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Efficient implementation and the product-state representation of numbers
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The relation between the requirement of efficient implementability and the product-state representation of
numbers is examined. Numbers are defined to be any model of the axioms of humber theory or arithmetic.
Efficient implementabilitf EI) means that the basic arithmetic operations are physically implementable and the
space-time and thermodynamic resources needed to carry out the implementations are polynomial in the range
of numbers considered. Different models of numbers are described to show the independence of both El and
the product-state representation from the axioms. The relation between El and the product-state representation
is examined. It is seen that the condition of a product-state representation does not imply EIl. Arguments used
to refute the converse implication, El implies a product-state representation, seem reasonable; but they are not
conclusive. Thus this implication remains an open question.
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I. INTRODUCTION 8. wyyw=y\yy<w,

In all physical representations of numbers constructed to
date, numbers are represented by strings of numerals or by
tensor product states of systems in quantum mechanics. This
is the case for macroscopic systems, such as classical corRere\,/ and— denote “or” and “not” and w,y are number
puters, which are in such wide use. It is also true for microvariables and is the successor operation.
scopic systems or quantum computers, which are of much The reason for the axiomatic approach is that the axioms
recent interesfl1,2]. give a well-defined way to characterize the numbers. Any

The universal use of these representations brings up thehysical system with states and operators that satisfies the
question, are these string or tensor product-state represent&ioms has states that represent the numbers and operators
tions necessary? Or is it just a matter of convenience rathesn the states that represent the arithmetic operations. Such a
than necessity that representations constructed to date haggstem is referred to as @hysica) model of the axioms.
this property? This question will be examined here by study-This definition is quite useful in that the axioms characterize
ing physical models of the axioms for number theory. Sincethe natural numbers in terms of properties of three basic
these axioms are supposed to describe natural nunithers operations, the successgraddition (+), and multiplication
nonnegative integeysit follows that any physical model of (x). These are referred to here as the basic arithmetic op-
the axioms is a physical model of the natural numbers.  erations.

9. w<Sy—w<y\/w=Yy.

Since the(nonlogica) axioms of number theory are re-  |n recent work[5,6], physical models of the axioms for
ferred to often, it is worth stating them expliciflyin one  the natural numbers, integers, and rational numbers were
form they are{3,4] studied. Emphasis was laid on the essential role that the re-

quirement of efficient implementability of the basic arith-
1. Sw#0, metic operations plays in any physical model of the axiom
systems for the different types of numbers. This requirement
2. Sw=Sy-w=y, is an essential component of all computers and in studies of
computational complexity7]. This requirement is not ex-
3. w+0=w, pressed by the axiom systems for the different types of num-

bers. However, from the viewpoint of the importance of de-
veloping a comprehensive theory of mathematics and
physics togethel8], such a requirement becomes an essen-
tial condition to be satisfied by any physical model of the

4. w+Sy=S(w+y),

. wx0=0, axioms.

The condition of efficient implementability applied to the
6. wWXSy=(wXy)+w, basic arithmetic operations means that for each operation
there must exist physical procedures that can actually be

7. —(w<0), implemented and for which the implementation is efficient.
Efficiency means that the space-time and thermodynamic re-
sources needed for implementation must be polynomial and

*Email address: pbenioff@anl.gov not exponential in the number of digits in the numbers rep-

Arithmetic differs from number theory in that Peano’s induction resented5]. An equivalent statement that avoids the use of
axiom is included. string representations is that the resources required must be
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polynomial in the logarithm of the numbers represented and Il. PHYSICAL MODELS AND EFFICIENT
not polynomial in the numbers. IMPLEMENTABILITY

nge the position taken follows that. in RES] in that any One way to show the need for the restriction of physical
physical model of natural numbetand integers and rational

. . models to those satisfying the efficient implementability con-
numbers alspmust satisfy both the axioms of number theo.rydition is to consider physical models of the axioms of arith-

and the.condmon. of eff|C|en.t |mpleme'ntab|l|ty of the basic metic that do not satisfy the requirement. One model that
arithmetic operations. That is, a physical system has stateds : :
es not use a product representation consists of a one-

representing numbers if and only if the states can be prepare . . L . .

- . . o . dimensional lattice of space positions with a particle located
efficiently and there exist dynamics for the basic arithmetic t an £ h i if ite is ch 0 be th
operations that can be efficiently implemented on the states. . " y one ot the posflons. 1 oné sSHe 1S chosen 1o be the
No conditions are placed on the complexity of the system. iernain then the statel, for the part|ncle at the origin repre-
can be macroscopic or microscopic. For microscopic systemeents the number 0 and the stalts]" o= ¥, represents the
for which decoherence effects are importfdi; the require- "umbern. Us implementsS by shifting the particle to an
ment is a minimal limit in that it accepts physical systems on2djoining site in a fixed direction. o .
which the basic operations can be applied without loss of [N this model theS operation is clearly efficiently imple-
coherence. However, more complex operations requiringneéntable. However, operations forandx are not efficient
more resources would be affected significantly by decohersince their definitions in terms & show that exponentially
ence. many iterations oS are required. This model is a good illus-

In this paper the interest is in the relations between thdration of the provable fact that any model in whi¢hand X
axioms of number theory, efficient implementability, and theare defined in terms of iterations 6fis not efficient.
product-state representation of numbers. Of special interest is These arguments also extend to any physical models us-
the question of whether or not efficient implementability is aing product states for unary representations of numbers. For
sufficient condition for the states representing numbers to béhese models implementation ef and X are not efficient
product states. That is, for all physical systems, does efficieritrespective of whetheg is or is not efficient. For this rea-
implementability imply a product-state representation? Or dgson, in what follows product state representations will refer
there exist physical systems for which the basic arithmeticalo binary representations. Extensionki@ry representations
operations are efficiently implementable on nonproduct statwith k>2 is straightforward, except tha cannot be too
representations of the numbers? largé® [5,10].

The wide existence of computers, macroscopic and micro- There also exist physical models with binary product-state
scopic, that are efficient and are based on the product-statepresentations of numbers in which neiti$ef nor X can
representation of numbers, is not of much help in decidingoe efficiently implemented. An example consists of a row of
this question. Is this a matter of convenience in that therénfinite square wells each containing one spinless particle.
also exist nonproduct representations for which the arithThe product states representing numbers describe each of the
metic operations can be efficiently implemented, or can ongarticles in either the ground or first excited state in the
prove that no such representations exist? wells. The wells are scaled so that the well width , for

These relations are investigated by first exploring in moreghe well at sitej +1 is related to that for the sitewell by
detail in the next section the relation between physical modd; , 1 =d;/2. Since energy-level separations in ftie well are
els and efficient implementability. Emphasis is laid on quan{roportional to (1,—)‘2, one sees that the energy resources
tum mechanical systems. Then the description of a model igzquired to implement any of the basic arithmetic operations
given in Sec. Il with no assumptions made about the struchave an exponential dependence on the numlzgwells in
ture of the system states representing numbers. The modeltise model.
based on a description of operators for several successor op- This example shows that the requirement of efficiency can
erations instead of just one and on projection operators. Adse separated from that of physical implementability, but only
dition and multiplication are defined in terms of polynomi- over a restricted range of physical parameters. For instance,
ally many iterations of these simpler operators. for n~10— 15, such a model could probably be constructed

This and other models are used to examine in Sec. IV theven though it would not be practical. However, for
relation between efficient implementability, a product-state~100 such a model is impossible to construct as one could
representation of numbers, and the axioms of number theorpot even physically construct the wells to hold the particles.
It is seen that the axioms of number theory are independertthis follows from the scaling of the well size as inversely
of both the product-state representation and the efficienproportional to the spring constant. For instance, in this case,
implementability requirements in that there are models of théf d;~1 cm, thend;oq~10"3° cm, which is of the order of
axioms in which these conditions are true and others inhe Planck length.
which they are false. Other models to consider represent numbers using en-

Examination of the relation between efficient implement-tangled states. As an example, consider a system gin
ability and the product-state representation shows that the
implication, efficient implementability implies a product-
state representation, is an open question, in spite of argu-Basic physical considerations limit the amount of information
ments suggesting that it is not valid. The converse implicathat can be placed in or distinguished in a given space-time volume
tion is proved to be invalid. [20].
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1/2 particles contained in potential wells, one particle perdinger dynamics, a physical system has states that represent
well at positionsxy,X,, ... X,. These are collectively rep- numbers if and only if there exist Hamiltoniart$g,H . ,H
resented by a functior from 1,... n to the set ofn posi- for efficiently implementing the successof)( addition
tions. A magnetic field is present as a reference frame fo¢+), and multiplication (<) operations on suitable states of

spin alignment along(() and opposite () to the field direc-  the system. That is i,+, % are the operators on the physi-
tion. Let|s,x)=®[_,[s(j),x;) denote a product state of the cal state space of the system that satisfy the corresponding
spins wheres is a function from 1...,n to 0,1. Here 1  axioms for number theory, then
denotes| or spin along and O denotésor spin opposite to
the magnetic-field direction. e He'sye|E)=Syx|E"), 2)

In the following, lets be any function as defined above
except thats(n)=0 and lets be obtained fror‘r§_by ex- e Mitiy® ¢’®|E):1¢® V' |EY=y(p+ ¢ )R |E"),
changing ones and zeros at each location. Thas(ig,=1 3)

—s(j). Let|s) and |§> be the corresponding product states.
It is clear that all these states are pairwise orthogonal. and

Consider states of the form+i2(|s,x) = s,x)) These en- CiHot
tangled states are also pairwise orthogonal. Numbers can be e MY, @ Y@ @ o |E)
associated with these states as follows: _
=X h® h® tho® ho®|E)
1

Sls0tls0)=2 4270 i t=s =@ Y@ ho® (Yo X Y ®E").  (4)

Here|E) and|E’) denote the states of the environment be-
1 — ! -1 — fore and after the interaction. Unitarity requires that the
E(|§'§>_|S’§>):>le 42 if t=s. (1) operation act on pairs of product states andact on qua-
druples of product states. The statg=|0) denotes the
It is clear that these states would be difficult, if not impos—number 0. If. each statg W'Fh a dlffergnt subscr_|pt_ corre-
sible to construct, even in the absence of environmental dePONdS to a linear superpositigh=2c,|j), where|j) is the
coherence. Even if they could be constructed, implementa2hysical state corresponding to the numbethen the dy-
namics acts in a standard fashion on each compdmgri

tion of the arithmetic operations would be very hard, if not o
impossible. Yet the space resources occupied by these Sta%@%};er%osmon foHs and on the product components
D®lj’), etc.

are polynomial im and they are not excluded by the axioms L )
Probably the best way to express explicitly the require-

of number theory.
Y dpent of efficiency is to note that any dynamical process,

These examples strongly suggest that the concept _ _ . . .
physical models of the arithmetic axioms should be restrictegUCh as those given above for arithmetic operations, is an
information manipulation procedure. Such a process is a se-

to models in which the basic arithmetic operations are effi- e ) o .
ciently implementable. In this case one can require that anflu€nce of alternatlng_lnforma.tlon acquisition and' processing
physical system of arbitrary complexity has states that repPhases. If the dynamics requiresits or qubits of informa-
resent numbersis a physical model of the axiomnsf and tion as inputs, then efficient implementation means that the
only if the basic arithmetic operations are efficiently imple- at€ Of acquiring and processing theits or qubits must be
mentable. In this case the states representing numbers dP@lynomial and not exponential im This can be expressed

defined by the properties of the efficient dynamics of theSrudely as follows: LeR,4(t) andR,(t) be the rates, in bits
arithmetic operations. or qubits per unit time, of information acquisition and pro-

The existence of numerous examples of macroscopiEessmg by some process. If these rates are independent of

computers, and hopefully microscopic ones too, that effilime then

ciently implement the arithmetic operations shows that any cnt % if rate polvnomial in n
extension of the axioms of arithmetic to include efficient R(t)= poly (5)
implementability would be consistent. This follows from the cnK™" if rate exponential inn.

fact that an axiom system is consistent if and only if it has a
model[3]. Axiomatization of efficient implementability will Herec,k,K are constants that depend on the dynamics of the
not be attempted here as the concept is still too imprecisgarocess under consideration. They can also be different for
The main problem is that to say that an operation is implethe acquisition and processing phases and any other relevant
mentable means there exists a physical procedure for carrgystem parameters.
ing out the operation. However, this requires a precise defi- If the dynamics of a process require the acquisition and
nition of a physical procedure that is not yet available. processing oh bits or qubits of information, the timere-

In spite of this there is much that can be said about thigjuired to carry out the process is given approximately by
requirement. The requirement means that for a given operg-,R(t)dt~Rt=n or t=c~!n* (polynomia) andt=c™ K"
tion there must exist an efficient implementable dynamics foexponentigl. Which type applies depends on both the pro-
carrying out the operation. In the case of numbers and ‘Schra@ess dynamics and the state representation used.
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If the dynamics of each of the processes for implementingvonder what has been gained by requiring the efficient
the three basic arithmetic operations for numbers up™o 2implementability of all theS; rather than applying this re-
requires the acquisition and processingnobits or qubits, quirement separately to just the three operati&ns,X.
then efficiency requires that the timest, ,t, givenin Eqs. One reason is that the successor operations are simpler op-
(2)_(4) are all equa| '[a:*]-nk7 where the constants can be erations than are- and X. Also in many physical models
different for each of the three processes. However, it does ndbe S; are related to one another by means of a transforma-
follow that for all physical systems the dynamics of each oftion operatorU that is independent of the indgx That is,
these three processes requinesits of information. Sj+1=U(S). In these models, which are much used in prac-

An example of this is shown by the example consideredice: €fficient implementability of all the successors follows
earlier of the unary representation of numbers. In this casfOm that of the two operation§andU. .
the successor operatidhis just a shift. Since implementa- . Th_e model considered here will be a microscopic model
tion of the shift is independent of where it is, the information'" which numbers_ are re_presented by orthonormal states in a
required by the dynamics is a constant independent. of Hilbert spaceH with arbitrary tensor product structur_e. For
Stated otherwise, the operation is strictly local. The dynam_exampleH could have no tensor product structure or it COUIq
ics for implementingt andx are quite different in that they be a tensor product space where the subspaces are described

- - ; by different types of entangled states. This includes a pos-
are global. For these operations, implementation of the dy%ible description using bound entangled states as described

namics depends on where the particle is relative to the choi ) ;
of the origin, or location of the 0 site. Because of this, thgb)./ Benngtt and oth.er[il].. To keep things simple the model
ill be given for arithmetic modulo 2

dynamics for these two operations are exponentially slow .
y b b y Let A be a set of physical parameters for a quantum sys-

even thoug_h that foS .is polynomial .This Is why unary m. These could be eigenvalues for some system observ-
representations are rejected as physical models of numbgi : 9 y
able. LetV, be a set of operators on the state space of the

theory or arithmetic. : indexed by th " finit A of
These considerations also show that the condition of effi®Y>€M tm ex_l?h y etparame ersn_adlr:| ehse tr? ? |
cient implementation is not preserved under arbitrary unitar arameters. 1he opera Ov§, are required to have the fol-
= owing propertieq5]:

transformations. I5is an operator on a Hilbert spack, of

statesyy andU is a unitary operator acting oH, then usut 1. EachV, is a cyclic shift.

acting _on Uy is equivalent toS acting on ¢ in that 2. TheV, all commute with one another.

(Uy|USUT|U )= (4|9 ¢). From Eqs(2)—(4) (suppressing 3. There is just ona for which (V,)?=1. Leta,, be this

the environment statessimilar equivalences exist fog-,  uniquea. _ _ )

% If W=U®U andV=WeW, thenWiw' andwxw' (V4).2£(:/r eacha#a,,, there is a uniqua’#a such that
a. a'-

acting on state$V® in HoH andVO in HOHQHKH are

equivalent to+ and X acting on® and®. However, it does
not follow from the efficiency of implementinglg, H ., H
on ¢, ®, §thatUHUT, WH, W', VH, V' are implement-
able or efficient orlJ ¢y, W®, or VO.

5. For eacha’, if there is ana#a’ such that ¥,)?
=V, , thenais unique.

6. For just onea there are n@’ such that {/,/)?=V,.
Let a, be this unique value.

Properties 3-6 can be used to establish an ordering
a;,a,, ...,a, of the parameter seA, wherea;=a,, a,
1. MULTISUCCESSOR MODELS =apandV, = (Vaj)2 for j<n. Based on this ordering, the
V,. can be considered informally as corresponding to addi-

I ni I ] .
As was noted, one pmblem with de_flnlng and x "N tion of 2. The commutativity and cyclic shift properties
terms of the successor operation described in the axioms IS

that exponentially many iterations are required. This leads tgve the existence of a séf of pairwise orthogonal sub-

: - ) ) . Spaces of states such that for eacand each subspaggin
the question of finding relatively simple operations whose V.3 is in B and is orthogonal tgs.

properties can be easily axiomatized, and polynomially man)ﬁ’ The properties can also be used to show that there re 2

iterations of these operations can be used to defirand rthogonal subspaces that can be given a cyclic ordering

One approach to this problem is to consider a modenﬁé/ iterati VY th . i £ th
based on the use of many successor operations, not just one. iterations 0fVa, . HOWEVer, there IS no association of the

In this model the+ andx operations are defined in terms of Property parameters iA to the subspaceg. Also no sub-

polynomially many iterations of the successor operationsSPace is associated with the number 0. From now on the

The product representation of numbers is not assumed.  Subspaces are assumed to be one dimensiong, can be
The multisuccessor model is motivated by the binary repfepresented as a stdie).

resentation of numbers 2" shown in the right-hand term of ~ One way to achieve this is to define operators that can be

Eq. (1). Based on this representation successor operatorgsed to describe this association. To this endplefe, v}

$,=SS;,....5, ..., areintroduced for eaci These op- denote the two values of some physical parameter associated
erators Correspond to addition Of? just asS Corresponds with an observable that is different from that associated with
to the + 1 operation. the values inA. Define 2 projection operator®, , andn

If desired, one may expand the axioms for arithmetic byunitary operatordJ, to have the following properties:
inclusion of axioms for all the successor operators. However, 7- EachPg is 2" dimensional and all the, , com-
this will not be done here as it is not necessary. Also one maynute with one another. AlsB, ,=1—P, , for eacha.
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8. UaPa p=Pa pU, if a#a’.

9.UaPa,=PayUas UgPq =Py, Us.

10. For eacha there is exactly ong such thatP, ,|3)
=[B).

Properties 7 and 10 show that to each st#te there is
associated a specific functienfrom the setA to {«,y}. The
association is given by

P§|ﬁ>=al;[A Pas@!B8)=18). (6)

Uniqueness is provided by the next property:

11. P¢B)=P¢B’) implies that| 8)=|B").

Since there are 2functions s and stateg3), the above
shows that each is associated with som¢).

The relation of theP, , andU, to theV, is provided by
the following condition:

Va:UaPa,a+VSaUaPa,y
Vo, =U, .

m

if a#an;
12.

m

Herea,, is the value given by property 3 for the, andSa

PHYSICAL REVIEW A 64 052310

wheres is the unique sequence associated Wjih by Eq.
(6).

To define the multiplication operator it is quite useful to
first define the operatd/ by

WIB)=[B+B).

W corresponds informally to the addition ¢B) to itself.
lteration of W in Eq. (10) gives the result thaw **|g)
=|W!B+W!B). Use of Eq.(9), and Eq.(8) gives the result
that

(10

n—h

wh+1|,8>=jfﬂ Va,lBo), (1D
o

if s;=1 for somej<n—h. OtherwiseW"*!|8)=|B0). It
follows thatW"| 8)=|B,) for all h=n+1.

A definition of X can now be given in terms &f and
T . It is defined on triples of states §§]

X|B8)1®|B")2®|Bo)s

n
= 11;[2 [( Paj «®Lyat Paj A® F29W,]

is the unique value od’ that satisfies property 4. This use of
the successor notation is based on the fact that properties
3-6 of theV, express a successor operation and an ordering
on the setA that satisfies the number theory axioms 1,2 and

X (Pa, W®1pat Pa, y® +29)

7-9 listed in the introduction.

These operators can be used to define an addition operator

T on pairs|B)®|B’) of states by

Tlpyelp)=11 (Pa.e1+Pa,0ValB)El6")

=[B)®|p+B"). @)

The “+" without the tilde in |8+ B’) refers to the result of

arithmetic addition. It does not denote the coherent sum

X[B)1®|B")2®|Bo)3=18)1®|Bo)2®|BXB')3.
(12

Here W is defined by Eq(10) and the subscripts “2” and
“2,3" on the operators refer to the state subscripts in the
triple product.|B,) represents the number 0.

As defined X is not unitary. This can be fixed by expand-
ing X to act on quadruples of the foriB);®|B’),®|Bo)s
®|Bo)a. One starts by copyingiB’), to | Bg)s. Then at the
conclusion of the action|By), and|B’), are exchanged.

|8)+|B') of | 8) and|8"). The unordered product is used as AlSO in order to ensure unitarit was defined to add the

the operatorsPa,a®~1+ Pa,®V, for different a commute
with one another.
The unique association of a functiswith each stat¢s),

result of multiplication to whatever state is the 3rd compo-
nent. That is, if| 8")3#|Bo)3, the final 3rd state component
can be represented §8"+(BXB')).

property 10, shows that the addition operator can also be

represented by

1lﬁ>®|ﬁ'>=|ﬁ>®aTEIA (V)@ 8. ®)

Heres' is obtained frons by replacinga with 0 andy with
1.

It follows from the definition of+, Eq. (7), that the state
|B) satisfying P,|B)=|B) where « is the constanix se-

IV. IS THE PRODUCT-STATE REPRESENTATION
NECESSARY?

There is much to discuss about the results obtained so far.
One feature is that each stdfe) is in a simultaneous eigen-
state of all the valuea in A. This follows from property 10.

If g, is the projection operator for an eigenspace associated
with a thenq,|B)=|B) for all a and all|3).

This may seem counterintuitive but this property is satis-
fied by most product-state models. For example Aldie a

quence is the additive identity. As shown by the numberset ofn space positions of potential wells each containing a
theory axioms, this state represents the number 0. It followsingle spin 1/2 particle. There is a common magnetic field to

that any statég) is related to the O stateg), by

|B>=aHEA (V)@ 8)o, 9)

determine the spin direction. Product states have the form
|S/A)=@aealS(a),0), Or [5,8)=®_4]s(j).a(j)) in a more
standard form. In the second formmand a are respective
functions from 1...,nto{7,|} and from1...,nto A It
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is clear that for any of the 2states|s,a), q,/s,a)=|s,a)
for eachae A and alls.

PHYSICAL REVIEW A 64 052310

implication: product-state representation of numbers implies
the efficient implementability of the basic arithmetic opera-

Based on this one might conclude that the properties ofions is not valid. The reverse implication is more difficult. In
the V, and the projection and unitary operators given aboveact one can give arguments that suggest that efficient imple-

are sufficient to prove that the statg8) have a product

structure. This is not the case.

mentability is independent of the product representation of
numbers. That is, it neither implies or is implied by the prod-

To see this consider the entangled state representation ggt representation condition.

numbers by Eq(1) for the model described above. In this

It is worth examining this in more detail. To prove that

model letQg » andQs x be projection operators for the states efficient implementability does not imply a product-state rep-

|s,A) and[s,A), respectively. That isQg a|s,A)=|s,A) and
Qsals,A)=|s,A). Here, as befores(a,)=0 ands(a)=1
—s(a) for eachaeA. a, is the maximum value oA ac-
cording to property 3.

Define the unitary operatdd by

1 _
E(I§,A>+|3,A>)=UI§,A>,

i| A)—[s,A))=U[s,A 13
ﬁ(g )—[s.A))=Uls,A). 13

Unitarity follows from the fact that(s’,A|[UTU|s,A)
= 5§’i.

Based on this one sees tHa£A=UQLAUT for any se-
quencet wheret=s or t=s. So P, , satisfies Eq(6) with
|B)=U|t,A). Note that in Eq(6) Ps=Pg.

From this one has

Pa,p:Et E(a): pPg,A-

resentation it is sufficient to show some entangled represen-
tation, such as that for Eql), for which the successor op-
erators V, defined by properties 1-6,12 are efficiently
implementable.

To this end assume the entangled representation of num-
bers given by Eq(1) with the n physical systems located as
described at space sitgsg, ... X,. Then the physical pro-
cedure for implementing eadh, would have to include co-
herent interactions with all the physical systems. The inter-
actions between the component systems would have to
extend coherently over the space region occupied bynthe
systems.

It is reasonable to expect that the degree of difficulty, or
resources needed, to implement thewould increase poly-
nomially with n. This is based on the argument that the range
over which the interactions need to be coherent increases
linearly with n. This suggests that if th¥, are efficiently
implementable for physical states of the form of Ew). for
somen, they are efficiently implementable for afl even
though the resources required for implementation might in-
crease with a high power af. One would not expect the
resources required to increase exponentially with

This type of inductive reasoning, combined with the fact

If U, andV, are defined by properties 7-12, it is straight- that for n=2 the two operators/, should be physically
forward to show that th¥/, have properties 1-6. In this case implementable, suggests that the implication is valid. Physi-
the definitions of+ andX in terms of these operators apply. cal implementability forn=2 is based on the fact that the
Proofs that these operators satisfy the axioms of numbestates shown in Eq1) are the four Bell states.

theory are tedious but also straightforwdbg6].

The problem with this argument is that, although it may

This constitutes a proof that nothing in the axioms ofbe reasonable, it does not constitute a rigorous proof. Lack-
number theory implies a product-state representation modeing is a discussion of the dependence of the resources
even for multiple successor models based on the projectiorequired to overcome the effects of decohergli&13 in-
operators and th¥, with the properties described. It follows cluding the use of quantum error correction cofieg. Also
that the axioms of number theory are independent of thdacking is a precise definition of physical implementability of
product-state representation condition in that there are modx procedure. Without this it is difficult to show conclusively,
els of the axioms in which numbers are represented by prodn spite of the above argument of reasonableness, that effi-
uct states and models in which they are represented by ewient implementability does not imply a product representa-

tangled states.

tion of numbers.

The number theory axioms are also independent of the The above shows that the properties of numbers and the

requirement that the basic arithmetic operations are effibasic arithmetic operations cannot be used to determine if
ciently implementable. This is shown by both the well- efficient implementability implies a product-state representa-
known existence of physical models in which the operationgion of numbers. One must look elsewhere for such a proof.
are physically implementable and the example given in SecAnother approach is based on the fact that all physical pro-
Il of a model containing a row of infinite square wells where cesses and computations are specific examples of informa-
the well width decreased exponentially with well position. tion manipulation processes. In general, every such process
For this example the operations are not efficient and are;onsists of a sequence of alternating information-acquisition
therefore, not efficiently implementable. phases, information-processing phases, and possible

It remains to address the relation between the requiremeimformation-distribution phases. This includes computations
of efficient implementability and product-state representaand tasks performed by robots, microscofii&] or macro-
tions of numbers. The example noted above shows that th&copic.
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If the dynamics of an information-manipulation process This situation makes it unlikely that anything is to be
depends on or is sensitive tobits or qubits of information gained by using the more abstract information dynamics to
then at leash bits or qubits of information must be acquired, prove or disprove that efficient implementability implies or
and processed. Then theversiblg dynamics of the process does not imply a product-state representation. If one could
is represented by a unitary step operdtoacting on the 2 prove the implication, then_this would restrict the majgso .
dimensional Hilbert space of states of thqubits. Since one e maps from product qubit states to product states of physi-
is interested in the time development of the states of th&@! degrees of freedom. One must conclude that the implica-
n qubits, it makes sense to choose the product Hdsjs= tion, efficient |mplemenFab|I|ty of a process implies a
®jzlgn|bj>j ’ where|bj)j is a basis state for thgh qubit, produc_:t-state representation of thg physmal states of a system
as the reference basis for thequbits rather than some en- on which the process is to be carried out, is an open question.

tangled basis. _ _ _ V. DISCUSSION
This abstract representation of the dynamics ohajubit

information theoretic process is related to physical processes It must be emphasized that the arguments given before to
through unitary mapsV from the basis statelp) to a basis ~suggest that the implication does not hold for states repre-
of physical states of some physical system that sparff a 2senting numbers do not constitute a proof. As such, they do
dimensional Hilbert subspace of states of the sysfgin  Nnot contradict the open question conclusion stated above. As
(See also Violeet al.[16] for a discussion regarding the re- has been noted, a problem in giving such a proof is the lack
lation between qubits and physical systerThe dynamical Of an exact characterization of physical implementability.

process on the states of the physical system corresponding t§:cking this, it is difficult to make further progress in this

the action ofU on the qubits is represented by the operatord!Tection. .
WUW g P y P However, the work done here does show that the condi-

It is to be noted that there is no requirement that the malSions of efficient implementability and of a product-state rep-

W take product qubit states into product states of differenfeSentation of numbers are independent of the axioms of
physical degrees of freedom of the physical system. Th&UMber theory. The result that information theoretic argu-
statesW|b) can just as well be entangled states of the physi_ments do not help to determine the validity of the implica-

cal system. Whether they are entangled or product states ghon, e.ff|C|e.nt implementability implies product-state repre-
pends orw. sentation, is a consequence of the assumed separation of

It is also the case that the requirement of efficient impIe—abStraCt qubit states and their dynamics from states and dy-

mentability applies to the implementation of the operatornamics of real physical processes to which they are related

WUW' as this corresponds to a physical process. The ret_hrough the mapdV. If this assumed picture turns out not to

guirement does not apply to the more absttaets this is an be valid, then the argument may have to be revised.
abstract information theoretic dynamics representing many ACKNOWLEDGMENT
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