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Quantum-information processing for a coherent superposition state
via a mixed entangled coherent channel
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An entangled two-mode coherent state is studied within the framework&-8imensional Hilbert space.
An entanglement concentration scheme based on joint Bell-state measurements is worked out. When the
entangled coherent state is embedded in vacuum environment, its entanglement is degraded but not totally lost.
It is found that the larger the initial coherent amplitude, the faster entanglement decreases. We investigate a
scheme to teleport a coherent superposition state while considering a mixed quantum channel. We find that the
decohered entangled coherent state may be useless for quantum teleportation as it gives the optimal fidelity of
teleportation less than the classical limit 2/3.
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[. INTRODUCTION vacuum environment, it becomes useless for teleportation at
some point.
Quantum entanglement and its remarkable features make
it possible to realize quantum-information processing includ-

ing guantum te|eportati0fﬂ_]’ Cryptography[z]’ and guan- II. CONSTRUCTION OF BELL BASIS WITH ENTANGLED
tum computation[3]. An entanglement of two systems in COHERENT STATES
coherent states allows tests of local realigihand may be It is possible to consider an entangled coherent state in

used as a quantum entangled channel for quantumc2g 2 Wilpert space. It makes the problem simpler because
information transfer. Proposals to entangle fields in two spapyo-qubit entangled states have the simplest mathematical
tially separated cavities exif]. Recently, entanglement of strycture among entangled states.
nonorthogonal states called quasi-Bell states and teleporta- et us consider two kinds of entangled coherent states
tion using them have been studigg-8]. which have symmetry in phase space

In quantum-information processing, the entangled coher-
ent state is normally categorized into a two-mode-
continuous-variable state. However, there was a suggestion 1 .
to implement a logical qubit encoding by treating a coherent [Cy)= \/_ﬁ(|“>|“>+ew| —a*)|=a*)), 1)
superposition state, a single-mode-continuous-variable state,
as a qubit in two-dimensional Hilbert spd&. In this paper,
we study the entangled coherent state within the framework
of 2X2-dimensional Hilbert space. We assess the entangle- |C,)= ()| —
ment of the evolved state and how useful it may be to trans- JN”
fer the quantum information when the entangled coherent
state decoheres in the vacuum. )

We first construct an orthogonal Bell basis set from nonWhere|a) and|—a*) are coherent states of amplitudes
orthogonal coherent states to reformulate the problem to #nd—a*, NandN’ are normalization factors, andand¢’
x 2-dimensional Hilbert space. We then investigate the Bell&r€ relative phase factors. It may be verified that any en-
state measurement scheme that works perfectly in the larg@ngled —coherent states in the form of|gf|B)
amplitude limit. The measurement scheme composed of lin+e'¢| y)| )/ or (|8)]y)+€*¢ |y)|B)) VA", where B
ear devices is proposed to use for entanglement concentrand y are any complex amplitudes, may be converted, re-
tion [10] and quantum teleportation. The teleportationspectively, to|C,) or |C,) by applying local unitary opera-
scheme, in effect, reillustrates van Enk and Hirotgg§.  tions[13]. A set of |C,) for ¢=0,7 and|C,) for ¢'=0,7
When the quantum system is open to the outside world, theas studied as quasi-Bell stated but the four quasi-Bell
initially prepared system decoheres and becomes mixed. Astates do not form a complete measurement set by them-
suming the vacuum environment, we find how an entangledgelves because they do not satisfy orthogonality and com-
coherent state loses its initial entanglement as it interactpleteness.
with the environment. We use the measure of entanglement By the Gram-Schmidt theorem, it is always possible to
[11] based on the partial transposition condition of entanglemake orthonormal bases Mdimensional vector space from
ment[12]. We then consider optimal quantum teleportationany N linear independent vectors. Suppose orthonormal
via the mixed quantum channel. We find that even though théases by superposing nonorthogonal and linear independent
channel is always entangled under the influence of théwo coherent statelsr) and|— a*):

1 .,
— a*)+e?|=a*)a), (2
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1 _ _ enables the entanglement concentration of partially en-
)= \/—_(cosae*(l’z)'ﬂ a)—singe2 ¥ — o*)), tangled coherent states.

No

3 A. Teleportation and Bell-state measurement
1 ' . Suppose a coherent superposition state
|y )= —(—sinfe” 1¥|q) + coshelD¢| — o*)),
VN, 1

@ |W>=—W<|ﬁa>—|—ﬁa>), (12

whereN,=co$26 is a normalization factor and real param-
etersf and ¢ are defined as where M _ is a normalization factor, is superposed on a
vacuum|0) by a loss-less 50:50 beam. It can be shown that
sin20e" "= (a|— a*)=exp{—2a’+2ia,e;} (5 the output state ifB,). It is possible to generate a superpo-
sition of the two coherent statég2a) and|— 2a), from a

with real a, and imaginarya; parts ofa. _ coherent stat¢\2«) propagating through a nonlinear me-
We define four maximally entangled Bell states using thegium [14].
orthonormal bases in Egé3) and (4) Let us assume that Alice wants to teleport a coherent su-

L perposition state
|51,2>=E(|l//+>|l//+>iIl/L)Il/L)), (6) | )= Al @)at Bl— a)a, (13)

via the pure entangled coherent chanf&l),., where the

1 amplitudes.A and B are unknown. The stat€l3) may be
Bsd= (1) p) =14} 1)), () ropresented as Y
They may be represented by) and|—a*) as [)a=A"[Y)at B [¢-)a, (14)
1 with A" = A cosf+Bsind and B' = A sin 6+ B cosé. After
|B)= {e7 ¢ a)|a)+e'?|—a*)|—a*) sharing the quantum chann@,),., Alice performs a Bell-
\/ENH state measurement on her part of the quantum channel and
sin26(] @) — a* )+ | — a*)] a))} ® the state(13) and sends the outcome to Bob. Bob accord-
- a)|—a —a”)|la))y,

ingly chooses one of the unitary transformatidie oy,

—o,,1} to perform on his part of the quantum channel. Here,

IB,)= 1 (e“¢|a)|a) e‘¢| o) - a*)) 9 o’s are Pauli operators ardis the identity operator and the
2/ — - - - ’

2N, correspondence between the measurement outcomes and the
unitary operations areB;=ioy, B,=oy, Bz=—o0,,
1 B,=1. The acting of these operators pn) and|— «) gives
IBsy=——{|a)|— a*)+|—a*)|a)—sin20(e” "¢ a)| ) impacts as follows:
V2N,
. foy 1
+e'’[—a*)|—a* )}, (10) |a)—>N—(sin 26| a)—| - a)), (15)
(4
By= () —a*)~|-ala), @D oy 1
’ y
V2N, |—a>HN—(|a>—Sin 20| — a)), (16)
4
where we immediately recognize th&,) and|B,) are in
the form of entangled coherent sta{é€;) and|C,) while ox
|B1) and|B3) become so akx|— . @)= |~ a), (17)
Now we are ready to consider decoherence and teleporta-
tion with mixed entangled coherent states. For simplicity, we "oz 1 .
assumep=0, i.e.,« is real, in the rest of the paper. @) — N_(|“>_S'n 26| —a)), (18)
(4
Ill. TELEPORTATION VIA A PURE CHANNEL -0, 1
There have been studies on the quantum teleportation of a |—a)— N—(sm 20| a)=|=a)). (19

L. . 4
coherent superposition state via an entangled coherent chan-

nel |B,) [6]. Here, we suggest a scheme for the same pur- It is not a trivial problem to discriminate all four Bell
pose with the use of Bell bas¢g), (9), (10), and(11). The states. In fact, it was shown that complete Bell-state mea-
scheme includes direct realization of Bell-state measuresurements on a product Hilbert space of two two-level sys-
ments. We also show that the Bell-state measurement methaems are not possible using linear elemdiS]. We here
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FIG. 1. Scheme to discriminate all four Bell states with an ar-

bitrarily high precision using a 50:50 beam splitter and two photo-

detectors. If an odd number of photons is detected at det&dimr

modef, then we know that the entangled state incident on the mea-

surement set up wad8,). On the other hand, if an odd number of
photons is detected at detectBrfor mode g, then the incident
entangled state wd8,). For «>1, if a nonzero even number of
photons is detected for modgthe incident state wa®,) and if a
nonzero even number is detected for maglé was|Bg).

PHYSICAL REVIEW &4 052308

state wagB;), and if a nonzero even number is detected for
modeg, it was|B3). When sin 2 is not negligible, the prob-
ability of wrong estimation is

1

Tare =

Pi(a)

For the limit of @>1, this probability approaches to zero and
all the Bell states may be discriminated with arbitrarily high
precision.

When the measurement outcoméBs), the receiver per-
forms |a)«+|—a) on c. Such a phase shift byr may be
done using a phase shifter whose action is described by

R(p)=e'¥:

R(¢)aR'(p)=ae ', (22)

wherea anda' are the annihilation and creation operators.
When the measurement outcome|i,), the receiver does
nothing onc as the required unitary transformation is only

suggest an experimental setup as shown in Fig. 1 to discrimthe identity operatiori. When the outcome if83), an op-

nate Bell states constructed from entangled coherent state®fator (a){(a|—|—a)(—al)/N, plays the corresponding
Although perfect discrimination is not possible, arbitrarily fole, which becomes a unitary operator fee-1. When the
high precision can be achieved when the amplitude of th@utcome is|By), o, and o, should be successively applied.
coherent states becomes large. For simplicity, we shall as-
sume that the 50:50 beam splitter imparts equal phase shifts
to reflected and transmitted fields.

Suppose that each mode of the entangled state is incident If the initially prepared quantum channel is in a pure but

on the beam splitter. After passing the beam spliitsy, the ~ not maximally entangled state, the channel may be distilled
Bell states become to a maximally entangled state before using it for quantum-
information processing including teleportation. This process
is known as the entanglement concentration protfb®)17).
For an entangled coherent channel, it may be simply realized
via entanglement swappirf{d 0,18 using the Bell measure-
ment proposed in Sec. Il A.

Suppose an ensemble of a partially entangled pure state

B. Concentration of partial entanglement via entanglement
swapping

bs

[Bi)ap—

(|even¢|0)4—sin 26|0)¢|even),

1
V2N,

bs 1
|B2)ap —— —=—|odd)¢|0),, 1
e Van, e Dy= i (cosrtall—a)=sinzl ~alla), (23

bs

1 . from which we want to distill a subensemble of a maximally
[Bayap—— N (10)|eveny, —sin 26|ever)(|0),),
(4

entangled stateN, is a normalization factor and the real
phase factory, 0<n<w/2, determines the degree of en-
tanglement fotD,). The statgD,) in Eq. (23) is written in

bs 1 the orthonormal basg8) and(4) as follows:

|B4>ab—’TN0|0>f|0dq>gv (20)

1 (1

D)= ——={5sin 20(cosy—sin ) (| )¢, )+ |- )| 1h_))
where |even=|\2a)+|—\2a) has nonzero photon- N, (2
number probabilities only for even numbers of photons and
|oddy=|\2a)—|— y2a) has nonzero photon-number prob-
abilities only for odd numbers of photons. Note thever)
and|odd) are not normalized. If an odd number of photons is
detected at detectok for modef, then we know that the
entangled state incident on the measurement set upByas First, we consider the case whenis large. In this case,
On the other hand, if an odd number of photons is detected &tate|D,)=|E4) where
detectorB for modeg, then the incident entangled state was _ o
|B,). When even numbers of photons are measured, we can- [Eq)=cosnly)lg-)—sinyly_)[i.).

+ (cog 6 cosy—sirtgsinn)| . )| v_)

+ (sirfd cosp—cogosiny)|_d ). (24)

(29

not, in general, tell if the incident state w#B;) or |Bs).
However, for sin 2(=(a|—«a))=0, i.e., «>1, if a nonzero
even number of photons is detected for médenhe incident

After sharing a quantum channel between Alice and Bob,
Alice prepares a pair of particles that are in the same en-
tangled state as the quantum channel. Alice then performs
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Bell-state measurement on her pair of the quantum channel. eX[:[(j+|:)T]|a><,8|=(,B|a>1_tz|at><,8t|, (31)

If the measurement outcomeBs or B, the other particle of

Alice’s and Bob’s quantum channel is, respectively, in maxi-wheret=e~ (Y277, For later use, we introduce a normalized

mally entangled statéB; )y, or |B,),/. where Alice’s par-  interaction timer, which is related td: r = 1 —t2.

ticle is denoted by'. Otherwise, Alice’s particle and Bob’s  To restrict our discussion in ax22-dimensional Hilbert

quantum channel are not in a maximally entangled state  space even for the mixed case, the orthonormal basis vectors
(3) and(4) are nowr-dependent

|Bg>b1c=ﬁ<co§nm>br|w>c+sin2n|¢>bf|w+>c>’ W (7)) = ———(cosO|ta)—sinO] ta)), (32
(26) ’ VNg |
|Ba>b/c=¢%<co§nlw+>br|w_>c—sin2n|w_>b/|¢+>c), ¥ ()= —=(~sin6lta) +cos8| 1)), (33
v 27) o

where sin ®=exp(—2t?a?). The unknown state to teleport

respectively, for measurement outcomeBafor B,. N, is @ ang the Bell-state bases are newly defined according to the
normalization factor. The probabilify; andP, to obtain the  p5sis vectors Eq$32) and(33).

maximally entangled statiB;)p, . and|B;),. are P1=P, Any two-dimensional bipartite state may be written as
=cog7sirfy. In this way, no matter how small the initial

entanglement is, it is possible to distill some maximally en- 1 .o Lo 3

tangled coherent channels from partially entangled pure p=g|l®l+v-o@l+l®s o+ Y @0,
channels. mn=1 (34

We now consider the concentration protocol wheris
not large enough to neglect siA.an this case, only two Bell  where coefficients,,,= Tr(pom® o) form a real matrixT.
states|B,) and|B,) may be precisely measured. Extendingyiectors; ands are local parameters that determine the re-
the previous argument leading to E@7), when the mea- j,ced density operator of each mode
surement outcome iB,, the resulting state for particlds
and c is not maximally entangled. However, we may find 1 ..
that, for the measurement outcomeByf, the resulting state po=Trep=5(1+v-0), (39
is |[By)prc €ven for the case of small. The success prob-

ability P, for this case is 1 o
pe=Trop=5 (145 0), (36)
Py 6,m)= cod26sinf2y 28 2
20T 4(1—sirf260sin 27) ’ while the matrixT is responsible for correlatiof23]
whereP,—0 for =0 andP,—cosysirfy for a>1. &a,b)=Tr(pa-c®b-o)=(a,Th). (37)
IV. DECAY OF THE ENTANGLED COHERENT With use of Egs(11) and (29), we findv, s, andT for the
CHANNEL: MEASURE OF ENTANGLEMENT mixed channep,(7) as follows:
When the entangled coherent chanfi}) is embedded oL
in a vacuum environment, the channel decoheres and be- v=S= N 0, O), (39
comes a mixed state of its density opergte(7), wherer 0
stands for the decoherence time. To know the time depen- A+ D 0 0
dence ofp,(7), we have to solve the master equat[d9)]
T=— 0 —-A+D 0 39
: (39)
ap . ~ “ + 2Ny
2-=Jp+Lp; Jp=v2 appal, 0 0 A-C
I
whereA, B, C, andD are defined as
A Y
Lp=—2 5 (afap+pala)), (29) A=(1-T)exp — 4t2a?),

wherey is the energy decay rate. The formal solution of the B=(1-T)exp —2t%a?),

master equatioi29) may be written as
a 29) may C=2—(1+T)exp —4t?a?),

p()=exd (J+L)7]p(0), (30)

which leads to the solution for the initial single-mode dyadic
|a){(B] I'=exg —4(1—t?)a?]. (40)

D=—2I+(1+T)exp —4t%a?),
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depends on the distance between the coherent component
states[20]. When the amplitudes of coherent component
states are larger, the entanglement due to their quantum in-
terference is more fragile.

V. TELEPORTATION VIA A MIXED CHANNEL

The optimal fidelity of teleportation in any general
scheme by means of trace-preserving local quantum opera-
tions and classical communication via a single channel may
be obtained from the maximal singlet fraction of the channel
[21]. The relation is

_ F(p)N+1

Hp)=— 31 (43)
where f(p) is the optimal fidelity for the given quantum
channelp, F(p) is the maximal singlet fraction of the chan-
nel, andN is the dimension of the related Hilbert spacl
®CN. F(p) is defined as mad|p|®) where the maximum is
taken over all theNxX N maximally entangled states.

Any 2X 2 channel becomes useless for quantum telepor-
tation when the optimal fidelity(p) is less than the classical

FIG. 2. (a) Entanglemen€ for the mixed entangled coherent limit 2/3. In other words, wherF(p)<1/2, the channel is
channel against the normalized decoherence timgl—e "". (b)  useless for quantum teleportation. To find the maximally en-
Optimal fidelity f of quantum teleportation with the mixed en- tangled basis in which a given channel has the highest frac-
tangled coherent channel. The maximum fidelity 2/3 obtained bytjon of a maximally entangled state, it suffices to find rota-
classical teleportation is plotted by a dotted line. We can clearly seggns that diagonaliz& [22]. In the case op,, T in Eq. (39)
that the mixed channe! i§ not useful in quantum telepc.)rtaFion fromg always a diagonal matrix. This means that the Bell bases
r=1/2 even though it is always entangled=0.1 (solid in®),  ¢onstructed from Eq$32) and(33) give the maximal singlet
=1 (long dashe}j anda =2 (dot dashe}i fraction at any decay time. The optimal fideliffp,) ob-
tained by Eq.43) and the definition of the maximal singlet
fraction is

Note thatN, is a time-independent normalization factor and
p4(7#0) may not be represented by a Bell-diagonal matrix.

The necessary and sufficient condition for separability off(p,)
a two-dimensional bipartite system is the positivity of the

partial transposition of its density matrpd2]. Consider a 1 gha’ _gitfa® gitPa® _gir?a® pada® o
density matrixp for a 2X2 system and its partial transposi- = §max 1+ gha?_q oi?_q

tion p'2. The density matrixy is inseparable iffp'2 has any

negative eigenvalys). We define the measure of entangle- (44)

ment E for p in terms of the negative eigenvalues @f2

[11]. The measure of entanglemdais then defined as Because the initially defined Bell bases always give the

maximal singlet fraction, the optimal fidelity is obtained by
B the standard teleportation scheme with Bell measurement
E:_ZZ Ni s (41 and unitary operations. This means that the experimental
' proposal in Sec. Ill for pure channel may also be used for a

where);” are the negative eigenvalisgof p™2 and the fac- mixed channel to obtain the optimal fidelity. The optimal

tor two is introduced to have OE<1. fidelity for the standard teleportation scheme is
For p4(7), we find the time evolution of the measure of 1 1
entanglement fs<p4>=ma>{§ 1-3Tr(TO) || =f(ps). (49
J16B?+(C—D)?—(2A+C+D) _ _ . .
E(r)= an, . (420  where the maximum is taken over all possible rotati@hs

=0%(3) [23]. As the interaction time varies, parameters
Initially, the state|B,) is maximally entangled, i.eE(r s, andT are changed. For the decoherence model we con-
=0)=1, regardless ofx. It is seen in Fig. 2a) that the sider in this paper] alone affects the fidelity of teleporta-
mixed statep,(7) is never separable at the interaction timetion.

<. It should be noted that the larger the initial amplitude Figure 2b) shows the optimal fidelity at the normalized
a, the more rapidly the entanglement is degraded. It iglecay timer. The channel is always entangled as shown in
known that the speed of destruction of quantum interferenc€ig. 2a). However, after the characteristic timg=1/y2 the
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protocol in[16] may be applied when the singlet fraction of
a given density matrix is larger than 1/2. Therefore, if the
decay time is longer than,, a local filtering or a generalized
measurement22] should be first performed op, for puri-
fication. It has been pointed out that the filtering process
allows one to transfer the entanglement hidden in the relation

betweenv, s, andT (the entanglement added by change of
the local statesto T [22].

VI. USEFULNESS FOR CONTINUOUS-VARIABLE
TELEPORTATION

FIG. 3. MixednessS quantified by the linear entropy for the ) ) )
mixed entangled coherent state against the normalized decoherence We have studied entangled coherent states<di2 Hilbert

time r. The mixedness becomes maximized at the characteristigPace. However, entangleq C_oh_er_ent States are i_n fact
time . after which the channel is no longer useful for teleportation.continuous-variable states in infinite-dimensional Hilbert

a=0.1(solid line), =1 (long dashel and«=2 (dot dashey space. IfiB,) and|B,) are considered in infinite-dimensional
Hilbert space, they are not maximally entangled any more
channel becomes useless for teleportation. It is worth noting27]. It is thus natural to ask such a question: how useful are
that the characteristic time does not depend on the initial the entangled coherent states for teleportation of continuous-
value. This is confirmed by the fact that the only real solutionvariable states?
of the equatiorf(p,)=2/3 isr =1/\/2 regardless of. Ben- In the protocol proposed ii28] and demonstrated experi-
nett et al. [24] have pointed out that some states with non-mentally in[29] for continuous-variable teleportation, a two-
zero entanglement do not have the maximal singlet fractiongl0de squeezed state is used as the quantum channel and a
higher than 1/2. The decohered entangled coherent channiint homodyne measurement as Alice’s measurement. An
pa(r=r.) is an example of such a case. unknown quantum state in EL3) may be teleported by a
Bose and Vedra|25] found that not only entanglement fWo-mode squeezed state, and the fidelity becomes unity for
but also mixedness of quantum channels affect the fidelity ofhe limit of infinite squeezing. _ _
teleportation. We may conjecture that the higher entangle- Assume that a coherent state of an unknown amplitude is
ment and the lower mixednegbigher purity result in the  the state to teleport via an entangled coherent statg, in
better fidelity. In this case, it is shown to be true only whenEd- (2) with ¢’ =0. After a straightforward calculation, the
the channel is useful for teleportation. The mixedness of didelity is obtained 30]
given statep can be quantified by its linear entrof3(p) )
=1-Tr(p?). For the decohered entangled coherent channel, o) 1+exp—2a;) 4
the linear entropy is (@)= 2[1+exp—4ad)]

(egrzaz—l)(estzaz—l) Note thatf(a) is independent from the amplitude of the
YRTTY : (46)  unknown coherent state to teleport. It depends only on the
(e ) real part of coherent amplitude of the quantum channel.

I . We find from Eq.(47) that the fidelity is always better than
which increases to the maximal value and then decreases {95 The maximal value is about 0.6 when=+0.7.

zero as shown in Fig. 3 because the channel interacts wit
the vacuum and the state fer—c approaches to the two-
mode vacuum, which is a pure state. We found that mixed-
ness becomes maximized at the characteristic timelt is We have studied a mixed entangled coherent channel in
confirmed by solving the equationS(p,)/dr=0, which  2x2 Hilbert space. We constructed orthogonal Bell bases
yields a unique real solution=1/\2 =r again regardless with entangled coherent states to consider their entanglement
of a. It is easily checked that von-Neumann entropy as and usefulness for teleportation in a dissipative environment.
measurement of mixedness gives exactly the same result. A pure entangled coherent channel is shown to teleport per-
Horodecki et al. [22] showed that any entangledx2 fectly some quantum information. We investigated an experi-
density matrix may be distilled to a singlet form by local mental scheme for teleportation and entanglement concentra-
filtering [17,26 and entanglement concentration protocoltion with a realizable Bell-measurement method.
[16]. If sufficiently many entangled:2 2 channels are given, It is found that a mixed entangled coherent state is always
no matter how small the entanglement of the channels issntangled regardless of the decay time. The larger initial am-
some maximally entangled channels may be obtained fromlitude «, the more rapidly entanglement is degraded. This is
the original pairs. Because the decohered chappé$ en-  in agreement with the fact that macroscopic quantum effects
tangled at any decay time, the ensemble represented kyre not easily seen because it is more fragile.
p4(7) may be purified to obtain some maximally entangled Because a decohered entangled coherent channel is en-
channels. We have seen that the singlet fraciidp,) be- tangled at any decay time, its ensemble can be purified by an
comes smaller than 1/2 afteg, meanwhile the purification entanglement purification protocfd6] and used for reliable

S(pg)=

VIl. REMARKS
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teleportation. On the other hand, it is shown that the optimaéntanglement decreases further. The experimental realization
fidelity of teleportation attainable using a single pair is betterof purification for the mixed channels deserves further inves-
than the classical limit 2/3 only until a certain characteristictigation.
time r., at which the mixedness of the channel becomes
maximized. The maximal singlet fraction of the state is not
more than 1/2 after., even though it is still entangled. ACKNOWLEDGMENTS
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