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Efficient implementation and the product-state representation of numbers
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The relation between the requirement of efficient implementability and the product-state representation of
numbers is examined. Numbers are defined to be any model of the axioms of number theory or arithmetic.
Efficient implementability~EI! means that the basic arithmetic operations are physically implementable and the
space-time and thermodynamic resources needed to carry out the implementations are polynomial in the range
of numbers considered. Different models of numbers are described to show the independence of both EI and
the product-state representation from the axioms. The relation between EI and the product-state representation
is examined. It is seen that the condition of a product-state representation does not imply EI. Arguments used
to refute the converse implication, EI implies a product-state representation, seem reasonable; but they are not
conclusive. Thus this implication remains an open question.

DOI: 10.1103/PhysRevA.64.052310 PACS number~s!: 03.65.Ta, 03.67.Lx
r
T
co
ro
uc

t
en
th
ha
dy
c

f

-

ms
ny
the

ators
ch a

ize
sic

op-

r
ere
re-

h-
m
ent
s of
-
m-
e-
nd

en-
he

e
tion
be

nt.
re-

and
p-
of
t be

on
I. INTRODUCTION

In all physical representations of numbers constructed
date, numbers are represented by strings of numerals o
tensor product states of systems in quantum mechanics.
is the case for macroscopic systems, such as classical
puters, which are in such wide use. It is also true for mic
scopic systems or quantum computers, which are of m
recent interest@1,2#.

The universal use of these representations brings up
question, are these string or tensor product-state repres
tions necessary? Or is it just a matter of convenience ra
than necessity that representations constructed to date
this property? This question will be examined here by stu
ing physical models of the axioms for number theory. Sin
these axioms are supposed to describe natural numbers~the
nonnegative integers!, it follows that any physical model o
the axioms is a physical model of the natural numbers.

Since the~nonlogical! axioms of number theory are re
ferred to often, it is worth stating them explicitly.1 In one
form they are@3,4#

1. SwÞ0,

2. Sw5Sy→w5y,

3. w105w,

4. w1Sy5S~w1y!,

5. w3050,

6. w3Sy5~w3y!1w,

7. ¬~w,0!,

*Email address: pbenioff@anl.gov
1Arithmetic differs from number theory in that Peano’s inducti

axiom is included.
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8. w,y~w5y~y,w,

9. w,Sy↔w,y~w5y.

Here~ and¬ denote ‘‘or’’ and ‘‘not’’ and w,y are number
variables andS is the successor operation.

The reason for the axiomatic approach is that the axio
give a well-defined way to characterize the numbers. A
physical system with states and operators that satisfies
axioms has states that represent the numbers and oper
on the states that represent the arithmetic operations. Su
system is referred to as a~physical! model of the axioms.
This definition is quite useful in that the axioms character
the natural numbers in terms of properties of three ba
operations, the successorS, addition (1), and multiplication
(3). These are referred to here as the basic arithmetic
erations.

In recent work@5,6#, physical models of the axioms fo
the natural numbers, integers, and rational numbers w
studied. Emphasis was laid on the essential role that the
quirement of efficient implementability of the basic arit
metic operations plays in any physical model of the axio
systems for the different types of numbers. This requirem
is an essential component of all computers and in studie
computational complexity@7#. This requirement is not ex
pressed by the axiom systems for the different types of nu
bers. However, from the viewpoint of the importance of d
veloping a comprehensive theory of mathematics a
physics together@8#, such a requirement becomes an ess
tial condition to be satisfied by any physical model of t
axioms.

The condition of efficient implementability applied to th
basic arithmetic operations means that for each opera
there must exist physical procedures that can actually
implemented and for which the implementation is efficie
Efficiency means that the space-time and thermodynamic
sources needed for implementation must be polynomial
not exponential in the number of digits in the numbers re
resented@5#. An equivalent statement that avoids the use
string representations is that the resources required mus
©2001 The American Physical Society10-1
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polynomial in the logarithm of the numbers represented
not polynomial in the numbers.

Here the position taken follows that in Ref.@5# in that any
physical model of natural numbers~and integers and rationa
numbers also! must satisfy both the axioms of number theo
and the condition of efficient implementability of the bas
arithmetic operations. That is, a physical system has st
representing numbers if and only if the states can be prep
efficiently and there exist dynamics for the basic arithme
operations that can be efficiently implemented on the sta
No conditions are placed on the complexity of the system
can be macroscopic or microscopic. For microscopic syst
for which decoherence effects are important@9#, the require-
ment is a minimal limit in that it accepts physical systems
which the basic operations can be applied without loss
coherence. However, more complex operations requi
more resources would be affected significantly by decoh
ence.

In this paper the interest is in the relations between
axioms of number theory, efficient implementability, and t
product-state representation of numbers. Of special intere
the question of whether or not efficient implementability is
sufficient condition for the states representing numbers to
product states. That is, for all physical systems, does effic
implementability imply a product-state representation? Or
there exist physical systems for which the basic arithmet
operations are efficiently implementable on nonproduct s
representations of the numbers?

The wide existence of computers, macroscopic and mic
scopic, that are efficient and are based on the product-s
representation of numbers, is not of much help in decid
this question. Is this a matter of convenience in that th
also exist nonproduct representations for which the ar
metic operations can be efficiently implemented, or can
prove that no such representations exist?

These relations are investigated by first exploring in m
detail in the next section the relation between physical m
els and efficient implementability. Emphasis is laid on qua
tum mechanical systems. Then the description of a mode
given in Sec. III with no assumptions made about the str
ture of the system states representing numbers. The mod
based on a description of operators for several successo
erations instead of just one and on projection operators.
dition and multiplication are defined in terms of polynom
ally many iterations of these simpler operators.

This and other models are used to examine in Sec. IV
relation between efficient implementability, a product-st
representation of numbers, and the axioms of number the
It is seen that the axioms of number theory are independ
of both the product-state representation and the effic
implementability requirements in that there are models of
axioms in which these conditions are true and others
which they are false.

Examination of the relation between efficient impleme
ability and the product-state representation shows that
implication, efficient implementability implies a produc
state representation, is an open question, in spite of a
ments suggesting that it is not valid. The converse impli
tion is proved to be invalid.
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II. PHYSICAL MODELS AND EFFICIENT
IMPLEMENTABILITY

One way to show the need for the restriction of physi
models to those satisfying the efficient implementability co
dition is to consider physical models of the axioms of ari
metic that do not satisfy the requirement. One model t
does not use a product representation consists of a
dimensional lattice of space positions with a particle loca
at any one of the positions. If one site is chosen to be
origin then the statec0 for the particle at the origin repre
sents the number 0 and the state (US)nc05cn represents the
numbern. US implementsS by shifting the particle to an
adjoining site in a fixed direction.

In this model theS operation is clearly efficiently imple-
mentable. However, operations for1 and3 are not efficient
since their definitions in terms ofS show that exponentially
many iterations ofSare required. This model is a good illus
tration of the provable fact that any model in which1 and3
are defined in terms of iterations ofS is not efficient.

These arguments also extend to any physical models
ing product states for unary representations of numbers.
these models implementation of1 and 3 are not efficient
irrespective of whetherS is or is not efficient. For this rea
son, in what follows product state representations will re
to binary representations. Extension tok-ary representations
with k.2 is straightforward, except thatk cannot be too
large2 @5,10#.

There also exist physical models with binary product-st
representations of numbers in which neitherS,1 nor 3 can
be efficiently implemented. An example consists of a row
infinite square wells each containing one spinless parti
The product states representing numbers describe each o
particles in either the ground or first excited state in t
wells. The wells are scaled so that the well widthdj 11 for
the well at sitej 11 is related to that for the sitej well by
dj 115dj /2. Since energy-level separations in thej th well are
proportional to (dj )

22, one sees that the energy resourc
required to implement any of the basic arithmetic operatio
have an exponential dependence on the numbern of wells in
the model.

This example shows that the requirement of efficiency c
be separated from that of physical implementability, but o
over a restricted range of physical parameters. For insta
for n;10215, such a model could probably be construct
even though it would not be practical. However, forn
;100 such a model is impossible to construct as one co
not even physically construct the wells to hold the particl
This follows from the scaling of the well size as inverse
proportional to the spring constant. For instance, in this ca
if d1;1 cm, thend100;10230 cm, which is of the order of
the Planck length.

Other models to consider represent numbers using
tangled states. As an example, consider a system ofn spin

2Basic physical considerations limit the amount of informati
that can be placed in or distinguished in a given space-time volu
@10#.
0-2
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EFFICIENT IMPLEMENTATION AND THE PRODUCT- . . . PHYSICAL REVIEW A 64 052310
1/2 particles contained in potential wells, one particle p
well at positionsx1 ,x2 , . . . ,xn . These are collectively rep
resented by a functionx from 1, . . . ,n to the set ofn posi-
tions. A magnetic field is present as a reference frame
spin alignment along (↑) and opposite (↓) to the field direc-
tion. Let us,x&5 ^ j 51

n us( j ),xj& denote a product state of th
spins wheres is a function from 1, . . . ,n to 0,1. Here 1
denotes↑ or spin along and 0 denotes↓ or spin opposite to
the magnetic-field direction.

In the following, lets be any function as defined abov
except thats(n)50 and let s̄ be obtained froms by ex-
changing ones and zeros at each location. That is,s̄( j )51
2s( j ). Let us& and us̄ & be the corresponding product state
It is clear that all these states are pairwise orthogonal.

Consider states of the form 1/A2(us,x&6us̄,x&) These en-
tangled states are also pairwise orthogonal. Numbers ca
associated with these states as follows:

1

A2
~ us,x&1us̄,x&)⇒(

j 51

n

t j2
j 21 if t5s,

1

A2
~ us,x&2us̄,x&)⇒(

j 51

n

t j2
j 21 if t5 s̄. ~1!

It is clear that these states would be difficult, if not impo
sible to construct, even in the absence of environmental
coherence. Even if they could be constructed, impleme
tion of the arithmetic operations would be very hard, if n
impossible. Yet the space resources occupied by these s
are polynomial inn and they are not excluded by the axiom
of number theory.

These examples strongly suggest that the concep
physical models of the arithmetic axioms should be restric
to models in which the basic arithmetic operations are e
ciently implementable. In this case one can require that
physical system of arbitrary complexity has states that r
resent numbers~is a physical model of the axioms! if and
only if the basic arithmetic operations are efficiently imp
mentable. In this case the states representing numbers
defined by the properties of the efficient dynamics of
arithmetic operations.

The existence of numerous examples of macrosco
computers, and hopefully microscopic ones too, that e
ciently implement the arithmetic operations shows that a
extension of the axioms of arithmetic to include efficie
implementability would be consistent. This follows from th
fact that an axiom system is consistent if and only if it ha
model @3#. Axiomatization of efficient implementability will
not be attempted here as the concept is still too imprec
The main problem is that to say that an operation is imp
mentable means there exists a physical procedure for ca
ing out the operation. However, this requires a precise d
nition of a physical procedure that is not yet available.

In spite of this there is much that can be said about
requirement. The requirement means that for a given op
tion there must exist an efficient implementable dynamics
carrying out the operation. In the case of numbers and Sc¨-
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numbers if and only if there exist Hamiltonians,HS ,H1 ,H3

for efficiently implementing the successor (S), addition
(1), and multiplication (3) operations on suitable states
the system. That is ifS̃,1̃,3̃ are the operators on the phys
cal state space of the system that satisfy the correspon
axioms for number theory, then

e2 iH StSc ^ uE&5S̃c ^ uE8&, ~2!

e2 iH 1t1c ^ c8^ uE&51̃c ^ c8^ uE&5c ^ ~c1c8! ^ uE8&,

~3!

and

e2 iH 3t3ca ^ cb ^ c0^ c0^ uE&

53̃ca ^ cb ^ c0^ c0^ uE&

5ca ^ cb ^ c0^ ~ca3cb! ^ uE8&. ~4!

Here uE& and uE8& denote the states of the environment b
fore and after the interaction. Unitarity requires that the1
operation act on pairs of product states and3 act on qua-
druples of product states. The statec05u0& denotes the
number 0. If each statec with a different subscript corre
sponds to a linear superpositionc5( j cj u j &, whereu j & is the
physical state corresponding to the numberj, then the dy-
namics acts in a standard fashion on each componentu j & in
the superposition forHS and on the product componen
u j & ^ u j 8&, etc.

Probably the best way to express explicitly the requi
ment of efficiency is to note that any dynamical proce
such as those given above for arithmetic operations, is
information manipulation procedure. Such a process is a
quence of alternating information acquisition and process
phases. If the dynamics requiresn bits or qubits of informa-
tion as inputs, then efficient implementation means that
rate of acquiring and processing then bits or qubits must be
polynomial and not exponential inn. This can be expresse
crudely as follows: LetRaq(t) andRpr(t) be the rates, in bits
or qubits per unit time, of information acquisition and pr
cessing by some process. If these rates are independe
time then

R~ t !5H cn12k if rate polynomial in n

cnK2n if rate exponential inn.
~5!

Herec,k,K are constants that depend on the dynamics of
process under consideration. They can also be different
the acquisition and processing phases and any other rele
system parameters.

If the dynamics of a process require the acquisition a
processing ofn bits or qubits of information, the timet re-
quired to carry out the process is given approximately
*0

t R(t)dt;Rt5n or t5c21nk ~polynomial! and t5c21Kn

~exponential!. Which type applies depends on both the pr
cess dynamics and the state representation used.
0-3
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PAUL BENIOFF PHYSICAL REVIEW A 64 052310
If the dynamics of each of the processes for implement
the three basic arithmetic operations for numbers up ton

requires the acquisition and processing ofn bits or qubits,
then efficiency requires that the timestS ,t1 ,t3 given in Eqs.
~2!–~4! are all equal toc21nk, where the constants can b
different for each of the three processes. However, it does
follow that for all physical systems the dynamics of each
these three processes requiresn bits of information.

An example of this is shown by the example conside
earlier of the unary representation of numbers. In this c
the successor operationS is just a shift. Since implementa
tion of the shift is independent of where it is, the informati
required by the dynamics is a constant independent on.
Stated otherwise, the operation is strictly local. The dyna
ics for implementing1 and3 are quite different in that they
are global. For these operations, implementation of the
namics depends on where the particle is relative to the ch
of the origin, or location of the 0 site. Because of this, t
dynamics for these two operations are exponentially s
even though that forS is polynomial. This is why unary
representations are rejected as physical models of num
theory or arithmetic.

These considerations also show that the condition of e
cient implementation is not preserved under arbitrary unit
transformations. IfS̃ is an operator on a Hilbert space,H, of
statesc andU is a unitary operator acting onH, thenUS̃U†

acting on Uc is equivalent to S̃ acting on c in that
^UcuUS̃U†uUc&5^cuS̃uc&. From Eqs.~2!–~4! ~suppressing

the environment states! similar equivalences exist for1̃,

3̃. If W5U ^ U andV5W^ W, thenW1̃W† andW3̃W†

acting on statesWF in H^H andVQ in H^H^H^H are

equivalent to1̃ and3̃ acting onF andQ. However, it does
not follow from the efficiency of implementingHS, H1, H3

on c, F, u that UHSU†, WH1W†, VH3V† are implement-
able or efficient onUc, WF, or VQ.

III. MULTISUCCESSOR MODELS

As was noted, one problem with defining1 and 3 in
terms of the successor operation described in the axiom
that exponentially many iterations are required. This lead
the question of finding relatively simple operations who
properties can be easily axiomatized, and polynomially m
iterations of these operations can be used to define1 and3.

One approach to this problem is to consider a mo
based on the use of many successor operations, not just
In this model the1 and3 operations are defined in terms
polynomially many iterations of the successor operatio
The product representation of numbers is not assumed.

The multisuccessor model is motivated by the binary r
resentation of numbers,2n shown in the right-hand term o
Eq. ~1!. Based on this representation successor opera
S15S,S2 , . . . ,Sj , . . . , areintroduced for eachj. These op-
erators correspond to addition of 2j 21 just asS corresponds
to the11 operation.

If desired, one may expand the axioms for arithmetic
inclusion of axioms for all the successor operators. Howe
this will not be done here as it is not necessary. Also one m
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wonder what has been gained by requiring the effici
implementability of all theSj rather than applying this re
quirement separately to just the three operationsS,1,3.
One reason is that the successor operations are simple
erations than are1 and 3. Also in many physical models
the Sj are related to one another by means of a transfor
tion operatorU that is independent of the indexj. That is,
Sj 115U(Sj ). In these models, which are much used in pra
tice, efficient implementability of all the successors follow
from that of the two operations,S andU.

The model considered here will be a microscopic mo
in which numbers are represented by orthonormal states
Hilbert spaceH with arbitrary tensor product structure. Fo
exampleH could have no tensor product structure or it cou
be a tensor product space where the subspaces are des
by different types of entangled states. This includes a p
sible description using bound entangled states as descr
by Bennett and others@11#. To keep things simple the mode
will be given for arithmetic modulo 2n.

Let A be a set of physical parameters for a quantum s
tem. These could be eigenvalues for some system obs
able. LetVa be a set of operators on the state space of
system indexed by the parametersa in a finite setA of n
parameters. The operatorsVa are required to have the fol
lowing properties@5#:

1. EachVa is a cyclic shift.
2. TheVa all commute with one another.
3. There is just onea for which (Va)251. Let am be this

uniquea.
4. For eachaÞam , there is a uniquea8Þa such that

(Va)25Va8 .
5. For eacha8, if there is anaÞa8 such that (Va)2

5Va8 , thena is unique.
6. For just onea there are noa8 such that (Va8)

25Va .
Let al be this unique value.

Properties 3–6 can be used to establish an orde
a1 ,a2 , . . . ,an of the parameter setA, where a15al , an
5am andVaj 11

5(Vaj
)2 for j ,n. Based on this ordering, th

Vaj
can be considered informally as corresponding to ad

tion of 2j 21. The commutativity and cyclic shift propertie
give the existence of a setB of pairwise orthogonal sub
spaces of states such that for eacha and each subspaceb in
B, Vab is in B and is orthogonal tob.

The properties can also be used to show that there arn

orthogonal subspaces inB that can be given a cyclic orderin
by iterations ofVa1

. However, there is no association of th

property parameters inA to the subspacesb. Also no sub-
space is associated with the number 0. From now on
subspaces are assumed to be one dimensional, sob can be
represented as a stateub&.

One way to achieve this is to define operators that can
used to describe this association. To this end letpe$a,g%
denote the two values of some physical parameter assoc
with an observable that is different from that associated w
the values inA. Define 2n projection operatorsPa,p and n
unitary operatorsUa to have the following properties:

7. EachPa,p is 2n21 dimensional and all thePa,p com-
mute with one another. AlsoPa,a51̃2Pa,g for eacha.
0-4
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EFFICIENT IMPLEMENTATION AND THE PRODUCT- . . . PHYSICAL REVIEW A 64 052310
8. UaPa8,p5Pa8,pUa if aÞa8.
9. UaPa,a5Pa,gUa ; UaPa,g5Pa,aUa .
10. For eacha there is exactly onep such thatPa,pub&

5ub&.
Properties 7 and 10 show that to each stateub& there is

associated a specific functions from the setA to $a,g%. The
association is given by

Psub&5 )
aPA

Pa,s(a)ub&5ub&. ~6!

Uniqueness is provided by the next property:

11. Psub&5Psub8& implies thatub&5ub8&.

Since there are 2n functions s and statesub&, the above
shows that eachs is associated with someub&.

The relation of thePa,p andUa to theVa is provided by
the following condition:

12.
Va5UaPa,a1VSaUaPa,g if aÞam ;

Vam
5Uam

.

Heream is the value given by property 3 for theVa andSa
is the unique value ofa8 that satisfies property 4. This use
the successor notation is based on the fact that prope
3–6 of theVa express a successor operation and an orde
on the setA that satisfies the number theory axioms 1,2 a
7–9 listed in the introduction.

These operators can be used to define an addition ope
1̃ on pairsub& ^ ub8& of states by

1̃ub& ^ ub8&5 )
aPA

~Pa,a ^ 1̃1Pa,g ^ Va!ub& ^ ub8&

5ub& ^ ub1b8&. ~7!

The ‘‘1 ’’ without the tilde in ub1b8& refers to the result of
arithmetic addition. It does not denote the coherent s
ub&1ub8& of ub& andub8&. The unordered product is used
the operatorsPa,a ^ 1̃1Pa,g ^ Va for different a commute
with one another.

The unique association of a functions with each stateub&,
property 10, shows that the addition operator can also
represented by

1̃ub& ^ ub8&5ub& ^ )
aPA

~Va!s8(a)ub8&. ~8!

Heres8 is obtained froms by replacinga with 0 andg with
1.

It follows from the definition of1̃, Eq. ~7!, that the state
ub& satisfying Paub&5ub& where a is the constanta se-
quence is the additive identity. As shown by the numb
theory axioms, this state represents the number 0. It follo
that any stateub& is related to the 0 stateub&0 by

ub&5)
aeA

~Va!s(a)ub&0 , ~9!
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~6!.

To define the multiplication operator it is quite useful
first define the operatorW by

Wub&5ub1b&. ~10!

W corresponds informally to the addition ofub& to itself.
Iteration of W in Eq. ~10! gives the result thatWj 11ub&
5uWjb1Wjb&. Use of Eq.~9!, and Eq.~8! gives the result
that

Wh11ub&5 )
j 51,sj 51

n2h

Vaj 1h
ub0&, ~11!

if sj51 for some j <n2h. OtherwiseWh11ub&5ub0&. It
follows thatWhub&5ub0& for all h>n11.

A definition of 3̃ can now be given in terms ofW and
1̃. It is defined on triples of states by@5#

3̃ub&1^ ub8&2^ ub0&3

5)
j 52

n

@~Paj ,a ^ 1̃2,31Paj ,g ^ 1̃2,3!W2#

3~Pa1 ,a ^ 1̃2,31Pa1 ,g ^ 1̃2,3!

3ub&1^ ub8&2^ ub0&35ub&1^ ub0&2^ ub3b8&3 .

~12!

Here W is defined by Eq.~10! and the subscripts ‘‘2’’ and
‘‘2,3’’ on the operators refer to the state subscripts in t
triple product.ub0& represents the number 0.

As defined,3̃ is not unitary. This can be fixed by expand
ing 3̃ to act on quadruples of the formub&1^ ub8&2^ ub0&3
^ ub0&4. One starts by copyingub8&2 to ub0&4. Then at the
conclusion of the action,ub0&2 and ub8&4 are exchanged
Also in order to ensure unitarity3̃ was defined to add the
result of multiplication to whatever state is the 3rd comp
nent. That is, ifub9&3Þub0&3, the final 3rd state componen
can be represented asub91(b3b8)&.

IV. IS THE PRODUCT-STATE REPRESENTATION
NECESSARY?

There is much to discuss about the results obtained so
One feature is that each stateub& is in a simultaneous eigen
state of all the valuesa in A. This follows from property 10.
If qa is the projection operator for an eigenspace associa
with a thenqaub&5ub& for all a and all ub&.

This may seem counterintuitive but this property is sa
fied by most product-state models. For example, letA be a
set ofn space positions of potential wells each containing
single spin 1/2 particle. There is a common magnetic field
determine the spin direction. Product states have the f
us,A&5 ^ aeAus(a),a&, or us,a&5 ^ j 51

n us( j ),a( j )& in a more
standard form. In the second forms and a are respective
functions from 1, . . . ,n to $↑,↓% and from 1, . . . ,n to A. It
0-5
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is clear that for any of the 2n statesus,a&, qaus,a&5us,a&
for eachaPA and alls.

Based on this one might conclude that the properties
the Va and the projection and unitary operators given abo
are sufficient to prove that the statesub& have a product
structure. This is not the case.

To see this consider the entangled state representatio
numbers by Eq.~1! for the model described above. In th
model letQs,A andQs̄,A be projection operators for the stat
us,A& andus̄,A&, respectively. That is,Qs,Aus,A&5us,A& and
Qs̄,Aus̄,A&5us̄,A&. Here, as before,s(am)50 and s̄(a)51
2s(a) for eachaPA. am is the maximum value ofA ac-
cording to property 3.

Define the unitary operatorU by

1

A2
~ us,A&1us̄,A&)5Uus,A&,

1

A2
~ us,A&2us̄,A&)5Uus̄,A&. ~13!

Unitarity follows from the fact that ^s8,AuU†Uus,A&
5ds,s8 .

Based on this one sees thatPt,A5UQt,AU† for any se-
quencet where t5s or t5 s̄. So Pt,A satisfies Eq.~6! with
ub&5Uut,A&. Note that in Eq.~6! Ps[Ps,A .

From this one has

Pa,p5(
t

t(a)5pPt,A .

If Ua and Va are defined by properties 7–12, it is straigh
forward to show that theVa have properties 1–6. In this cas
the definitions of1̃ and3̃ in terms of these operators appl
Proofs that these operators satisfy the axioms of num
theory are tedious but also straightforward@5,6#.

This constitutes a proof that nothing in the axioms
number theory implies a product-state representation mo
even for multiple successor models based on the projec
operators and theVa with the properties described. It follow
that the axioms of number theory are independent of
product-state representation condition in that there are m
els of the axioms in which numbers are represented by p
uct states and models in which they are represented by
tangled states.

The number theory axioms are also independent of
requirement that the basic arithmetic operations are e
ciently implementable. This is shown by both the we
known existence of physical models in which the operatio
are physically implementable and the example given in S
II of a model containing a row of infinite square wells whe
the well width decreased exponentially with well positio
For this example the operations are not efficient and
therefore, not efficiently implementable.

It remains to address the relation between the requirem
of efficient implementability and product-state represen
tions of numbers. The example noted above shows that
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implication: product-state representation of numbers imp
the efficient implementability of the basic arithmetic oper
tions is not valid. The reverse implication is more difficult.
fact one can give arguments that suggest that efficient im
mentability is independent of the product representation
numbers. That is, it neither implies or is implied by the pro
uct representation condition.

It is worth examining this in more detail. To prove th
efficient implementability does not imply a product-state re
resentation it is sufficient to show some entangled repres
tation, such as that for Eq.~1!, for which the successor op
erators Va defined by properties 1–6,12 are efficient
implementable.

To this end assume the entangled representation of n
bers given by Eq.~1! with the n physical systems located a
described at space sitesx1 , . . . ,xn . Then the physical pro-
cedure for implementing eachVa would have to include co-
herent interactions with all then physical systems. The inter
actions between the component systems would have
extend coherently over the space region occupied by thn
systems.

It is reasonable to expect that the degree of difficulty,
resources needed, to implement theVa would increase poly-
nomially with n. This is based on the argument that the ran
over which the interactions need to be coherent increa
linearly with n. This suggests that if theVa are efficiently
implementable for physical states of the form of Eq.~1! for
somen, they are efficiently implementable for alln even
though the resources required for implementation might
crease with a high power ofn. One would not expect the
resources required to increase exponentially withn.

This type of inductive reasoning, combined with the fa
that for n52 the two operatorsVa should be physically
implementable, suggests that the implication is valid. Phy
cal implementability forn52 is based on the fact that th
states shown in Eq.~1! are the four Bell states.

The problem with this argument is that, although it m
be reasonable, it does not constitute a rigorous proof. La
ing is a discussion of then dependence of the resource
required to overcome the effects of decoherence@12,13# in-
cluding the use of quantum error correction codes@14#. Also
lacking is a precise definition of physical implementability
a procedure. Without this it is difficult to show conclusivel
in spite of the above argument of reasonableness, that
cient implementability does not imply a product represen
tion of numbers.

The above shows that the properties of numbers and
basic arithmetic operations cannot be used to determin
efficient implementability implies a product-state represen
tion of numbers. One must look elsewhere for such a pro
Another approach is based on the fact that all physical p
cesses and computations are specific examples of infor
tion manipulation processes. In general, every such pro
consists of a sequence of alternating information-acquisi
phases, information-processing phases, and poss
information-distribution phases. This includes computatio
and tasks performed by robots, microscopic@15# or macro-
scopic.
0-6
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If the dynamics of an information-manipulation proce
depends on or is sensitive ton bits or qubits of information
then at leastn bits or qubits of information must be acquire
and processed. Then the~reversible! dynamics of the proces
is represented by a unitary step operatorU acting on the 2n

dimensional Hilbert space of states of then qubits. Since one
is interested in the time development of the states of
n qubits, it makes sense to choose the product basisu b & 5
^ j 51gnub j& j , whereub j& j is a basis state for thej th qubit,
as the reference basis for then qubits rather than some en
tangled basis.

This abstract representation of the dynamics of ann qubit
information theoretic process is related to physical proces
through unitary mapsW from the basis statesub& to a basis
of physical states of some physical system that span an

dimensional Hilbert subspace of states of the system@5#.
~See also Violaet al. @16# for a discussion regarding the re
lation between qubits and physical systems.! The dynamical
process on the states of the physical system correspondi
the action ofU on the qubits is represented by the opera
WUW†.

It is to be noted that there is no requirement that the m
W take product qubit states into product states of differ
physical degrees of freedom of the physical system. T
statesWub& can just as well be entangled states of the phy
cal system. Whether they are entangled or product states
pends onW.

It is also the case that the requirement of efficient imp
mentability applies to the implementation of the opera
WUW† as this corresponds to a physical process. The
quirement does not apply to the more abstractU as this is an
abstract information theoretic dynamics representing m
different physical processes, each characterized by a di
ent mapW from the information theoretic qubit states
different Hilbert spaces of physical states of different s
tems.
th
r
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This situation makes it unlikely that anything is to b
gained by using the more abstract information dynamics
prove or disprove that efficient implementability implies
does not imply a product-state representation. If one co
prove the implication, then this would restrict the mapsW to
be maps from product qubit states to product states of ph
cal degrees of freedom. One must conclude that the impl
tion, efficient implementability of a process implies
product-state representation of the physical states of a sy
on which the process is to be carried out, is an open ques

V. DISCUSSION

It must be emphasized that the arguments given befor
suggest that the implication does not hold for states rep
senting numbers do not constitute a proof. As such, they
not contradict the open question conclusion stated above
has been noted, a problem in giving such a proof is the l
of an exact characterization of physical implementabili
Lacking this, it is difficult to make further progress in th
direction.

However, the work done here does show that the con
tions of efficient implementability and of a product-state re
resentation of numbers are independent of the axioms
number theory. The result that information theoretic arg
ments do not help to determine the validity of the implic
tion, efficient implementability implies product-state repr
sentation, is a consequence of the assumed separatio
abstract qubit states and their dynamics from states and
namics of real physical processes to which they are rela
through the mapsW. If this assumed picture turns out not t
be valid, then the argument may have to be revised.
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