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Estimating the spectrum of a density operator
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GivenN quantum systems prepared according to the same density operateipropose a measurement on
the N-fold system that approximately yields the spectrunpofThe projections of the proposed observable
decompose the Hilbert space according to the irreducible representations of the permutabigmsiras, and
are labeled by Young frames, whose relative row lengths estimate the eigenvatusdefcreasing order. We
show convergence of these estimates in the It ~, and that the probability for errors decreases expo-
nentially with a rate we compute explicitly.
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[. INTRODUCTION estimators that are optimal for a more or less general figure
of merit, but in the asymptotic behavior if the numbérof
The density operator of a quantum system describes thi@put systems goes to infinitfin this context see also the
preparation of the system in all details relevant to statisticaivork of Gill and Massaf 10]).
experiments. Like a classical probability distribution it can- WhenH=C is the Hilbert space of a single system, the
not be measured on a single system, but can be estimatéyerall input density operator of the estimation problem is
only on an ensemble sequence of identically prepared sy$“", which exists on thé\th tensor powe#{ “". This space
tems. In fact, if we could determine the density operéwoy  has a natural orthogonal decomposition according to the ir-
in the pure case, the wave functjoan a single quantum reducible representations of the permutation groupNof
system, we could combine the measurement with a devicgoints, acting as the permutations of the tensor factors.
repreparing several systems with the measured density ofsquivalently, this is the decomposition according to the irre-
erator, in contradiction to the well-known no-cloning theo- ducible representations of the unitary group &n(see be-
rem[1]. This points to a close connection between the problow). It is well known that this orthogonal decomposition is
lem of estimating the density operator and approximatdabeled byYoung framesi.e., by the arrangements o
cloning. In the case of inputs promised to be in a pure statboxes intod rows of lengthsY;=Y,=-..=Y4=0 with
the optimal solutions to both problems are kno@r-4], and  =,Y,=N. There is a striking similarity here with the spectra
it turns out that in a sense the limit of the cloning problemwe want to estimate, which are given by sequences of the
for output numberM — o is equivalent to the estimation eigenvalues op, say,r;=r,=---=rq=0, with = r, =1.
problem. The “optimal” cloning transformation was shown The basic idea of this paper is to show that this is not a
in this case to be quite insensitive to the figure of meritsuperficial similarity: measuring the Young frarti®/ an ob-
defining optimality[3]. servable whose eigenprojections are the projections in the
In the case of mixed input states much less is knowrprthogonal decompositigris, in fact, a good estimate of the
about the cloning problem. It is likely that in this case therespectrum. More precisely, we show that the probability for
may be different natural figures of merit leading to inequiva-the error|Y,/N—r | to be larger than a fixed for somea
lent “optimal” solutions. Even the classical version of the decreases exponentially Bls— .
problem is not trivial, and is related to the so-called bootstrap The group theoretic ideas just sketched are nothing new
techniqug/5] in classical statistics. but go back to Wey[11] and are in the meantime a standard
The estimation problem certainly has many solutions. Intool within quantum mechanics. Examples of works where
fact, any procedure of determining the density matrixsimilar methods are used in quantum information are
through the measurement of the expectations of a suitable2,9,13—-1% In particular, [15] is closely related to the
“quorum” of observableq6], such as in quantum state to- present paper because similar techniques are used there. This
mography[7] is a solution. Other methods include adaptiveconcerns in particular the theory of large deviatipbg], and
schemeg¢8] where the result of one measurement is used t@ result by Duffield 17] on the large deviation properties of
select the next one. In all these cases, the estimate amouriensor powers of group representations. This will allow us to
to the measurement of an observable on the full input stateompute the rate of exponential convergence explicitly.
p®N, which factorizes into one-site observables. What we are
concerned with here, as in the work of Vidgtlal.[9], is the
search for improved estimates, admitting arbitrary observ-
ables on theN-fold input system, including “entangled” In order to state our result, explicitly, we need to recall the
ones. In contrast t¢9], however, we are not interested in decomposition theory foN-fold tensor products. Through-
out, the one-particle spad¢g will be the d-dimensional Hil-
bert spaceC?, with d<o. Two group representations play a
*Electronic address: m.keyl@tu-bs.de crucial role: first, the representatiof>X®N of the general
"Electronic address: r.werner@tu-bs.de linear group GL{,C) and, secondly, the representation
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p—S, of the permutationp € Sy on N points, represented N!‘12pEsNSpEN(A)S;§ shows that we may assume

by permuting the tensor factors: [En(A),S,]=0 for all permutationsp, without loss of esti-
_ mation quality. A similar argument together with the fact that
Sp 1@ @Yn=Pp-11® - D p-y. (D the quality of the estimate is judged by some criterion not

depending on the choice of a basisthshows that we may
assume in addition thdy(A) commutes with all unitaries
U®N. But this implies according to Eq$3) and (4) that
En(A) must be a function of the projection operators
Py H*N-R,®S, defined at the beginning of this section.
HEN=aR\®Sy, 2) If we require in addition that eacEy(A) be a projection,

Y which is suggestive for ruling out unnecessary fuzzinggs,
must be of the form

The basic resulf18] is that these two representations are
“commutants” of each other, i.e., any operator 4N
commuting with allX®N is a linear combination of the,,
and conversely. This leads to the decomposition

X®NE@7Ty(X)®l, (3)
Y
En(A)=_ 2 Py, ®)
~ Yisy(Y)eA
Sp=®1®my(p), (4)
Y where sy is an arbitrary mapping assigning to each Young

~ frameY (with d rows andN boxeg an estimatesy(Y) € 2. In

where 7y :GL(d,C)—B(Ry) and 7y :Sy—B(Sy) are irre-  other words, the estimation proceeds by first measuring the
ducible representations, and the restrictionmgfto unitary  Young frame projection®, and then computing an estimate
operators is unitary. The summation ind¥xruns over all s, (Y) on the basis of the resutt
Young frames withd rows andN boxes, as described in the  The simplest choice is clearly to take the normalized
Introduction. We denote by the projection onto the cor- Young frames themselves as the estimate, i.e.,
responding summand in the above decomposition.

Let us consider now the estimation problem. As already Sn(Y)=Y/N. 9
discussed in the Introduction, we are searching for an observ-
able Ey describing a measurement o d-level systems, It turns out somewhat surprisingly that with this choice the
whose readouts are possible spectra-t#vel density opera- En(A) from Eq. (8) form an asymptotically exact estimator.

tors. The set of possible spectra will be denoted by By this we mean that, for every, the probability measures
Ky from Eqg.(7) converge weakly to the point measure at the
d spectrunr of p. Explicitly, for each continuous functioinon
3 ={seRYx>0, 21 x=1(, (5) 3 we have
=
wherex>0 denotes the ordering relation & given by lim f f(s)Ky(ds)
N— o 3
s>0:es;>s;,, forall j=1,...d-1. (6) v
— _ @N _
Technically,Ey, must be a positive operator valued measure —h'l[“} f( N)Tl’(p Py)=f(r). (10

on this set, assigning to each measurable subsef a posi-

tive operatorEn(A) e B(H "), whose expectation in any e jllustrate this in Fig. 1, fod=3 and p a density
given state is interpreted as the probability for the measUrésperator with spectrum=(0.6,0.3,0.1). Thei is a triangle
ment to yield a resulse A. _ . with comers A=(1,0,0), B=(1/2,1/2,0), and C
The criterion f_or a good estimatdgy is that, for any =(1/3,1/3,1/3), and we plot the probabilities Ff(*Py)
ogﬁ-partlcle density operatpr the value measured on a state gyery/N e S, The explicit computation uses the Wey! char-
p“" is likely to be close to the true spectrure X of p, i.e.,  goter formula[18] Chap. 9, Sec. 9)1which we do not need

that the probability elsewhere in the paper.
Clearly, the distribution is peaked at the true spectrum and
— ®@N
Kn(A)=Tr En(A)p™] (" our claim is that this will become exact in the limit—c.

To prove convergence we will use large deviation methods
which give us not only the convergence just stated but an
exponential error estimatef the form

is small whenA is the complement of a small ball around
Of course, we will look at this problem for large. So our
task is to find a whole sequence of observatigs, N
=1,2,...,making error probabilities like Eq7) go to zero Ky(A)~exp(—N infl(s)), (11)
asN—oo, scA

The search for efficient estimation strategles can be
simplified greatly by symmetry arguments. To see this, conwhere | denotes a positive function ob, called therate
sider a permutatiop € Sy . If we insert the transformed es- function which vanishes only fos=r.
timator SpEN(A)S; into Eq. (7) we see immediately that For the statement of the main theorem we say that a mea-
Kn(A) remains unchanged. ReplaciBg(A) by the average surable subseh C3, has “small boundary” if its interior is
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FIG. 1. Probability distribution Tg®\Py) for d=3, N
=20,100,500, and =(0.6,0.3,0.1). The sl is the triangle with
cornersA=(1,0,0),B=(1/2,1/2,0),C=(1/3,1/3,1/3).

dense in its closure. A typical choice faris the complement
of a ball around the true spectrum.
Theorem The estimator defined in Eq$8) and (9) is
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The expression fot is the relative entropy19] of the
probability vectorss andr. Relative entropies occur also as
the rate functions in large deviation properties of indepen-
dent identically distributedclassical[20] or quantum[21])
random variables, although there seems to be no direct way
to reduce the above theorem to these standard setups.

IIl. SKETCH OF PROOF

Rather than giving a proof of every detail, our aim here is
to explain why the scaled Young fram&$N appear in the
estimation problem. The crucial observation is that the
Young frame (¢, . ..,Yy) is thehighest weighdf the rep-
resentationry in the ordering> and this ordering is directly
related to picking out the fastest growing exponential in cer-
tain integrals of the measurés, .

The integrals we need to study are the Laplace transforms
of the measureK,. We introduce the “scaled cumulant
generating function”

=i 1| fK ds)eN7s 14
()= lim in | Ky(dse"”, (14

N— o

wherene RY, and7-s is the scalar product. If the measures
Ky behave like Eq(11) the integrand neas behaves like
expN[ »-s—1(s)], and the largest contribution comes from the
fastest growing exponential:

c(n)=sup[7-s—I(s)]. (15

This is an instance of Varadhan's theorg®2], which has a
converse, the Gter-Ellis theoren{[16], Theorem 11.6.1: if
the limit (14) exists and is differentiable then the estimate in
the theorem holds, with the rate function determined from
Eq. (15) by inverse Legendre transformation. We will follow
Duffield [17] by computing the limit(14) from group theo-
retical data.

Consider the “maximally Abelian  subgroup”
CCGL(d,C) of diagonal matrices

pn=diag exp(hy), . .. ,exghy)] (16)

for he CY. Since these commute, all the operaterspp,)
commute in every representation,, and can hence be si-
multaneously diagonalized. The vectoss= (g1, - . - ,4tq)
such thatmy(py) ¥=exp(u-h)y for some nonzero vectap
are calledweightsof the representatiomy, . The dimension
m(u) of the corresponding eigenspace is called timalti-

asymptotically exact. Moreover, we have the error estimateplicity of w. One particular weighfwith multiplicity 1) is the

Iim%ln Kn(A)=infl(s) (12

N— o0 seA

for any setAC3 with small boundary, where the rate func-
tion 1:3 —[0] is

I(s)=2 sj(Ins;—Inr)). (13)
]

Young frameY itself (interpreted as an element Bf) and it
turns out thatY is the maximum(the “heighest weight}
among all weights ofry, in the™ ordering from Eq.(6).
Representation theory of semisimple Lie algelyis shows
that each irreducible, analytic representation of GKX) is
uniquely characterizedup to unitary equivalengeby its
highest weighty.
In order to estimate the integrél4), we need the quan-

tities tr(p®NPy). For simplicity we assume thatis nonsin-
gular, i.e., an element of GH(C). By Eq. (3) we have
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Tr(p*NPy) =Tt my(p) ® 1]=xv(p)dim(Sy),  (17)

where
xv(p) =t my(p)] (18

is the characterof the representationry . Since yy is uni-
tarily invariant[ yy(UpU*) = xv(p)] we may assume with-
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In the same sense we can continue the chain of equivalences

J(h,n)=J"(h,7)=J"(h+7,0~J(h+ 70 (29

=f Kn(ds). (30)
3

Here we have used E@22) for J(h+ %,0), and theh+ »

out loss of generality tha{b is diagonal and its matrix ele- dependence is Containedm}\l(ds) via ph+7]' Together with
ments are arranged in descending order. Using the notatiafe definition ofKy in Eq. (7) this implies

from Eq. (16) this assumption reads
p=pneC with h>0 and X, exgh)=1. (19

i
Hence we can expregs,/(p) in terms of the weights ofry :

XY<p>=§ m(u)exp(u-h), (20)

where the sum is taken over all weighis of 7y. Since
h>0 andYD>>u for all u we see that exp(-h) is the largest
exponential. We therefore estimate

expY-h)< yy(p)<dim(Ry)expY-h). (21)
Hence, if we introduce for any,neR% h,#>0 the two
expressions

J(h,n)szKN(ds)eNM (22)
=2 Tr(pg NPy)eN7 YN (23)
=2 xy(pn)e” Ydim(Sy) (24)
and
J'(h,n)zg e+ 7)-Ydim(Sy) (25)
we get
J'(h, 7)<J(h, n)<dim(Ry)J’(h, ). (26)

If we combine this with the consequence of Weyl's dimen-
sion formula that dinRy) is bounded above by a polyno-

mial p(N) in N, uniformly in Y ([17], Lemma 2.2, and take
logarithms we get

InJ'(h,7)<InJ(h,n)< const XInN+InJ'(h, 7).
(27)

SinceJ’(h,n) grows exponentially ifN its logarithm is lin-
ear inN and we see that(h, ») andJ’(h, ») are asymptoti-
cally equivalent in the sense that

(1N)[InJ(h, 7)—InJ’(h,5)]—0. (28)

J(h, )~ LKN(ds>=KN<2>=Tr(EN<2>p;?+“,7> (31)

=Tr(pp,) = (trpps ). (32)
Hence, ifr ,2=exph,) are the eigenvalues of a nonsingular
density operator, we get for E¢L4) the expression

c(m)=In2 r,exp(n,). (33)

It is then a simple calculus exercise to verify the above
rate function as the Legendre transforrs)=sup][7-s
—c(n)].

This concludes our sketch of proof. In order to expand it
into a full proof, one needs to extend the computation of
c(n) to »l#0, and prove that this extension has the required
regularity properties for the application of the converse of
Varadhan'’s theorem cited above. This has been carried out by
Duffield [17] in a context that is, on the one hand wider,
because it includes tensor powers of much more general rep-
resentations of semisimple Lie groups, but on the other hand
narrower, because it contains only the cased 1 of our
theorem. However, one can extend Duffield’s result by mul-
tiplying his measure&y by the factoryy(p)/xy(1) and us-
ing for this factor the estimate1).

IV. DISCUSSION

Although the estimate we discuss is asymptotically exact,
it is not at all clear whether and in what sense it might be
optimal even for finiteN. We have experimented with vari-
ous figures of merit for estimation and found different “op-
timal” estimators for lowN, rarely coinciding with theE
determined by Eq(9). It is also not at all clear how much
could be gained by optimization here.

An interesting extension will also be the construction of
estimators for the full density operator. It is very suggestive
to compose this out of the above estimator for the spectrum,
and to use for each Young frame a covariant observable to
estimate the eigenbasis pf The density of the covariant
observable might be based on the highest weight vector of
Ty .
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