11 e |XII\])
W(Xy, ... Xn)=2, C X1y - oo XN)- 6
Car o X =2 ol %0 ) X, XA X, ()

052506-2



REPRESENTATION OF THE KATO ELECTRON .. PHYSICAL REVIEW A 64 052506

Bun(Xe,s - XnIXE, o X) except for the case if all electrons carry the same ¢fgin
_ romagneticlike states with total spi®=N/2). Introducing
=[x (X0, o X)X (XL e XY) the new variables
_XV(Xl’ et 'XN)X;(Xiv =k yX|,\j)] (12) rl+r2 ri_}_ré
= 2 1 R, = 2 )

as a set of basis functions feq . As it easily follows from
definitions(11) and(12) these basis functions meet the sym-

metry properties ofyy, i.e., they are hermitid\,,=A/,, u=ry—rp, u'=r;—rj, (18
B,,=B' satisfy the Pauli principle, and additionaldy, . .

Mmv My 1 mv _
—A,.. B,,=—B,,. All a,, andb,, are real numbers sat- Bingel has showr1] for an N-electron system with total

spin S<N/2 that Kato’s conditior{2] implies if bothu and

isfying the properties
fying prop u’ are small enough

a,,=—a a,,=0; b,=—Db b,,.=0. (13

nv v 170 mv v u u u’ u’
, , - Y3 R+—,R——R’+—,R’——)
Reduced density matrices are originated from the 2 2 2 2
N-particle density matrix by a consecutive reduction of de- ,
grees of freedonp14]. One step of the process is defined by ~¥3(R,R|IR",R")| 1+ MJF M +ud*+u'd+---,
the partial trace operation 2 2
(19

n-1(Xes - XnealXg s e XN
whered is not determined by the Coulombic singularity. Ac-
=J YN(XLs « oo XN XNIXT s - e XN 1 XN) OXy cording to Eq.(17), y5(R,R|R’,R") #0 in the general case
(a statement that would not hold for spinless particl@ae
(14)  to the presence of the absolute value of vectoendu’ in
equation(19) a discontinuity appears in the derivative of
where  [yn_1(X1, ... Xn—1]Xq, ... Xn—1)dX;---dXy—1  that can be conveniently expressed in a compact form by the

=1 was applied as a normalization condition. Stéd) is  spherical average of the diagonal elementydf
also calledcontraction As the partial trace operation is lin-

ear, contraction is carried out on individual basis functions 1 u u u u

A, andB,, of Eqg. (10). Straightforward calculations show Y(Ru)= Ef v5| R+ 7 R- 5’ R+5.R= E)

that contraction transforms the subspace spanned by the

N-particle functionsA,,, into the subspace generated by the X sing,d6,do,, (20

(N—1)-particle basis function\,,. A similar statement

holds for the contraction of the subspaceBgf, functions as whereu=|u| and 8y, ¢, are the polar angles of the vectar
well. The consequence of this fact is that any redu@d  As in the spherical averagevanishes, we get from E¢L9)
semblé density matrix can be expanded in the fofd0)  the linear approximation

with real expansion coefficients, that meet the properties of o

equationg(13). ¥(R,u)~¥3(R,RIR,R)(1+u). (21)

V. THE BINGEL FORMULA This requirement on the two-electron density matrix is local
in the sense that the above equality must hold at any particu-
The electron-electron cusp condition reflects a singularityg, pointR of the space. Numerical checkk5,16] of many-
of the wave function, and consequently, the spin-traced twog|ectron wave functions usually test the global fulfilment of a
particle reduced density matrix space averaged form of E€1). In this paper, however, we
give an explicit construction of the two-particle density ma-
7§(r1:r2|r1ar§)20120_2 Yo(F1,01,T 2, 05| 1 L 00Ty 07) irilé;h;tmzai\;ligfes the much detailed local foif@l) of the
(15 Expression21) shows in a natural way that the electron-
electron cusp condition is a typical appearance of multipli-
of the N-electron system. The symmetry propertiesygf cative superstructures found by us previougly] for the

follow from that of y, electron density [i.e., yj(R|R)] in extended (near-
mesoscopicmolecular and solid-state systems. The particu-
Yo, ralr 1, rs)=v3(ro,rqfra,r)=[v3(ry,rolri,ro)1*. lar feature of these densities is the different shape character-

(16)  istics of the states shown at different length scales, i.e.,
changing the resolution of observations results in a variation

Note, however, that generally of the overall behavior of the density. Here, the overall be-
. o . . havior of y3 is determined by the valueg(R,R|R,R) at the
Yo(ra,ralry 1) # = v3(ra,rafry,ra) (17 center-of-masR of the electron pairs, whereas at resolutions
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where the separatiomof the pairs is recognizable the factor where
(1+u) modifies the value o5 . _
i
B PRy — * (e \ax (r!
VI. CUSP CONDITION FOR DENSITY-MATRIX Fmymynyng(11.:72l1.12) = 5[ Winy(13) W, (F2) W, (1) W, (12)

EXPANSIONS
+ Wi, (1'1) Wi, (T2)Wh ()W (15)
Observing that spin tracin@l5) is a linear operation, it
can be executed individually on each two-electron basis

functionsA ,, andB,,, of the expansiorf10). Consequently,

— Wi, (F1)Wo, (F2) Wi ()W, ()

- an( r l)Wnl( rZ)W’rknz( r 1)

7§(r11r2|ri:ré)zz [aMVA;y(rlvr2|riiré) XW:nl(ré)] (27)
",V
+buBL(rralrir)] (22 Allfunctions A3, B3, 95 mn.n,» anddg o meet the

. . . symmetry propertie$16) and (17) of y5. Furthermore, we
with p= (1, u,) andv=(vy,v,). In the summation all in- y y propertie¢16) and(17) of v,

: . ] . .. have the index symmetries
dices run independently, without restrictions, for all possible

i 12 i i -
values, resultlng2_.) eqw_vz_ilent terms. _The r_ela_tlons be ’9?1 . (f1,f2|f1,f§)=19ﬁq o (FFalrlrd)
tween the expansion coefficients are defined similarly to Eq. 1727172 27172
8) as _ qA o
( ) _ﬁnlnzmlmz(rl1r2|rlvr2)1
al‘“l"“‘Z;Vl'V2=_a'U’Z"U’l;Vl'V2=_a”“l’f’“Z;VZ'”lza/"z"“‘l;"Z’Vl' 98 (ry lef' r/)_ﬁB (ry r2|rr r)
m;m,nqn, ' 1202/ ¥mymynyng ’ 172
Hyboivyvp— b'“z"“l?”lv”z: N erMz?”z”’l: bMZ'/“l;VZ'Vl' =— ﬁﬁlnzmlmz(rl,l’zhi,l‘é),
a#r#’«;VlvVg:a#lv#z;VxV:bP«v,U-;V]_szsz«j_rﬂz;VyV:O' (28)
23
@39 but
. . . . . s
The spm—traped densny—matnx basis funcudp}l,'and B 9AB (11l Ty % — 9A8 (ryrlrrh)
are formed in analogy with Eq15). Using definitions(11), mymyngnptt 102101002 mymynynptt 10021010027
(7) and the two-component spinor basis s&f(r,o) (29

=W (1) ds, SPIN tracing results in

S _ qA
Anv(r11r2| r:;. 7ré) - ﬁmlmznlnz(rl1r2|ri 7ré) 551t1532t2

- 022m1n1n2(r1 ) r2| I'i , l‘é) 552'[1551'(2
(29
with  p=(u1,42) =(MSy,Myps;)  and  v=(v1,v7)

=(nyty,n,t,), respectively. The functions)”® were intro-
duced as

D mongn (1172|1112 = 5[ Wi (1 1) Wi (12)Wh (1)) W (15)
F Wi, (1) Wiy ()W ()W (1)
Wi, (1 1)Wi (1) W, (T Wi (1)
Wi, (1) Wo, ()W, (17)
X W, (13)]. (25
Similar considerations lead to
Bu(r1,rafry ra)= 19ﬁlmznlnz(rlarzh’iv"é)5sltl5s2t2
- 19%Zmlnlnz( F1, I’2| ri ,ré) 5szt1531t21

(26)

Let us substitute expressionf25) and (27) into equation
(22). Since summation indices run independently, exchang-
ing of my for m,, as well ass; for s, in some terms is
possible, resulting

S oy A A [
Y3(ri,rofryry) = lemz [Gm,mynyn, Omymynyny(F1:2l11.72)
ng.ny
B B ot
+ gmlmznlnzﬁmlmznlnz(rl ,I’2| LY r2)]!
(30
where
A —
Imymynyn, = 231252 Amys; .mysying sy NSy
B —
Ymym,ngn, = 251232 bmlsl,mzsz;nlsl,nzsz- (31

Here we have used the symmetry propert3. Expression
(30) indicates that¥”* and9® serve as natural basis functions
for expanding spin-traced density matrices. The expansion
coefficientsg” andg® show the index symmetries

U =gh =gh
m;myny Ny mpmyNony NyNpmymy
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gmlmznlnz gmzmlnznl gnlnzmlmz (32)

as a consequence of Eq43) and (23).

We define the spherical averagé(R,u) and 98(R,u) of
the diagonal elements a#* and 9%, similarly to step(20).
Thus, the cusp conditiof21) turns into

A QA B 9B
m%z [9m,mynyn, Omumonin,(ReW + G0 mn o O monn, (RiU)]
ning

~(1+u) E [gmlman aﬁ‘lmznlnz(R’o)

mm;
niny

(R,0)]. (33

B B
+gmmnnﬂmmnn
rRLL AL Rl RNLL RLL/AL R}

Frequently, real valued basis functions are used. In these

cases, according to definitiqd2), the diagonal elements

Bpw(rl101!r210-2|r110-1’r2!0-2)

=2 |m{X;(r1101ar2,Uz)Xv(rl,Ulyrzﬁz)}:O,
(34)

thus 95, 1 .0 (R,U)=0.

VII. EXAMPLE: HAAR WAVELET EXPANSION
IN ONE-DIMENSIONAL SYSTEMS

The spherical average of any functidiu) for a one-
dimensional vectou turns simply into

— fwf(—u) fu)+f(—u)
f(u)= 5 = 5 . (35
The symmetry propertiegl6) of 9* and 9% involve
IAB (Ru)=9A8 Rt - R— U Re2 R—o
myMaNny gt =™ My MaNy Ny 2’ 2 2’ 2/’
(36)

consequently, the cusp conditié®3) can be rewritten using
the basis functions#*8 directly.

PHYSICAL REVIEW A 64 052506

A A
E gmlmannzﬁmlmznan(v ~olo,—v)
mymy
nin2

~(1+ 20)% I, mnyn, O mgmyngn,(0,00,0)
NNy

(37

of the cusp condition is satisfied. As a first step we will solve
this task at a given resolution level by using the scaling
function basis set3). At this level of approximation

|u|%$ hemiSmi(U) (39)

with

hme lu|sk (u)du=(2""b)*31 + 3. (39
Clearly, (2 ™b)|l+ 3| is the distance of the center of basis
function s, from the origin, or in other words, the average
value of|u| in the domain ofsy,, and (2 ™b) 2 is the
value of the same basis function.

Forve (2 ™bl,2”Mb(I +1))

Smir(v)=(2"") Y25, |,

Smir(—v)=(2""b) " 25_ . (40

Substituting these values into E@5) the left-hand side of
equation(37)

(2—mb)—2(glA,7m|71| f|—1+gé'|n11,|,—|—1,|)

=2(27™0) %G gy g (41)

Here we introduced the shorthand notati(gﬁ'f:klkz
=01, .ml,;miq mk, @nd Used the symmetry propertg2).

Similar considerations and application of EQ9) on the
right-hand side of Eq(37) lead to the condition
Or o1 =[1+2]1+ 3[ X2 lgggy.  (42)
As we see, the spherical average of the cusp condigdn
does not provide information on coefficienyﬁl',’;‘klk2 with
arbitrary index combination.
However, similarly as above but with more tedious calcu-

Multiresolution analysis naturally offers an infinitely lations, we can have a solution of the universal form of Bin-

dense grid, thus it is sufficient to satisfy the cusp conditiongel’s
(33) in the grid points only. Since the grid points are equiva- < (2~ "bl,2"™b(l +1))

u2=v
u'/l2=v’

for
and R'=

condition  (19) R=(2"™b)L,

(2-™b)K,

lent, we chooseR=0. Using the complete system of real (2™ "bk,2 "b(k+1)). Evaluating the levein basis func-

Haar wavelets, only expressionsEﬁqlmznlnz(o,u)
A

= O, myn;n, (v, ~v|v,—v) with v=|u|/2 need to be evalu-

ated, and all9®=0 based on the note at the end of the

tions by Eq.(40) and substituting to definition§25) and
(27), as well as using the index symmetri@2) we arrive at

gﬁBlT -1k kk—k-1~[ 1 (|1 + 3]+ [k+ 3])

previous section. The fundamental problem is finding appro-

priate expansion coeﬁicieng§]1m2n1n2 for which the form

X2 Mp]gf . (43)
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This approximation is valid independently both #rand B The fine—coarse transition45) and (46) is a unitary
type coefficients, as the separation of E#j9) to real and transformation of the basis functions, which has the inverse
imaginary parts corresponds to a separation of the cusp coin the coarse-fine direction

dition to independend” and 9® expressions. Although, Eq.

(43) holds for oddl;—I, and k;—k, index differences, a

generalization for arbitrary index values is straightforward in Sy (r)= Z 2 pf,_ys01(r) )Wy ()]
the form
g{-\llekmkz [1+ 3 (J12=lol+ ks — ko) X 27 ™b]gfi & _2 m201U|/Wm| (47)
(44)

whereL =[(I;+1,+1)/2] andK =[ (k,+k,+1)/2] with [x]  With
meaning the integer part of The obtained formula shows o 1 U 1w
that due to Bingel’s condition the singular part of the density Up=2""p!_, and U;,=2""Y4_,. (49
matrix is completely determined by the elemegfﬁ’{?.

Expression(44) describes the singular behavior of the ex- Note, that we have applied here our previous convention
pansion coefficientg” and g®, but according to Eq(19)  wy=sq .
some additional terms depending “smoothly” o {1,) In order to represenf; at resolution levem=1 we can
and (k,;—k,) do also appear in a linear approximation. Theequivalently use in Eq$25) and(27) the basigs,, }, result-
cusp condition itself does not provide information on thejng in basis functlonac}l i kl o OF the set{sy ,wy,}, leading
values ofglR and g2k, except that they must depend AB
“smoothly” on the indicesL andK. Generally, these param- © Jmm,n,n, With m= (m,I). The corresponding equivalent
eters can be used for energy minimization, with restrictiongxpansions are
only on the diagonal elements, @§], is strictly connected
to the electron density angf,T, =0 by Eq.(32).

The electron-electron cusp is a consequence of the Cou- 2 [gl I 2k k’ﬁlllzklkfglllzklkgﬁlllzklkz]
lomb interaction between them, which can be approximately
described as a simple two-electron problem in a background
of an almost constant external potential. Therefore, the do-

main of validity of Eq.(44) is expected to be in the order of => [gm1m2 1n21‘}ﬁ1m2n1n2 gmlmz 1n2’9anlm2n1n2]
2a,, wherea, is the Bohr radius and the factor 2 appears ’21 nmz

due to the reduced mass of two electrons. The normalization 1

condition on y,, however, prescribef6] a fast (probably (49

exponentigl long-range decay of the coefficieng$'™ and

g®™. A numerical study on the average behavior of the two-Using transformation(47), the lengthy but simple algebra
particle correlatior16] confirms these expectations, with an leads to

approximate linear dependence in the rangéup a.

mymsnqn
Ilkk’_z[lelZﬁA

VIII. TRANSITION BETWEEN COARSE AND FINE 112Kk mm, 1710kiky ~ MiMaNaNy
REPRESENTATIONS ny.ny
As increasing the resolution levei to m+1 should be a 4y M2z o8 ], (50)
. . : P 1715kiks MmN Nt
refinement of the representation, the scaling functigpgs 121

necessarily a linear combination 8f, 1y, known asre-

finement equatiofd] for m=0 Y AT
| | KiK. (X K} Dy mnyn,

127172 mg,my 121
Soi(r) =2, 27 ¥py_ysy(1), (45 MM
I!
P | Y, Omamanyn, ) (51)
where the set of expansion coefficiepisdefines the scaling 127172

function itself. In the case of Haar functions, e.ge=p;
=1 andp,=0 otherwise. It can also be shown that for the Where the real transformation coefficiersand Y are de-

refining wavelets fined by

mpmpngny m1m2“1“2

ml n2 * _ .
wy (=2 27", ysy(r), (46) U (U ) (Uké) X, T v (52
|/

127172

with qk:(_l)kptk+11 which gives for Haar waveletg, The coarse-level expansion coefﬂmergéq myngn, Can be
=1, gq;=—1 and zero in all other cases. identified by substituting Eq$50) and (51) into Eq. (49)
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S 2 1 o0 1 2 3 52 1 0 1 2 3 52 1 0 1 2 3
U U U
FIG. 1. Second-order density matrix at different placements of electron pairs. The center of pairs is characterized by tfiralatts

to right): R=R’=0 (both at grid points R=0, R’=0.5(2"™b) (the second pair is halfway between two grid pointand R=0,
=1.3b, which is never a grid point at any resolution lewel All calculations were carried out at level=2. Atomic units were used.

MmNy, AL MgMongn, B Substituting the cusp conform expressidd) for m=1 into
gmlmznlnz_ E [X| ki kg Ylilgk;ké '1'2k1k'] the right-hand side of E455) we arrive at terms containing
' gf,f,lK,K, , whereL' is restricted td;+1, or [;+1,+1 and
a similar constraint is true fdk’. A smooth dependence on
indices can be expressed gg/ kk~0dot(L'—K")Ag
+ - - -, which results in the first order

K k
(53

mpympniny B,1 mpympniny Al

Ormymynin, = E i, Ot ™ Vi, 9

| 127172 127172
1 2
A,B,1 B,1 A,B
kyka O T akrk =G0k T AGHE,
(54)
In the case of the real-valued Haar basis functions/allo AB.L AB.L
—A A,B
and Ok + 1k +1~ 90k TR

gA,B

0l ,01,;0k; 0k, . .

1 O+ akr + ik 41~ Ik (56)
A,B,1

= - gy 1 . .
A\ Sy oSy I2 A 250012kt ot g
A>=0,1 ko=0,1 . . . . . .
275 2T Using these approximations in E&5) it can be realized that

(55) a relation similar to Eq(44) holds for almost all index com-

1.2 1.2} 1.2
fan
=
1.1} 1.1} 11.1¢ 1
+
—
~—
~
o
0.9} 10.9} 10.9¢1 1
0.8 10.8 0.8
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
u U u

FIG. 2. Ratio of the calculated second-order density matrix to the theoretical expectat|oh 4t resolutionsn=1, m=2 andm=3,
from left to right. The center of electron pairs was choseiRa, R’=0.5(2"™b). Distances are given in atomic units.
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FIG. 3. Second-order density matrix as a function of electron separatiandu’ at R=R’'=0, in atomic units. The coarse resolution
plot corresponds ton=4, whereas the fine resolution picture was calculatedrfer5.

binations 14,l,,k;,k, of the first-level expansion coeffi- As the first step we considered the spherically averaged
cients, supposing that the following scaling transformationcusp condition where we have used in expressi®®) R
equation is valid for the fine coarse transition =R’, u=u’ as the arguments of;, moreover, we have

chosen the grid poinR=0. In Fig. 1 we have plotted
(57) Y5(R+u/2R—u/2|R'+u/2R’'—ul2) for various separa-
tions of the electron pairs, in order to show that the above
specific choice folR and R’ does not affect the validity of
This result indicates that the local form of the correlationour results. As we can realize, the most unfavorable case is,
cusp condition(19) is satisfied in a scale-invariant way by in fact, the choicecR=R’=0 used in our theoretical consid-
Egs.(44) and (57). erations, all other possibilities, not taken explicitly into ac-
The opposite, coarsefine, transformation is trivial for count, follow the behavior (% |u|) in @ much smoothegal-
even index values, however, continuity on indices implies ahough sometimes irregulaway.
linear interpolation formula for odd labels We also wish to prove the reduction of errors by increas-
ing the resolution level. In Fig. 2 the values of the calculated
Y5(R+u/2R—u/2|R’+u/2,R' —u/2) at different resolution
levels are compared to the theoretical expectatio ().
Indeed, the ratio y5/(1+|u|) tends to the constant
0% 51 2k +1 2k+1= 2 (I20 3L 2k 2K + 050 5L 2K+2 2K-+2): ¥>(R,R|R’,R") that has been chosen as 1 for the present
(590 model calculation. The maximum errors appearing around
u~0 decrease exponentially with increasimg
AB.1 1, AB1 Finally, the fulfilment of the generdl.e., not spherically
92120+ k1 2617 2(920 30 2k 2k averagell cusp condition(19) is illustrated by plots of
y5(u/2,—u/2|u’/2,—u’/2). In Fig. 3 we have applied an ex-
ponential long-range decay of the coefficiegfs™, accord-
ing to our previous note at the end of Sec. VII. The behavior
(1+]ul|/2+|u’|/2) is clearly detectable.

ABO _ o ~ABL1
OLiKk=4 920 3L 2k 2K -

AB.1 _ 1, AB1 AB1
O2i+120+12k 2k = 2(920 5L 2k 2k T 921 22 2 12 2k 2k)s (B8)

AB,1
T 0512 212 2K+ 2 2k +2)-
(60)

Knowing the scaling function expansion coefficiefts)—

(60), the wavelet coefficients can be calculated using Eq.

(44) and transformation rule&3) and (54). IX. DISCUSSION
The above considerations are also applicable to the tran-

sitions between arbitrary resolution levetsandm+ 1 lead- It has been shown in this work that the introduction of
A,B,m

ing to the scaling transformatiori57) for g and multiresolution analysis into the expansion of wave functions
AB,m+1 LLKK leads to a systematic refinement of representation of density

9L 2L 2K 2K - . . . ._matrices. This process, in a certain sense, is a backward
Since in the previous considerations we made some sin};

lification and assumptions. a numerical check of the result ‘enormalization transformation. The possibility of inverse
P . ptions, - - eSUltR ansformation is permitted by the fact that the two-particle
is appropriate. In order to illustrate the validity of predictions

f | Hicierg™ B . : 2 and density operator must satisfy Bingel's cusp condition in the
or a general coetficient; i ik, Using expressionét4) an small electron-separation limit. We would like to emphasize,

(57), we have calculated/5(rq,r,|r1,r;) by Eq. (30) for  however, that even if the concepts used throughout this con-
several combinations of the one-dimensional variablesribution are focused on density matrices and are also con-
Fe,ro,r1,r5. nected to renormalization, they differ completely from the
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technique of “density-matrix renormalization” developed by the results on Haar scaling functions, preliminary calcula-

White [18,19 for other purposes. tions using more sophisticated continuous scaling functions
Due to the well-localized behavior of scaling functions show an even better agreement with the general correlation

the algebraic form of the two-electron density-operator cusgusp condition(19).

condition is faithfully reflected by the index dependence of

the expansion coefficients i’} . As we have also shown

g"B™M scales with increasing resolution level as4 ™.

These behaviors allow a prediction of then{ 1)th level This work was partly supported by the Orgpa Tu-

scaling function expansion coefficients from those ofrtiite domanyos Kutatai Alap (OTKA), Grants Nos. T032116 and

level. The expected deviation of the predicted coefficientsT029813. The support oBergen Computational Physics

from the exact values becomes negligible if the resolutionLaboratoryin the framework of thesuropean Community —

level tends to infinity. Access to Research Infrastructuaetion of thelmproving
Although, we have based the derivation and illustration ofHuman Potential Progranis also acknowledged.
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