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Causal and localizable quantum operations
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We examine constraints on quantum operations imposed by relativistic causality. A bipartite superoperator is
said to belocalizableif it can be implemented by two parties~Alice and Bob! who share entanglement but do
not communicate; it iscausalif the superoperator does not convey information from Alice to Bob or from Bob
to Alice. We characterize the general structure of causal complete-measurement superoperators, and exhibit
examples that are causal but not localizable. We construct another class of causal bipartite superoperators that
are not localizable by invoking bounds on the strength of correlations among the parts of a quantum system. A
bipartite superoperator is said to besemilocalizableif it can be implemented with one-way quantum commu-
nication from Alice to Bob, and it issemicausalif it conveys no information from Bob to Alice. We show that
all semicausal complete-measurement superoperators are semilocalizable, and we establish a general criterion
for semicausality. In the multipartite case, we observe that a measurement superoperator that projects onto the
eigenspaces of a stabilizer code is localizable.
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I. INTRODUCTION

What are theobservablesof a relativistic quantum theory?
Standard wisdom holds that any self-adjoint operator t
can be defined on a spacelike slice through space-tim
measurable in principle. But in fact, for most such operat
the measurement is forbidden by relativistic causality, a
hence impossible.

More generally, it is often stated that the possible wa
that the state of a quantum system can change are desc
by quantum operations—completely positive trace
nonincreasing linear maps of density operators to den
operators@1,2#. But in a relativistic quantum theory, typica
operations would allow superluminal signaling, and a
therefore unphysical.

Relativistic quantum-field theory allows us to identify a
algebra of observables that is compatible with the cau
structure of space-time@3#. Despite this marvelous achieve
ment, puzzles and open questions remain. Our objectiv
this paper is to understand better the restrictions on op
tions that are imposed by special relativity. Mostly, we w
consider a simplified version of the problem in which t
physical system is divided into two separated parts: parA,
which is controlled by a party that we will call Alice, an
part B, which is controlled by Bob. Initially, Alice and Bob
share a joint quantum state whose density operatorrAB is not
known, and they wish to transform the state toE(rAB),
whereE is a specified operation.

If Alice and Bob were able to communicate by sendi
quantum information back and forth, then they would be a
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to applyany operationEAB to their state. We want to deter
mine what operations they can implement ifno communica-
tion ~quantum or classical! is permitted. In a relativistic set
ting, these are the operations that can be realized if Alic
action and Bob’s action are spacelike-separated events
will, though, permit Alice and Bob to make use of a shar
entangledancilla state that might have been prepared ear
and distributed to them.

While Alice and Bob are permitted to perform measu
ments, Bob cannot know the outcome of Alice’s measu
ment, and Alice cannot know the outcome of Bob’s. The
fore, we will largely restrict our attention totrace-preserving
quantum operations, also known assuperoperators, where no
postselection of the quantum state based on the measure
outcome is allowed. We say that a bipartite superoperato
localizableif it can be implemented by Alice and Bob actin
locally on the shared state and the shared ancilla, without
communication from Alice to Bob or Bob to Alice.

Another important concept is that of acausal operation.
We say that an operation is causal if it does not allow eit
party to send a signal to the other. More precisely, imag
that Bob applies a local superoperatorB to his half of the
state he shares with Alice just before the global operatioE
acts on the joint system, and that Alice makes a local m
surement on her half just afterE acts. If Alice’s measuremen
can acquire any information about what operation was
plied by Bob, then we say that Bob can signal Alice. T
operation is causal if no such signaling is possible in eit
direction.

Entanglement shared by Alice and Bob cannot be use
send a superluminal signal from Alice to Bob or from Bob
Alice. Therefore, any localizable superoperator is surel
causal superoperator. What about the converse? It m
seem reasonable to expect thatany operation, if it respects
the principle that information cannot propagate outside
forward light cone, should be physically realizable in pri
©2001 The American Physical Society09-1
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BECKMAN, GOTTESMAN, NIELSEN, AND PRESKILL PHYSICAL REVIEW A64 052309
ciple. However, we will show otherwise by exhibiting som
examples of superoperators that are causal but not loc
able.

We obtain weaker notions of localizability and causal
by considering communication in just one direction. We s
that a superoperator issemilocalizableif it is possible to
implement it with one-wayquantum communication from
Alice to Bob. Such operations are physically realizable
Bob’s action takes place in the future light cone of Alice
action. Similarly, we say that an operation issemicausal
if it does not allow Bob to send a signal to Alice
Obviously, a semilocalizable superoperator is semicaus
communication from Alice to Bob cannot help Bob to send
message to Alice. What about the converse? If one belie
that causality is a very special property of operations tha
not likely to hold ‘‘by accident,’’ then it is natural to formu
late the following conjecture, suggested to us by DiVincen
@4#.

Conjecture. Every semicausal superoperator is semiloc
izable.

We will prove this conjecture for the special case of co
plete orthogonal measurement superoperators. Wheth
holds in general remains an open question.

The problem of characterizing what measurements
possible was raised by Dirac@5#, and interesting examples o
impossible measurements were pointed out in Refs.@6–8#.
That relativistic causality may restrict the operators that
be measured in a field theory was first emphasized by L
dau and Peierls@9# ~though their particular concerns we
well answered by Bohr and Rosenfeld@10#!. More recently,
these restrictions have been noted by a variety of auth
@11–16#. In @17#, we have addressed some particular cau
ity issues that arise in non-Abelian gauge theories.

To apply our notion of localizability to quantum-fiel
theory, we must adopt the convenient fiction that the
tangled ancilla is an external probe not itself described by
field theory, and that its local coupling to the fields is co
pletely adjustable. This idealization is highly questionable
a quantum theory of gravity, and even for quantum-fie
theory on flat space-time it is open to criticism. In particul
field variables in spatially adjacent regions are inevitably
tangled @3#, so that no strict separation between field a
ancilla variables is really possible. On the other hand, if
probe variables are ‘‘heavy’’ with rapidly decaying correl
tions and the field variables are ‘‘light,’’ then our idealizatio
is credible and worthy of study.

Should the conjecture that semicausality implies sem
calizability prove to be true, then we will have a general a
powerful criterion for deciding if a superoperator can be e
ecuted with one-way communication. Even so, we will lac
fully satisfactory way of characterizing the observables o
relativistic quantum theory, as no communication is poss
if an operation is carried out on a spacelike slice. The e
tence of causal quantum operations that are not localiz
establishes a perplexing gap between what iscausal and
what is local.

In Sec. II, we formulate precise definitions of caus
semicausal, localizable, and semilocalizable, and we p
out a large class of localizable superoperators character
05230
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by local stabilizer groups. We describe the general struc
of semicausal and causal complete-measurement supero
tors in Sec. III. We show that semicausal comple
measurement superoperators are semilocalizable in Sec
and exhibit some causal complete-measurement supero
tors that are not localizable in Sec. V. In Sec. VI, we expl
bounds on the strength of quantum correlations to const
another class of causal superoperators that are not localiz
and we note a connection between localizability and qu
tum communication complexity. We prove in Sec. VII that
semicausal unitary transformation must be a tensor prod
Some further criteria for semicausality are developed in S
VIII and Sec. IX contains some concluding commen
Proofs of two of our theorems are included as appendice

II. CAUSALITY AND LOCALIZABILITY

In this section, we formally define the properties of qua
tum operations that we wish to explore—causality, semic
sality, localizability, and semilocalizability—and we discu
some examples that illustrate these concepts.

A. Causality

Any permissible way in which the state of a quantu
system can change is described by a quantum operatio
completely positive trace-nonincreasing linear map of d
sity operators to density operators. An important special c
is a trace-preserving map, orsuperoperator. A superoperator
E can be interpreted as a generalized measurement wit
unknown outcome; its action on a density operatorr has an
operator-sum representation

E~r!5(
m

MmrMm
† , ~1!

where the operation elementsMm obey the normalization
condition

(
m

Mm
† Mm5I . ~2!

An operation is a generalized measurement in which a p
ticular outcome has been selected, but the density oper
has not been renormalized. It too can be represented as in
~1!, but where the sum overm is restricted to a subset of a s
of operators obeying Eq.~2!—that is, the eigenvalues o
(mMm

† Mm are no greater than 1. For a general operati
tr E(r) can be interpreted as the probability of the observ
outcome.

Every superoperator has a unitary representation.
implement the superoperatorES acting on Hilbert spaceHS ,
we can introduce an ancilla with Hilbert spaceHR , prepare a
pure stateuc&PHR of the ancilla, perform a unitary transfor
mationU on HS^ HR , and then discard the ancilla,

ES~rS!5trR@U~rS^ uc&R R̂ cu!U†#. ~3!

A general operation has a similar representation, except
after U is applied, an~not necessarily complete! orthogonal
9-2
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CAUSAL AND LOCALIZABLE QUANTUM OPERATIONS PHYSICAL REVIEW A 64 052309
measurement is carried out on the ancilla and a partic
result is selected ~without renormalizing the density
operator!.

But what quantum operations are physically possible?
general answer is not known, but it is known that ma
operations of the form Eq.~1! are unphysical because the
run afoul of relativistic causality@11–16#. Consider, as in
Fig. 1, two parties Alice and Bob who perform spacelik
separated actions. Just prior to the implementation of
operationE, Bob performs a local operation on the degre
of freedom in his vicinity, and just after the implementatio
of E, Alice performs a local measurement of the degrees
freedom in her vicinity. If Alice is able to acquire any info
mation about what local operation Bob chose to apply, th
Bob has successfully sent a superluminal signal to Alice

If a bipartite operationE does not enable such superlum
nal signaling from Bob to Alice, then we will say thatE is
semicausal. If E does not allow signaling in either direction
we will say thatE is causal. ~In our discussions of semicau
sality, we will normally adopt the convention that Bob is th
party attempting to send the signal and Alice is the pa
attempting to receive it. This somewhat perverse conven
is chosen in order to be consistent with the definition
semilocalizable that is introduced below.! An operation that
is not semicausal is said to beacausal. A causal operation
will sometimes be calledfully causal, when we wish to em-
phasize the contrast with semicausality.

Alice’s part of the bipartite system will be called ‘‘syste
A,’’ with Hilbert spaceHA , and Bob’s half is ‘‘systemB’’
with Hilbert spaceHB . We consider a quantum operationE
that acts on states inHA^ HB . Alice might have under he
control not onlyA, but also an ancilla systemR with Hilbert
spaceHR , and Bob might control an ancilla systemS with
Hilbert spaceHS . Suppose that Bob wants to attempt
exploit the operationE to send a signal to Alice. Alice and
Bob could share an initial density operatorrRABS living in
HR^ HA^ HB^ HS , and Bob could apply a superoperat
BBS to his half of the state.~Bob is restricted to a superop
erator, rather than a trace-decreasing operation, becaus
ice is unaware of the outcome of any measurement

FIG. 1. An operation on a time slice. If the operation allow
spacelike-separated Alice and Bob to communicate, then it is
causaland hence not physically implementable.
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formed by Bob.! Then after the operationE is applied, we
obtain Alice’s final density operator by tracing over Bob
system and ancilla

rRA5trBS@EAB„I RA^ BBS~rRABS!…#. ~4!

Here byEAB we mean the operationI R^ EAB^ I S that acts
trivially on the ancillas. Note that ifE is not trace preserving
thenrRA might not be normalized, in which case Alice’s fin
state is the normalized density operatorrRA /tr rRA . Finally,
Alice performs a measurement of this state.

If Alice’s state depends at all on the superoperatorB that
Bob applies, then the mutual information of Bob’s supero
erator and Alice’s measurement is nonzero. Hence Bob
transmit classical information to Alice over a noisy chann
with nonzero capacity; that is, Bob can signal Alice. W
arrive then, at the following.

Definition. A bipartite operationE is semicausal if and
only if (rRA /tr rRA) is independent of Bob’s superoperatorB
for all possible choices of the shared initial staterRABS.

~Excluded from consideration is the caserRA50, corre-
sponding to an outcome that occurs with probability zero!

This criterion for semicausality is rather unwieldy; fortu
nately it can be simplified. One useful observation is th
while in our definition of semicausality we allowed the initi
staterRABS shared by Alice and Bob to be entangled, w
could without loss of generality restrict their initial state
be a product state.

Suppose that asuperoperatorE is not semicausal. Then
there is an initial staterRABSshared by Alice and Bob, and
superoperatorB that can be applied by Bob, such that

trBS@EAB~rRABS!#5” trBS@EAB„I RA^ BBS~rRABS!…#. ~5!

Now any bipartite density operator can be expanded as

rRABS5(
m

lmrm ^ sm , ~6!

whererm andsm are density operators of Alice’s and Bob
systems~including ancillas!, respectively, and thelm’s are
nonvanishing real numbers. Of course, if thelm’s were all
positive, thenrRABS would be a separable state. But if w
allow thelm’s to be negative, then such an expansion ex
for any state.

Since the superoperatorE is linear, we may rewrite
Eq. ~5! as

(
m

lm trBS@E~rm ^ sm!#5” (
m

lm trBS@E„rm ^ B~sm!…#,

~7!

which can be satisfied only if

trBS@E~rm ^ sm!#5” trBS@E„rm ^ B~sm!…#, ~8!

for at least onem. Therefore, if Alice and Bob prepar
the appropriate product staterm ^ sm , E allows Bob to sig-
nal Alice. Furthermore, since each ofrm andsm andB(sm)

ot
9-3
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BECKMAN, GOTTESMAN, NIELSEN, AND PRESKILL PHYSICAL REVIEW A64 052309
can be realized as an ensemble of pure states, there
signaling protocol in which Alice’s and Bob’s initial state
are pure.

Once we recognize that there is a signaling protocol s
that the initial state is a product state, we can see that
ancillas are superfluous. Bob sends his signal by choo
one of the two pure statesuc&BS, uc8&BS; since tracing
over S commutes withE, we can just as well say that Bo
starts with a mixed staterB or rB8 of systemB alone. Fur-
thermore, if Bob can signal Alice by preparing one
rB , rB8 , then he must be able to do it by preparing pu
states that arise in the ensemble realizations of these de
operators.

Finally, if signaling is possible, then Alice can receive t
signal by preparing an initial pure stateuw&RA . Bob’s action,
together withE, subjects systemA to one of two possible
operations, resulting in two distinguishable final states.
for these final states ofRA to be distinguishable, the two
operations must produce different outcomes acting on at l
one of thepurestates ofA appearing in the Schmidt decom
position of uw&RA . Therefore, Alice could just as well dis
pense withR, and prepare an initial pure stateuw&A of A
alone.

Thus we have proved:
Theorem 1. If the bipartite superoperatorE is not semi-

causal, then signaling is possible with pure initial states
without ancillas: there are pure statesuc&B ,uc8&BPHB and
uw&APHA such that

trB@E„~ uw&^wu!A^ ~ uc&^cu!B…#

5” trB@E„~ uw&^wu!A^ ~ uc8&^c8u!B…#. ~9!

We note that semicausal superoperators form a con
set. If eachEa is a superoperator, then so is the combinat

E5(
a

paEa , ~10!

where thepa’s are nonnegative and sum to 1. It follows fro
the linearity of theEa’s and the definition of semicausalit
that E is semicausal if eachEa is.

A somewhat less obvious property is that the semicau
superoperators form a semigroup—a composition of se
causal operations is semicausal. This follows from:

Theorem 2. Suppose thatE is a semicausal bipartite supe
operator, and that the two bipartite density operatorsr ands
satisfy trBr5trBs. Then trBE(r)5trBE(s).

Proof. First we note that it is possible to choose a basis
linearly independent operators acting on a Hilbert spaceH,
such that each element of the basis is a one-dimensi
projector. Let$Pm% denote such a basis for Alice’s Hilbe
spaceHA and let$Qm% denote such a basis for Bob’s Hilbe
spaceHB . Then we may expand the bipartite density ope
tors r ands as
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s5(
mn

amn8 Pm ^ Qn . ~11!

Since trQn51, the property trBr5trBs can be rewritten as
(mnamnPm5(mnamn8 Pm , which implies, since thePm’s are
a basis, that

(
n

amn5(
n

amn8 , ~12!

for eachm.
Applying the superoperatorE, we find that

E~r!5(
mn

amnE~Pm ^ Qn!,

E~s!5(
mn

amn8 E~Pm ^ Qn!. ~13!

Furthermore, since eachQn is a pure state, a unitary trans
formation applied by Bob can transform any one of theQn’s
to any other; therefore the semicausality ofE implies that the
operator trBE(Pm ^ Qn) is independent ofn. Denoting this
operator byRm , we have

trBE~r!5(
mn

amnRm ,

trBE~s!5(
mn

amn8 Rm ; ~14!

Equation~12! then implies that trBE(r)5trBE(s). This com-
pletes the proof of Theorem 2.

The semigroup property of semicausal superoperators
simple corollary as follows.

Corollary If E1 and E2 are semicausal bipartite supero
erators, then their compositionE2sE1 is also semicausal.

Proof. Suppose that the bipartite density operatorr can be
transformed tos by a superoperator applied by Bob. The
the semicausality ofE1 implies that trBE1(r)5trBE1(s), and
Theorem 2 applied toE2 implies that trBE2„E1(r)…
5trBE2„E1(s)…; thereforeE2sE1 is semicausal.

B. Localizability

Physics is local. If a physical system has many parts t
are remote from one another, then the evolution of the s
tem is governed by local ‘‘parties’’ that act on the differe
parts of the system separately. In particular, since comm
cation outside the light cone is impossible, the operatio
that can be applied to a physical system at a fixed time
those that require no communication among the local part
We call an operation of this typelocalizable.

Although they are not permitted to communicate, the p
ties are free to exploit any resources that might have b
9-4
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CAUSAL AND LOCALIZABLE QUANTUM OPERATIONS PHYSICAL REVIEW A 64 052309
prepared in advance. In particular, they are permitted to h
a shared ancilla that might be in an entangled quantum s
and to consume their shared entanglement in the cours
executing their operation.

In the case of a system with two parts, one controlled
Alice, the other by Bob, these considerations motivate
following definition.

Definition. A bipartite superoperatorE is localizableif and
only if

E~rAB!5trRS@ARA^ BBS~rAB^ rRS!# ~15!

for some shared ancilla staterRS and local superoperator
ARA , BBS.

In fact, by extending the ancilla, the staterRS can be
‘‘purified’’ and the local superoperators can be replaced
unitary transformations; thus without loss of generality
may use instead the following definition.

Definition. A bipartite superoperatorE is localizableif and
only if

E~rAB!5trRS@URA^ VBS~rAB^ rRS!URA
†

^ VBS
† # ~16!

for some shared ancilla pure staterRS and local unitary
transformationsURA andVBS.

Localizable superoperators form a convex set. To see
we note that with shared entanglement, Alice and Bob
simulate shared randomness~a weaker resource!. For ex-
ample, suppose they share an ancilla prepared in the sta

uF&RS5(
a

Apaua&R^ ua&S , ~17!

where $ua&R% is an orthonormal basis for Alice’s Hilber
spaceHR , $ua&S% is an orthonormal basis for Bob’s Hilbe
spaceHS , and thepa’s are non-negative real numbers th
sum to 1. Then if Alice and Bob both perform measureme
that project onto these bases, each obtains the outcomeua&
with probability pa . Now let $Ea% be a set of localizable
operations. Alice and Bob can consult their shared rand
ness, and then carry out a local protocol that applies
operationEa with probability pa , thus achieving a loca
implementation of the convex sum(apaEa .

Of course, a superoperator is surely localizable if it is
tensor product of superoperators applied by Alice and
Bob, E5EA^ EB . By convexity, any superoperator of th
form

E5(
a

paEA,a^ EB,a ~18!

is also localizable. There are some less obvious example
localizable operations, as we will soon see.

We are also interested in bipartite operations that can
implemented with communication in just one direction. W
call such operationssemilocalizable. In our discussions of
semilocalizability, we will normally adopt the conventio
that Alice is permitted to send quantum information to Bo
but Bob cannot send anything to Alice. A semilocalizab
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operation is one that can be performed in principle if Bo
action is in the forward light cone of Alice’s action.

We could, equivalently, provide Alice and Bob with prio
shared entanglement, and restrict them to classical com
nication. These two notions of semilocalizability are equiv
lent because prior entanglement and classical communica
from Alice to Bob enable Alice to teleport quantum inform
tion to Bob. Conversely, if Alice can send qubits to Bob, s
can establish shared entanglement with him, and she
send him classical messages.

An operation that is not semilocalizable is said to beun-
localizable. A localizable operation will sometimes be calle
fully localizable, when we wish to emphasize the contra
with semilocalizability.

If Alice can send quantum information to Bob, then Alic
and Bob both have access to the same ancilla: Alice perfo
a local operation on the ancilla and her half of the sha
state, she sends the ancilla to Bob, and then Bob perform
local operation on the ancilla and his half of the state. Th
we arrive at the following.

Definition. A bipartite operationE is semilocalizableif
and only if

E~rAB!5trR@~BBRsARA!~rAB^ rR!# ~19!

for some ancilla staterR , whereARA is an operation and
BBR is a superoperator.

Note that the productBBRsARA is a composition of op-
erations ~with Alice’s operation acting first!, not a tensor
product; the operations do not commute because they ac
the same ancilla. We have allowed Alice to apply an ope
tion that is not necessarily trace preserving, since Alice
perform a measurement whose outcome is known to b
Alice and Bob, but Bob is restricted to a superoperator
cause the outcome of a measurement that he performs is
known by Alice. If the operationE is a superoperator, then s
must beARA , and in fact we can takeBBR and ARA to be
unitary transformations without loss of generality.

An obvious consequence of this definition is that semi
calizable~or localizable! superoperators form a semigrou
E2sE1 is semilocalizable ifE1 andE2 are both semilocaliz-
able.

C. Orthogonal measurement superoperators

One of our goals is to characterize theobservablesof a
relativistic quantum theory: what self-adjoint operators a
really measurable?

When we speak of a ‘‘measurement’’ of an observa
whose support is on a time slice, we need not require that
measurement outcome be instantaneously known by any
We might imagine instead that many parties distributed o
the slice perform simultaneous local operations. Later
data collected by the parties can be assembled and proce
at a central location to determine the measurement resu

Then we may say that the operation performed on
slice is a measurement with an unknown outcome. If$Ea% is
the set of orthogonal projectors onto the eigenspaces of
observable, the effect of this operation on a density oper
r is
9-5
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BECKMAN, GOTTESMAN, NIELSEN, AND PRESKILL PHYSICAL REVIEW A64 052309
r→E~r!5(
a

EarEa . ~20!

We will call an ~trace-preserving! operation of this form an
orthogonal measurement superoperator. In the special case
where each projectorEa is one dimensional, it is acomplete
orthogonal measurement superoperator, or just a complete-
measurement superoperator. The causality and localizab
properties of complete-measurement superoperators wil
extensively discussed in the next few sections.

First, let us clarify the concept of semicausality by poin
ing out an example, noted by Sorkin@14#, of an incomplete-
measurement superoperator that is not semicausal. It
two-outcome incomplete Bell measurement performed o
pair of qubits. The orthogonal projectors corresponding
the two outcomes are

E15uf1&^f1u,

E25I 2uf1&^f1u, ~21!

whereuf1&5(u00&1u11&)/A2. Suppose that the initial pur
state shared by Alice and Bob isu01&AB . This state is or-
thogonal touf1&, so that outcome 2 occurs with probabili
one, and the state is unmodified by the superoperator. A
wards Alice still has a density operatorrA5u0&^0u.

But what if, before the superoperator acts, Bob perform
unitary that rotates the state tou00&AB? Since this state is a
equally weighted superposition ofuf1& and uf2&5(u00&
2u11&)/A2, the two outcomes occur equiprobably, and
either case the final state is maximally entangled, so
Alice’s density operator afterwards isrA5I /2, whereI de-
notes the identity. Alice can make a measurement that h
good chance of distinguishing the density operatorsu0&^0u
andI /2, so that she can decipher a message sent by Bob
a similar method, Alice can send a signal to Bob. The m
surement superoperator is acausal.

On the other hand, some orthogonal measurement su
operators are causal. For example, measurement of a te
product observableA^ B is obviously causal—Alice and
Bob can induce decoherence in the basis of eigenstates
tensor product through only local actions. But there are ot
examples of causal measurement superoperators that are
less obvious. One is complete Bell measurement, i.e., d
herence in the Bell basis

uf6&5
1

A2
~ u00&6u11&),

uc6&5
1

A2
~ u01&6u10&). ~22!

No matter what Bob does, the shared state after Bell m
surement is maximally entangled, so that Alice always
rB5I /2, and she cannot extract any information about Bo
activities.

Though Bell measurement is a causal operation, it is
something that Alice and Bob can achieve locally witho
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additional resources. But the Bell measurement superop
tor is localizable—Alice and Bob can implement it if the
share an entangled ancilla. In fact, shared randomnes
weaker resource than entanglement, is sufficient for this p
pose@18#. Suppose that Alice and Bob share a pair of qub
and also share a string of random bits. At a particular tim
they both consult two bits of the random string; depend
on whether they read 00, 01, 10, or 11, they both apply
unitary operatorI, X, Z, or Y, where I is the identity, and
$X,Y,Z% are the 232 Pauli matrices

X5S 0 1

1 0D , Y5S 0 2 i

i 0 D , Z5S 1 0

0 21D . ~23!

Together, then, Alice and Bob apply the superoperator

E~r!5
1

4
@~ I ^ I !r~ I ^ I !1~X^ X!r~X^ X!

1~Y^ Y!r~Y^ Y!1~Z^ Z!r~Z^ Z!#. ~24!

The four Bell states are simultaneous eigenstates ofX^ X
andZ^ Z ~and therefore alsoY^ Y52(X^ X)(Z^ Z)) with
eigenvalues61: Z^ Z specifies a parity bit that distin
guishesf from c andX^ X specifies a phase bit that distin
guishes1 from 2. Hence we easily verify thatE preserves
each of the four Bell basis states and annihilates all the te
in r that are off the diagonal in the Bell basis.

The Bell measurement superoperator can be viewed
refinement, or ‘‘completion,’’ of the acausal incomplet
measurement superoperator of Eq.~21!—that is, Bell mea-
surement is obtained by resolving the three-dimensional p
jectorE2 of Eq. ~21! into a sum of three mutually orthogona
one-dimensional projectors. Thus, this example illustra
that a completion of an acausal measurement superope
can sometimes be causal. On the other hand, there are
ways of refining the superoperator of Eq.~21! that yield
acausal complete-measurement superoperators. For exa
the two-qubit superoperator with projectors

E15uf1&^f1u,

E25uf2&^f2u,

E35u01&^01u,

E45u10&^10u, ~25!

is easily seen to be acausal by applying the criterion of Th
rem 3 below. In fact, it is a general feature that if an orthog
nal measurement superoperatorE allows Bob to signal Alice,
then there exists a completion ofE that also allows signaling
with the same signal statesuc&B and uc8&B . This result is
proved in Ref.@16#.

Since the Bell measurement superoperator can be im
mented with shared randomness, one may wonder whe
shared randomness is sufficient for the implementation
arbitrary localizable superoperators. But it is easy to think
localizable superoperators for which shared randomness
not suffice—shared entanglement is necessary. For exam
9-6
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CAUSAL AND LOCALIZABLE QUANTUM OPERATIONS PHYSICAL REVIEW A 64 052309
Alice and Bob can locally perform a two-qubit operation
which they throw their qubits away, and replace them wit
uf1& drawn from their shared ancilla. This operation c
turn a product state into an entangled state, which would
impossible with local operations and shared randomn
alone. We will discuss another example of a localizable
peroperator that cannot be implemented with shared rand
ness in Sec. VI.

We note in passing that if Alice and Bob have ancilla pa
prepared in the stateuf1&RS ~whereR denotes Alice’s ancilla
qubit, andS denotes Bob’s!, then they can implement th
Bell measurement superoperator by executing the quan
circuits shown in Fig. 2 and discarding their ancilla qubi
The circuit in Fig. 2~a! flips the ancilla pair fromuf1& to
uc1& if the parity bit of theAB state isZA^ ZB521, and
the circuit in Fig. 2~b! flips the ancilla pair fromuf1& to
uf2& if the phase bit of theAB state isXA^ XB521. Thus,
the values of the parity and phase bits of theAB pair, and
only this information, become imprinted on the ancilla pai
Tracing over the ancilla pairs in the Bell basis, then, indu
decoherence in theAB Bell basis.

In fact, if Alice and Bob share entanglement and perfo
the circuits of Fig. 2, they can execute Bell measureme
including postselection, on theAB pair by measuring their
ancilla qubits and broadcasting their results classically. A
executing circuit Fig. 2~a!, Alice measuresZR and Bob mea-
suresZS . Then the parity bit of theAB pair is the parity of
these measurement outcomes. After executing circuit
2~b!, Alice measuresXR8 and Bob measuresXS8 . Then the
phase bit of theAB pair is the parity of the measureme
outcomes. This example is instructive, as it reminds us ag
that entanglement is a more powerful resource than sh
randomness. If Alice and Bob were limited to shared ra
domness and classical communication, they would be un
to create entanglement, and so would lack the capability
doing Bell measurement with postselection on their sha
qubit pair.

If Alice and Bob did not have entanglement to start wi
they would still be able to perform Bell measurement w
postselection on their shared pair if they could send anc
qubits to a central laboratory for later quantum processing
illustrated in Fig. 3. Here Alice entangles her qubitA first
with ancilla qubitR and then withR8, while Bob entangles
his qubit B first with ancilla qubitS and then withS8. The
ancilla qubits are collected, and a Bell measurement is

FIG. 2. Local implementation of the Bell measurement super
erator using shared entanglement. In~a!, the two controlled-NOT

gates imprint the parity bit ofAB onto the ancillaRS. In ~b!, the
two controlled-NOT gates imprint the phase bit ofAB onto the an-
cilla R8S8. Tracing over the ancillas in the Bell basis, we find th
the AB pair decoheres in the Bell basis.
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formed onRS and R8S8. The RS measurement yields th
correct parity bit of theAB pair, and a random phase bit;
the measuredRS phase bit is21, then the phase bit of the
AB state is flipped. TheR8S8 measurement yields the ‘‘cor
rect’’ phase bit~possibly flipped by theRS measurement!,
and a random parity bit; if the measuredR8S8 parity bit is
21, then the parity bit of theAB state is flipped. Taken
together, the two Bell measurements on the ancilla qubits
as a projective measurement ofHAB onto the Bell basis,
followed by one of the transformationsI ^ I , X^ X, Y^ Y, or
Z^ Z; which of the four transformations has been applied,
well as the identity of theAB Bell state resulting from the
projection, can be inferred from outcomes of theRS and
R8S8 measurements. If theAB state is initially a product
state, Bell measurement of the ancilla qubits establishes
tanglement ofA with B by ‘‘swapping’’ AR andBSentangle-
ment forAB andRSentanglement@19#.

This example is also instructive. It reminds us that de
herence induced on a time slice can sometimes be reve
later through the operation of a ‘‘quantum eraser’’@20#. If we
were to trace out the ancilla qubits right after applying t
controlled-NOT operations of Fig. 3~before the Bell measure
ment!, then Fig 3~a! would induce decoherence, not in a
entangled basis, but rather in the product ba
$u00&,u01&,u10&,u11&%; similarly Fig. 3~b! would induce de-
coherence in the product basis$u11&,u12&,u21&,
u22&%, where

u6&5
1

A2
~ u0&6u1&). ~26!

As one would expect, without entanglement or shared r
domness, Alice and Bob are unable to implement deco
ence in the Bell basis with their local operations alone. Bu
later measurementincluding postselectioncan ‘‘undo’’ the
decoherence in the product basis and establish decoher
in the Bell basis instead.

D. Local stabilizers

The observation that shared randomness is sufficien
induce decoherence in the Bell basis can be substant
generalized. Consider a superoperatorE that acts on a density
operatorr as

-

t

FIG. 3. Bell measurement through entanglement swapping.
ice performs local controlled-NOT gates on her qubitA and the
ancilla qubitsRR8. Bob performs local controlled-NOT gates on his
qubit B and the ancilla qubitsSS8. Later, the ancilla qubits are
collected, and Bell measurement is performed on the pairsRS
and R8S8. The Bell measurements on the ancilla realize B
measurement on AB, by ‘‘swapping’’ entanglement of
AR, AR8, BS, BS8 for entanglement ofAB, RS, andR8S8.
9-7
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E~r!5
1

uGu (
gPG

U~g!rU~g!†, ~27!

where theU(g)’s provide a~not necessarily irreducible! uni-
tary representation of the groupG, anduGu denotes the orde
of G. The Hilbert spaceH in which r resides can be decom
posed into spaces that transform irreducibly under the gr
G. Let us choose an orthonormal basis

$uR,a,i &%; ~28!

hereR labels the irreducible representations ofG, a labels
the sectors ofH that transform as the irreducible represen
tion R ~a particular irreducible representation might occ
multiple times!, i 51,2, . . . ,nR labels states of a basis for th
vector space on whichR acts, andnR is the dimension ofR.
Expressed in this basis, the representationU(g) is

U~g!5 (
R,a,i , j

uR,a,i &D (R)~g! i j ^R,a, j u, ~29!

whereD (R)(g) i j is a matrix element of the irreducible repr
sentationR. These matrix elements obey the orthogona
relations

1

uGu (
gPG

D (R)~g! i j D
(R8)~g!kl* 5

1

nR
dRR8d ikd j l . ~30!

Substituting Eq.~29! into Eq.~27! and applying the orthogo
nality relations, we find

^R,a,i uE~r!uR8,b, j &5dRR8
1

nR
d i j (

k51

nR

^R,a,kuruR,b,k&.

~31!

Thus we see that the superoperatorE destroys the coherenc
of a superposition of states that transform as distinct irred
ible representations ofG. Within a given irreducible repre
sentation, it randomizes the state, replacing the density
erator by a multiple of the identity. Some off-diagonal term
in the density operator can survive, if a given irreducib
representation occurs inH more than once.

Now suppose that the Hilbert spaceH is shared byn
parties; it has a tensor product decomposition

H5 ^ a51
n Ha . ~32!

And suppose that each elementU(g) of the representation o
G is a tensor product

U~g!5 ^ a51
n U~g!a . ~33!

Then then parties can perform the operationE by consulting
their shared randomness—if they are instructed to apply
group elementgPG, the partya appliesU(g)a to her por-
tion of the state.

In the Bell measurement case discussed above, the
dimensional Hilbert space of two qubits transforms as
representation
05230
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$I ^ I ,X^ X,2Y^ Y,Z^ Z% ~34!

of the groupG5Z23Z2. The groupG is Abelian, and the
four Bell states transform as distinct one-dimensional ir
ducible representations ofG. Therefore, the superoperatorE
induces decoherence in the Bell basis.

The same ideas apply to anystabilizer code@21,22,1,2#.
Consider, for example, an Abelian groupG acting onn qu-
bits, generated byn2k operators, where each generator is
tensor product of single-qubit Pauli operators. If each qu
is entrusted to a distinct party, then by consulting sha
randomness, then parties can apply a random element of t
group G to their density operator. The superoperator th
implement acts trivially on each 2k-dimensional code
space—an eigenspace of the generators with specified e
values. But it destroys the coherence of a superposition
eigenspaces with different eigenvalues. In the notation of
~31!, the indexR labels the stabilizer eigenvalues, and t
indices a,b label the basis states in a code space with
specified value ofR. Because the group is Abelian, all of th
irreducible representations are one dimensional, and Eq.~31!
becomes

E~r!5
1

uGu (
gPG

U~g!rU~g!†

5 (
R,a,b

uR,a&^R,auruR,b&^R,bu

5(
R

ERrER , ~35!

whereER projects onto the subspace with specified stabili
eigenvalues.

The observation that Bellmeasurement~including postse-
lection! can be achieved with shared entanglement, local
erations, and broadcasting of classical data can be gen
ized to any CSS stabilizer code; i.e., any code of the cl
constructed by Calderbank and Shor@23#, and Steane@24#.
An n-qubit stabilizer code is of the CSS type if the stabiliz
generators can be chosen so that each generator is eit
tensor product ofZ’s and I ’s or a tensor product ofX’s and
I ’s. Imagine that each of then qubits is in the custody of a
separate party. Steane@25# has observed that the measur
ment of the stabilizer generators can always be achieved
carrying out these steps:~1! preparation of a suitable en
tangled ancilla that is distributed to then parties,~2! local
quantum gates applied by each party, acting on her qubit
her part of the ancilla,~3! local measurements by each par
and ~4! classical post processing of the measurement o
comes. In the case of Bell measurement on a pair of qub
the stabilizer generators areX^ X, Z^ Z, and the en-
tangled ancilla state isuf1&.

An example of a superoperator associated with a n
Abelian group is the ‘‘twirling’’ operation that transforms
two-qubit state into a Werner state@18#. In that case, the
group isA4, the order-12 subgroup of the rotation group th
preserves a tetrahedron. UnderA4, the stateuc2& transforms
trivially, while the other three Bell statesuf1&,uc1&,uf2&
9-8
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CAUSAL AND LOCALIZABLE QUANTUM OPERATIONS PHYSICAL REVIEW A 64 052309
transform as a three-dimensional irreducible representa
Two parties Alice and Bob consult their shared randomn
and apply a random element ofA4; according to Eq.~31!,
this operation transforms any initial density operator into
state of the Werner form

r~F !5Fuc2&^c2u1
12F

3
(uf1&^f1u1uf2&^f2u

1uc1&^c1u), ~36!

while preserving the fidelityF5^c2uruc2&. Note that un-
like the acausal operation defined by Eq.~21!, this localiz-
able operation transforms any initial state into an incoher
mixture of Bell states; hence Alice’s final density operator
alwaysI /2, and Alice is unable to receive a signal from Bo

III. CAUSAL AND SEMICAUSAL COMPLETE-
MEASUREMENT SUPEROPERATORS

In the next three sections, we will investigate the causa
and localizability properties of measurement superopera
that project onto a complete orthonormal basis. We will sh
that semicausal operations of this class are semilocaliza
and that fully causal operations of this class are not ne
sarily fully localizable.

Suppose that the Hilbert spacesHA andHB have dimen-
sions NA and NB , respectively, and let$Ea5ua&^au,a
51,2, . . . ,NANB% denote a complete set of orthogonal on
dimensional projectors onHA^ HB . By tracing overHB , we
obtain from these projectorsNANB positive operators acting
on HA , each with unit trace, defined by

sA
a5trB~EAB

a !. ~37!

Since theEAB
a ’s are complete, these operators satisfy

(
a

sA
a5trBI AB5NBI A ; ~38!

that is, $NB
21sA

a% is a positive operator-valued measu
~POVM! on HA with NANB outcomes.

The semicausal complete orthogonal measurement su
operators~those that do not allow Bob to signal Alice! can be
simply characterized by a property of thesA

a ’s, thanks to the
following theorem.

Theorem 3. A complete orthogonal measurement super
erator is semicausal if and only if it has the following pro
erty. For each pair of operators$sA

a ,sA
b%, eithersA

a5sA
b or

sA
asA

b505sA
bsA

a .
That is, any pair ofsA

a ’s must be either identical or or
thogonal, if and only if the superoperator is semicausal.

Theorem 3 is proved in Appendix A, but one can read
see that the result is plausible. IfEa5ua&^au, then, in order
to signal Alice, Bob by acting locally needs to induce a tra
sition from the stateua& to the stateub& for somea and b;
furthermore, Alice must be able to detect the difference
tween ua& and ub&. But if sA

a and sA
b are orthogonal, then

Bob is unable to induce the transition, and ifsA
a5sA

b , then
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Alice cannot tell the difference. On the other hand, ifsA
asA

b

50 and sA
a5” sA

b , then Bob can induce the transition an
Alice can distinguish the states; hence a signaling proto
can be devised.

Applying Theorem 3, we can see that all semicausal co
plete measurements have a simple structure. Suppose
$Ea% is a semicausal complete measurement. For any on
the sA

a , let H A
a denote the subspace ofHA on whichsA

a has
its support (sA

a is strictly positive on this subspace and va
ishes on the orthogonal subspace!. According to Theorem 3,
the supportH A

b of eachsA
b either coincides withH A

a or is
orthogonal toH A

a , and in the former case we havesA
a

5sA
b .

Thus eachsA
b with support onH A

a must equalsA
a , and

furthermore, the sum of the operators with support on t
subspace, according to Eq.~38!, must beNBI A

a , where I A
a

denotes the projector ontoH A
a . Therefore eachsA

a with sup-
port on H A

a is proportional toI A
a , and since we also know

that trsA
a51, must be

sA
a5

1

dA
a I A

a , ~39!

wheredA
a is the dimension ofH A

a . We also conclude that the
number ofsA

b ’s with support onH A
a is NBdA

a .
We see that the stateua& is a maximally entangled state o

the form

ua&5
1

AdA
a (

i 51

dA
a

u i &A^ u i 8&B , ~40!

where here$u i &A% denotes an orthonormal basis forH A
a , and

the u i 8&B’s are mutually orthogonal states ofHB . The general
structure of a semicausal complete-measurement opera
then, is as illustrated in Fig. 4. Alice’s Hilbert space can
decomposed into mutually orthogonal subspaces

HA5 % aH A
a , ~41!

FIG. 4. A semicausal complete orthogonal measuremen
636 dimensions. Alice’s Hilbert space is decomposed into th
mutually orthogonal subspaces, of dimensions 3, 2, and 1. The m
surement projects onto an orthonormal basis, where each eleme
the basis is a maximally entangled state of one of Alice’s th
subspaces with Bob’s space.
9-9



-

n
ire
-

an

re
-

tr
se

h
m

of

t
-

o

s
re
ce
le

n-
e-

not
’s

an

b

Eq.
ed

-

nto
a

en
ba
on

t in
e’s
ence
ed,

BECKMAN, GOTTESMAN, NIELSEN, AND PRESKILL PHYSICAL REVIEW A64 052309
whereH A
a has dimensiondA

a . Of theNANB states comprising
the basis$ua&%, NBdA

a , all maximally entangled, have sup
port onH A

a .
A fully causalcomplete measurement is more highly co

strained. Since the measurement is semicausal in both d
tions, both thesA

a ’s and thesB
a ’s obey the conditions speci

fied in Theorem 3. If we choose one particularH A
a , there are

NBdA
a elements of the basis with support on this space,

associated with these areNBdA
asB

a ’s, all of rankdA
a , and any

two of which must either coincide or be orthogonal. The
fore, the sB

a ’s partition HB into mutually orthogonal sub
spaces, all of dimensiondA

a ; it follows that dA
a must divide

NB , that the number of orthogonal subspaces isNB /dA
a , and

that (dA
a)2sB

a ’s have support on each space.
Applying the same argument again, but withHA andHB

interchanged, we see that thesA
a ’s also partitionHA into

mutually orthogonal subspaces, all of dimensiondA
a . We

conclude that a causal complete measurement has the s
ture illustrated in Fig. 5. Alice’s space can be decompo
into r A subspacesH A

a , each of dimensiond ~so that NA

5r Ad), and Bob’s space can be decomposed intor B sub-
spacesH B

b , each of dimensiond ~with NB5r Bd). The mea-
surement projects onto an orthonormal basis, where eac
ement of the basis is a maximally entangled state of so
H A

a with someH B
b . There arer Ar B ways to choosea andb,

and there ared2 maximally entangled states for each pair
subspaces.

The extreme cases ared51, for which we have a produc
basis$ua,b&AB%, and d5NA5NB , for which the measure
ment is a projection onto a maximally entangled basis
HAB .

Comparing Fig. 4 and 5 makes it clear that a semicau
measurement need not be fully causal. Indeed, this featu
quite obvious, since transmission of information from Ali
to Bob can allow Alice to signal Bob but does not enab
Bob to signal Alice. To make this point more explicit, co
sider the 232 example illustrated in Fig. 6. The measur
ment projects onto the orthonormal basis

FIG. 5. A causal complete orthogonal measurement in 636
dimensions. Alice’s six-dimensional Hilbert space is partitioned i
three mutually orthogonal subspaces, each of dimension 2,
Bob’s Hilbert space is similarly partitioned. The measurem
projects onto an orthonormal basis, where each element of the
is a maximally entangled state of one of Alice’s subspaces with
of Bob’s subspaces.
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u0&A^ u0&B , u0&A^ u1&B ,

u1&A^ u1&B , u1&A^ u2&B , ~42!

where

u6&5
1

A2
~ u0&6u1&). ~43!

Tracing over Bob’s system we obtain Alice’s projectors

sA
005sA

015u0&^0u,

sA
115sA

125u1&^1u, ~44!

which satisfy the criterion of Theorem 3; hence Bob can
signal Alice. Tracing over Alice’s system we obtain Bob
projectors

sB
005u0&^0u, sB

015u1&^1u,

sB
115u1&^1u, sB

125u2&^2u, ~45!

which violate the criterion of Theorem 3; hence Alice c
signal Bob.

A particular protocol that allows Alice to signal Bo
works as follows. Bob prepares his qubit in the stateu0& and
Alice prepares hers in one of the statesu0&, u1&. After the
operationE is applied, Bob’s density operator is

rB
05u0&^0u, ~46!

if Alice preparedu0&, and his density operator is

rB
15I /2, ~47!

if Alice preparedu1&. SincerB
05” rB

1 , we conclude thatE is
not causal.

Note that the measurement that projects onto the basis
~42! is obviously semilocalizable; in fact it can be execut
with one-wayclassicalcommunication from Alice to Bob.
Alice measures in the basis$u0&A ,u1&A%, and sends her mea

nd
t
sis
e

FIG. 6. A semicausal complete orthogonal measuremen
232 dimensions. The orthonormal basis shown partitions Alic
space into mutually orthogonal one-dimensional subspaces; h
Bob cannot signal Alice. But since Bob’s space is not so partition
Alice can signal Bob.
9-10
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CAUSAL AND LOCALIZABLE QUANTUM OPERATIONS PHYSICAL REVIEW A 64 052309
surement outcome to Bob. Then Bob measures in the b
$u0&B ,u1&B% if Alice’s outcome wasu0&A , and in the basis
$u1&B ,u2&B% if Alice’s outcome wasu1&A .

IV. SEMICAUSAL COMPLETE-MEASUREMENT
SUPEROPERATORS ARE SEMILOCALIZABLE

We now have learned enough about the structure of se
causal complete measurements to see that any semic
complete-measurement superoperator is semilocaliza
Suppose that Alice and Bob share a quantum state, and
to perform a measurement that projects onto the basis$ua&%,
where eachua& is a maximally entangled state of a subspa
of HA with a subspace ofHB . Alice can perform a partia
measurement that identifies the subspaceH A

a of HA , and
then send her half of the state to Bob, who can finish
measurement and identifyua&. To complete the procedure
they simply replace their original state by a state identica
ua& that can be drawn from their shared ancilla. Since B
can convert any maximally entangled state ofH A

a and HB

into ua& by performing a unitary transformation onHB , he
and Alice can replace the original state byua& without any
further communication. From these observations we ob
the following.

Theorem 4. A semicausal complete orthogonal measu
ment superoperator is semilocalizable.

Proof. Suppose that Alice and Bob share the staterAB in
their joint Hilbert spaceHA^ HB . In addition, an ancillary
Hilbert spaceHR^ HS , isomorphic toHA^ HB , is initially
under Alice’s control. To implement the semicausal operat

EAB~rAB!5(
a

EAB
a ~rAB!EAB

a ~48!

with one-way quantum communication from Alice to Bo
they proceed as follows: First, Alice performs a partial me
surement that projectsrAB onto her mutually orthogonal sub
spacesH A

a , obtaining the outcome

rAB
a 5

EA
a~rAB!EA

a

tr~EA
arAB!

~49!

with probability

pa5tr~EA
arAB!, ~50!

whereEA
a is the projector ontoH A

a . If Alice’s measurement
outcome isa, she prepares an ancilla stateuF&RSPHR

^ HS , and a dimensiondA
a3dA

a maximally entangled state o
H R

a with HS , whereH R
a is isomorphic toH A

a . Next, Alice
swaps the Hilbert spacesHA and HR , obtaining rRB

a and
uF&AS. She sendsrRB

a to Bob, along with theS half of the
entangled stateuF&AS.

Upon receipt, Bob swaps the Hilbert spacesHB andHS ,
so that Alice and Bob now shareuF&AB , while rRS

a is en-
tirely in Bob’s hands. On the staterRS

a , Bob performs an
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orthogonal measurement with projectorsERS
a that are isomor-

phic to theEAB
a ’s, obtaining the outcomeua&RS with prob-

ability paua , where

pa,a5pauapa5tr~ERS
a ER

arRSER
aERS

a !. ~51!

Since Bob’s measurement is just a completion of Alice’s p
tial measurement, we have

ERS
a ER

a5ER
aERS

a 5da,aERS
a , ~52!

whereda,a is 1 if sR
a has support onH R

a and zero otherwise
Therefore, the probability that Bob obtains outcomea can be
expressed as

pa5(
a

pa,a5trRS~ERS
a rRS!5trAB~EAB

a rAB!. ~53!

~Bob’s measurement commutes with Alice’s, so it is just
though Bob measured first, and Alice has been provided w
incomplete information about what Bob found.!

Now, since the stateua&RS prepared by Bob’s measure
ment is adA

a3dA
a maximally entangled state ofH R

a with HS ,
Bob can apply a suitable unitary transformation to his half
the stateuF&AB that he now shares with Alice, rotating it t
the stateua&AB . Thus, Alice and Bob have converted the
initial state rAB to ua&AB with probability pa5^aurABua&.
Finally, Bob discards the ancillaRS, and Alice and Bob dis-
card the record of their measurement outcomes. We h
described a protocol with one-way quantum communicat
that executes the semicausal complete-measurement s
operatorEAB . This proves Theorem 4.

Note that if we dispense with the last step, in which Ali
and Bob discard their records, then we see that not just
measurement superoperator, but also the measurement o
tion with postselection, is semilocalizable: with one-w
quantum communication from Alice to Bob, the state is p
jected onto the basis, and the measurement outcom
known by Bob~though not by Alice!.

V. CAUSAL COMPLETE-MEASUREMENT
SUPEROPERATORS NEED NOT BE LOCALIZABLE

Now that the general structure of causal complete m
surements is known, we can address whether causal c
plete measurements are localizable. In fact, we will be a
to construct examples of causal measurements that are p
ably not localizable. To accomplish this task, we will identif
a property satisfied by localizable operations, and exh
causal measurements that do not possess this property.

We say that a~not necessarily normalized! pure stateuc&
is aneigenstateof a superoperatorE if

E~ uc&^cu!5uc&^cu. ~54!

The key property of localizable superoperators that we w
exploit is given here below.

Theorem 5 If E is a localizable superoperator o
HA^ HB , anduc&, A^ I uc&, andI ^ Buc& are all eigenstates
9-11
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of E ~where A and B are invertible operators!, then A
^ Buc& is also an eigenstate ofE.

The proof of Theorem 5 is in Appendix B. Clearly th
claim is plausible. By hypothesis, the eigenstateuc& of E is
mapped to a new eigenstate if Alice appliesA and Bob does
nothing, or if Bob appliesB and Alice does nothing. SinceE
is localizable, Alice and Bob should be able to decide in
pendently whether to applyA and B, and still obtain an
eigenstate ofE.

A. A twisted partition

Having identified in Theorem 5 a necessary condition fo
localizability, we proceed to describe causal measurem
for which this condition is violated. An example in 434
dimensions is illustrated in Fig. 7. Alice’s four-dimension
space is partitioned into two two-dimensional subspac
H A

01 spanned by $u0&A ,u1&A%, and H A
23 spanned by

$u2&A ,u3&A%. Bob’s space is similarly partitioned. Let us fir
consider the case where the measurement projects ont
standard Bell basis$uf6&,uc6&% in each of the four sub-
spacesH A

a
^ H B

b ; that is, the orthonormal basis is

uf00
6 &,uc00

6 &, uf02
6 &,uc02

6 &,

uf20
6 &,uc20

6 &, uf22
6 &,uc22

6 &, ~55!

where we use the notation

uf i j
6&5

1

A2
~ u i , j &6u i 11,j 11&),

uc i j
6&5

1

A2
~ u i , j 11&6u i 11,j &). ~56!

The superoperator that induces decoherence in this b
is localizable, and in fact it can be implemented with sha
randomness—no entanglement is required. Alice and B
can each perform a partial measurement to identify whe
the state occupies the subspaceH 01 or H 23. Then they can
proceed to implement decoherence in the 232 Bell basis as
described in Sec. II C. Finally, Alice and Bob discard t

FIG. 7. A causal complete orthogonal measurement that is
localizable, in 434 dimensions. The Hilbert space is divided in
four 232 quadrants, and the elements of the orthonormal basis
maximally entangled Bell states in each quadrant. Because the
basis in the bottom-right quadrant has been twisted by applying
unitary transformationI ^ UB , the corresponding measurement s
peroperator cannot be implemented without communication
tween Alice and Bob.
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record of the partial measurement to complete the implem
tation of the measurement superoperator.

But now consider a ‘‘twisted’’ basis in which the bas
elements in theH A

23
^ H B

23 quadrant of the Hilbert space ar
rotated by applying a unitary transformationUB to Bob’s
half of the state, becoming

I A^ UBuf22
6 &, I A^ UBuc22

6 &, ~57!

whereUB mapsH B
23 to H B

23. Since this new basis still meet
the criterion of Theorem 3 in bothHA and HB , the corre-
sponding measurement superoperatorE is still causal. But
becauseE does not satisfy the criterion of Theorem 5~except
in the case wereUB merely permutes the Bell basis!, it is no
longer localizable. The eigenstates ofE include, for example,

uf00
6 &,

uf20
6 &5X2

^ I uf00
6 &,

uf02
6 &5I ^ X2uf00

6 &, ~58!

whereX2 is the four-dimensional Pauli operator that acts
the basis$u0&,u1&,u2&,u3&% according to

X2:u i &→u i 12 ~mod 4!&. ~59!

If E is localizable, Theorem 5 requires that

uf22
6 &5X2

^ X2uf6& ~60!

also be an eigenstate—i.e., thatuf22& is also an element o
the orthonormal basis. This is not so unlessUB is one of the
Pauli matrices, up to a phase. Therefore,E is not localizable.

The method that worked for the untwisted basis (UB
5I ) fails for the twisted basis. Alice’s partial measureme
identifies what row the state occupies, and Bob’s meas
ment identifies the column, but neither one has enough
formation to determine whether or not the state lies in
bottom-right quadrant where the basis is twisted. Witho
this information, they cannot complete the protocol succe
fully.

If Bob did have this information, then the protocol cou
be completed. Hence, not only isE semilocalizable~like any
causal complete-measurement superoperator!; furthermore it
can actually be implemented with one-wayclassicalcommu-
nication. Alice performs the partial measurement th
projects ontoH A

01 or H A
23, and sends her measurement o

come to Bob. She also sends to Bob a copy of a table
random numbers that she has generated. Then Bob, after
forming his partial measurement, has enough information
determine whether the state occupies the bottom-right qu
rant, where the stabilizer generators are

X^ UBXUB
21 , Z^ UBZUB

21 , ~61!

or one of the other three quadrants, where the stabilizer g
erators are

X^ X, Z^ Z. ~62!

ot
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~HereX andZ denote 232 Pauli operators.! When Alice and
Bob consult their shared randomness and Alice is directe
apply sP$I ,X,Y,Z% to her half of the state, Bob applie
UBsUB

21 in the former case, ands in the latter case, to
induce decoherence in the proper stabilizer eigenstate b

Note that, for this protocol to work, the classical comm
nication must be in the proper direction—it must be Bob, n
Alice, who chooses from two alternative operations. T
statement sounds surprising at first, as we know that a
tary transformation applied by Bob to any maximally e
tangled state is equivalent to a suitable unitary transfor
tion applied by Alice. However, unitary transformation
applied by Alice and by Bob donot have equivalent effects
when applied toall the elements of a maximally entangle
basis. Correspondingly, it must be Bob, not Alice, who a
plies the rotation to transform the stabilizer generators of
~62! to those of Eq.~61!.

B. A twisted Bell basis

We saw that the general causal complete-measuremen
peroperator projects onto a basis that partitionsHA^ HB into
d3d subspaces. Of course, ifd51, the basis is a produc
basis and the superoperator is trivially localizable. W
about the other limiting case, in whichd5NA5NB , so that
the basis is maximally entangled? We will give an exam
of a 434 maximally entangled basis, such that the cor
sponding measurement superoperator isnot localizable.

In the d3d case, any maximally entangled state can
expressed asU ^ I uF1&, where

uF1&5
1

Ad
(
i 51

d

u i & ^ u i & ~63!

and U is unitary. The elements of ad3d maximally en-
tangled basis, then, can be expressed as

uFa&5Ua^ I uF1&; ~64!

the requirement that the states are orthogonal becomes

tr~Ua
†Ub!5ddab . ~65!

For the standardd3d Bell basis, these unitary transforma
tions can be chosen as

Ua,b5XaZb, a,b50,1, . . . ,d21, ~66!

whereX andZ are thed-dimensional Pauli operators that a
on a basis$u0&,u1&, . . . ,ud21&% as

Xu i &5u i 11 ~mod d!&,

Zu i &5v i u i &, v5e2p i /d. ~67!

Anymeasurement superoperator that projects onto a m
mally entangled basis satisfies the criterion of Theorem 3~in
both directions! and is therefore causal. But if the supero
erator is localizable, Theorem 5 requires the unitary trans
mations$Ua% satisfying Eq.~65! to obey further restrictions
Note that if Alice and Bob both adopt the Schmidt basis
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uF0& as their computational bases, thenuF0&5uF1& and
U05I . Then a useful characterization of theUa’s is provided
by the following theorem.

Theorem 6Let U be a set ofd2 d3d unitary matrices
satisfying Eq.~65!, and letEU be the measurement supero
erator that projects onto the orthonormal basis$Ua
^ I uF1&,UaPU%. Suppose thatEU is localizable. Then ifI,
U, andV are all contained inU, so must beeifUV, for some
phaseeif.

That is,U is a projective group.
Proof. Theorem 6 follows easily from Theorem 5. Fir

note that

M ^ I uF1&5I ^ MTuF1&, ~68!

whereM is any operator, and the transpose is taken in
computational basis. Then by hypothesis, all of

uF1&, U ^ I uF1&, I ^ VTuF1&, ~69!

are eigenstates ofEU . Theorem 5 then implies that

U ^ VTuF1&5UV^ I uF1& ~70!

is also an eigenstate, and hence an element of the ortho
mal basis, up to a phase. This proves the theorem.

Now to exhibit a causal measurement superoperator
is not localizable, it suffices to construct unitary operato
that do not satisfy the projective group property specified
Theorem 6. Consider, in the 434 case, the 16 unitary opera
tors

U55
I Z Z2 Z3

X XZ XZ2 XZ3

X2 X2Z X2Z2 X2Z3

X3 X3Z̃ X3Z2 X3Z̃Z2
6 , ~71!

whereZ̃ andZ2 are the diagonal 434 matrices

Z̃5diag~1,1,21,21!.

Z25diag~1,21,1,21!. ~72!

We can readily check that these operators obey the ortho
nality condition Eq.~65!, asI, Z̃, Z2, and

Z̃Z25diag~1,21,21,1! ~73!

are all mutually orthogonal.~They are the characters of th
four unitary irreducible representations of the groupZ23Z2.!
However, due to the mismatch of the fourth row of Eq.~71!
with the first three rows,U does not have the projectiv
group property required by Theorem 6. For example,X and
X2Z are contained inU, but their productX3Z is not propor-
tional to any element ofU. ThereforeEU is not localizable.

As with any causal complete-measurement superoper
EU is semilocalizable. But in contrast with the preceding e
ample, classical communication is not sufficient—quant
communication ~or equivalently, classical communicatio
9-13
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and shared entanglement! is needed to implement the oper
tion. To prove this we can appeal to a result of Ref.@16#: If
a superoperator can be implemented with one-way class
communication, and has a maximally entangled state a
eigenstate, then it is localizable. Since the superoperator
projects onto the twisted Bell basis has a maximally
tangled state as an eigenstate, and isnot localizable, we
know that it cannot be done with one-way classical comm
nication. Further examples of twisted Bell bases are p
sented and discussed in Ref.@16#.

VI. QUANTUM CORRELATIONS AND LOCALIZABILITY

In this section, we will use a different method to exhib
another class of causal superoperators that are not loc
able. The construction exploits fundamental limitations
the strength of correlations among the parts of a quan
system, limitations embodied by the Cirel’son inequality. A
operation that produces correlations that are too strong
not be implemented without communication among
parts.

A related observation is that correlations arising fro
quantum entanglement are stronger than can be achi
with shared randomness—this is the content of Bell’s th
rem. We use this idea to construct examples of superop
tors that can be locally implemented with prior quantum e
tanglement, but cannot be locally implemented with sha
randomness.

A. The CHSH and Cirel’son inequalities

Suppose that Alice receives a classical input bitxP$0,1%
and is to produce a classical output bita, while Bob receives
input bit y and is to produce output bitb. Their goal is to
generate output bits that are related to the input bits acc
ing to

a% b5x`y, ~74!

where % denotes the sum modulo 2~the XOR gate! and `
denotes the product~the AND gate!.

If Alice and Bob are unable to communicate with o
another, so that Alice does not know Bob’s input and B
does not know Alice’s, then they will not be able to achie
their goal for all possible values of the input bits. Leta0 ,a1
denote the value of Alice’s output if her input isx50,1 and
let b0 ,b1 denote Bob’s output if his input isy50,1. They
would like their output bits to satisfy

a0% b050,

a0% b150,

a1% b050,

a1% b151; ~75!

this is impossible, since by summing the four equations
obtain 051.

If Alice and Bob always choose the outputa5b50, then
they will achieve their goal with probability 3/4, if all pos
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sible values of the input bits are equally probable. T
Clauser-Horne-Shimony-Holt~CHSH! inequality says that,
even if Alice and Bob share a table of random numbers,
higher success probability is attainable. To make the conn
tion with the CHSH inequality as it is usually formulate
@26#, define random variables with values61 as

A5~21!a0, A85~21!a1,

B5~21!b0, B85~21!b1. ~76!

Then the CHSH inequality says that for any joint probabil
distribution governingA,A8,B,B8P$61%, the expectation
values satisfy

^AB&1^AB8&1^A8B&2^A8B8&<2. ~77!

Furthermore, if we denote bypxy the probability that Eq.
~75! is satisfied when the input bits are (x,y), then

^AB&52p0021,

^AB8&52p0121,

^A8B&52p1021,

^A8B8&5122p11, ~78!

so that Eq.~77! becomes@27#

1

4
~p001p011p101p11!<

3

4
. ~79!

If Alice and Bob share quantum entanglement, they s
cannot satisfy Eq.~75! for all inputs, but they can achieve a
improved success probability compared to the case wh
they share only randomness. If we suppose thatA,A8,B,B8
are all Hermitian operators with eigenvalues61, and that
Alice’s operatorsA andA8 commute with Bob’s operatorsB
and B8, then the quantum-mechanical expectation valu
obey the Cirel’son inequality@26#

^AB&1^AB8&1^A8B&2^A8B8&<2A2; ~80!

the success probability then satisfies

1

4
~p001p011p101p11!<

1

2
1

1

2A2
'0.853. ~81!

Furthermore, the inequality can be saturated if the obse
ablesA,A8,B,B8 are chosen appropriately.

B. A causal operation that is not localizable

Our observations concerning the Cirel’son inequal
quickly lead us to a construction of a causal operation tha
not localizable.

For a two-qubit state shared by Alice and Bob, conside
superoperator, denotedE` , that can be implemented in tw
steps. The first step is a complete orthogonal measurem
that projects onto the product basis$u00&,u01&,u10&,u11&%.
9-14
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Then in the second step the product state is transformed
cording to

u00&

u01&

u10&

%→ 1

2
~ u00&^00u1u11&^11u!,

u11&→
1

2
~ u01&^01u1u10&^10u!. ~82!

This operation is obviously trace preserving, and since it
an evident operator-sum representation, it is also comple
positive. Furthermore, it is causal. Whatever the initial st
that Alice and Bob share, each has the final density oper
r5I /2; therefore, neither can receive a signal from the oth

Though causal,E` is not localizable—it cannot be imple
mented by Alice and Bob without communication, even
they share an entangled ancilla. If it were localizable, th
Alice and Bob would be able to implementE` by applying a
local unitary transformationUA^ UB to the composite sys
tem consisting of the input qubits and ancilla, and th
throwing some qubits away. Let the input state shared
Alice and Bob be one of the products stat
$u00&,u01&,u10&,u11&%, let them apply their local unitary
transformation to implementE` , and suppose that each me
sures her or his output qubit in the basis$u0&,u1&% afterE` is
performed. In effect then, Alice subjects the initial state to
measurement of the observableUA

21ZA,outUA , and Bob mea-
suresUB

21ZB,outUB , where Z
•,out denotes a Pauli operato

acting on an output qubit. Both observables have eigenva
61.

Now, the Cirel’son inequality applies to a situation whe
Alice measures either of two observables in a specified s
and Bob does likewise. Here we are considering a cas
which Alice and Bob measure fixed observables, and
initial state can be any of four possible states. But eit
scheme can be easily related to the other. For example
stead of providing Alice with an input qubit that can beu0&
or u1&, we can give her the inputu0& and instruct her to apply
X, or not, before she performs her measurement. In this
nario, Alice receives a classical input bit that instructs he
measure one of the two observables

A5UA
21ZA,outUA ,

A85XA, inUA
21ZA,outUAXA, in , ~83!

and similarly for Bob.
In this case, then, the Cirel’son inequality constrains h

Alice’s measurement outcomeua& is correlated with Bob’s
measurement outcomeub&. But if they have really succeede
in implementing the operationE` , then the outcomes ar
related to the classical input bitsx,y by a% b5x`y with
probability 1, a violation of the bound Eq.~81!. We conclude
that no local protocol implementingE` is possible.

However, it is also clear thatE` is semilocalizable—it can
be implemented with one-wayclassicalcommunication from
Alice to Bob ~or from Bob to Alice!. Alice measures he
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qubit in the basis$u0&,u1&%, and she tosses a coin to decid
whether to flip her qubit or not. Then she sends her meas
ment result and the outcome of her coin toss to Bob. B
measures his qubit in the basis$u0&,u1&%, and after reading
the data sent by Alice, either flips it or not. Bob arranges t
his qubit have the same value as Alice’s unless they b
measureu1&, in which case he arranges for his qubit a
Alice’s to have opposite values. This procedure impleme
E` .

How much communication is necessary? As pointed
to us by Cleve@28#, we can obtain a lower bound on th
amount of communication needed to implementE` from
known lower bounds on the quantum communication co
plexity of the inner product function@29#.

Suppose that Alice has ann-bit classical input stringx
5(x1 ,x2 , . . . ,xn), not known to Bob, and Bob has ann-bit
classical input stringy5(y1 ,y2 , . . . ,yn), not known to Al-
ice. Their goal is to compute the mod 2 inner product of th
strings,

I~x,y!5x1y1% x2y2% •••% xnyn . ~84!

It is known @29# that even if Alice and Bob share preexistin
entanglement, neither party can evaluateI(x,y) with zero
probability of error unless at leastn/2 qubits are transmitted
between the parties. Forn even,n/2 qubits of communication
are also sufficient: Alice can use superdense coding to sex
to Bob, and Bob can then evaluateI(x,y).

But if Alice and Bob were able to implementE` ‘‘for
free,’’ they could use it to evaluateI(x,y) at a smaller com-
munication cost. Alice prepares then-qubit stateux& and Bob
the n-qubit stateuy&. ThenE` is applied touxi ,yi& for each
i 51,2, . . . ,n, and Alice and Bob measure their qubits
obtain outputsai ,bi for eachi. Sinceai % bi5xiyi , we see
that

I~x,y!5~a1% b1! % ~a2% b2! % •••% ~an% bn!

5~a1% a2% •••% an! % ~b1% b2% •••% bn!.

~85!

Therefore, Alice can evaluate the sum~mod 2! of hern mea-
surement outcomes, and send theone-bit result to Bob. Bob
adds Alice’s result to the sum of his own measurement o
comes, and so obtains the value ofI(x,y). Just one bit of
communication is required.

Suppose that Alice and Bob have a protocol that allo
them to implementE` with, on average,Qav qubits of quan-
tum communication.~Alice’s decision whether to send a qu
bit could be conditioned on the outcome of a local measu
ment; therefore the amount of communication required
fluctuate about this average.! Now, if Alice and Bob can
implementE` n times with Qn qubits of communication,
then since just one additional bit is needed to complete
evaluation of the inner product function, we know that

Qn11>n/2. ~86!

For largen, Qn converges tonQav, and we conclude that
9-15
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Qav>1/2. ~87!

This argument illustrates a general approach to prov
that a quantum operation is unlocalizable: if implement
the operation would allow us to reduce the communicat
complexity of a function below established lower bound
then no local implementation is possible.

C. Entanglement is stronger than shared randomness

The separation between the CHSH and Cirel’son inequ
ties allows us to construct a class of operations that can
implemented locally with shared entanglement, but can
be implemented locally with shared randomness.~The exis-
tence of operations with this property was already poin
out in Sec. II C.!

Suppose that Alice and Bob have a shared maximally
tangled pair of qubits~qubits 3 and 4!, as well as two input
qubits~1 and 2! on which the operation is to act. Alice mea
sures qubit 1 and Bob measures qubit 2 in the ba
$u0&,u1&%. Then Alice measures her half of the entangl
pair, qubit 3, choosing to measure the observableA if the
measured input wasu0&1 or A8 if the measured input wa
u1&1. Similarly, Bob measures qubit 4, choosing to meas
eitherB or B8 depending on the outcome of his measurem
of the input qubit 2.

After measuringA ~or A8), Alice rotates qubit 3 to the
stateu0&3 if she foundA51 ~or A851), and rotates it tou1&3
if she foundA521 ~or A8521). Bob does the same t
qubit 4. Finally Alice and Bob throw away the input qubits
and 2, retaining qubits 3 and 4.

Alice and Bob, then, using their shared entangleme
have locally implemented an operation that acts on
product-state input and produces a product-state output
cording to

ux,y&→ua,b&. ~88!

Averaged over the four possible product-state inputs, the
put of the operation satisfiesa% b5xy with a success prob
ability that we will call p. If the observables
A, A8, B, B8 are chosen to saturate the Cirel’son i
equality, thenp5cos2(p/8)'.853.

As is well known@26#, probability distributions for quan-
tum measurements of a single qubit can be correctly
counted for by a ‘‘hidden-variable theory’’~while measure-
ments of entangled qubits cannot be!. Therefore,
measurements performed by Alice and Bob on a prod
input state can be perfectly simulated by a classical proba
ity distribution, so that the measurement results must res
the CHSH inequality, which requires that the success pr
ability p satisfy p<3/4. For 3/4,p<cos2(p/8), the opera-
tion can be implemented locally with shared entangleme
but not with shared randomness.

VII. UNITARITY AND CAUSALITY

An important special case of an operation is a unit
transformation. In this case, our classification collapses—
classes of causal, localizable, semicausal, and semiloc
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able unitary transformations all coincide, according to t
following theorem.

Theorem 7. A bipartite unitary transformationUAB is
semicausal if and only if it is a tensor product,UAB
5UA^ UB .

Proof. It is obvious that a tensor product transformation
causal. The nontrivial content of the theorem is that ifUAB is
not a tensor product, then we can devise protocols wher
Alice can signal Bob and Bob can signal Alice; henceUAB is
not semicausal.

To prove this, we first recall that since linear operators
a vector space with a Hilbert-Schmidt inner product, a bip
tite operator~whether unitary or not! can be Schmidt decom
posed@30#. We may write

UAB5(
m

lmAm ^ Bm , ~89!

where thelm’s are non-negative real numbers, and the o
erator bases$Am% and$Bm% are orthogonal,

tr~Am
† An!5NAdmn , tr~Bm

† Bn!5NBdmn ; ~90!

NA is the dimension ofHA and NB is the dimension of
HB—we have chosen this normalization so that unitary o
erators are properly normalized.

If UAB is not a tensor product, than more than onelm is
strictly positive. We will show that if this is true, thenUAB
allows Bob to signal Alice.~A similar argument shows tha
Alice can signal Bob.! Suppose that Alice introduces aref-
erence systemHR and that she prepares a maximally e
tangled state ofHR^ HA

uF&RA5(
i

u i &R^ u i &A . ~91!

~Because it will be convenient later on, we have chosen
unconventional normalization of the stateuF&RA .) Mean-
while, Bob prepares a pure stateuc&B . WhenUAB acts, the
density operator becomes

rRAB5(
mn

lmln~ I ^ Am!uF&^Fu~ I ^ An
†! ^ Bmuc&^cuBn

† .

~92!

After tracing out Bob’s system, the density operator of A
ice’s system becomes

rRA5(
mn

lmln~ I ^ Am!uF&^Fu~ I ^ An
†!^cuBn

†Bmuc&.

~93!

Bob can signal Alice if the density operatorrRA depends
on Bob’s initial stateuc&. It follows from Eq. ~90! that the
states$(I ^ Am)uF&% are mutually orthogonal; therefore sig
naling is possible if there exist two statesuc& and uc8& such
that

^cuBn
†Bmuc&5” ^c8uBn

†Bmuc8&. ~94!
9-16
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for somem andn.
Now we distinguish two cases.
~1! Suppose that for somem, Bm is not unitary. Then, in

order to satisfy the normalization condition Eq.~90!, Bm
† Bm

must have~at least! two distinct eigenvalues. Chooseuc& and
uc8& to be the corresponding eigenvectors. Then Eq.~94! is
satisfied forn5m.

~2! Suppose thatBm and Bn are both unitary formÞn.
ThenBn

†Bm is nonzero and@according to Eq.~90!# has van-
ishing trace; therefore it has~at least! two distinct eigenval-
ues. Thus Eq.~94! is satisfied, whereuc& and uc8& are the
corresponding eigenvectors.

In either case, Alice’s density operator depends on h
Bob’s initial state is chosen; hence Bob can signal Alice
similar argument shows that Alice can signal Bob. Theref
UAB is not semicausal. This completes the proof of Theor
7.

It follows immediately from Theorem 7 that if a bipartit
unitary transformation is semicausal, it is also localizab
and therefore fully causal.

VIII. GENERAL OPERATIONS: CRITERIA FOR
SEMICAUSALITY

To show that an operationE is not fully causal, it suffices
to exhibit a protocol whereby the operation can be used
send a signal in one direction, and to show that it is
semicausal, it suffices to exhibit protocols for signaling
both directions. On the other hand, to show that itis fully
causal~or semicausal!, we must prove that no such signalin
protocols exist. To settle whether a particular operation
causal, it is very helpful to have a simpler criterion that c
be checked with a straightforward calculation. We will no
develop such a criterion for semicausal superoperators.

First, we recall that, although in our definition of sem
causality we allowed the initial state shared by Alice a
Bob to be entangled, we could without loss of genera
restrict their initial state to be a product state~Theorem 1!.
Next, we note that a helpful tool in our analysis of the ca
sality properties of unitary transformations, entanglem
with a reference system, can also be fruitfully applied to
general case. To give a useful restatement of the criterion
semicausality, suppose again that Alice prepares the m
mally entangled stateuF&RA of her reference systemHR with
her systemHA . Then for each stateuw&APHA , there is a
corresponding ‘‘relative state’’uw* &RPHR , chosen so that

R^w* uF&RA5uw&A . ~95!

We can easily see that an operationE is semicausal~Bob is
unable to signal Alice! if and only if

trB@E~ uF&^Fu ^ uc&^cu!# ~96!

is independent of Bob’s stateuc&. ~Here of courseE really
denotes the operationI R^ EAB acting on theRABsystem.! If
the expression in Eq.~96! depends onuc&, then obviously
Bob can signal Alice. Conversely, if Bob can signal Alic
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then there is a signaling protocol in which the initial state
a product of pure states; there are statesuw&, uc&, anduc8&,
such that

R^w* utrB@E~ uF&^Fu ^ uc&^cu!#uw* &R

5trB@E~ uw&^wu ^ uc&^cu!#

ÞtrB@E~ uw&^wu ^ uc8&^c8u!#

5R^w* utrB@E~ uF&^Fu ^ uc8&^c8u!#uw* &R .

~97!

Since we have found a particular matrix element
trB@E(uF&^Fu ^ uc&^cu)# that depends onuc&, evidently so
does trB@E(uF&^Fu ^ uc&^cu)# itself.

Now, let us provide Bob with a reference systemS, and
suppose that he prepares a maximally entangled stat
HB^ HS

uF8&BS5(
i

u i &B^ u i &S ~98!

~again we have chosen an unconventional normalization
convenience!. We are ready to state and prove our new c
terion for semicausality.

Theorem 8. Let uF&RA be a maximally entangled state o
systemA with the reference systemR, and letuF8&BS be a
maximally entangled state of systemB with reference system
S. Then the bipartite superoperatorE acting onAB is semi-
causal~Bob cannot signal Alice! if and only if

trB$~EAB^ I RS!@~ uF&^Fu!RA^ ~ uF8&^F8u!BS#% ~99!

is proportional to the productrRA^ I S , whereI S denotes the
identity onS.

Proof. If trB@E(uF&^Fu ^ uF8&^F8u)# is proportional to
rRA^ I S , then by evaluating the matrix element betwe
relative statesuc* &S , we see that trB@E(uF&^Fu ^ uc&^cu)# is
independent ofuc&. Therefore Bob cannot signal Alice. Con
versely, suppose that Bob cannot signal Alice. Then

trB@E~ uF&^Fu ^ uc&^cu!#

5S^c* utrB@E~ uF&^Fu ^ uF8&^F8u!#uc* &S

~100!

is independent ofuc* &. It follows that

trB@E~ uF&^Fu ^ uF8&^F8u!#

is proportional toI S . This proves Theorem 8.

IX. CONCLUSIONS

We have studied the constraints on quantum operat
that are imposed by relativistic causality. In the bipartite s
ting where no classical communication is permitted, we fi
a hierarchy of operations:~1! operations that can be imple
mented with no shared resources;~2! operations that can be
implemented with shared randomness;~3! operations that
can be implemented with shared entanglement~localizable
9-17



.

b
tu

th
op
as
us
p
fie

c

-

t
f
c
p
p

ia

s
m

s

io
ha
in
ab

i
n
t
th
s
tio

on
d
e
e
t i

us
la
al
te
a
b
ti
o-
o
-

ra
ca

ri-

n-
able

i-
-

iner
en
ant
un-
e.
ics.

a-

rs

e

f

e

BECKMAN, GOTTESMAN, NIELSEN, AND PRESKILL PHYSICAL REVIEW A64 052309
operations!; ~4! causal operations; and~5! acausal operations
Our central observation is that the classes~3! and ~4! do

not coincide: there are operations that respect causality,
are nonetheless forbidden by the rules of local quan
physics.

Our work can be regarded as a useful step toward
broader goal of characterizing the physically realizable
erations in relativistic quantum-field theory. However,
noted in Sec. I, to apply our results to field theory one m
accept the idealization that the resources shared by the
ties are external probes not themselves described by the
theory.

In a separate paper, we have also discussed causality
straints that apply to non-Abelian gauge theories@17#; we
have shown that thenondemolitionmeasurement of a space
like Wilson-loop operator is an acausal operation~confirming
a speculation of Sorkin@14#!, and is therefore surely no
localizable. On the other hand, adestructivemeasurement o
a Wilson loop is possible—spacelike separated parties
perform a POVM from which the value of the Wilson loo
can be inferred, but this POVM will damage Wilson-loo
eigenstates.

The compatibility of quantum mechanics with spec
relativity is highly nontrivial; in fact, it is something of a
miracle. Because relativistic quantum-field theories are
highly constrained, it is tempting to speculate that ‘‘quantu
mechanics is the way it is because any small change
quantum mechanics would lead to absurdities@31#.’’

From this perspective, the existence of causal operat
that are not localizable comes as a surprise. We seem to
the freedom to relax the rules of quantum theory by allow
more general operations, without encountering unaccept
physical consequences. Nontrivial support for this notion
provided by the semigroup property of the causal operatio
It is reasonable to insist that the operations allowed a
given time ought not to depend on the previous history of
system; since the composition of two causal operation
causal, a theory that admits more general causal opera
than those allowed in local quantum theory could adhere
this proviso.

One wonders whether there are further principles, bey
relativistic causality, that will restrict the class of allowe
operations to those and only those that are truly realizabl
Nature. If so, these principles might lead us to an und
standing of why quantum mechanics has to be the way i
What might these principles be?

We do not know. But the discussion in Sec. VI invites
to contemplate the fundamental limitations on the corre
tions among the parts of a physical system. Experiment
confirmed violations of the CHSH inequality demonstra
that the correlations are stronger than those allowed by
local hidden variable theory. Operations that are causal
not localizable produce correlations that are stronger s
and violate the Cirel’son inequality. What criteria point t
ward a description of Nature that incorporates violation
the CHSH inequality, but not violation of the Cirel’son in
equality?

Or could it be that Nature really does allow more gene
operations, and that the conventional framework of lo
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quantum physics needs revision? Ultimately, only expe
ment can decide.

Note added. After this paper appeared, a proof of the co
jecture that semicausal superoperators are semilocaliz
was found by Eggeling, Schlingemann, and Werner@32#.
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APPENDIX A: PROOF OF THEOREM 3

Theorem 3. Consider a bipartite complete orthogonal me
surement superoperator of the form

E~r!5(
a

ua&^aurua&^au, ~A1!

where $ua&% is an orthonormal basis forHA^ HB , and let
sA

a5trB(ua&^au). Then E is semicausal if and only if the
following property holds: For each pair of operato
$sA

a ,sA
b%, eithersA

a5sA
b or sA

asA
b50.

Proof. We begin by observing that ifsA
asA

b50, then

^auI A^ UBub&50 ~A2!

for any unitaryUB . To show this, we Schmidt decompos
the statesua& and ub&:

ua&5(
i

Ala,i ua,i &A^ ua,i &B ,

ub&5(
i

Alb,i ub,i &A^ ub,i &B , ~A3!

where $ua,i &A%, $ub,i &A% are orthonormal bases o
HA , $ua,i &B%, $ub,i &B% are orthonormal bases ofHB ,
and thela,i ’s, lb,i ’s are all non-negative. In terms of thes
bases, we find

sA
a5(

i
la,i ua,i &A A^a,i u,

sA
b5(

i
lb,i ub,i &A A^b,i u; ~A4!

thereforesA
asA

b50 iff A^a,i ub, j &A50 for eachi and j
with la,ilb, j5” 0. Equation~A2! follows immediately.

Now suppose that for eacha and b, either sA
a5sA

b or
sA

asA
b50. Let uc& be an arbitrary pure state inHA^ HB . We

will show that

trBE~ uc&^cu!5trBE„~ I A^ UB!uc&^cu~ I A^ UB
† !… ~A5!
9-18
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for any unitaryUB , which according to Theorem 1 suffice
to show thatE is semicausal. To prove Eq.~A5!, we expand
the stateuc& in the basis$ub&% as

uc&5(
b

abub&, ~A6!

and so obtain

trBE„~ I A^ UB!uc&^cu~ I A^ UB
† !…

5 (
a,b,c

abac* ^auI A^ UBub&^cuI A^ UB
† ua&sA

a . ~A7!

Now we use the property that eithersA
a5sA

b or sA
asA

b50 for
eacha and b: becausesA

asA
b50 implies that^auI A^ UBub&

50, we can replacesA
a by sA

b in Eq. ~A7! without altering
the sum. After this replacement, we use the prope
(aua&^au5I and the unitarity ofUB to find

trBE„~ I A^ UB!uc&^cu~ I A^ UB
† !…5(

b
uabu2sA

b , ~A8!

which is independent ofUB , proving Eq.~A5! and hence the
‘‘if’’ part of Theorem 3.

To prove the ‘‘only if’’ part of Theorem 3, we suppos
that for somea and b, sA

asA
b5” 0, and sA

a5” sA
b ; we must

show that Bob can signal Alice. It suffices to show tha
basis elementub& and a unitary transformationUB can be
chosen so that

trBE„~ I A^ UB!ub&^bu~ I A^ UB
† !…5(

a
u^auI A^ UBub&u2sA

a

5sA
b5trBE~ ub&^bu!.

~A9!

If Eq. ~A9! holds, then Bob can signal Alice by the followin
protocol: Alice and Bob prepare in advance the shared s
ub&. Just beforeE acts, Bob either appliesUB to the state or
he does nothing. Equation~A9! says that Alice’s density op
erator afterE acts depends on the action chosen by B
therefore, Bob can signal Alice.

We will prove in two steps thatUB andub& exist such that
Eq. ~A9! is satisfied. The first step is to show that f
sA

asA
b5” 0, there is a unitaryUB such that

^buI A^ UBua&5” 0. ~A10!

In terms of the Schmidt bases defined in Eq.~A3!, what is to
be shown can be rewritten as

(
i , j

Alb, jla,i A^b, j ua,i &A B^b, j uUBua,i &B5” 0. ~A11!

Now recall thatsA
asA

b5” 0 implies that A^b, j ua,i &A5” 0 for
somei andj. By labeling the Schmidt bases appropriately w
can ensure thatA^b,1ua,1&A5” 0. By adopting suitable
phase conventions, we can ensure that eachA^b,i ua,i &A is
real and non-negative, and we can chooseUB so that
B^b, j uUBua,i &B5d i j . Thus
05230
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(
i , j

Alb, jla,i A^b, j ua,i &A B^b, j uUBua,i &B

5(
i

Alb,ila,i A^b,i ua,i &A ~A12!

is a sum of non-negative terms, at least one of which
nonzero; therefore the sum is surely nonzero, as we wis
to show.

Now we have seen thatUB andub& can be chosen so tha
the sum in Eq.~A9! contains a term other thansA

b . The
second step of the argument will establish that we can
fact, chooseUB andub& such that the sum is not equal tosA

b .
For this purpose, consider the setSb containing allsA

a

such thatsA
asA

b5” 0. Suppose thatSb contains at least two
elements, and thatsA

b is anextremalelement ofSb—that is,
sA

b cannot be expressed as a nontrivial convex combina
of other elements ofSb. Then since the sum in Eq.~A9! is a
convex combination of elements ofSb, and since we can
chooseUB so that the sum contains somesA

a5” sA
b with a

nonvanishing coefficient, the inequality in Eq.~A9! follows
from the extremality ofsA

b in Sb.
Finally, it only remains to show thatub& can be chosen so

that sA
b is extremal inSb. For this purpose, of allsA

b such
that Sb contains two or more elements, choose one w
maximal Hilbert-Schmidt norm $ i.e., with maximal
tr@(sA

b)2#%. We claim that thissA
b must be extremal inSb.

To see thatsA
b is extremal inSb, we appeal to the follow-

ing property: Let$v i% be a finite set of vectors, and letivimax
be the maximum value ofiv i i . Then thestrict inequality

I(
i

piv i I,ivimax ~A13!

holds for any nontrivial convex combination of thev i ’s ~one
with two or more nonvanishingpi ’s!. Applying Eq.~A13! to
Sb, the Hilbert-Schmidt norm of our selectedsA

b is on the
right-hand side, which is strictly greater than the left-ha
side, the norm of any nontrivial convex combination of e
ments ofSb. ThereforesA

b is extremal inSb.
This completes the proof of Theorem 3.

APPENDIX B: PROOF OF THEOREM 5

Theorem 5. If E is a localizable superoperator o
HA^ HB , anduc&, A^ I uc&, andI ^ Buc& are all eigenstates
of E ~where A and B are invertible operators!, then A
^ Buc& is also an eigenstate ofE.

Proof. If the superoperatorE is localizable, its action on a
pure stateuh&AB can be realized by a tensor product unita
transformation URA^ VBS acting on uh&ABuw&RS, where
uw&RS is a suitable ancilla state shared by Alice and Bob.
hypothesis, this unitary transformation acting onuc&ABuw&RS
preservesuc&AB and rotates only the ancilla state:

URA^ VBSuc&ABuw&RS5uc&ABuw0&RS, ~B1!
9-19
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for some state of the ancillauw0&RS. Similarly, by hypoth-
esis, we have

URA^ VBS~AA^ I B!uc&ABuw&RS5~AA^ I B!uc&ABuwA&RS,

URA^ VBS~ I A^ BB!uc&ABuw&RS5~ I A^ BB!uc&ABuwB&RS,
~B2!

for states of the ancillauwA&RS, uwB&RS.
Now consider the transformationDRA5UAU21A21.

By construction,DRA acts only on Alice’s systemRA. In
fact, we can show that when acting on the st
(AA^ I B)uc&ABuw0&RS, DRA acts trivially on A and non-
trivially only on Alice’s ancillaR; we observe that

~AA^ I B!uc&ABuwA&RS5~URA^ VBS!~AA^ I B!uc&ABuw&RS

5~DRA^ I B!~AA^ I B!~URA^ VBS!

3uc&ABuw&RS

5~DRA^ I B!~AA^ I B!uc&ABuw0&RS.

~B3!

Therefore, acting on (AA^ I B)uc&ABuw0&RS, we may replace
DRA^ I B by RR^ I B , whereRR is a ~unitary! transformation
acting onR alone that rotatesuw0&RS to uwA&RS. We then
have

~URAAA^ VBS!uc&ABuw&RS

5~DRA^ I B!~AAURA^ VBS!uc&ABuw&RS

5~DRA^ I B!~AA^ I B!uc&ABuw0&RS

5~RR^ I B!~AA^ I B!uc&ABuw0&RS
-

ill

as

k.

05230
e

5~RR^ I B!~AAURA^ VBS!uc&ABuw&RS, ~B4!

and multiplying both sides byI A^ VBS
21 gives

~URAAA^ I B!uc&ABuw&RS

5~RR^ I B!~AAURA^ I B!uc&ABuw&RS; ~B5!

that is, acting on the stateuc&ABuw&RS, we may replace
URAAA by RRAAURA . A similar argument shows that

~ I A^ VBSBS!uc&ABuw&RS

5~ I A^ SS!~ I A^ BSVBS!uc&ABuw&RS, ~B6!

whereSS is a unitary transformation acting on Bob’s ancill
Now we can use the commutation properties Eqs.~B5!

and ~B6! to determine how the superoperatorE acts on
(A^ B)uc&AB :

~URA^ VBS!~AA^ BB!uc&ABuw&RS

5~ I A^ VBSBS!~URAAA^ I B!uc&ABuw&RS

5~RR^ I B!~ I A^ VBSBS!~AAURA^ I B!uc&ABuw&RS

5~RR^ I B!~AAURA^ I B!~ I A^ VBSBS!uc&ABuw&RS

5~RR^ SS!~AAURA^ I B!~ I A^ BSVBS!uc&ABuw&RS

5~RR^ SS!~AA^ BB!~URA^ VBS!uc&ABuw&RS

5~RR^ SS!~AA^ BB!uc&ABuw0&RS

5@~AA^ BB!uc&AB] @~RR^ SS!uw0&RS]. ~B7!

We have shown that (AA^ BB)uc&AB is an eigenstate ofE,
which completes the proof of Theorem 5.
-
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