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We examine constraints on quantum operations imposed by relativistic causality. A bipartite superoperator is
said to belocalizableif it can be implemented by two parti€¢dlice and Bob) who share entanglement but do
not communicate; it isausalif the superoperator does not convey information from Alice to Bob or from Bob
to Alice. We characterize the general structure of causal complete-measurement superoperators, and exhibit
examples that are causal but not localizable. We construct another class of causal bipartite superoperators that
are not localizable by invoking bounds on the strength of correlations among the parts of a quantum system. A
bipartite superoperator is said to bemilocalizablef it can be implemented with one-way quantum commu-
nication from Alice to Bob, and it isemicausalf it conveys no information from Bob to Alice. We show that
all semicausal complete-measurement superoperators are semilocalizable, and we establish a general criterion
for semicausality. In the multipartite case, we observe that a measurement superoperator that projects onto the
eigenspaces of a stabilizer code is localizable.
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[. INTRODUCTION to applyany operationé,g to their state. We want to deter-
mine what operations they can implemennhd communica-

What are thebservablesf a relativistic quantum theory? tion (quantum or classicais permitted. In a relativistic set-
Standard wisdom holds that any self-adjoint operator thating, these are the operations that can be realized if Alice’s
can be defined on a spacelike slice through space-time Bction and Bob’s action are spacelike-separated events. We
measurable in principle. But in fact, for most such operatorswill, though, permit Alice and Bob to make use of a shared
the measurement is forbidden by relativistic causality, andgntangledancilla state that might have been prepared earlier
hence impossible. and distributed to them.

More generally, it is often stated that the possible ways While Alice and Bob are permitted to perform measure-
that the state of a quantum system can change are describeténts, Bob cannot know the outcome of Alice’s measure-
by quantum operations-completely positive trace- ment, and Alice cannot know the outcome of Bob’s. There-
nonincreasing linear maps of density operators to densitjore, we will largely restrict our attention tmace-preserving
operatorg 1,2]. But in a relativistic quantum theory, typical quantum operations, also knownsageroperatorswhere no
operations would allow superluminal signaling, and arepostselection of the quantum state based on the measurement
therefore unphysical. outcome is allowed. We say that a bipartite superoperator is

Relativistic quantum-field theory allows us to identify an localizableif it can be implemented by Alice and Bob acting
algebra of observables that is compatible with the causdbcally on the shared state and the shared ancilla, without any
structure of space-timg8]. Despite this marvelous achieve- communication from Alice to Bob or Bob to Alice.
ment, puzzles and open questions remain. Our objective in Another important concept is that ofcausal operation
this paper is to understand better the restrictions on operdA/e say that an operation is causal if it does not allow either
tions that are imposed by special relativity. Mostly, we will party to send a signal to the other. More precisely, imagine
consider a simplified version of the problem in which thethat Bob applies a local superoperaf®rto his half of the
physical system is divided into two separated parts: part state he shares with Alice just before the global operafion
which is controlled by a party that we will call Alice, and acts on the joint system, and that Alice makes a local mea-
part B, which is controlled by Bob. Initially, Alice and Bob surement on her half just aftéracts. If Alice’s measurement
share a joint quantum state whose density opeggtglis not  can acquire any information about what operation was ap-
known, and they wish to transform the state &pag), plied by Bob, then we say that Bob can signal Alice. The
where is a specified operation. operation is causal if no such signaling is possible in either

If Alice and Bob were able to communicate by sendingdirection.
guantum information back and forth, then they would be able Entanglement shared by Alice and Bob cannot be used to

send a superluminal signal from Alice to Bob or from Bob to
Alice. Therefore, any localizable superoperator is surely a

*Email address: beckman@theory.caltech.edu causal superoperator. What about the converse? It might
TEmail address: gottesma@eecs.berkeley.edu seem reasonable to expect tleaty operation, if it respects
*Email address: nielsen@physics.uqg.edu.au the principle that information cannot propagate outside the
SEmail address: preskill@theory.caltech.edu forward light cone, should be physically realizable in prin-
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ciple. However, we will show otherwise by exhibiting some by local stabilizer groups. We describe the general structure
examples of superoperators that are causal but not localinf semicausal and causal complete-measurement superopera-
able. tors in Sec. lll. We show that semicausal complete-
We obtain weaker notions of localizability and causality measurement superoperators are semilocalizable in Sec. IV,
by considering communication in just one direction. We sayand exhibit some causal complete-measurement superopera-
that a superoperator isemilocalizableif it is possible to  tors that are not localizable in Sec. V. In Sec. VI, we exploit
implement it with one-wayquantum communication from bPounds on the strength of quantum correlations to construct
Alice to Bob. Such operations are physically realizable ifanother class of causal superoperators that are not localizable
Bob’s action takes place in the future light cone of Alice’s hd We note a connection between localizability and quan-
action. Similarly, we say that an operation semicausal UM communication complexity. We prove in Sec. VIl that a
if it does not allow Bob to send a signal to Alice. semicausal unitary transformation must be a tensor product.

Obviously, a semilocalizable superoperator is semicausal—=>0me further criteria for semicausality are developed in Sec.

communication from Alice to Bob cannot help Bob to send a¥!!! @nd Sec. IX contains some concluding comments.
roofs of two of our theorems are included as appendices.

message to Alice. What about the converse? If one believe
that causality is a very special property of operations that is
not likely to hold “by accident,” then it is natural to formu- Il. CAUSALITY AND LOCALIZABILITY

late the following conjecture, suggested to us by DiVincenzo In this section, we formally define the properties of quan-

[4]'(: niecture Ever mi | roDerator | mil Itum operations that we wish to explore—causality, semicau-
onjecture Every semicausal Superoperator 1S semiocalgyivy, “ocalizability, and semilocalizability—and we discuss

izable. :
. . . . some examples that illustrate these concepts.
We will prove this conjecture for the special case of com- P P

plete orthogonal measurement superoperators. Whether it
holds in general remains an open question.

The problem of characterizing what measurements are Any permissible way in which the state of a quantum
possible was raised by DirdB], and interesting examples of system can change is described by a quantum operation, a
impossible measurements were pointed out in R&s.8.  completely positive trace-nonincreasing linear map of den-
That relativistic causality may restrict the operators that carsity operators to density operators. An important special case
be measured in a field theory was first emphasized by Lanis a trace-preserving map, superoperatarA superoperator
dau and Peierl$9] (though their particular concerns were £ can be interpreted as a generalized measurement with an
well answered by Bohr and RosenfdltD]). More recently, unknown outcome; its action on a density operatdras an
these restrictions have been noted by a variety of authorsperator-sum representation
[11-16. In [17], we have addressed some particular causal-
ity issues that arise in non-Abelian gauge theories.

To apply our notion of localizability to quantum-field
theory, we must adopt the convenient fiction that the en-
tangled ancilla is an external probe not itself described by thevhere the operation elementd,, obey the normalization
field theory, and that its local coupling to the fields is com-condition
pletely adjustable. This idealization is highly questionable in
a quantum theory of gravity, and even for quantum-field S MM, = @)
theory on flat space-time it is open to criticism. In particular, o e
field variables in spatially adjacent regions are inevitably en-
tangled[3], so that no strict separation between field andAn operation is a generalized measurement in which a par-
ancilla variables is really possible. On the other hand, if theicular outcome has been selected, but the density operator
probe variables are “heavy” with rapidly decaying correla- has not been renormalized. It too can be represented as in Eq.
tions and the field variables are “light,” then our idealization (1), but where the sum ovet is restricted to a subset of a set
is credible and worthy of study. of operators obeying Eq2)—that is, the eigenvalues of

Should the conjecture that semicausality implies Sem”O-EMMLMM are no greater than 1. For a general operation,
calizability prove to be true, then we will have a general andr £(p) can be interpreted as the probability of the observed
powerful criterion for deciding if a superoperator can be ex-gutcome.
ecuted with one-way communication. Even so, we will lack a Every superoperator has a unitary representa’[ion_ To
fully satisfactory way of characterizing the observables of gmplement the superoperatg acting on Hilbert spacets,
relativistic quantum theory, as no communication is possibleye can introduce an ancilla with Hilbert spakig, prepare a

if an operation is carried out on a spacelike slice. The exispyre statdy) e Hg of the ancilla, perform a unitary transfor-
tence of causal quantum operations that are not localizabl@ation U on +s® Hg, and then discard the ancilla,

establishes a perplexing gap between whatassal and
what islocal. _ o Es(ps) =tra[U(ps®|¢)r ¥ )U]. ()
In Sec. Il, we formulate precise definitions of causal,
semicausal, localizable, and semilocalizable, and we poirA general operation has a similar representation, except that
out a large class of localizable superoperators characterizeafter U is applied, an(not necessarily completerthogonal

A. Causality

Ep)=> M,pM], (1)
M
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“:“f formed by Bob) Then after the operatio8 is applied, we
obtain Alice’s final density operator by tracing over Bob’s
system and ancilla

‘ pra=rgd Eag(lRA® Bes(prABI) |- (4)

‘Nice Here by £,z We mean the operatiohy® E4g® 1 g that acts
operation Bob trivially on the ancillas. Note that i is not trace preserving,
thenpga Might not be normalized, in which case Alice’s final
@ state is the normalized density operapai/tr pra- Finally,
Alice performs a measurement of this state.
light If Alice’s state depends at all on the superoperd&dhat
cone Bob applies, then the mutual information of Bob’s superop-
» space erator and Alice’s measurement is nonzero. Hence Bob can
transmit classical information to Alice over a noisy channel
FIG. 1. An operation on a time slice. If the operation allows \yith nonzero capacity; that is, Bob can signal Alice. We
spacelike-separated Alice fand pr to communicate, then it is nod rrive then, at the following.
causaland hence not physically implementable. Definition A bipartite operation€ is semicausal if and
only if (pra/tr pra) is independent of Bob’s superoperator
measurement is carried out on the ancilla and a particuldior all possible choices of the shared initial state\gs.
result is selected(without renormalizing the density (Excluded from consideration is the casg,=0, corre-
operatoy. sponding to an outcome that occurs with probability 2ero.
But what quantum operations are physically possible? The This criterion for semicausality is rather unwieldy; fortu-
general answer is not known, but it is known that manynately it can be simplified. One useful observation is that,
operations of the form Eq1) are unphysical because they while in our definition of semicausality we allowed the initial
run afoul of relativistic causality11-16. Consider, as in state pgags Shared by Alice and Bob to be entangled, we
Fig. 1, two parties Alice and Bob who perform spacelike-could without loss of generality restrict their initial state to
separated actions. Just prior to the implementation of thée a product state.
operation&, Bob performs a local operation on the degrees Suppose that auperoperator€ is not semicausal. Then
of freedom in his vicinity, and just after the implementation there is an initial statpragsShared by Alice and Bob, and a
of &, Alice performs a local measurement of the degrees ofuperoperatos5 that can be applied by Bob, such that
freedom in her vicinity. If Alice is able to acquire any infor-
mation about what local operation Bob chose to apply, then tred Eas(Prasd |F tred Eag(l Ra® Bes(pPragd)]- (B
Bob has successfully sent a superluminal signal to Alice.
If a bipartite operatiorf does not enable such superlumi- Now any bipartite density operator can be expanded as
nal signaling from Bob to Alice, then we will say thé&tis
semicausallf £ does not allow signaling in either direction,
we will say that€ is causal (In our discussions of semicau-
sality, we will normally adopt the convention that Bob is the
party attempting to send the signal and Alice is the partywherep, ando, are density operators of Alice’s and Bob’s
attempting to receive it. This somewhat perverse conventiosystems(including ancillag, respectively, and tha ,'s are
is chosen in order to be consistent with the definition ofnonvanishing real numbers. Of course, if thg's were all
semilocalizable that is introduced belopwn operation that  positive, thenpgagsWould be a separable state. But if we
is not semicausal is said to lzausal A causal operation allow the ,’s to be negative, then such an expansion exists
will sometimes be calledully causal when we wish to em-  for any state.
phasize the contrast with semicausality. Since the superoperataf is linear, we may rewrite
Alice’s part of the bipartite system will be called “system Eq. (5) as
A" with Hilbert spaceH,, and Bob’s half is “systenB”
with Hilbert spaceHg. We consider a quantum operatién
that acts on states i, ® Hg . Alice might have under her 2 Nt Ep,®0,)1# 2 N, tred Ep,® B(o,)],
control not onlyA, but also an ancilla systeR with Hilbert g g 7
spaceHg, and Bob might control an ancilla syste®with
Hilbert spaces. Suppose that Bob wants to attempt to which can be satisfied only if
exploit the operatiorf to send a signal to Alice. Alice and
Bob could share an initial density operai@gags living in trgd E(p,®0,)]#Ftrgd E(p, @ B(a,))], (8)
HrROHA® Hg® Hs, and Bob could apply a superoperator
Bgs to his half of the state(Bob is restricted to a superop- for at least onew. Therefore, if Alice and Bob prepare
erator, rather than a trace-decreasing operation, because Ahe appropriate product staig®o,,, £ allows Bob to sig-
ice is unaware of the outcome of any measurement pemal Alice. Furthermore, since each pf ando, and3(o )

pRABS:E )\,u,p;/,®a-p,! (6)
I
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can be realized as an ensemble of pure states, there is a

signaling protocol in which Alice’s and Bob’s initial states P:E a,,P,®Q,,
are pure. ”V
Once we recognize that there is a signaling protocol such
that the initial state is a product state, we can see that the ng aLVPM®Qv- (11
ancillas are superfluous. Bob sends his signal by choosing 4

one of the two pure statds/)gs, |#')gs; Since tracing
over S commutes withE, we can just as well say that Bo
starts with a mixed statpg or pg of systemB alone. Fur-
thermore, if Bob can signal Alice by preparing one o
pe, pPg, then he must be able to do it by preparing pure
states that arise in the ensemble realizations of these density Z aw=2 a,’w, (12
operators. v v

Finally, if signaling is possible, then Alice can receive the
signal by preparing an initial pure stdig)ga. Bob’s action,
together with&, subjects systemh to one of two possible
operations, resulting in two distinguishable final states. But
for these final states dRA to be distinguishable, the two E(p)ZE a,,EP,®Q,),
operations must produce different outcomes acting on at least ald
one of thepure states ofA appearing in the Schmidt decom-

b Since trQ, =1, the property gp=trgo can be rewritten as
EwaMP#:EWaLVPM, which implies, since th®,’s are
fa basis, that

for eachpu.
Applying the superoperataf, we find that

position of |¢)ra. Therefore, Alice could just as well dis- = o &P .®0.). 13
pense withR, and prepare an initial pure state), of A () % wHPu®Q) 13
alone.

Thus we have proved: Furthermore, since ead, is a pure state, a unitary trans-

Theorem 11f the bipartite superoperataf is not semi-  formation applied by Bob can transform any one of @gs
causal, then signaling is possible with pure initial states ando any other; therefore the semicausality’amplies that the
without ancillas: there are pure staf@®g,|')ge Hg and  operator &(P,®Q,) is independent ofv. Denoting this
|©)a € Ha such that operator byR,,, we have

tral £ ) @D a® (| ) (#)e)] af(p) =2 Ry,
Frgl €| X eDa® ([0 )W D). (9
trg€(0) =2, a),Ry,; (14)

We note that semicausal superoperators form a convex . o )
set. If eaché, is a superoperator, then so is the combinationEduation(12) then implies that g&(p) =trg&(o). This com-
pletes the proof of Theorem 2.

The semigroup property of semicausal superoperators is a
simple corollary as follows.
S=E Paa, (10 Corollary If £ and &, are semicausal bipartite superop-
a erators, then their compositiadfyO &, is also semicausal.
Proof. Suppose that the bipartite density operat@an be
transformed toor by a superoperator applied by Bob. Then

where thep,’'s are nonnegative and sum to 1. It follows from the semicausality of; implies that t5&,(p) = tra&y(c), and

the linearity of the&,’'s and the definition of semicausality Theorem 2 applied to&, implies that ts&,(E,(p))
2 2\¢1

that £ is semicausal if each, is. _ ) ; ;
A somewhat less obvious property is that the semicausal trg&,(€1(0)); therefore£,O &, is semicausal.

superoperators form a semigroup—a composition of semi- S
causal operations is semicausal. This follows from: B. Localizability
Theorem 2Suppose thaf is a semicausal bipartite super-  Physics is local. If a physical system has many parts that
operator, and that the two bipartite density operapoasid o are remote from one another, then the evolution of the sys-
satisfy tgp=trgo. Then tg&(p) =trg&(o). tem is governed by local “parties” that act on the different
Proof. First we note that it is possible to choose a basis obarts of the system separately. In particular, since communi-
linearly independent operators acting on a Hilbert sgice cation outside the light cone is impossible, the operations
such that each element of the basis is a one-dimensionghat can be applied to a physical system at a fixed time are
projector. Let{P,} denote such a basis for Alice’s Hilbert those that require no communication among the local parties.
spacel, and let{Q,,} denote such a basis for Bob's Hilbert We call an operation of this typecalizable
spaceHg . Then we may expand the bipartite density opera- Although they are not permitted to communicate, the par-
torsp ando as ties are free to exploit any resources that might have been

052309-4



CAUSAL AND LOCALIZABLE QUANTUM OPERATIONS PHYSICAL REVIEW A 64 052309

prepared in advance. In particular, they are permitted to haveperation is one that can be performed in principle if Bob’s

a shared ancilla that might be in an entangled quantum statagction is in the forward light cone of Alice’s action.

and to consume their shared entanglement in the course of We could, equivalently, provide Alice and Bob with prior

executing their operation. shared entanglement, and restrict them to classical commu-
In the case of a system with two parts, one controlled bynication. These two notions of semilocalizability are equiva-

Alice, the other by Bob, these considerations motivate théent because prior entanglement and classical communication

following definition. from Alice to Bob enable Alice to teleport quantum informa-
Definition A bipartite superoperatdtis localizableif and  tion to Bob. Conversely, if Alice can send qubits to Bob, she
only if can establish shared entanglement with him, and she can
send him classical messages.
E(pap) =trrd ARA® Bes(pas® pr9) ] (15 An operation that is not semilocalizable is said toure

) localizable A localizable operation will sometimes be called
for some shared ancilla stafgs and local superoperators fy|ly |ocalizable when we wish to emphasize the contrast
Ara, Bgs. _ _ with semilocalizability.

In fact, by extending the ancilla, the stapes can be If Alice can send quantum information to Bob, then Alice
“purified” and the local superoperators can be replaced byang Bob both have access to the same ancilla: Alice performs
unitary transformations; thus without loss of generality weg |ocal operation on the ancilla and her half of the shared

may use instead the following definition. state, she sends the ancilla to Bob, and then Bob performs a
Definition A bipartite superoperatdtis localizableif and  |ocal operation on the ancilla and his half of the state. Thus
only if we arrive at the following.

N T Definition A bipartite operation is semilocalizableif
E(pap) =R Ura®Ves(pas® prIUra® Vsl (160  and only if

for some shared ancilla pure stgigs and local unitary E(pap) =trR[(BerOARrA) (pAB® pR) ] (19
transformationdJr 5 andVgs.
Localizable superoperators form a convex set. To see thi§or some ancilla statgr, where Az, is an operation and
we note that with shared entanglement, Alice and Bob cafsr IS @ superoperator.
simulate shared randomne&s weaker resourge For ex- Note that the producBgrO Aga is @ composition of op-
ample, suppose they share an ancilla prepared in the stateerations(with Alice’s operation acting firgt not a tensor
product; the operations do not commute because they act on
the same ancilla. We have allowed Alice to apply an opera-
|D)rs= Ea: \/E|3>R®|a>s’ (17 tion that is not necessarily trace preserving, since Alice can
perform a measurement whose outcome is known to both
+ Alice and Bob, but Bob is restricted to a superoperator be-
cause the outcome of a measurement that he performs is not

spaceHs, and thep,’s are non-negative real numbers that known by Alice. If the operatio® is a superoperator, then so

sum to 1. Then if Alice and Bob both perform measurementdUst beAga, and in fact we can tak&gr and Ag, to be

that project onto these bases, each obtains the out¢ame Unitary transformations without loss of generality. _
with probability p,. Now let {€,} be a set of localizable An obvious consequence of this definition is that semilo-
ar a

operations. Alice and Bob can consult their shared randong@lizable (or localizable superoperators form a semigroup:

ness, and then carry out a local protocol that applies th&20¢1 is semilocalizable i, and &, are both semilocaliz-
operation &, with probability p,, thus achieving a local
implementation of the convex sul,p,&, -
Of course, a superoperator is surely localizable if it is a C. Orthogonal measurement superoperators
tensor product of superoperators applied by Alice and by One of our goals is to characterize thbservablef a
Bob, £=E,®&g. By convexity, any superoperator of the rejativistic quantum theory: what self-adjoint operators are
form really measurable?
When we speak of a “measurement” of an observable
_ whose support is on a time slice, we need not require that the
&= ; Patna®Ea.a (18) measurement outcome be instantaneously known by anyone.
We might imagine instead that many parties distributed over
is also localizable. There are some less obvious examples tifie slice perform simultaneous local operations. Later the
localizable operations, as we will soon see. data collected by the parties can be assembled and processed
We are also interested in bipartite operations that can bat a central location to determine the measurement result.
implemented with communication in just one direction. We Then we may say that the operation performed on the
call such operationsemilocalizable In our discussions of slice is a measurement with an unknown outcomgElf} is
semilocalizability, we will normally adopt the convention the set of orthogonal projectors onto the eigenspaces of the
that Alice is permitted to send quantum information to Bob,observable, the effect of this operation on a density operator
but Bob cannot send anything to Alice. A semilocalizablep is

where {|a)g} is an orthonormal basis for Alice’s Hilber
spaceHy, {|a)s} is an orthonormal basis for Bob's Hilbert
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additional resources. But the Bell measurement superopera-
p—E(p)=2 EapE,. (200 tor is localizable—Alice and Bob can implement it if they
é share an entangled ancilla. In fact, shared randomness, a
We will call an (trace-preservingoperation of this form an weaker resource than entanglement, is sufficient .for this pur-
orthogonal measurement superoperatbr the special case POSE[18]. Suppose that Alice and Bob share a pair of qubits,
where each projectd, is one dimensional, it is aomplete and also share a string _of random bits. At a_partlcular time,
orthogonal measurement superoperator just a complete- they both consult two bits of the random string; depending
measurement superoperator. The causality and localizabili§n Whether they read 00, 01, 10, or 11, they both apply the
properties of complete-measurement superoperators will bhitary operatort, X, Z, or Y, wherel is the identity, and

extensively discussed in the next few sections. X,Y,Z} are the 2<2 Pauli matrices

First, let us clarify the concept of semicausality by point- 0 1 0 —i 1 0
ing out an example, noted by SorKih4], of an incomplete- =( ) =( Z=( ) (23)
measurement superoperator that is not semicausal. It is a 1 0/’ i 0) 0 -1

two-outcome incomplete Bell measurement performed on a )
pair of qubits. The orthogonal projectors corresponding tol9ether, then, Alice and Bob apply the superoperator
the two outcomes are

Ei=[¢" o7,

1
&p)=zLUehp(Iah)+(XeX)p(X&X)

The four Bell states are simultaneous eigenstateX @

+ _ . e
where|¢")=(00) +|11))/ /2. Suppose that the initial pure andZ®Z (and therefore als¥® Y= — (X® X)(Z® Z)) with

state shared Py Alice and Bob 81) a5 This state is or- eigenvalues+1: Z®Z specifies a parity bit that distin-
thogonal to ™), S0 that outcome 2 occurs with probability uishesg from ¢ andX® X specifies a phase bit that distin-
one, and the state is unmodified by the superoperator. Afteduishes+ from — . Hence we easily verify tha preserves
wards Alice .St'” has a density operatpg=|0)(0]. each of the four Bell basis states and annihilates all the terms

But what if, before the superoperator acts, Bob performs & that are off the diagonal in the Bell basis
unitary that_ rotates the state_ |_1@O>AB?+Since this_state IS an E)I'he Bell measurement superoperator can be viewed as a
equally weighted superposition 4f") anql [¢~)=(|00) ._refinement, or “completion,” of the acausal incomplete-
_.|11>)/‘/§' the two outcomes occur equiprobably, and N measurement superoperator of Egl)—that is, Bell mea-
Zt.he,r céase .ihe flnaltstat?t 'S mzx'ma[ﬁ /(;ntaugledl,dso 3l ;rement is obtained by resolving the three-dimensional pro-

|;:e Sth er.];' yt.?pir\? ora erwakr S En=lie, W er?th ?h jectorE, of Eq.(21) into a sum of three mutually orthogonal
notes the identity. Alice cah make a measurement that has &, _qimensional projectors. Thus, this example illustrates
good chance of distinguishing the density operat@i<0|

that a completion of an acausal measurement superoperator
andl/2, so that she can decipher a message sent by Bob. By, , s3metimes be causal. On the other hand, there are other

surement superoperator is acausal. acausal complete-measurement superoperators. For example,
On the other hand, some orthogonal measurement supefq two-qubit superoperator with projectors

operators are causal. For example, measurement of a tensor

product observabléA®B is obviously causal—Alice and Ei=|o" )N pT],
Bob can induce decoherence in the basis of eigenstates of a

tensor product through only local actions. But there are other E,=|¢ M|,
examples of causal measurement superoperators that are a bit

less obvious. One is complete Bell measurement, i.e., deco- E;=]01)(01],
herence in the Bell basis

. E,=[10)(10, (25
™) = Eﬂooﬁ 111)), is easily seen to be acausal by applying the criterion of Theo-

rem 3 below. In fact, it is a general feature that if an orthogo-
nal measurement superoperafallows Bob to signal Alice,
)= i(|01>i 110)). (22) th_en there exists.a completion &that al§o allovv_s signalir)g,
2 with the same signal statég)g and|y')g. This result is
proved in Ref[16].
No matter what Bob does, the shared state after Bell mea- Since the Bell measurement superoperator can be imple-
surement is maximally entangled, so that Alice always hasnented with shared randomness, one may wonder whether
pe=1/2, and she cannot extract any information about Bob'sshared randomness is sufficient for the implementation of
activities. arbitrary localizable superoperators. But it is easy to think of
Though Bell measurement is a causal operation, it is nolocalizable superoperators for which shared randomness does
something that Alice and Bob can achieve locally withoutnot suffice—shared entanglement is necessary. For example,
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A—e— A—p— A —e—r— A——
B B D B B $

R i 10)r—E> Bell I+)e Bell
|¢+>S 59_ I¢+>SI - IO>S d Meas. |+>S’ Meas.

(a) ®) (a) ®)

FIG. 2. Local implementation of the Bell measurement superop- FIG. 3. Bell measurement through entanglement swapping. Al-
erator using shared entanglement. (&, the two controlledvor ~ ice performs local controlledoT gates on her qubi and the
gates imprint the parity bit oAB onto the ancillaRS In (b), the anC|_IIa qubitsRR’. Bo_b perfor_ms local controIIeGIOT_ gates on his
two controlledNoT gates imprint the phase bit B onto the an-  qubit B and the ancilla qubitsSS. Later, the ancilla qubits are
cilla R'S'. Tracing over the ancillas in the Bell basis, we find that collected, and Bell measurement is performed on the pais
the AB pair decoheres in the Bell basis. and R'S’. The Bell measurements on the ancilla realize Bell

measurement on AB, by “swapping” entanglement of
Alice and Bob can locally perform a two-qubit operation in AR, AR’,  BS, BS' for entanglement oAB, RS andR’S'.
which they throw their qubits away, and replace them with %ormed onRS and RS’

T . . ; .
|¢") drawn from their shared ancilla. This operation can . rect parity bit of theAB pair, and a random phase bit; if

turn a product state into an entangled state, which would bﬁwe measure® S phase bit is— 1. then the phase bit of the
impossible with local operations and shared randomnes&B state is i epd ThR'S' mez,asurementp ields the “cor-
alone. We will discuss another example of a localizable su- pped. y

: . ect” phase bit(possibly flipped by theRS measuremeit
Egg;piingg{: tf\l/alt cannot be implemented with shared randongnd a random parity bit; if the measurBdS' parity bit is

We note in passing that if Alice and Bob have ancilla pairs_l’ then the parity bit of theAB state is fI|pp¢d. Takgn
prepared in the stafe* )rs (WhereR denotes Alice’s ancilla together, _the_two Bell measurements on the ancilla qub_lts act
qubit, andS denotes Bob’ then they can implement the 25 2 projective measurement Bfyz onto the Bell basis,

Bell measurement superoperator by executing the quantu ”OZV_Vedhb{]O’}eﬂ?f ;he trtansfcf)rmatltqmmr,]X@bX, Y®Y,|_ord
circuits shown in Fig. 2 and discarding their ancilla qubits. ®£; which of the four transtormations has been applied, as

The circuit in Fia. Za) flios the ancilla pair from &) to WeI_I as the identity _of theAB Bell state resulting from the

|4*) if the parit;? b§ ())f tEeAB state isZF,)A@ZB:m—(ﬁl >and projection, can be inferred from outcomes of tR& and

e cfuit n Fig. 2 flps the ancila pai fon{g!) o XS Medsurenerts, 1 DA stae s il 2 procuct
~) if the phase bit of the\B state isX,® Xg=—1. Thus, ’ ; . i

¢ P A% 78 tanglement ofA with B by “swapping” AR andB Sentangle-

ment forAB and RS entanglemenf19].

This example is also instructive. It reminds us that deco-

The RS measurement yields the

the values of the parity and phase bits of B pair, and
only this information, become imprinted on the ancilla pairs.

Tracing over the ancilla pairs in the Bell basis, then, induce?'nerence nduced on a time slice can sometimes be reversed
decoherence in thAB Bell basis. inau ! : ! v

In fact, if Alice and Bob share entanglement and performIater through the operauon. ofa “qyant.um erasg0]. If we
the circuits of Fig. 2, they can execute Bell measurement//6'€ 0 trace out th? anC|IIa'qublts right after applying the
including postselection, on th&B pair by measuring their tontrolledNOT operations of Fig. 3before the Bell measure-

ancilla qubits and broadcasting their results classically. Aftelmem)’ then Fig 3a) would induce decoherence, not in an

. P . tangled basis, but rather in the product basis
executing circuit Fig. @), Alice measureZg and Bob mea- en R . .
suresZg. Then the parity bit of théAB pairRis the parity of 1100),/03),|10),[11)}; similarly Fig. 3b) would induce de-

these measurement outcomes. After executing circuit Fi%(':gh—e)r?n\?vierlg the product basi§j++),|+—).,|-+),

2(b), Alice measureXr, and Bob measureXs . Then the
phase bit of theAB pair is the parity of the measurement 1

outcomes. This example is instructive, as it reminds us again |=)=-—=(]0)=|1)). (26)

that entanglement is a more powerful resource than shared V2

randomness. If Alice and Bob were limited to shared ran- .

domness and classical communication, they would be unab@S one WOU'.d expect, without entanglement or shared ran-
to create entanglement, and so would lack the capability o omness, Alice and Bob are unable to implement decoher-

doing Bell measurement with postselection on their share§"¢® in the Bell baSiS Wif[h their local operations alone. Buta
ater measuremenihcluding postselectiortan “undo” the

qubit pair. i ; .
If Alice and Bob did not have entanglement to start With,fjecoherence in the product basis and establish decoherence

they would still be able to perform Bell measurement with" the Bell basis instead.
postselection on their shared pair if they could send ancilla
qubits to a central laboratory for later quantum processing, as
illustrated in Fig. 3. Here Alice entangles her qubitfirst The observation that shared randomness is sufficient to
with ancilla qubitR and then withR’, while Bob entangles induce decoherence in the Bell basis can be substantially
his qubitB first with ancilla qubitS and then withS'. The  generalized. Consider a superoperattinat acts on a density
ancilla qubits are collected, and a Bell measurement is pemlperatorp as

D. Local stabilizers
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1 [®1,XeX,-Y®Y,ZQZ 34
Ep)= 5] 2, V@U@, 27 { } (39
9=G of the groupG=2,XZ,. The groupG is Abelian, and the
four Bell states transform as distinct one-dimensional irre-
ducible representations @. Therefore, the superoperatér
induces decoherence in the Bell basis.
The same ideas apply to asyabilizer codg21,22,1,2.
onsider, for example, an Abelian gro@acting onn qu-
bits, generated by —k operators, where each generator is a
{IR,a,i)}; (28  tensor product of single-qubit Pauli operators. If each qubit
is entrusted to a distinct party, then by consulting shared
hereR labels the irreducible representations®f a labels  randomness, the parties can apply a random element of the
the sectors of{ that transform as the irreducible representa-group G to their density operator. The superoperator they
tion R (a particular irreducible representation might occurimplement acts trivially on each *&imensional code
multiple times, i=1,2, . . . nr labels states of a basis for the space—an eigenspace of the generators with specified eigen-
vector space on whicR acts, anchg is the dimension oR. values. But it destroys the coherence of a superposition of
Expressed in this basis, the representatiy) is eigenspaces with different eigenvalues. In the notation of Eq.
(31), the indexR labels the stabilizer eigenvalues, and the
Y \\(R) _ indices a,b label the basis states in a code space with a
U(g)_Rai j IR,a,)D™(g);;(R.a.jl, (29 specified value oR. Because the group is Abelian, all of the
o irreducible representations are one dimensional, and34.
whereD®)(g);; is a matrix element of the irreducible repre- becomes
sentationR. These matrix elements obey the orthogonality
relations

where thelU(g)’s provide a(not necessarily irreducibjeuni-
tary representation of the gro@ and|G| denotes the order
of G. The Hilbert spacét in which p resides can be decom-
posed into spaces that transform irreducibly under the grouE
G. Let us choose an orthonormal basis

1
&p)=r1=r > U(g)pU(g)’
G| 66

1 , 1 ,
Gl QEG D®(g); DR ><g>:|=n—R SRR 88y (30)

%b |R,a)(R,alp|R,b)(R,b|

Substituting Eq(29) into Eq.(27) and applying the orthogo-
nality relations, we find :2 ErpEr (35)
R

_ _ 1K
(R,a,i|&(p)|R’,b,j)= "R 9 k21 (R,a,k|p|R,b,k). whereEg projects onto the subspace with specified stabilizer
ROE (31 eigenvalues.
The observation that Betheasuremen(tincluding postse-

Thus we see that the superoperafatestroys the coherence Iecti_on) can be achieved with shared entanglement, local op-
of a superposition of states that transform as distinct irreducgrations, and broadcasting of classical data can be general-
ible representations oB. Within a given irreducible repre- 1zed to any CSS stabilizer code; i.e., any code of the class
sentation, it randomizes the state, replacing the density osonstructed by Calderbank and SHa8], and Steang24].
erator by a multiple of the identity. Some off-diagonal termsAn N-qubit stabilizer code is of the CSS type if the stabilizer

in the density operator can survive, if a given irreducible9enerators can be chosen so that each generator is either a

representation occurs iH more than once. tensor product oZ’s andl’s or a tensor product oX’s and
Now suppose that the Hilbert spag¢ is shared byn I's. Imagine that each of the qubits is in the custody of a
parties; it has a tensor product decomposition separate party. _S.tea|1ié5] has observed that the measure-
ment of the stabilizer generators can always be achieved by
H=0"_H,. (32)  carrying out these stepsl) preparation of a suitable en-

tangled ancilla that is distributed to theparties,(2) local
And suppose that each eleméntg) of the representation of dquantum gates applied by each party, acting on her qubit and

G is a tensor product her part of the ancilla(3) local measurements by each party,
and (4) classical post processing of the measurement out-
U(g)=o"_,U(9),- (33)  comes. In the case of Bell measurement on a pair of qubits,

the stabilizer generators ar¥®X, Z®Z, and the en-

Then then parties can perform the operatiérby consulting  tangled ancilla state isp™).
their shared randomness—if they are instructed to apply the An example of a superoperator associated with a non-
group elemeng e G, the partya appliesU(g), to her por-  Abelian group is the “twirling” operation that transforms a
tion of the state. two-qubit state into a Werner stafé8]. In that case, the

In the Bell measurement case discussed above, the fougroup isA,, the order-12 subgroup of the rotation group that
dimensional Hilbert space of two qubits transforms as thepreserves a tetrahedron. Undey, the statd ) transforms
representation trivially, while the other three Bell statdsp™),|4"),|¢7)
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transform as a three-dimensional irreducible representation. Bob
Two parties Alice and Bob consult their shared randomness
and apply a random element 8f;; according to Eq(31),

this operation transforms any initial density operator into a 3% 6
state of the Werner form

1-F Ali
p(F)=Fly )y |+ =5 (16" X" |+16 X e
2x6

(D, (36)

while preserving the fidelityr =(#~|p|4~). Note that un-
like the acausal operation defined by Ef1), this localiz-
able operation transforms any initial state into an incoherené><
mixture of Bell states; hence Alice’s final density operator is
alwaysl/2, and Alice is unable to receive a signal from Bob.

1x6

FIG. 4. A semicausal complete orthogonal measurement in
6 dimensions. Alice’s Hilbert space is decomposed into three
mutually orthogonal subspaces, of dimensions 3, 2, and 1. The mea-
surement projects onto an orthonormal basis, where each element of
the basis is a maximally entangled state of one of Alice’'s three
IIl. CAUSAL AND SEMICAUSAL COMPLETE- subspaces with Bob’s space.

MEASUREMENT SUPEROPERATORS

In the next three sections, we will investigate the causalitya‘IIce cann;)t teLI the difference. Qn the other handgifa,’i
and localizability properties of measurement superoperators 0 @nd oa# o, then Bob can induce the transition and
that project onto a complete orthonormal basis. We will show/lice can distinguish the states; hence a signaling protocol
that semicausal operations of this class are semilocalizabl€an be devised. _
and that fully causal operations of this class are not neces- APPlying Theorem 3, we can see that all semicausal com-
sarily fully localizable. plete_measurgments have a simple structure. Suppose that
Suppose that the Hilbert spacks, and Mg have dimen- {E?3} is a semicausal complete measurement. _For any one of
sions N, and Ng, respectively, and lefE®=|a)(al,a the 0%, let H 4 denote the subspace #fy on whicho} has
=1,2,... NANB} denote a Comp|ete set of 0rthog0na| one_itS support (72 is StriCtly pOSitive on this SUbSpace and van-
dimensional projectors ol ,® Hg . By tracing overHg, we ishes on the orthogonal subspagkccording to Theorem 3,
obtain from these projectof$,N; positive operators acting the supportH 3 of eacho? either coincides witt#3 or is

on H,, each with unit trace, defined by orthbogonal toH4, and in the former case we havex
=0 -
oa=1rg(Exp)- (37) TAhus eacho with support onH 4 must equalo?, and
furthermore, the sum of the operators with support on this
Since theEag's are complete, these operators satisfy subspace, according to E(8), must beNgl2, where |
denotes the projector ontd & . Therefore eaclry with sup-
> oa=trgl \g=Ngla; (39 port on’H 4 is proportional tol3, and since we also know
a

that tro3=1, must be

that is, {Ng'o3} is a positive operator-valued measure
(POVM) on Ha with NANg outcomes. 7A7y
The semicausal complete orthogonal measurement super-
operatorgthose that do not allow Bob to signal Alicean be
simply characterized by a property of thd’s, thanks to the
following theorem.
Theorem 3A complete orthogonal measurement superopyy,
erator is semicausal if and only if it has the following prop-

1A, (39

whered3, is the dimension of{ 4 . We also conclude that the
number ofc’s with support onH 4 is Ngdy .

We see that the stafa) is a maximally entangled state of
e form

erty. For each pair of operatofsa o3}, eithersa= % or L%
a b b _a
O'AO'AZOZO'AO'A. a)= i ®ir , (40)
That is, any pair ofey’s must be either identical or or- ) Vda izl Da®li")e

thogonal, if and only if the superoperator is semicausal.
Theorem 3 is proved in Appendix A, but one can readilywhere herd|i),} denotes an orthonormal basis f&4 , and
see that the result is plausible.Bf'=|a)(al, then, in order the|i’)g’s are mutually orthogonal states ;. The general
to signal Alice, Bob by acting locally needs to induce a tran-structure of a semicausal complete-measurement operation,
sition from the statéa) to the statgb) for somea andb;  then, is as illustrated in Fig. 4. Alice’s Hilbert space can be
furthermore, Alice must be able to detect the difference bedecomposed into mutually orthogonal subspaces
tween|a) and |b). But if 0% and o are orthogonal, then
Bob is unable to induce the transition, andsft= 0%, then Ha=o Hp, (41)
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Bob Bob

2x2(12x2]2x%x2
|0)®1[0) | |0)® |1)

Alice| 2x2 [ 2x2 | 2x2 Alice
1) ® |+)
2x212%x2|2x%x2
FIG. 5. A causal complete orthogonal measurement 66 FIG. 6. A semicausal complete orthogonal measurement in

dimensions. Alice’s six-dimensional Hilbert space is partitioned into2X 2 dimensions. The orthonormal basis shown partitions Alice’s
three mutually orthogonal subspaces, each of dimension 2, angpbace into mutually orthogonal one-dimensional subspaces; hence
Bob's Hilbert space is similarly partitioned. The measurementBob cannot signal Alice. But since Bob’s space is not so partitioned,
projects onto an orthonormal basis, where each element of the basidice can signal Bob.

is a maximally entangled state of one of Alice’s subspaces with one

of Bob’s subspaces. |0>A®|0>B, |0>A®|1>B,

whereH 5 has dimensionly . Of theN,Ng states comprising [D)a®]+)g, [1)a®]—)s, (42
the basig|a)}, Ngda, all maximally entangled, have sup-

port onH . where

A fully causalcomplete measurement is more highly con-
strained. Since the measurement is semicausal in both direc-
tions, both thesy’s and theog's obey the conditions speci-
fied in Theorem 3. If we choose one particuléf , there are
Ngds elements of the basis with support on this space, andracing over Bob's system we obtain Alice’s projectors
associated with these aNgdaog’s, all of rankdy, and any 00_ _01_
two of which must either coincide or be orthogonal. There- o =0a=0)0],
fore, the o§’s partition Hg into mutually orthogonal sub-
spaces, all of dimensiody ; it follows that d; must divide

Ng, that the number of orthogonal subspacedggds, and  which satisfy the criterion of Theorem 3; hence Bob cannot

that (d%)?a3’s have support on each space. signal Alice. Tracing over Alice’s system we obtain Bob'’s
Applying the same argument again, but wit), and Hpg projectors

interchanged, we see that the's also partition, into

1
|i>=ﬁ(|0>ill>)- 43

ox =0 =|1)(1], (44)

00__
mutually orthogonal subspaces, all of dimensidfi. We og =|0)(0], UB —|1><1|
conclude that a causal complete measurement has the struc- -
ture illustrated in Fig. 5. Alice’s space can be decomposed og =+)(+], o5 =-)-1, (45)

into r, subspaced{,, each of dimensiord (so thatNu
=rpd), and Bob’s space can be decomposed igosub-
spacesH , each of dimensiod (with Ng=rgd). The mea-
surement prOJects onto an orthonormal basis, where each %
ement of the basis is a maximally entangled state of som
H x with someHﬁ. There are org ways to chooser and 3,

and there arel> maximally entangled states for each pair of

subspaces. . p3=0%(0, (46)
The extreme cases atle=1, for which we have a product

basis{|a,8)ag}, andd=N,=Ng, for which the measure- if Alice prepared|0), and his density operator is

ment is a projection onto a maximally entangled basis of

Has- ps=112, (47)
Comparing Fig. 4 and 5 makes it clear that a semicausal

measurement need not be fully causal. Indeed, this feature isAlice prepared|1). SlncepBa»E pB, we conclude that is

quite obvious, since transmission of information from Alice not causal.

to Bob can allow Alice to signal Bob but does not enable Note that the measurement that projects onto the basis Eq.

Bob to signal Alice. To make this point more explicit, con- (42) is obviously semilocalizable; in fact it can be executed

sider the 2<2 example illustrated in Fig. 6. The measure-with one-wayclassical communication from Alice to Bob.

ment projects onto the orthonormal basis Alice measures in the basif)a,|1)a}, and sends her mea-

which violate the criterion of Theorem 3; hence Alice can
signal Bob.

A particular protocol that allows Alice to signal Bob
orks as follows. Bob prepares his qubit in the st@eand
lice prepares hers in one of the stat8$, |1). After the
operationé is applied, Bob’s density operator is
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surement outcome to Bob. Then Bob measures in the bastgthogonal measurement with project&3sthat are isomor-
{|0)g.|1)a} if Alice’s outcome was|0),, and in the basis phic to theEjg's, obtaining the outcoméa)rs with prob-
{I+)e./—)s} if Alice’s outcome wag1),. ability p,,, where

— _ a a ara
IV. SEMICAUSAL COMPLETE-MEASUREMENT Pa,a= PajaPo=t(ErsERPRERERS) - (51)

SUPEROPERATORS ARE SEMILOCALIZABLE . , .. . L,
Since Bob’s measurement is just a completion of Alice’s par-

We now have learned enough about the structure of semtial measurement, we have
causal complete measurements to see that any semicausal
complete-measurement superoperator is semilocalizable. ERER=ERERs= 0a 4ERs (52
Suppose that Alice and Bob share a quantum state, and wish
to perform a measurement that projects onto the Haaj§,  whered, , is 1 if o has support oft{ § and zero otherwise.
where eacha) is a maximally entangled state of a subspaceTherefore, the probability that Bob obtains outcoaean be
of H, with a subspace oHg. Alice can perform a partial expressed as
measurement that identifies the subspatg of H,, and
then send her half of the state to Bob, who can finish the
measurement and identifya). To complete the procedure,
they simply replace their original state by a state identical to
|a) that can be drawn from their shared ancilla. Since BohBob’s measurement commutes with Alice’s, so it is just as
can convert any maximally entangled state?0f and’Hg  though Bob measured first, and Alice has been provided with
into |a) by performing a unitary transformation dtig, he  incomplete information about what Bob fouind.
and Alice can replace the original state f&) without any Now, since the stat¢a)rg prepared by Bob's measure-
further communication. From these observations we obtaiment is adx X dx maximally entangled state { 5 with Hs,
the following. Bob can apply a suitable unitary transformation to his half of
Theorem 4 A semicausal complete orthogonal measurethe statg®),g that he now shares with Alice, rotating it to
ment superoperator is semilocalizable. the statela)ag. Thus, Alice and Bob have converted their
Proof. Suppose that Alice and Bob share the sigi{gin  initial state pag to |a)ag With probability p,=(a|pagla).
their joint Hilbert spaceH,®Hg. In addition, an ancillary  Finally, Bob discards the ancilRS and Alice and Bob dis-
Hilbert spaceHr® Hg, isomorphic toH,® Hg, is initially card the record of their measurement outcomes. We have
under Alice’s control. To implement the semicausal operatiordescribed a protocol with one-way quantum communication
that executes the semicausal complete-measurement super-
a a operator€,g. This proves Theorem 4.
Enplpap) = ; Exs(pas)Eas (48) Note that if we dispense with the last step, in which Alice
and Bob discard their records, then we see that not just the

With one-wav quantum communication from Alice to Bob measurement superoperator, but also the measurement opera-
Y a T . . ' tion with postselection, is semilocalizable: with one-way
they proceed as follows: First, Alice performs a partial mea-

t that broi o h tually orth | sub quantum communication from Alice to Bob, the state is pro-
surement that projecis,g onto her mutually orthogonal sub- jected onto the basis, and the measurement outcome is

Pa= > Pao=tRsERPrs) =trap(Edgpas). (53

« )
spacesi », obtaining the outcome known by Bob(though not by Alicg.
« _Enlpap)EA (49) V. CAUSAL COMPLETE-MEASUREMENT
PR Edpae) SUPEROPERATORS NEED NOT BE LOCALIZABLE
. 3 Now that the general structure of causal complete mea-
with probability surements is known, we can address whether causal com-
plete measurements are localizable. In fact, we will be able
Pa=1tr(Expas), (500  to construct examples of causal measurements that are prov-

ably notlocalizable. To accomplish this task, we will identify

a property satisfied by localizable operations, and exhibit

causal measurements that do not possess this property.
We say that d&not necessarily normaliz¢gure state )

is aneigenstateof a superoperataf if

whereEjy is the projector ontd+ 5 . If Alice’s measurement
outcome isa, she prepares an ancilla sta®)gse Hg
®Hsg, and a dimensiod, X dx maximally entangled state of
H g with Hg, whereH & is isomorphic toH . Next, Alice

swaps the Hilbert spacel, and Hg, obtaining pgg and () u]) =) . (54)

|®)as. She sendpgg to Bob, along with theS half of the

entangled stated),s. The key property of localizable superoperators that we will
Upon receipt, Bob swaps the Hilbert spaéés and Hsg, exploit is given here below.

so that Alice and Bob now shaté),g, while pggis en- Theorem 5If £ is a localizable superoperator on

tirely in Bob’s hands. On the state}s, Bob performs an H,®Hg, and|#), A®1|¢), andl ®B| ) are all eigenstates
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Bob record of the partial measurement to complete the implemen-
01 23 tation of the measurement superoperator.
But now consider a “twisted” basis in which the basis
01 [6%), [9*) l9%), [4*) elements in the 2 H 3° quadrant of the Hilbert space are
Alice rotated by applying a unitary transformatidy to Bob's
23 |6%), ) Ug|ot), Uglt) half of the state, becoming
1A®Ugl ¢35,  1a®Uglhy), (57)

FIG. 7. A causal complete orthogonal measurement that is not
localizable, in 4<4 dimensions. The Hilbert space is divided into whereUg mapsH 2°to H 2>. Since this new basis still meets
four 2X 2 quadrants, and the elements of the orthonormal basis arge criterion of Theorem 3 in bot{, and Hg, the corre-
maximally entangled Bell states in each quadrant. Because the Bedlhonding measurement superoperafais still causal. But
basis in the bottom-right quadrant has been twisted by applying thgecause” does not satisfy the criterion of Theorentescept
unitary transformation® Uy, the corresponding measurement su- in the case wert g merely permutes the Bell bagist is no

peroperqtor cannot be implemented without communication befonger localizable. The eigenstatesfinclude, for example,
tween Alice and Bob.

of £ (where A and B are invertible operatofs then A | #o0,
®B|) is also an eigenstate 6t | iy =X2@ 1| i)
The proof of Theorem 5 is in Appendix B. Clearly the 20 0o
claim is plausible. By hypothesis, the eigenstage of € is |¢§2>:|®X2|¢§o>, (58)

mapped to a new eigenstate if Alice applEsnd Bob does

nothing, or if Bob applie$ and Alice does nothing. Sin@  \yherex? is the four-dimensional Pauli operator that acts on
is localizable, Alice and Bob should be able to decide indeye basis{|0),|1),]2),|3)} according to

pendently whether to appl and B, and still obtain an nee

eigenstate oF. X2:|i)—|i+2 (mod 4). (59)
A. A twisted partition If £is localizable, Theorem 5 requires that
Having identified in Theoma 5 a necessary condition for | o) =X2@X?| ™) (60)

localizability, we proceed to describe causal measurements

for which this condition is violated. An example inx#  ajso be an eigenstate—i.e., thal,,) is also an element of
dimensions is illustrated in Fig. 7. Alice’s four-dimensional the orthonormal basis. This is not so unléssis one of the
space is partitioned into two two-dimensional subspacespauli matrices, up to a phase. Therefatés not localizable.
Ha' spanned by {|0)s.[1)a}, and HZ® spanned by The method that worked for the untwisted basigg(
{I2)a,|3)4}- Bob’s space is similarly partitioned. Let us first =1) fails for the twisted basis. Alice’s partial measurement
consider the case where the measurement projects onto tfifentifies what row the state occupies, and Bob’s measure-
standard Bell basig|#~),|¢")} in each of the four sub- ment identifies the column, but neither one has enough in-

spacesH @M §; that is, the orthonormal basis is formation to determine whether or not the state lies in the
. N N N bottom-right quadrant where the basis is twisted. Without
|bo0s Y00, |02 | Y02, this information, they cannot complete the protocol success-
. . . . fully.
| b2 4200, (22|22, (59 If Bob did have this information, then the protocol could

be completed. Hence, not only §ssemilocalizablelike any
causal complete-measurement superopéerdimthermore it
can actually be implemented with one-welgssicalcommu-

where we use the notation

S A ; ; nication. Alice performs the partial measurement that
TYy= — -+
i) \/§(|I D=L+, projects ontaH %" or 143, and sends her measurement out-
come to Bob. She also sends to Bob a copy of a table of
1 random numbers that she has generated. Then Bob, after per-
lyi)=—=(lil,i+1)=[i+1])). (56)  forming his partial measurement, has enough information to
\/E determine whether the state occupies the bottom-right quad-

. . . rant, where the stabilizer generators are
The superoperator that induces decoherence in this basis g

is localizable, and in fact it can be implemented with shared X®UgXUg!, Z®UgZUg?t, (61)
randomness—no entanglement is required. Alice and Bob

can each perform a partial measurement to identify whethegr one of the other three quadrants, where the stabilizer gen-
the state occupies the subspd¢é! or 723 Then they can  erators are

proceed to implement decoherence in the2Bell basis as

described in Sec. Il C. Finally, Alice and Bob discard the XX, ZRZ. (62)
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(HereX andZ denote 2<2 Pauli operatorsWhen Alice and  |®,) as their computational bases, thghg)=|®") and

Bob consult their shared randomness and Alice is directed tty=1. Then a useful characterization of tblg’s is provided

apply o e{1,X,Y,Z} to her half of the state, Bob applies by the following theorem.

uBaugl in the former case, and in the latter case, to Theorem 6Let U/ be a set ofd?> dxd unitary matrices

induce decoherence in the proper stabilizer eigenstate basisatisfying Eq.(65), and let&,, be the measurement superop-
Note that, for this protocol to work, the classical commu-erator that projects onto the orthonormal bad§,

nication must be in the proper direction—it must be Bob, not® ||®*),U,eU}. Suppose thaf,, is localizable. Then i,

Alice, who chooses from two alternative operations. ThisU, andV are all contained i@/, so must bee'?UV, for some

statement sounds surprising at first, as we know that a unphasee'®.

tary transformation applied by Bob to any maximally en- That is,i{ is a projective group.

tangled state is equivalent to a suitable unitary transforma- Proof. Theorem 6 follows easily from Theorem 5. First

tion applied by Alice. However, unitary transformations note that

applied by Alice and by Bob daot have equivalent effects

when applied tcall the elements of a maximally entangled Mel[®")=1eMT|d7), (68)

basis Correspondingly, it must be Bob, not Alice, who ap-

plies the rotation to transform the stabilizer generators of E whereM i.S any operator, and the transpose is taken in the
(62) to those of Eq(61). computational basis. Then by hypothesis, all of

_ _ |®F), Usl|d™), 1eVTdT), (69
B. A twisted Bell basis

We saw that the general causal complete-measurement s3(€ igenstates @,. Theorem 5 then implies that
peroperator projects onto a basis that partitibfis2 Hg into Tl +\ — +
dXd subspaces. Of course, d=1, the basis is a product UsVieT)=uval|eT) (70
basis and the superoperator is trivially localizable. Whals ajso an eigenstate, and hence an element of the orthonor-
about the other limiting case, in whidh=N,=Ng, so that 3 pasis, up to a phase. This proves the theorem.
the basis is maximally entangled? We will give an example  Now to exhibit a causal measurement superoperator that
of a 4x4 maximally entangled basis, such that the corre4g not |ocalizable, it suffices to construct unitary operators

sponding measurement superoperatardslocalizable. that do not satisfy the projective group property specified in
In the dXd case, any maximally entangled state can berheorem 6. Consider, in thexd4 case, the 16 unitary opera-
expressed adl®1|® "), where tors
d
1 |z Z? z3
dHy=— > |i)®li (63)
5 JHi:1|>|> X XZ X2 XZ°
i . i U= X2 XZZ X222 XZz3 ’ (71)
and U is unitary. The elements of dxXd maximally en-
tangled basis, then, can be expressed as X3 x37 X872 x3%772
= + - ~
|®a)=Ua®l|®7); (64) whereZ andZ? are the diagonal %4 matrices
the requirement that the states are orthogonal becomes -
Z=diag1,1,-1,—1).
tr(UlUp) =d 8. (65)
Z?=diag1,—1,1-1). (72)

For the standardiXd Bell basis, these unitary transforma-
tions can be chosen as We can readily check that these operators obey the orthogo-

: L s o9
Uap=X?2%, ab=01,...d—1, 66) nality condition Eq.(65), asl, Z, Z<, and

Son .
whereX andZ are thed-dimensional Pauli operators that act zz°=diag1,-1,-1,) (73)

on a basig[0).[1). ... [d—1)} as are all mutually orthogonalThey are the characters of the

X|iy=[i+1 (modd)), four unitary irreducible representations of the graiyx Z,.)
However, due to the mismatch of the fourth row of Efl)
Zliy=0'|i), w=e?"" (67)  With the first three rows{/ does not have the projective

group property required by Theorem 6. For examplend
Anymeasurement superoperator that projects onto a maxk2Z are contained i@/, but their produc®Z is not propor-
mally entangled basis satisfies the criterion of Theorefim3 tional to any element ai/. Therefore&,, is not localizable.
both directiong and is therefore causal. But if the superop- As with any causal complete-measurement superoperator,
erator is localizable, Theorem 5 requires the unitary transfor&,, is semilocalizable. But in contrast with the preceding ex-
mations{U,} satisfying Eq.65) to obey further restrictions. ample, classical communication is not sufficient—quantum
Note that if Alice and Bob both adopt the Schmidt basis ofcommunication (or equivalently, classical communication
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and shared entanglemeng needed to implement the opera- sible values of the input bits are equally probable. The
tion. To prove this we can appeal to a result of Ré&b|: If Clauser-Horne-Shimony-HoltCHSH) inequality says that,

a superoperator can be implemented with one-way classicaven if Alice and Bob share a table of random numbers, no
communication, and has a maximally entangled state as amgher success probability is attainable. To make the connec-
eigenstate, then it is localizable. Since the superoperator théibn with the CHSH inequality as it is usually formulated
projects onto the twisted Bell basis has a maximally en{26], define random variables with valuesl as

tangled state as an eigenstate, anchas localizable, we

know that it cannot be done with one-way classical commu- A=(—1)%, A'=(-1)%,
nication. Further examples of twisted Bell bases are pre- b ) b
sented and discussed in REES]. B=(-1)", B'=(-1)". (76)

Then the CHSH inequality says that for any joint probability

distribution governingA,A’,B,B’' e{* 1}, the expectation
In this section, we will use a different method to exhibit values satisfy

another class of causal superoperators that are not localiz- , ) e

able. The construction exploits fundamental limitations on (AB)+(AB')+(A'B)—(A'B")=2. (77)

the strength of correlations among the parts of a quanturEurthermore, if we denote by, the probability that Eq.

system, limitations embodied by_the Cirel'son inequality. Anﬁ75) is satisfied when the input bits are,g), then
operation that produces correlations that are too strong can-

VI. QUANTUM CORRELATIONS AND LOCALIZABILITY

not be implemented without communication among the (AB)=2pgo—1,
parts.

A related observation is that correlations arising from (AB'Y=2py;—1,
guantum entanglement are stronger than can be achieved
with shared randomness—this is the content of Bell's theo- (A'B)=2p1o—1,
rem. We use this idea to construct examples of superopera-
tors that can be locally implemented with prior quantum en- (A'B'Y=1-2py, (79
tanglement, but cannot be locally implemented with shared
randomness. so that Eq(77) becomeg27]

- . i, 1 3
A. The CHSH and Cirel'son inequalities Z(p°°+ Port Prot P1o) < e (79)

Suppose that Alice receives a classical inputait{0,1}
end is to produee a classical output &jtwhile Bob receiveS If Alice and Bob share quantum entanglement, they still
input bity and is to produce output bli. Their goal is 10 cannot satisfy Eq(75) for all inputs, but they can achieve an
generate output bits that are related to the input bits accorqrnproved success probability compared to the case where
ing to they share only randomness. If we suppose &at',B,B’
(74) are all Hermitian operators with eigenvalugsl, and that

Alice’s operatorsA andA’ commute with Bob’s operatoiB

where @ denotes the sum modulo (fhe xor gate and/\ and B’, then the quantum-mechanical expectation values
denotes the produdthe AnD gate. obey the Cirel'son inequalitj26]

If Alice and Bob are unable to communicate with one
another, so that Alice does not know Bob’s input and Bob <AB>+<AB/>+<A'B>_<A'B'>$2\/§? (80)
does not know Alice’s, then they will not be able to achieve
their goal for all possible values of the input bits. lagta,
denote the value of Alice’s output if her inputxs=0,1 and 1 1 1
let by,b; denote Bob’s output if his input ig=0,1. They —(Poot Port+ Piot P1)<==+ —=~0.853. (81
would like their output bits to satisfy 4 2 22

ad®b=x/Ay,

the success probability then satisfies

a9g®bp=0, Furthermore, the inequality can be saturated if the observ-
ablesA,A’,B,B’ are chosen appropriately.
apd b]_: 0,
B. A causal operation that is not localizable
al@ b(): 0,

Our observations concerning the Cirel'son inequality
a;0b;=1; (75)  quickly lead us to a construction of a causal operation that is
not localizable.
this is impossible, since by summing the four equations we For a two-qubit state shared by Alice and Bob, consider a
obtain 0=1. superoperator, denotet), , that can be implemented in two
If Alice and Bob always choose the outpa=b=0, then  steps. The first step is a complete orthogonal measurement
they will achieve their goal with probability 3/4, if all pos- that projects onto the product badiK0),|01),|10),|11)}.
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Then in the second step the product state is transformed aqubit in the basig|0),|1)}, and she tosses a coin to decide

cording to whether to flip her qubit or not. Then she sends her measure-
ment result and the outcome of her coin toss to Bob. Bob
|00) . measures his qubit in the bagi®),|1)}, and after reading
|01)}— §(|OO><OO| +|12)(11)), the datq sent by Alice, either flips it or not,. Bob arranges that
110) his qubit hav_e the_ same value as Alice’s unle_ss the_y both
measure|1), in which case he arranges for his qubit and
1 Alice’s to have opposite values. This procedure implements
|11)— 5 (|01)(01]+|10)(10}). 8 En. o _
2 How much communication is necessary? As pointed out

_ o _ _ . tous by Cleve[28], we can obtain a lower bound on the
This operation is obviously trace preserving, and since it hagmount of communication needed to implemeht from

an evident operator-sum representation, it is also completelynown ower bounds on the quantum communication com-
positive. Furthermore, it is causal. Whatever the initial stateyjexity of the inner product functiof2g].

that Alice and Bob share, each has the final density operator gyppose that Alice has ambit classical input stringc
p=112; therefore, neither can receive a signal from the other— (x v, ... x.), not known to Bob, and Bob has arbit
Though causal, is not localizable—it cannot be imple- cjassical input string/=(y;,Ys, . . . y,,), not known to Al-

mented by Alice and Bob without communication, even ifjce Their goal is to compute the mod 2 inner product of their
they share an entangled ancilla. If it were localizable, thensyings,

Alice and Bob would be able to implemeit by applying a
local unitary transformatiot) ,® Ug to the composite sys- T(X,Y) =X1Y1® XYo@ - - - ®XpYy - (84)
tem consisting of the input qubits and ancilla, and then

throwing some qubits away. Let the input state shared byt js known[29] that even if Alice and Bob share preexisting

Alice and Bob be one of the products statesentanglement, neither party can evalu#e,y) with zero

{/00),|01),[10),|11)}, let them apply their local unitary probability of error unless at least2 qubits are transmitted

transformation to implemer, , and suppose that each mea- petween the parties. Fareven,n/2 qubits of communication

sures her or his output qubit in the bafi8),[1)} afteréx is  are also sufficient: Alice can use superdense coding to send

performed. In effect then, Alice subjects the initial state to aig Bob, and Bob can then evaluafex,y).

measurement of the observahlg *Z o, U, and Bob mea- But if Alice and Bob were able to implemeigt, “for

suresuglzB,ouIUB, whereZ. ,,; denotes a Pauli operator free,” they could use it to evaluat&x,y) at a smaller com-

acting on an output qubit. Both observables have eigenvaluaaunication cost. Alice prepares thequbit statgx) and Bob

+1. the n-qubit stately). Then&, is applied to|x;,y;) for each
Now, the Cirel'son inequality applies to a situation wherej=1,2, ... n, and Alice and Bob measure their qubits to

Alice measures either of two observables in a specified stateptain outputsa; ,b; for eachi. Sincea;®b;=x;y;, we see

and Bob does likewise. Here we are considering a case ithat

which Alice and Bob measure fixed observables, and the

initial state can be any of four possible states. But either  Z(x,y)=(a;®b,)®(a,®b,)®---®(a,®b,)

scheme can be easily related to the other. For example, in-

stead of providing Alice with an input qubit that can [ =(a10a;® - 9a,) & (b ®b® - - - ®Dy).

or|1), we can give her the inpli®) and instruct her to apply (85)

X, or not, before she performs her measurement. In this sce-

nario, Alice receives a classical input bit that instructs her toTherefore, Alice can evaluate the symod 2 of hern mea-

measure one of the two observables surement outcomes, and send tre-bitresult to Bob. Bob
adds Alice’s result to the sum of his own measurement out-
A=Up"Zp ouln, comes, and so obtains the valueZk,y). Just one bit of
communication is required.
A/:XA,inU;lZA,outUAXA,inu (83 Suppose that Alice and Bob have a protocol that allows
them to implement, with, on averageQ,, qubits of quan-
and similarly for Bob. tum communication(Alice’s decision whether to send a qu-

In this case, then, the Cirel'son inequality constrains howbit could be conditioned on the outcome of a local measure-
Alice’s measurement outcorrj@) is correlated with Bob’s ment; therefore the amount of communication required can
measurement outconie). But if they have really succeeded fluctuate about this averageNow, if Alice and Bob can
in implementing the operatiod., then the outcomes are implement€, n times with Q, qubits of communication,
related to the classical input bitsy by a®@b=x/\y with  then since just one additional bit is needed to complete the
probability 1, a violation of the bound E¢1). We conclude evaluation of the inner product function, we know that
that no local protocol implementing,. is possible.

However, it is also clear that, is semilocalizable-it can Q,+1=n/2. (86)
be implemented with one-waglassicalcommunication from
Alice to Bob (or from Bob to Alice. Alice measures her For largen, Q, converges taQ,,, and we conclude that
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Q.=>1/2. (87 able unitary transformations all coincide, according to the
following theorem.

This argument illustrates a general approach to proving Theorem 7 A bipartite unitary transformatior,g is
that a quantum operation is unlocalizable: if implementingsemicausal if and only if it is a tensor produdil,g
the operation would allow us to reduce the communication=U,®Ug.
complexity of a function below established lower bounds, Proof. It is obvious that a tensor product transformation is

then no local implementation is possible. causal. The nontrivial content of the theorem is thad jfs is
not a tensor product, then we can devise protocols whereby
C. Entanglement is stronger than shared randomness Alice can signal Bob and Bob can signal Alice; hettgs is

. . . _not semicausal.
The separation between the CHSH and Cirel'son inequali-

ties allows us to construct a class of operations that can b,
implemented locally with shared entanglement, but cannof
be implemented locally with shared randomné3e exis-
tence of operations with this property was already pointe
out in Sec. I1C)

Suppose that Alice and Bob have a shared maximally en- Ung=> NAL®B,, (89
tangled pair of qubitgqubits 3 and 4 as well as two input #
qubits(1 and 2 on which the operation is to act. Alice mea- | e thex ,'s are non-negative real numbers, and the op-

sures qubit 1 and Bob measures qubit 2 in the basi
{]0),]1)}. Then Alice measures her half of the entangled%rator base¢A,} and{B,} are orthogonal,

pair, qubit 3 choosing to m,ea}sure the observz_ﬂolé the tf(ALAV)ZNA5W, tf(BLBV)ZNB%Vi
measured input waf)), or A’ if the measured input was

|1),. Similarly, Bob measures qubit 4, choosing to measurey, is the dimension ofH, and Ng is the dimension of
eitherB or B' depending on the outcome of his measurement,__ e have chosen this normalization so that unitary op-

To prove this, we first recall that since linear operators are
vector space with a Hilbert-Schmidt inner product, a bipar-
ite operatorwhether unitary or ngtcan be Schmidt decom-
d)osed[so]. We may write

(90

of the input qubit 2. _ _ erators are properly normalized.

After measuringA (or A), Alice rotates qubit 3 to the  f U, is not a tensor product, than more than angis
state|0); if she foundA=1 (orA’=1),and rotates it tl);  strictly positive. We will show that if this is true, theld g
if she foundA=—1 (or A’=—1). Bob does the same to ajlows Bob to signal Alice(A similar argument shows that
qubit 4. Finally Alice and Bob throw away the input qubits 1 Ajice can signal Bob. Suppose that Alice introducesref-
and 2, retaining qubits 3 and 4. erence systent/z and that she prepares a maximally en-

Alice and Bob, then, using their shared entanglementiangled state oHr® H,
have locally implemented an operation that acts on a

product-state input and produces a product-state output, ac- ) )
cording to |(D>RA:2i [DR®[i)A- (91

X, a,b). 88 L .
Ixy)—la.b) (88) (Because it will be convenient later on, we have chosen an
Averaged over the four possible product-state inputs, the outnconventional normalization of the stefi®)ra.) Mean-

put of the operation satisfiesdb=xy with a success prob- While, Bob prepares a pure stdig)s. WhenU g acts, the
ability that we will call p. If the observables density operator becomes

A, A’, B, B’ are chosen to saturate the Cirel'son in-

equality, thenp=cos(w/8)~ .853. =S AN (10A)OND|(1eAT) @B BT .
As is well known[26], probability distributions for quan- PRAB % WMATOA) PRI e A BB,[V)(IB,
tum measurements of a single qubit can be correctly ac- (92

counted for by a “hidden-variable theoryfwhile measure- ) i )
ments of entangled qubits cannot )be Therefore, After tracing out Bob’s system, the density operator of Al-
measurements performed by Alice and Bob on a product®®’S System becomes
input state can be perfectly simulated by a classical probabil-
ity distribution, so that the measurement results must respect =D A\ T T
. ; ; : p JISA)[PHPI(TOA,)(HB,B,I).
the CHSH inequality, which requires that the success prob- ' o W[ PH] (V1B.Bu1Y)

ability p satisfy p<3/4. For 3/4 p=<cog(w/8), the opera- (93
tion can be implemented locally with shared entanglement, ) o )
but not with shared randomness. Bob can signal Alice if the density operatpg, depends

on Bob's initial state|). It follows from Eq. (90) that the

states{(I®A,)|®)} are mutually orthogonal; therefore sig-

naling is possible if there exist two statie) and|y’) such
An important special case of an operation is a unitarythat

transformation. In this case, our classification collapses—the . .

classes of causal, localizable, semicausal, and semilocaliz- (4|B,BLI )y # (' BB ,IY"). (94)

VII. UNITARITY AND CAUSALITY
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for someu andv. then there is a signaling protocol in which the initial state is
Now we distinguish two cases. a product of pure states; there are states |¢), and|¢'),
(1) Suppose that for some, B, is not unitary. Then, in  such that

order to satisfy the normalization condition E§O), BLBM

must haveat least two distinct eigenvalues. Chook#) and r(@* [trg[E(| DY@ [ ) (4] ¢* )r
| ) tp be the corresponding eigenvectors. Then (@4d) is =tra[ £(| @) @| @ | ) (])]
satisfied forv= p.

(2) Suppose thaB, and B, are both unitary foru# v. #trgl &l @) (el® |y )} ¢'])]

Then BIBM is nonzero andlaccording to Eq(90)] has van- s N .
ishing trace; therefore it hast least two distinct eigenval- =r(e”|trelE(| D) (D] |y )¢ DIl¢)r-
ues. Thus Eq(94) is satisfied, wheréy) and|y') are the (97

corresponding eigenvectors. . h found icul . | i
In either case, Alice’s density operator depends on how!NC€ We have found a particular matrix element o

Bob's initial state is chosen: hence Bob can signal Alice. ATBLE(| P)(P|®[¢)(y])] that depends ofy), evidently so

similar argument shows that Alice can signal Bob. Thereforél0€S e[ E(| ) (D[ @ |¥)(l)] itself.

U g is not semicausal. This completes the proof of Theorem NOW. let us provide Bob with a reference syst&nand

7 suppose that he prepares a maximally entangled state of
It follows immediately from Theorem 7 that if a bipartite Hg®TMs

unitary transformation is semicausal, it is also localizable,

and therefore fully causal. |D"Ygs=> [1)e®]i)s (99
i
VIll. GENERAL OPERATIONS: CRITERIA FOR (again we have chosen an unconventional normalization for
SEMICAUSALITY convenience We are ready to state and prove our new cri-

terion for semicausality.

Theorem 8Let |®)g be a maximally entangled state of
stemA with the reference systeR, and let|®’)zs be a
tmaximally entangled state of systdwith reference system
S Then the bipartite superoperatéracting onAB is semi-
causal(Bob cannot signal Aliceif and only if

To show that an operatiofiis not fully causal, it suffices
to exhibit a protocol whereby the operation can be used t%y
send a signal in one direction, and to show that it is no
semicausal, it suffices to exhibit protocols for signaling in
both directions. On the other hand, to show thasitully
causal(or semicausa) we must prove that no such signaling
protocols exist. To settle whether a particular operation is tra{ (Eap®@ I RI[ (| PWP)ra® (| D' WD |)gs]} (99
causal, it is very helpful to have a simpler criterion that can
be checked with a straightforward calculation. We will now is proportional to the produgiza® | 5, wherel 5 denotes the
develop such a criterion for semicausal superoperators. identity onS

First, we recall that, although in our definition of semi-  Proof. If trg[£(|®)(P|®|P'}(P’|)] is proportional to
causality we allowed the initial state shared by Alice andpza®lg, then by evaluating the matrix element between
Bob to be entangled, we could without loss of generalityrelative statesy* )5, we see that g{ E(| P WD | @ |#)(#])] is
restrict their initial state to be a product stdéheorem 1. independent of¢). Therefore Bob cannot signal Alice. Con-
Next, we note that a helpful tool in our analysis of the cau-versely, suppose that Bob cannot signal Alice. Then
sality properties of unitary transformations, entanglement
with a reference system, can also be fruitfully applied to the trg[E(|P) (D@ [¢)(¥])]
general case. To give a useful restatement of the criterion for _ « , , .
semicausality, suppose again that Alice prepares the maxi- = (¢ [tra[ (NP [R NP DI[¥")s
mally entangled statgb ) 4 of her reference systefi with (100
her systemH,. Then for each statep)ae Hp, there is a

o .
corresponding “relative statele* )ge Hg, chosen so that is independent ofy*). It follows that

trg[£(| PN P|@|D")(D'])]
r(e*[P)ra=¢)a- 95 _ _
is proportional tol 5. This proves Theorem 8.
We can easily see that an operatifiis semicausalBob is
unable to signal Aliceif and only if IX. CONCLUSIONS

We have studied the constraints on quantum operations
trg[ £(| @) (P[] (¥])] (96)  that are imposed by relativistic causality. In the bipartite set-
ting where no classical communication is permitted, we find
is independent of Bob’s state/). (Here of coursef really  a hierarchy of operationg1) operations that can be imple-
denotes the operatidi® £, acting on theRAB system) If mented with no shared resourcé®) operations that can be
the expression in Eq96) depends orj¢), then obviously implemented with shared randomneg8) operations that
Bob can signal Alice. Conversely, if Bob can signal Alice, can be implemented with shared entanglemémtalizable
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operation§ (4) causal operations; ar{fl) acausal operations. quantum physics needs revision? Ultimately, only experi-
Our central observation is that the claségsand(4) do  ment can decide.

not coincide: there are operations that respect causality, but Note addedAfter this paper appeared, a proof of the con-

are nonetheless forbidden by the rules of local quantuniecture that semicausal superoperators are semilocalizable

physics. was found by Eggeling, Schlingemann, and Werfr3}.
Our work can be regarded as a useful step toward the
broader goal of characterizing the physically realizable op- ACKNOWLEDGMENTS
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like Wilson-loop operator is an acausal operatioonfirming

a speculation of Sorkif14]), and is therefore surely not
localizable. On the other hand dastructivemeasurement of
a Wilson loop is possible—spacelike separated parties can Theorem 3Consider a bipartite complete orthogonal mea-
perfOI’m a POVM from which the value of the Wilson IOOp surement Superoperator Of the form
can be inferred, but this POVM will damage Wilson-loop
eigenstates.
gThe compatibility of quantum mechanics with special E(p)—é |a)(alpla)(al. (AD)
relativity is highly nontrivial; in fact, it is something of a
miracle. Because relativistic quantum-field theories are swhere{|a)} is an orthonormal basis fok,® Hg, and let
highly constrained, it is tempting to speculate that “quantumsi=trg(|a){al). Then £ is semicausal if and only if the
mechanics is the way it is because any small changes ifbllowing property holds: For each pair of operators
guantum mechanics would lead to absurdifigs].” {o% o8}, eitherad= R or 3c2=0.
From this perspective, the existence of causal operations proof. We begin by observing that #20%=0, then
that are not localizable comes as a surprise. We seem to have
the freedom to relax the rules of quantum theory by allowing (ala®Ug|b)=0 (A2)
more general operations, without encountering unacceptable i ] ]
physical consequences. Nontrivial support for this notion ig0r any unitaryUg. To show this, we Schmidt decompose
provided by the semigroup property of the causal operationghe statega) and|b):
It is reasonable to insist that the operations allowed at a
given time ought not to depend on the previous history of the la)y=2>, V\ailai)a®la,i)g,
system; since the composition of two causal operations is :
causal, a theory that admits more general causal operations
than those allowed in local quantum theory could adhere to 1bY="2 \p.ilb,i)a®|b,i)g, (A3)
this proviso. !
One wonders whether there are further principles, beyond . .
relativistic causality, that will restrict the (E,)Iass IC:)f aIIovx)led Wwhere {|a.">A}’ {lb.">A} are orthonormal bases of
operations to those and only those that are truly realizable ifta {|a",>5}' ;{lb">5} are orthon_ormal bases Gilg,
Nature. If so, these principles might lead us to an under@nd thek,’s, Ay i’s are all non-negative. In terms of these
standing of why quantum mechanics has to be the way it i?@ses, we find
What might these principles be?
We do not know. But the discussion in Sec. VI invites us 3= Mailaidaa(ail,
to contemplate the fundamental limitations on the correla- '
tions among the parts of a physical system. Experimentally
confirmed violations of the CHSH inequality demonstrate o%=> Nb.ilD,iYa a(bil; (A4)
that the correlations are stronger than those allowed by any !
local hidden variable theory. Operations that are causal bu a b . . ) .
not localizable produce correlations that are stronger still"ereforecioz=0 iff = x(a,i|b,j)a=0 for eachi and]
and violate the Cirel'son inequality. What criteria point to- With NaiXp,j#0. Equation(A2) follows |m.med|ataely. .
ward a description of Nature that incorporates violation of NSW suppose that for eaca andb, either oy=o or
the CHSH inequality, but not violation of the Cirel'son in- oa0a=0. Let|) be an arbitrary pure state H,® Hg . We

APPENDIX A: PROOF OF THEOREM 3

equality? will show that
Or could it be that Nature really does allow more general .
operations, and that the conventional framework of local trgE(| ) () =tra€((1 A® Ug) ) (| (1a@ Ug)) (A5)
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for any unitaryUg, which according to Theorem 1 suffices _
to show that€ is semicausal. To prove EEA5), we expand Z VApNaia(b,]
the statd ¢) in the basig|b)} as )

a,i)ag(b,jlUgla,i)g

=> Wpiraialbiila,i (A12)
=3 alb), (6) F Vhnikala(Billala
and so obtain is a sum of non-negative terms, at least one of which is
. nonzero; therefore the sum is surely nonzero, as we wished
tra€((1 a®Ug) ) (4] (142 Ug)) to show.

Now we have seen thatg and|b) can be chosen so that
= 2 aba§<a||A®UB|b><C||A®U1é|a>02- (A7) the sum in Eq.(A9) contains a .term oth_er thang. The _
ab.c second step of the argument will establish that we can, in
fact, choosdJg and|b) such that the sum is not equaldg .

Now we use the property that eithef = o or o302=0 for . . .
property A= OF a0 For this purpose, consider the s&t containing allo%

eacha andb: becauseria=0 implies that(a|l ,@ Ug|b .
ATA P (alla®Uelb) oo thatoeo3+0. Suppose thag® contains at least two

=0, we can replace? by ¢& in Eq. (A7) without alterin . .
placery by o in Eq. (A7) 9 elements, and that? is anextremalelement ofS"—that is,

the sum. After this replacement, we use the propert)’eb . N
s.Ja)(al=1 and the unitarity olUg to find o, cannot be expressed as a nontrivial convex combination
a

of other elements o8°. Then since the sum in EGA9) is a
N > b convex combination of elements &, and since we can
tng((|A®UB)|‘/’><‘/’|(|A®UB))=§ |@p|“oa, (A8)  chooseUs so that the sum contains somd+ o2 with a
nonvanishing coefficient, the inequality in E\9) follows
which is independent df g, proving Eq.(A5) and hence the from the extremality ofoR in S°.
“if” part of Theorem 3. Finally, it only remains to show thab) can be chosen so
To prove the “only if” part of Theorem 3, we suppose that ¢% is extremal inS. For this purpose, of ali-} such
that for somea and b, 04o3#0, andoh#oR; we must that S° contains two or more elements, choose one with
show that Bob can signal Alice. It suffices to show that amaximal Hilbert-Schmidt norm {i.e., with maximal
basis elementb) and a unitary transformatioblg can be  tr (¢%)?]}. We claim that thiso} must be extremal irg’.
chosen so that To see that5 is extremal inS°, we appeal to the follow-
ing property: Lef{v;} be a finite set of vectors, and |gt|| nax
UBE(UA®UB)|b><b|(|A®UE))=Ea: [(a|l ,® Ug|b)|?02 be the maximum value dfv;|. Then thestrict inequality

=B =trg&(|b)(b]). ‘ Z Pivill <[|vlmax (A13)

(A9)

If Eq. (A9) holds, then Bob can signal Alice by the following o L

protocol: Alice and Bob prepare in advance the shared statlgqlds for any nontrivial convex f:ombmau_on of thgs (one

|b). Just beforef acts, Bob either appliedg to the state or Wgth two or more nonyamshmgi s)- Applying Eq.'(A13) to

he does nothing. Equatidi\9) says that Alice’s density op- > + the Hilbert-Schmidt norm of our selected, is on the
b,nght-hand side, which is strictly greater than the left-hand

erator after€ acts depends on the action chosen by Bob;: - L
therefore, Bob can signal Alice. side, the norm of any nontrivial convex combination of ele-

b b : s~ab
We will prove in two steps thatlz and|b) exist such that MeNts 0fS°. Therefores, is extremal inS’.
Eq. (A9) is satisfied. The first step is to show that for ~ This completes the proof of Theorem 3.

o%03#0, there is a unitaryJg such that

(b|1 ,®Ug|a) 0. (A10)

APPENDIX B: PROOF OF THEOREM 5

Theorem 5 If £ is a localizable superoperator on
Ha® Hg, and|¢), Ax1|g), andl ®B|y) are all eigenstates
of £ (where A and B are invertible operatojs then A
®B|y) is also an eigenstate ¢f

2 W Naia(b.jlai)as(b,j|Uglai)s#0. (ALL) Proof. If the superoperatof is localizable, its action on a
b pure statd 7),g can be realized by a tensor product unitary
Now recall thato2c2+0 implies that x(b,j|a,i)s#0 for  transformation Uga@Vps acting on |7)agl¢)rs, where
somei andj. By labeling the Schmidt bases appropriately we| #)rsS @ sitable ancilla state shared by Alice and Bob. By
can ensure thata(b,lla,1),#0. By adopting suitable NYPOthesis, this unitary transformation acting|gnagl¢)rs
phase conventions, we can ensure that eghi|a,i)s is ~ Preservesy)g and rotates only the ancilla state:
real and non-negative, and we can chodd$g so that
s(b,j|Ugla,i)g= ;. Thus Ura® Ved ¥)asl ©)rs= | ¥) asl #0)rs, (B1)

In terms of the Schmidt bases defined in E&3), what is to
be shown can be rewritten as
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for some state of the ancillpg)rs. Similarly, by hypoth-
esis, we have

Ura®Ves(Aa® 1) #) asl @) rs= (Aa® 1)) agl @) RS:

Ura® Ves(1a®Bg)|#) gl ©)rs= (1a® Bg)| ¥) ag| @B)R(SE;Z)

for states of the ancillfpa)rs, |©8)rs-
Now consider the transformatiolga=UAU A1,
By construction,Ag, acts only on Alice’s systenRA. In

fact, we can show that when acting on the state

(Aa®1g)| ) aBl0o)rs, Agra acts trivially on A and non-
trivially only on Alice’s ancillaR; we observe that

(Aa@1g) ) aslea)rs= (Ura® V) (Aa® 1)) agl )RS
=(Ara®lp)(Ap®1E)(Ura®Vps)
X|¢) asl @)rs

=(Ara®15)(Aa®1B)|4) Al @0)RS:
(B3)

Therefore, acting onKa® 1g)| ) agl Po)rs, WE May replace
Apa®lg by Rg® 15, whereRg is a(unitary) transformation
acting onR alone that rotate$pg)rs t0 |@a)rs. We then
have

(UraAa®VE9)| ) asl©)rs
=(Ara®18)(AAURA® VE9)| ) asl ©)Rs
=(Ara®1g)(Ap®1p)| ) agl @0)RrS

PHYSICAL REVIEW A64 052309

=(Rr® 1) (ApAUra®Ves)| ) asl@)rs, (B4

and multiplying both sides by,® Vg3 gives

(UraAa®1p)| ) asl@)rs
=(Rr®1g)(ApUra®Ip)|4)asl@)rs;  (B5)

that is, acting on the statp)agl¢)rs, We may replace
UrpAa by RRAAURA. A similar argument shows that

(1A®VesBs)|¥) agl©)rs
=(1a®Ss)(1n®BgVes)| ) asl@)rs,  (BE)

whereSg is a unitary transformation acting on Bob’s ancilla.

Now we can use the commutation properties H@b)

and (B6) to determine how the superoperatfracts on
(A®B)|¢)ag:

(Ura® Ves) (Aa®Bg)|#) gl ¢)rs

(1a®VesBs) (UrpPa® 1)) Al )rs
(Rr®15)(1 a®VeBs) (AAUra® 1) #) a8l #)rs
(Rr®15)(AAURa®18) (1 a® VEBs)|#) agl #)rs
(
(

Rr® Ss) (AaUra®18) (1a®BsVeg)|#) asl ¢)rs
Rr® Ss) (Aa® Bg) (Ura® Ves) | ¥) asl¢)rs
=(Rr®Ss)(Aa®Bg)|#) asl ¢0)rs
=[(Aa®Bg)|¥)asl[(Rr® Ss)| ¢0)rd- (B7)

We have shown thatA,®Bg)|i/)ag is an eigenstate of,

=(Rr®1g)(Aa®1g)|¥) asl P0)rS which completes the proof of Theorem 5.
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