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Estimating the spectrum of a density operator

M. Keyl* and R. F. Werner†
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~Received 7 March 2001; published 15 October 2001!

GivenN quantum systems prepared according to the same density operatorr, we propose a measurement on
the N-fold system that approximately yields the spectrum ofr. The projections of the proposed observable
decompose the Hilbert space according to the irreducible representations of the permutations onN points, and
are labeled by Young frames, whose relative row lengths estimate the eigenvalues ofr in decreasing order. We
show convergence of these estimates in the limitN→`, and that the probability for errors decreases expo-
nentially with a rate we compute explicitly.
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I. INTRODUCTION

The density operator of a quantum system describes
preparation of the system in all details relevant to statist
experiments. Like a classical probability distribution it ca
not be measured on a single system, but can be estim
only on an ensemble sequence of identically prepared
tems. In fact, if we could determine the density operator~or,
in the pure case, the wave function! on a single quantum
system, we could combine the measurement with a de
repreparing several systems with the measured density
erator, in contradiction to the well-known no-cloning the
rem @1#. This points to a close connection between the pr
lem of estimating the density operator and approxim
cloning. In the case of inputs promised to be in a pure s
the optimal solutions to both problems are known@2–4#, and
it turns out that in a sense the limit of the cloning proble
for output numberM→` is equivalent to the estimatio
problem. The ‘‘optimal’’ cloning transformation was show
in this case to be quite insensitive to the figure of me
defining optimality@3#.

In the case of mixed input states much less is kno
about the cloning problem. It is likely that in this case the
may be different natural figures of merit leading to inequiv
lent ‘‘optimal’’ solutions. Even the classical version of th
problem is not trivial, and is related to the so-called bootst
technique@5# in classical statistics.

The estimation problem certainly has many solutions.
fact, any procedure of determining the density mat
through the measurement of the expectations of a suit
‘‘quorum’’ of observables@6#, such as in quantum state to
mography@7# is a solution. Other methods include adapti
schemes@8# where the result of one measurement is used
select the next one. In all these cases, the estimate amo
to the measurement of an observable on the full input s
r ^ N, which factorizes into one-site observables. What we
concerned with here, as in the work of Vidalet al. @9#, is the
search for improved estimates, admitting arbitrary obse
ables on theN-fold input system, including ‘‘entangled’
ones. In contrast to@9#, however, we are not interested
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estimators that are optimal for a more or less general fig
of merit, but in the asymptotic behavior if the numberN of
input systems goes to infinity~in this context see also th
work of Gill and Massar@10#!.

WhenH>Cd is the Hilbert space of a single system, th
overall input density operator of the estimation problem
r ^ N, which exists on theNth tensor powerH ^ N. This space
has a natural orthogonal decomposition according to the
reducible representations of the permutation group ofN
points, acting as the permutations of the tensor fact
Equivalently, this is the decomposition according to the ir
ducible representations of the unitary group onH ~see be-
low!. It is well known that this orthogonal decomposition
labeled byYoung frames, i.e., by the arrangements ofN
boxes into d rows of lengthsY1>Y2>•••>Yd>0 with
(aYa5N. There is a striking similarity here with the spect
we want to estimate, which are given by sequences of
eigenvalues ofr, say, r 1>r 2>•••>r d>0, with (ar a51.
The basic idea of this paper is to show that this is no
superficial similarity: measuring the Young frame~by an ob-
servable whose eigenprojections are the projections in
orthogonal decomposition! is, in fact, a good estimate of th
spectrum. More precisely, we show that the probability
the erroruYa /N2r au to be larger than a fixede for somea
decreases exponentially asN→`.

The group theoretic ideas just sketched are nothing n
but go back to Weyl@11# and are in the meantime a standa
tool within quantum mechanics. Examples of works whe
similar methods are used in quantum information a
@12,9,13–15#. In particular, @15# is closely related to the
present paper because similar techniques are used there
concerns in particular the theory of large deviations@16#, and
a result by Duffield@17# on the large deviation properties o
tensor powers of group representations. This will allow us
compute the rate of exponential convergence explicitly.

II. STATEMENT OF THE RESULT

In order to state our result, explicitly, we need to recall t
decomposition theory forN-fold tensor products. Through
out, the one-particle spaceH will be the d-dimensional Hil-
bert spaceCd, with d,`. Two group representations play
crucial role: first, the representationX°X^ N of the general
linear group GL(d,C) and, secondly, the representatio
©2001 The American Physical Society11-1
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p°Sp of the permutationspPSN on N points, represented
by permuting the tensor factors:

Sp c1^ •••^ cN5cp211^ •••^ cp21N . ~1!

The basic result@18# is that these two representations a
‘‘commutants’’ of each other, i.e., any operator onH ^ N

commuting with allX^ N is a linear combination of theSp ,
and conversely. This leads to the decomposition

H ^ N> %

Y
RY^ SY , ~2!

X^ N> %

Y
pY~X! ^ 1, ~3!

Sp> %

Y
1^ p̂Y~p!, ~4!

wherepY :GL(d,C)→B(RY) and p̂Y :SN→B(SY) are irre-
ducible representations, and the restriction ofpY to unitary
operators is unitary. The summation indexY runs over all
Young frames withd rows andN boxes, as described in th
Introduction. We denote byPY the projection onto the cor
responding summand in the above decomposition.

Let us consider now the estimation problem. As alrea
discussed in the Introduction, we are searching for an obs
able EN describing a measurement onN d-level systems,
whose readouts are possible spectra ofd-level density opera-
tors. The set of possible spectra will be denoted by

S5H sPRdUxx0, (
j 51

d

xj51J , ~5!

wherexx0 denotes the ordering relation onRd given by

sx0:⇔sj.sj 11 for all j 51, . . . ,d21. ~6!

Technically,EN must be a positive operator valued meas
on this set, assigning to each measurable subsetD,S a posi-
tive operatorEN(D)PB(H ^ N), whose expectation in an
given state is interpreted as the probability for the meas
ment to yield a resultsPD.

The criterion for a good estimatorEN is that, for any
one-particle density operatorr, the value measured on a sta
r ^ N is likely to be close to the true spectrumr PS of r, i.e.,
that the probability

KN~D!ªTr@EN~D!r ^ N# ~7!

is small whenD is the complement of a small ball aroundr.
Of course, we will look at this problem for largeN. So our
task is to find a whole sequence of observablesEN , N
51,2, . . . ,making error probabilities like Eq.~7! go to zero
asN→`.

The search for efficient estimation strategiesEN can be
simplified greatly by symmetry arguments. To see this, c
sider a permutationpPSN . If we insert the transformed es
timator SpEN(D)Sp* into Eq. ~7! we see immediately tha
KN(D) remains unchanged. ReplacingEN(D) by the average
05231
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N! 21(pPSN
SpEN(D)Sp* shows that we may assum

@EN(D),Sp#50 for all permutationsp, without loss of esti-
mation quality. A similar argument together with the fact th
the quality of the estimate is judged by some criterion n
depending on the choice of a basis inH shows that we may
assume in addition thatEN(D) commutes with all unitaries
U ^ N. But this implies according to Eqs.~3! and ~4! that
EN(D) must be a function of the projection operato
PY :H ^ N→RY^ SY defined at the beginning of this sectio
If we require in addition that eachEN(D) be a projection,
which is suggestive for ruling out unnecessary fuzziness,EN
must be of the form

EN~D!5 (
Y:sN(Y)PD

PY , ~8!

wheresN is an arbitrary mapping assigning to each You
frameY ~with d rows andN boxes! an estimatesN(Y)PS. In
other words, the estimation proceeds by first measuring
Young frame projectionsPY and then computing an estima
sN(Y) on the basis of the resultY.

The simplest choice is clearly to take the normaliz
Young frames themselves as the estimate, i.e.,

sN~Y!5Y/N. ~9!

It turns out somewhat surprisingly that with this choice t
EN(D) from Eq. ~8! form an asymptotically exact estimato
By this we mean that, for everyr, the probability measures
KN from Eq.~7! converge weakly to the point measure at t
spectrumr of r. Explicitly, for each continuous functionf on
S we have

lim
N→`

E
S

f ~s!KN~ds!

5 lim
N→`

(
Y

f S Y

NDTr~r ^ NPY!5 f ~r !. ~10!

We illustrate this in Fig. 1, ford53 and r a density
operator with spectrumr 5(0.6,0.3,0.1). ThenS is a triangle
with corners A5(1,0,0), B5(1/2,1/2,0), and C
5(1/3,1/3,1/3), and we plot the probabilities Tr(r ^ NPY)
over Y/NPS. The explicit computation uses the Weyl cha
acter formula~@18# Chap. 9, Sec. 9.1!, which we do not need
elsewhere in the paper.

Clearly, the distribution is peaked at the true spectrum a
our claim is that this will become exact in the limitN→`.
To prove convergence we will use large deviation metho
which give us not only the convergence just stated but
exponential error estimateof the form

KN~D!'exp„2N inf
sPD

I ~s!…, ~11!

where I denotes a positive function onS, called therate
function, which vanishes only fors5r .

For the statement of the main theorem we say that a m
surable subsetD,S has ‘‘small boundary’’ if its interior is
1-2
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dense in its closure. A typical choice forD is the complement
of a ball around the true spectrum.

Theorem. The estimator defined in Eqs.~8! and ~9! is
asymptotically exact. Moreover, we have the error estima

lim
N→`

1

N
ln KN~D!5 inf

sPD

I ~s! ~12!

for any setD,S with small boundary, where the rate fun
tion I :S→@0,̀ # is

I ~s!5(
j

sj~ ln sj2 ln r j !. ~13!

FIG. 1. Probability distribution Tr(r ^ NPY) for d53, N
520,100,500, andr 5(0.6,0.3,0.1). The setS is the triangle with
cornersA5(1,0,0), B5(1/2,1/2,0),C5(1/3,1/3,1/3).
05231
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The expression forI is the relative entropy@19# of the
probability vectorss and r. Relative entropies occur also a
the rate functions in large deviation properties of indep
dent identically distributed~classical@20# or quantum@21#!
random variables, although there seems to be no direct
to reduce the above theorem to these standard setups.

III. SKETCH OF PROOF

Rather than giving a proof of every detail, our aim here
to explain why the scaled Young framesY/N appear in the
estimation problem. The crucial observation is that t
Young frame (Y1 , . . . ,Yd) is thehighest weightof the rep-
resentationpY in the orderingx and this ordering is directly
related to picking out the fastest growing exponential in c
tain integrals of the measuresKN .

The integrals we need to study are the Laplace transfo
of the measuresKN . We introduce the ‘‘scaled cumulan
generating function’’

c~h!5 lim
N→`

1

N
ln E

S
KN~ds!eNh•s, ~14!

wherehPRd, andh•s is the scalar product. If the measure
KN behave like Eq.~11! the integrand nears behaves like
expN@h•s2I(s)#, and the largest contribution comes from th
fastest growing exponential:

c~h!5sups@h•s2I ~s!#. ~15!

This is an instance of Varadhan’s theorem@22#, which has a
converse, the Ga¨rtner-Ellis theorem~@16#, Theorem II.6.1!: if
the limit ~14! exists and is differentiable then the estimate
the theorem holds, with the rate function determined fro
Eq. ~15! by inverse Legendre transformation. We will follow
Duffield @17# by computing the limit~14! from group theo-
retical data.

Consider the ‘‘maximally Abelian subgroup
C,GL(d,C) of diagonal matrices

rh5diag@exp~h1!, . . . ,exp~hd!# ~16!

for hPCd. Since these commute, all the operatorspY(rh)
commute in every representationpY , and can hence be si
multaneously diagonalized. The vectorsm5(m1 , . . . ,md)
such thatpY(rh)c5exp(m•h)c for some nonzero vectorc
are calledweightsof the representationpY . The dimension
m(m) of the corresponding eigenspace is called themulti-
plicity of m. One particular weight~with multiplicity 1! is the
Young frameY itself ~interpreted as an element ofRd) and it
turns out thatY is the maximum~the ‘‘heighest weight’’!
among all weights ofpY , in the x ordering from Eq.~6!.
Representation theory of semisimple Lie algebras@18# shows
that each irreducible, analytic representation of GL(d,C) is
uniquely characterized~up to unitary equivalence! by its
highest weightY.

In order to estimate the integral~14!, we need the quan
tities tr(r ^ NPY). For simplicity we assume thatr is nonsin-
gular, i.e., an element of GL(d,C). By Eq. ~3! we have
1-3
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M. KEYL AND R. F. WERNER PHYSICAL REVIEW A64 052311
Tr~r ^ NPY!5Tr@pY~r! ^ 1#5xY~r!dim~SY!, ~17!

where

xY~r!ªtr@pY~r!# ~18!

is the characterof the representationpY . SincexY is uni-
tarily invariant @xY(UrU* )5xY(r)# we may assume with
out loss of generality thatr is diagonal and its matrix ele
ments are arranged in descending order. Using the nota
from Eq. ~16! this assumption reads

r5rhPC with hx0 and (
j

exp~hj !51. ~19!

Hence we can expressxY(r) in terms of the weights ofpY :

xY~r!5(
m

m~m!exp~m•h!, ~20!

where the sum is taken over all weightsm of pY . Since
hx0 andYxm for all m we see that exp(Y•h) is the largest
exponential. We therefore estimate

exp~Y•h!<xY~r!<dim~RY!exp~Y•h!. ~21!

Hence, if we introduce for anyh,hPRd,h,hx0 the two
expressions

J~h,h!5E
S
KN~ds!eNh•s ~22!

5(
Y

Tr~rh
^ NPY!eNh•Y/N ~23!

5(
Y

xY~rh!eh•Ydim~SY! ~24!

and

J8~h,h!5(
Y

e(h1h)•Ydim~SY! ~25!

we get

J8~h,h!<J~h,h!<dim~RY!J8~h,h!. ~26!

If we combine this with the consequence of Weyl’s dime
sion formula that dim(RY) is bounded above by a polyno
mial p(N) in N, uniformly in Y ~@17#, Lemma 2.2!, and take
logarithms we get

ln J8~h,h!< ln J~h,h!< const 3 ln N1 ln J8~h,h!.
~27!

SinceJ8(h,h) grows exponentially inN its logarithm is lin-
ear inN and we see thatJ(h,h) andJ8(h,h) are asymptoti-
cally equivalent in the sense that

~1/N!@ ln J~h,h!2 ln J8~h,h!#→0. ~28!
05231
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In the same sense we can continue the chain of equivale

J~h,h!'J8~h,h!5J8~h1h,0!'J~h1h,0! ~29!

5E
S
KN~ds!. ~30!

Here we have used Eq.~22! for J(h1h,0), and theh1h
dependence is contained inKN(ds) via rh1h . Together with
the definition ofKN in Eq. ~7! this implies

J~h,h!'E
S
KN~ds!5KN~S!5Tr„EN~S!rh1h

^ N
… ~31!

5Tr~rh1h
^ N !5~ trrh1h!N. ~32!

Hence, if r a5exp(ha) are the eigenvalues of a nonsingul
density operator, we get for Eq.~14! the expression

c~h!5 ln (
a

r a exp~ha!. ~33!

It is then a simple calculus exercise to verify the abo
rate function as the Legendre transformI (s)5suph@h•s
2c(h)#.

This concludes our sketch of proof. In order to expand
into a full proof, one needs to extend the computation
c(h) to hx” 0, and prove that this extension has the requi
regularity properties for the application of the converse
Varadhan’s theorem cited above. This has been carried ou
Duffield @17# in a context that is, on the one hand wide
because it includes tensor powers of much more general
resentations of semisimple Lie groups, but on the other h
narrower, because it contains only the caser5d211 of our
theorem. However, one can extend Duffield’s result by m
tiplying his measuresKN by the factorxY(r)/xY(1) and us-
ing for this factor the estimate~21!.

IV. DISCUSSION

Although the estimate we discuss is asymptotically exa
it is not at all clear whether and in what sense it might
optimal, even for finiteN. We have experimented with vari
ous figures of merit for estimation and found different ‘‘o
timal’’ estimators for lowN, rarely coinciding with theEN
determined by Eq.~9!. It is also not at all clear how much
could be gained by optimization here.

An interesting extension will also be the construction
estimators for the full density operator. It is very suggest
to compose this out of the above estimator for the spectr
and to use for each Young frame a covariant observabl
estimate the eigenbasis ofr. The density of the covarian
observable might be based on the highest weight vecto
pY .
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