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Quantum-information processing for a coherent superposition state
via a mixed entangled coherent channel
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An entangled two-mode coherent state is studied within the framework of 232-dimensional Hilbert space.
An entanglement concentration scheme based on joint Bell-state measurements is worked out. When the
entangled coherent state is embedded in vacuum environment, its entanglement is degraded but not totally lost.
It is found that the larger the initial coherent amplitude, the faster entanglement decreases. We investigate a
scheme to teleport a coherent superposition state while considering a mixed quantum channel. We find that the
decohered entangled coherent state may be useless for quantum teleportation as it gives the optimal fidelity of
teleportation less than the classical limit 2/3.
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I. INTRODUCTION

Quantum entanglement and its remarkable features m
it possible to realize quantum-information processing incl
ing quantum teleportation@1#, cryptography@2#, and quan-
tum computation@3#. An entanglement of two systems i
coherent states allows tests of local realism@4# and may be
used as a quantum entangled channel for quant
information transfer. Proposals to entangle fields in two s
tially separated cavities exist@5#. Recently, entanglement o
nonorthogonal states called quasi-Bell states and telep
tion using them have been studied@6–8#.

In quantum-information processing, the entangled coh
ent state is normally categorized into a two-mod
continuous-variable state. However, there was a sugges
to implement a logical qubit encoding by treating a coher
superposition state, a single-mode-continuous-variable s
as a qubit in two-dimensional Hilbert space@9#. In this paper,
we study the entangled coherent state within the framew
of 232-dimensional Hilbert space. We assess the entan
ment of the evolved state and how useful it may be to tra
fer the quantum information when the entangled coher
state decoheres in the vacuum.

We first construct an orthogonal Bell basis set from no
orthogonal coherent states to reformulate the problem t
32-dimensional Hilbert space. We then investigate the B
state measurement scheme that works perfectly in the l
amplitude limit. The measurement scheme composed of
ear devices is proposed to use for entanglement conce
tion @10# and quantum teleportation. The teleportati
scheme, in effect, reillustrates van Enk and Hirota’s@6#.
When the quantum system is open to the outside world,
initially prepared system decoheres and becomes mixed.
suming the vacuum environment, we find how an entang
coherent state loses its initial entanglement as it inter
with the environment. We use the measure of entanglem
@11# based on the partial transposition condition of entang
ment @12#. We then consider optimal quantum teleportati
via the mixed quantum channel. We find that even though
channel is always entangled under the influence of
1050-2947/2001/64~5!/052308~7!/$20.00 64 0523
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vacuum environment, it becomes useless for teleportatio
some point.

II. CONSTRUCTION OF BELL BASIS WITH ENTANGLED
COHERENT STATES

It is possible to consider an entangled coherent state
C2

^ C2 Hilbert space. It makes the problem simpler becau
two-qubit entangled states have the simplest mathema
structure among entangled states.

Let us consider two kinds of entangled coherent sta
which have symmetry in phase space

uC1&5
1

AN
~ ua&ua&1eiwu2a* &u2a* &), ~1!

uC2&5
1

AN8
~ ua&u2a* &1eiw8u2a* &ua&), ~2!

where ua& and u2a* & are coherent states of amplitudesa
and2a* , N andN8 are normalization factors, andw andw8
are relative phase factors. It may be verified that any
tangled coherent states in the form of (ub&ub&
1eiwug&ug&)/AN or (ub&ug&1eiw8ug&ub&)/AN8, where b
and g are any complex amplitudes, may be converted,
spectively, touC1& or uC2& by applying local unitary opera
tions @13#. A set of uC1& for w50,p and uC2& for w850,p
was studied as quasi-Bell states@7# but the four quasi-Bell
states do not form a complete measurement set by th
selves because they do not satisfy orthogonality and c
pleteness.

By the Gram-Schmidt theorem, it is always possible
make orthonormal bases inN-dimensional vector space from
any N linear independent vectors. Suppose orthonorm
bases by superposing nonorthogonal and linear indepen
two coherent statesua& and u2a* &:
©2001 The American Physical Society08-1
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uc1&5
1

ANu

~cosue2(1/2)ifua&2sinue(1/2)ifu2a* &),

~3!

uc2&5
1

ANu

~2sinue2(1/2)ifua&1cosue(1/2)ifu2a* &),

~4!

whereNu5cos22u is a normalization factor and real param
etersu andf are defined as

sin 2ue2 if5^au2a* &5exp$22a r
212ia ra i% ~5!

with real a r and imaginarya i parts ofa.
We define four maximally entangled Bell states using

orthonormal bases in Eqs.~3! and ~4!

uB1,2&5
1

A2
~ uc1&uc1&6uc2&uc2&), ~6!

uB3,4&5
1

A2
~ uc1&uc2&6uc2&uc1&). ~7!

They may be represented byua& and u2a* & as

uB1&5
1

A2Nu

$e2 ifua&ua&1eifu2a* &u2a* &

2sin 2u~ ua&u2a* &1u2a* &ua&)%, ~8!

uB2&5
1

A2Nu

~e2 ifua&ua&2eifu2a* &u2a* &), ~9!

uB3&5
1

A2Nu

$ua&u2a* &1u2a* &ua&2sin 2u~e2 ifua&ua&

1eifu2a* &u2a* &)%, ~10!

uB4&5
1

A2Nu

~ ua&u2a* &2u2a* &ua&), ~11!

where we immediately recognize thatuB2& and uB4& are in
the form of entangled coherent statesuC1& and uC2& while
uB1& and uB3& become so asuau→`.

Now we are ready to consider decoherence and telepo
tion with mixed entangled coherent states. For simplicity,
assumef50, i.e.,a is real, in the rest of the paper.

III. TELEPORTATION VIA A PURE CHANNEL

There have been studies on the quantum teleportation
coherent superposition state via an entangled coherent c
nel uB2& @6#. Here, we suggest a scheme for the same p
pose with the use of Bell bases~8!, ~9!, ~10!, and~11!. The
scheme includes direct realization of Bell-state measu
ments. We also show that the Bell-state measurement me
05230
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enables the entanglement concentration of partially
tangled coherent states.

A. Teleportation and Bell-state measurement

Suppose a coherent superposition state

uC&5
1

AM 2

~ uA2a&2u2A2a&), ~12!

where M 2 is a normalization factor, is superposed on
vacuumu0& by a loss-less 50:50 beam. It can be shown t
the output state isuB4&. It is possible to generate a superp
sition of the two coherent statesuA2a& andu2A2a&, from a
coherent stateuA2a& propagating through a nonlinear me
dium @14#.

Let us assume that Alice wants to teleport a coherent
perposition state

uc&a5Aua&a1Bu2a&a , ~13!

via the pure entangled coherent channeluB4&bc , where the
amplitudesA and B are unknown. The state~13! may be
represented as

uc&a5A 8uc1&a1B 8uc2&a , ~14!

with A 85A cosu1B sinu and B 85A sinu1B cosu. After
sharing the quantum channeluB4&bc , Alice performs a Bell-
state measurement on her part of the quantum channel
the state~13! and sends the outcome to Bob. Bob acco
ingly chooses one of the unitary transformations$ isy ,sx ,
2sz ,1% to perform on his part of the quantum channel. He
s ’s are Pauli operators and1 is the identity operator and th
correspondence between the measurement outcomes an
unitary operations areB1⇒ isy , B2⇒sx , B3⇒2sz ,
B4⇒1. The acting of these operators onua& andu2a& gives
impacts as follows:

ua&→
isy 1

Nu

~sin 2uua&2u2a&), ~15!

u2a&→
isy 1

Nu

~ ua&2sin 2uu2a&), ~16!

ua&↔
sx

u2a&, ~17!

ua& →
2sz 1

Nu

~ ua&2sin 2uu2a&), ~18!

u2a& →
2sz 1

Nu

~sin 2uua&2u2a&). ~19!

It is not a trivial problem to discriminate all four Bel
states. In fact, it was shown that complete Bell-state m
surements on a product Hilbert space of two two-level s
tems are not possible using linear elements@15#. We here
8-2
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suggest an experimental setup as shown in Fig. 1 to discr
nate Bell states constructed from entangled coherent st
Although perfect discrimination is not possible, arbitrar
high precision can be achieved when the amplitude of
coherent states becomes large. For simplicity, we shall
sume that the 50:50 beam splitter imparts equal phase s
to reflected and transmitted fields.

Suppose that each mode of the entangled state is inci
on the beam splitter. After passing the beam splitter~bs!, the
Bell states become

uB1&ab ——→
bs 1

A2Nu

~ ueven& f u0&g2sin 2uu0& f ueven&g),

uB2&ab ——→
bs 1

A2Nu
uodd& f u0&g ,

uB3&ab ——→
bs 1

A2Nu
~ u0& f ueven&g ,2sin 2uueven& f u0&g),

uB4&ab ——→
bs 1

A2Nu
u0& f uodd&g , ~20!

where ueven&5uA2a&1u2A2a& has nonzero photon
number probabilities only for even numbers of photons a
uodd&5uA2a&2u2A2a& has nonzero photon-number pro
abilities only for odd numbers of photons. Note thatueven&
anduodd& are not normalized. If an odd number of photons
detected at detectorA for mode f, then we know that the
entangled state incident on the measurement set up wasuB2&.
On the other hand, if an odd number of photons is detecte
detectorB for modeg, then the incident entangled state w
uB4&. When even numbers of photons are measured, we
not, in general, tell if the incident state wasuB1& or uB3&.
However, for sin 2u(5^au2a&).0, i.e., a@1, if a nonzero
even number of photons is detected for modef, the incident

FIG. 1. Scheme to discriminate all four Bell states with an
bitrarily high precision using a 50:50 beam splitter and two pho
detectors. If an odd number of photons is detected at detectorA for
modef, then we know that the entangled state incident on the m
surement set up wasuB2&. On the other hand, if an odd number
photons is detected at detectorB for mode g, then the incident
entangled state wasuB4&. For a@1, if a nonzero even number o
photons is detected for modef, the incident state wasuB1& and if a
nonzero even number is detected for modeg, it was uB3&.
05230
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state wasuB1&, and if a nonzero even number is detected
modeg, it was uB3&. When sin 2u is not negligible, the prob-
ability of wrong estimation is

Pi~a!5
1

2~11e4a2
!
. ~21!

For the limit ofa@1, this probability approaches to zero an
all the Bell states may be discriminated with arbitrarily hig
precision.

When the measurement outcome isuB2&, the receiver per-
forms ua&↔u2a& on c. Such a phase shift byp may be
done using a phase shifter whose action is described
R(w)5eiwa†a:

R~w!aR†~w!5ae2 iw, ~22!

wherea and a† are the annihilation and creation operato
When the measurement outcome isuB4&, the receiver does
nothing onc as the required unitary transformation is on
the identity operation1. When the outcome isuB3&, an op-
erator (ua&^au2u2a&^2au)/Nu plays the corresponding
role, which becomes a unitary operator fora@1. When the
outcome isuB1&, sx andsz should be successively applied

B. Concentration of partial entanglement via entanglement
swapping

If the initially prepared quantum channel is in a pure b
not maximally entangled state, the channel may be disti
to a maximally entangled state before using it for quantu
information processing including teleportation. This proce
is known as the entanglement concentration protocol@16,17#.
For an entangled coherent channel, it may be simply reali
via entanglement swapping@10,18# using the Bell measure
ment proposed in Sec. III A.

Suppose an ensemble of a partially entangled pure st

uD4&5
1

ANh

~coshua&u2a&2sinhu2a&ua&), ~23!

from which we want to distill a subensemble of a maxima
entangled state.Nh is a normalization factor and the rea
phase factorh, 0,h,p/2, determines the degree of en
tanglement foruD4&. The stateuD4& in Eq. ~23! is written in
the orthonormal bases~3! and ~4! as follows:

uD4&5
1

ANh
H 1

2
sin 2u(cosh2sinh)(uc1&uc1&1uc2&uc2&)

1~cos2u cosh2sin2usinh!uc1&uc2&

1~sin2u cosh2cos2u sinh!uc2&uc1&J . ~24!

First, we consider the case whena is large. In this case
stateuD4&.uE4& where

uE4&5coshuc1&uc2&2sinhuc2&uc1&. ~25!

After sharing a quantum channel between Alice and B
Alice prepares a pair of particles that are in the same
tangled state as the quantum channel. Alice then perfo

-
-

a-
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Bell-state measurement on her pair of the quantum chan
If the measurement outcome isB1 or B2, the other particle of
Alice’s and Bob’s quantum channel is, respectively, in ma
mally entangled stateuB1&b8c or uB2&b8c where Alice’s par-
ticle is denoted byb8. Otherwise, Alice’s particle and Bob’
quantum channel are not in a maximally entangled state

uB38&b8c5
1

ANh8
~cos2huc1&b8uc2&c1sin2huc2&b8uc1&c),

~26!

uB48&b8c5
1

ANh8
~cos2huc1&b8uc2&c2sin2huc2&b8uc1&c),

~27!

respectively, for measurement outcome ofB3 or B4 . Nh8 is a
normalization factor. The probabilityP1 andP2 to obtain the
maximally entangled stateuB1&b8c and uB2&b8c are P15P2
5cos2h sin2h. In this way, no matter how small the initia
entanglement is, it is possible to distill some maximally e
tangled coherent channels from partially entangled p
channels.

We now consider the concentration protocol whena is
not large enough to neglect sin 2u. In this case, only two Bell
statesuB2& and uB4& may be precisely measured. Extendi
the previous argument leading to Eq.~27!, when the mea-
surement outcome isB4, the resulting state for particlesb8
and c is not maximally entangled. However, we may fin
that, for the measurement outcome ofB2, the resulting state
is uB2&b8c even for the case ofa small. The success prob
ability P2 for this case is

P2~u,h!5
cos42u sin22h

4~12sin22u sin 2h!
, ~28!

whereP2→0 for a.0 andP 2→cos2h sin2h for a@1.

IV. DECAY OF THE ENTANGLED COHERENT
CHANNEL: MEASURE OF ENTANGLEMENT

When the entangled coherent channeluB4& is embedded
in a vacuum environment, the channel decoheres and
comes a mixed state of its density operatorr4(t), wheret
stands for the decoherence time. To know the time dep
dence ofr4(t), we have to solve the master equation@19#

]r

]t
5 Ĵr1L̂r; Ĵr5g(

i
airai

†,

L̂r52(
i

g

2
~ai

†ar1rai
†ai !, ~29!

whereg is the energy decay rate. The formal solution of t
master equation~29! may be written as

r~ t !5exp@~ Ĵ1L̂ !t#r~0!, ~30!

which leads to the solution for the initial single-mode dyad
ua&^bu
05230
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exp@~ Ĵ1L̂ !t#ua&^bu5^bua&12t2uat&^btu, ~31!

wheret5e2(1/2)gt. For later use, we introduce a normalize
interaction timer, which is related tot: r 5A12t2.

To restrict our discussion in a 232-dimensional Hilbert
space even for the mixed case, the orthonormal basis vec
~3! and ~4! are nowt-dependent

uC1~t!&5
1

ANQ

~cosQuta&2sinQu2ta&), ~32!

uC2~t!&5
1

ANQ

~2sinQuta&1cosQu2ta&), ~33!

where sin 2Q5exp(22t2a2). The unknown state to telepor
and the Bell-state bases are newly defined according to
basis vectors Eqs.~32! and ~33!.

Any two-dimensional bipartite state may be written as

r5
1

4 S 1^ 11vW •sW ^ 111^ sW•sW 1 (
m,n51

3

tnmsn^ smD ,

~34!

where coefficientstnm5Tr(rsm^ sn) form a real matrixT.
VectorsvW and sW are local parameters that determine the
duced density operator of each mode

rb5Trcr5
1

2
~11vW •sW !, ~35!

rc5Trbr5
1

2
~11sW•sW !, ~36!

while the matrixT is responsible for correlation@23#

E~a,b!5Tr~raW •sW ^ bW •sW !5~aW ,TbW !. ~37!

With use of Eqs.~11! and ~29!, we find vW , sW, andT for the
mixed channelr4(t) as follows:

vW 5sW5S B

Nu
, 0, 0D , ~38!

T5
1

2Nu
S A1D 0 0

0 2A1D 0

0 0 A2C
D , ~39!

whereA, B, C, andD are defined as

A5~12G!exp~24t2a2!,

B5~12G!exp~22t2a2!,

C522~11G!exp~24t2a2!,

D522G1~11G!exp~24t2a2!,

G5exp@24~12t2!a2#. ~40!
8-4
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Note thatNu is a time-independent normalization factor a
r4(tÞ0) may not be represented by a Bell-diagonal mat

The necessary and sufficient condition for separability
a two-dimensional bipartite system is the positivity of t
partial transposition of its density matrix@12#. Consider a
density matrixr for a 232 system and its partial transpos
tion rT2. The density matrixr is inseparable iffrT2 has any
negative eigenvalue~s!. We define the measure of entangl
ment E for r in terms of the negative eigenvalues ofrT2

@11#. The measure of entanglementE is then defined as

E522(
i

l i
2 , ~41!

wherel i
2 are the negative eigenvalue~s! of rT2 and the fac-

tor two is introduced to have 0<E<1.
For r4(t), we find the time evolution of the measure

entanglement

E~t!5
A16B21~C2D !22~2A1C1D !

4Nu
. ~42!

Initially, the state uB4& is maximally entangled, i.e.,E(t
50)51, regardless ofa. It is seen in Fig. 2~a! that the
mixed stater4(t) is never separable at the interaction tim
t,`. It should be noted that the larger the initial amplitu
a, the more rapidly the entanglement is degraded. It
known that the speed of destruction of quantum interfere

FIG. 2. ~a! EntanglementE for the mixed entangled coheren
channel against the normalized decoherence timer 5A12e2gt. ~b!
Optimal fidelity f of quantum teleportation with the mixed en
tangled coherent channel. The maximum fidelity 2/3 obtained
classical teleportation is plotted by a dotted line. We can clearly
that the mixed channel is not useful in quantum teleportation fr
r 51/A2 even though it is always entangled.a50.1 ~solid line!,
a51 ~long dashed!, anda52 ~dot dashed!.
05230
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depends on the distance between the coherent compo
states@20#. When the amplitudes of coherent compone
states are larger, the entanglement due to their quantum
terference is more fragile.

V. TELEPORTATION VIA A MIXED CHANNEL

The optimal fidelity of teleportation in any gener
scheme by means of trace-preserving local quantum op
tions and classical communication via a single channel m
be obtained from the maximal singlet fraction of the chan
@21#. The relation is

f ~r!5
F~r!N11

N11
, ~43!

where f (r) is the optimal fidelity for the given quantum
channelr, F(r) is the maximal singlet fraction of the chan
nel, andN is the dimension of the related Hilbert spaceCN

^ CN. F(r) is defined as max^FuruF& where the maximum is
taken over all theN3N maximally entangled states.

Any 232 channel becomes useless for quantum telep
tation when the optimal fidelityf (r) is less than the classica
limit 2/3. In other words, whenF(r)<1/2, the channel is
useless for quantum teleportation. To find the maximally
tangled basis in which a given channel has the highest f
tion of a maximally entangled state, it suffices to find ro
tions that diagonalizeT @22#. In the case ofr4 , T in Eq. ~39!
is always a diagonal matrix. This means that the Bell ba
constructed from Eqs.~32! and~33! give the maximal singlet
fraction at any decay time. The optimal fidelityf (r4) ob-
tained by Eq.~43! and the definition of the maximal single
fraction is

f ~r4!

5
1

3
maxH 11

e4a2
2e4t2a2

e4a2
21

,
e4t2a2

2e4r 2a2
12e4a2

22

e4a2
21

J .

~44!

Because the initially defined Bell bases always give
maximal singlet fraction, the optimal fidelity is obtained b
the standard teleportation scheme with Bell measurem
and unitary operations. This means that the experime
proposal in Sec. III for pure channel may also be used fo
mixed channel to obtain the optimal fidelity. The optim
fidelity for the standard teleportation scheme is

f s~r4!5maxF1

2 S 12
1

3
Tr ~TO! D G5 f ~r4!, ~45!

where the maximum is taken over all possible rotationsO

5O1(3) @23#. As the interaction time varies, parametersvW ,
sW, and T are changed. For the decoherence model we c
sider in this paper,T alone affects the fidelity of teleporta
tion.

Figure 2~b! shows the optimal fidelity at the normalize
decay timer. The channel is always entangled as shown
Fig. 2~a!. However, after the characteristic timer c51/A2 the

y
e
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channel becomes useless for teleportation. It is worth no
that the characteristic time does not depend on the initiaa
value. This is confirmed by the fact that the only real solut
of the equationf (r4)52/3 is r 51/A2 regardless ofa. Ben-
nett et al. @24# have pointed out that some states with no
zero entanglement do not have the maximal singlet fracti
higher than 1/2. The decohered entangled coherent cha
r4(r>r c) is an example of such a case.

Bose and Vedral@25# found that not only entanglemen
but also mixedness of quantum channels affect the fidelit
teleportation. We may conjecture that the higher entan
ment and the lower mixedness~higher purity! result in the
better fidelity. In this case, it is shown to be true only wh
the channel is useful for teleportation. The mixedness o
given stater can be quantified by its linear entropyS(r)
512Tr(r2). For the decohered entangled coherent chan
the linear entropy is

S~r4!5
~e8r 2a2

21!~e8t2a2
21!

2~e4a2
21!2

, ~46!

which increases to the maximal value and then decrease
zero as shown in Fig. 3 because the channel interacts
the vacuum and the state fort→` approaches to the two
mode vacuum, which is a pure state. We found that mix
ness becomes maximized at the characteristic timer c . It is
confirmed by solving the equation]S(r4)/]r 50, which
yields a unique real solutionr 51/A2 5r c again regardless
of a. It is easily checked that von-Neumann entropy a
measurement of mixedness gives exactly the same resu

Horodecki et al. @22# showed that any entangled 232
density matrix may be distilled to a singlet form by loc
filtering @17,26# and entanglement concentration protoc
@16#. If sufficiently many entangled 232 channels are given
no matter how small the entanglement of the channels
some maximally entangled channels may be obtained f
the original pairs. Because the decohered channelr4 is en-
tangled at any decay time, the ensemble represented
r4(t) may be purified to obtain some maximally entangl
channels. We have seen that the singlet fractionF(r4) be-
comes smaller than 1/2 afterr c , meanwhile the purification

FIG. 3. MixednessS quantified by the linear entropy for th
mixed entangled coherent state against the normalized decohe
time r. The mixedness becomes maximized at the character
time r c after which the channel is no longer useful for teleportatio
a50.1 ~solid line!, a51 ~long dashed!, anda52 ~dot dashed!.
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protocol in@16# may be applied when the singlet fraction
a given density matrix is larger than 1/2. Therefore, if t
decay time is longer thanr c , a local filtering or a generalized
measurement@22# should be first performed onr4 for puri-
fication. It has been pointed out that the filtering proce
allows one to transfer the entanglement hidden in the rela
betweenvW , sW, andT ~the entanglement added by change
the local states! to T @22#.

VI. USEFULNESS FOR CONTINUOUS-VARIABLE
TELEPORTATION

We have studied entangled coherent states in 232 Hilbert
space. However, entangled coherent states are in
continuous-variable states in infinite-dimensional Hilb
space. IfuB2& anduB4& are considered in infinite-dimensiona
Hilbert space, they are not maximally entangled any m
@27#. It is thus natural to ask such a question: how useful
the entangled coherent states for teleportation of continuo
variable states?

In the protocol proposed in@28# and demonstrated exper
mentally in@29# for continuous-variable teleportation, a two
mode squeezed state is used as the quantum channel
joint homodyne measurement as Alice’s measurement.
unknown quantum state in Eq.~13! may be teleported by a
two-mode squeezed state, and the fidelity becomes unity
the limit of infinite squeezing.

Assume that a coherent state of an unknown amplitud
the state to teleport via an entangled coherent state,uC2& in
Eq. ~2! with w850. After a straightforward calculation, th
fidelity is obtained@30#

f ~a!5
11exp~22a r

2!

2@11exp~24a r
2!#

. ~47!

Note that f (a) is independent from the amplitude of th
unknown coherent state to teleport. It depends only on
real part of coherent amplitudea of the quantum channel
We find from Eq.~47! that the fidelity is always better tha
1/2. The maximal value is about 0.6 whena r.60.7.

VII. REMARKS

We have studied a mixed entangled coherent channe
232 Hilbert space. We constructed orthogonal Bell ba
with entangled coherent states to consider their entanglem
and usefulness for teleportation in a dissipative environm
A pure entangled coherent channel is shown to teleport
fectly some quantum information. We investigated an exp
mental scheme for teleportation and entanglement conce
tion with a realizable Bell-measurement method.

It is found that a mixed entangled coherent state is alw
entangled regardless of the decay time. The larger initial a
plitudea, the more rapidly entanglement is degraded. This
in agreement with the fact that macroscopic quantum effe
are not easily seen because it is more fragile.

Because a decohered entangled coherent channel is
tangled at any decay time, its ensemble can be purified b
entanglement purification protocol@16# and used for reliable

nce
tic
.
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teleportation. On the other hand, it is shown that the optim
fidelity of teleportation attainable using a single pair is bet
than the classical limit 2/3 only until a certain characteris
time r c , at which the mixedness of the channel becom
maximized. The maximal singlet fraction of the state is n
more than 1/2 afterr c , even though it is still entangled.

Entanglement and mixedness@25# of quantum channels
are important factors that affect teleportation. Until the ch
acteristic time, both entanglement and purity decrease, w
causes the decrease of teleportation fidelity. After the t
r c , the purity of the channel is recovered back even thou
d
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entanglement decreases further. The experimental realiza
of purification for the mixed channels deserves further inv
tigation.
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