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Fidelity trade-off for finite ensembles of identically prepared qubits
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We calculate the trade-off between the quality of estimating the quantum state of an ensemble of identically
prepared qubits and the minimum level of disturbance that has to be introduced by this procedure in quantum
mechanics. The trade-off is quantified using two mean fidelities: the operation fidelity, which characterizes the
average resemblance of the final qubit state to the initial one, and the estimation fidelity, describing the quality
of the obtained estimate. We analyze properties of quantum operations saturating the achievability bound for
the operation fidelity versus the estimation fidelity, which allows us to reduce substantially the complexity of
the problem of finding the trade-off curve. The reduced optimization problem has the form of an eigenvalue
problem for a set of tridiagonal matrices, and it may be easily solved using standard numerical tools.
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[. INTRODUCTION the estimation fidelityG, tells us how good an estimate one
can provide on the basis of the classical outcome of a given
It is a well-known fact that given a single copy of a quan-operation. In the plane of the fidelitids and G, quantum
tum system, it is, in general, impossible to determine itsmechanics imposes a bound in the form of a trade-off curve
guantum state exact{yL]. This principle is closely related to limiting the maximum values ofF and G that can be
the no-cloning theorer2], which prevents one from produc- achieved simultaneously for any quantum operation. For a
ing multiple faithful copies from a single unknown state. Of single copy of ad-level system, the trade-off curve between
course, the situation becomes different when one is given af andG may be described in simple analytical terfgs.
ensemble of identically prepared quantum systems. With the In this paper, we discuss a more general case of the fidel-
increasing size of such an ensemble, one can extract moity trade-off, when one is given a finite ensemble of identi-
and more precise information on its preparatj8ih cally prepared systems. We shall assume that these systems
An important effect that usually accompanies an attemptare qubits prepared in an arbitrary, randomly selected, pure
to determine the unknown preparation of a quantum systeratate. Of course, the penalty—i.e., the state disturbance—for
is the disturbance of its original state. The state disturbancgaining information is expected to be smaller for an en-
is generally a penalty for gaining classical information fromsemble compared to the single system case. In the limit of an
a quantum system. This fundamental feature of quantum menfinite number of copies, we may determine the quantum
chanics has been discussed from many different points dftate exactly and reset the state of all the qubits according to
view, depending on the particular physical scenario considthis precisely known information. Then, in principle, no dis-
ered[4,5]. A recent papef6] presented the description of the turbance needs to occur. Our interest here will be focused on
trade-off between the information gain and the quantum statthe intermediate case between the single-copy operations and
disturbance motivated by the problem of quantum state estinearly perfect estimation of large ensembles. We shall dis-
mation [3,7-10. In this approach, the classical outcome cuss the trade-off curve between the operation fidelity and
gained from an operation on the quantum system is conthe estimation fidelity in the most general case when the
verted into a guess what the original state was. According tensemble consists of a finite numbéiof qubits.
the general quantum-mechanical rule linking the information The two fidelities used in our paper have fundamentally
gain with the state disturbance, the better guess can be madé#ferent practical meanings. Informally speaking, the opera-
on average, the less the final state of the system should ré&en fidelity F deals with the intrinsic quantum information
semble the initial one. Natural parameters for quantifying theemaining in the state of a quantum system. In contrast, the
trade-off in this context are mean fidelities, defined using theestimation fidelity G describes the classical information
scalar product between the relevant state vectors, and avegained from the measurement. This classical information al-
aged over many realizations of the scenario. The first quanews us, for example, to generate arbitrarily many copies of
tity of interest is the operation fidelitly, which parametrizes the initial state with the same fidelit§. Consequently, for
the average resemblance of the state of the system after tfiaite ensembles, the fidelitids and G take values from dif-
operation to the original one. The second quantity, known agerent ranges. For example,may easily be equal to one for
any size of the ensemblevhich simply means that nothing
is done to the qubijsbut, in contrastG=1 means that we
*Present address. are able to generate arbitrarily many perfect copies using the
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result of the estimation. Previous work on quantum state es-
timation[3] demonstrated that the maximum attainable esti- L0 e - Rt
mation fidelity for an ensemble consisting Mfqubits isG 095 1 \\\ A
=(N+1)/(N+2). As we justify later, this is also the value ’ AY
for the operation fidelity in the limit of optimal quantum L; 0.9 \‘
state estimation. Of interest here is what happens below this i; 1
value forG and above this value fd¥, as this describes the = o085l '
region where we try to convert part of the quantum informa- g
tion contained in the initial state into a classical guess. 2 sl
Finding the trade-off curve for an ensemble Mfqubits g
presents, in principle, a rather complicated problem. A gen- Q oml
eral quantum operation can map the initial state of the qubits
onto the full Hilbert space with the dimensionalit) 2vhich a
grows exponentially with the size of the ensemble. Further-
more, the classical operation outcomes used for the estima 0.65 . . . - s
tion cana priori assume values from an arbitrarily large set. 0.5 0.6 0.7 0.8 0.9 1.0
In this paper, we demonstrate in several steps that it is pos. Estimation fidelity G

sible to reduce the general problem of finding the trade-off
curve toO(y/N) independent constrained optimization prob-
lems, each involving?(N) real variables. The reduced opti-
mization problems have the quadratic form, and they may be
solved numerically by finding the eigenvectors of certain
tridiagonal matrices. This is a substantial reduction of the
complexity of the problem compared to its original formula-
tion, which allows us to deal numerically with much larger
ensembles. Furthermore, numerical evidence strongly sug
gests that, in general, just one frof(\/N) optimization
problems gives the full trade-off curve, but a strict math-
ematical proof of this conjecture is lacking. Most impor-
tantly, we achieve the reduction of the complexity without
imposing any restrictions on the generality of quantum op-
erations considered, and the calculated trade-off curves art
both tight and universal. (N+1)/(N+2)
The results of our paper are summarized in Fig. 1, where 1/2 (N+1)/(N+2)
we depict the trade-off curves calculated using our approact Estimation fidelity G
for several exemplary values ™. All the curves have a
common extreme point attained f6r=1 andG=1/2. This

Operation fidelity F

FIG. 1. The trade-off curves between the operation fiddfity

point is reached when the ensemble is simply left intact, an@"d the operation fidelit, depicted using absolutéop) and rela-
’ tive (bottom scaling of the axes, for several values of the ensemble

Ejhe cprrespondmg value for the estimation fidelidy= 1/2 ize:N=1 (solid), N=5 (dashedl N= 20 (dotted dashed and N
escribes making a completely random guess about the staie100 (dotted
of the qubits. The other extreme point for each trade-off '
curve, corresponding to optimal quantum state estimation, ipresented in this paper describe the optimal performance of
given byF=G=(N+1)/(N+2). In this limit, the fidelity of = an asymmetric quantum copying machine that giieiden-
the qubits remaining after the operation is exactly the samécal pure qubits produces clones with the fidelity=, and in
as the fidelity of our guess. One can give a simple intuitiveaddition, arbitrarily many clones with the fidelitg.
argument that this should be the caBes always an upper The paper is organized as follows. First, in Sec. I, we
bound onG, since one can always set the state of the qubit$ormulate the problem of the fidelity trade-off in quantitative
equal to the guess state. It is plausible that this bound may herms. In Sec. IlI, we simplify the formulas for the fidelities
achieved in the limit where we only care about maximizingusing the angular momentum representation of the rotation
G. Between the two extreme points, the depicted trade-offyroup. This provides explicit expressions for the fidelities
curves illustrate how with increasind, the extraction of that are suitable for further calculations. In Sec. IV, we argue
classical information has less of an effect on the state of thehat in order to find the trade-off curve it suffices to consider
qubits after the operation. a single-quantum operation element, thus substantially re-
The problem considered in this paper may be viewed as ducing the complexity of the problem. We further demon-
special case of quantum cloning, i.e., generating a largestrate in Sec. V, that it is sufficient to consider operations that
number of imperfect copies from a given ensenfdlg. As  map the initial state of the qubits only onto the fully sym-
we noted, given a classical estimate of the quantum state, waetric subspace. With these results in hand, we define in Sec.
may use it to generate an infinite number of qubits with thevl the reduced optimization problem that yields the actual
same fidelity as the estimaft#2]. Thus, the trade-off curves trade-off curve. The numerical solution to this problem is

052307-2



FIDELITY TRADE-OFF FOR FINITE ENSEMBLES €. . . PHYSICAL REVIEW A 64 052307

discussed in Sec. VII. Next, we show in Sec. VIII that the The summation over the indexmaps in general pure states
calculated trade-off curves are achievable, by constructingnto mixed ones, and it may be viewed as responsible for
explicit quantum operations attaining the derived boundintroducing excess stochastic fluctuatidrist]. In general,

Section IX concludes the paper. the indexs may assume values from a different set for each
r. For the operation to be trace preserving, the set of the
Il. FORMULATION OF THE PROBLEM operatorg A} must satisfy the completeness relation of the
form

We begin with an ensemble df qubits all prepared in the
same pure statg)). We shall use the following notation: - ~
> AlA=1 (6)
[Q)=U(Q)|1), (N
. h Qi d it of . With the above notation for quantum operations, we can
|.e.,.t € statg(2) is represented as a r?sut 0 ‘? unitary op-, define explicitly the two quantities central to this paper:
erationU(Q2) on a reference staté), which we will take for  the operation fidelityF and the estimation fidelitys. The
concreteness to be the spin-up state alongzthgis, o7 1) operation fidelityF quantifies the average resemblance of the

=[1). The group of the unitary transformatiotgQ)) may  State after the operation to the original one. Let us consider
be conveniently parametrized using the two-dimensional irthe reduced single-qubit density matrix after the operation,
reducible representation of the rotation group. THasnay averaged over alN qubits

be considered as an abbreviation for the triplet of the Euler

- 1 - -
angles ¢.6.4). and 01 Q) = S Tran@f Q)+ Try sn@f () + -

~ _ g ity ez
U(Q)=exp(—ipo2)exp —iba¥I2)exp I§0/2)-(2) +Tr1_(N—1)é?Ut(‘Qf)]! 7

The third Euler angle/ introduces a trivial overall phase Where the subscript of the trace symbol Tr labels the range of
factor in the definition of the statd€)) and, in principle, it ~ qubits over which the trace operation is performed. The ex-
could be set to zero. However, we will keep it as an indepectation value of the above expression on the initial state
pendent variable in order to adhere strictly to standard angu2|*%Q)|Q) tells us how much on average the state of a
lar momentum algebra notation that we will use later. Thesingle qubit after the operation resembles its initial value.
canonical volume element in the group of unitary transfor-This quantity, summed over the possible outcomes the
mationsU(Q) is given by operation with the corresponding weights and averaged
over the initial state of the qubits, yields the mean operation
fidelity for an ensemble of identically prepared qubits

1
sz—Zsin0d0d¢d§. 3
8

F- [ a0 peoxalortole). @
We assume that the initial stat®) of the ensemble oN '
qubits is randomly selected according to the probability dis- The second quantity of interest is the estimation fidelity

tribution given by this measure. G. Given the classical outcomeof the operation, we can

Initially, the composite state of the ensemble of the q'“'bit%ake a - .
. . aN guesH),) what the original state of the qubits was.
is described by a tensor prodyé)(Q[”". We assume that A natural way to quantify the quality of the guess is to take

the qu.blts are Sme'tteq to an action of a cer'taln quanturg, squared absolute value of the scalar product between the
operation, which may, in general, act collectively on theg, oo o the original state, equal{f,|Q)|2. The estima-
whole ensemble. Such an operation is described by a set ﬁﬁn fidelity is obtained by averaging this expression over the

operators{A,s} acting in the 2-dimensional tensor product sets of possible operation outcomesnd the input states
Hilbert space of all the qubitsl3]. The classical outcome of |Q):

the operation is given by the indexand it is correlated with

the final quantum state of the qubits. The probabiity()) )
of obtaining the result is given by G:J dQZ P (Q)(Q Q)] 9
p(Q)=2, Tr(A;rSArS|Q><Q|®N)_ (4)  The estimation fidelity depends not only on the quantum
S

operation{A,} itself, but also on the estimation rule used to
. _ make the guess, described by the mapping Q). We will
The conditional tran_sformat[on of the ensemble correspondyemonstrate in the following how to define this mapping in a
ing to the outcome is described by the formula way that optimizes the estimation fidelity for a given arbi-
1 trary quantum operation.
00U () = a D A Q)(QIENAT . (5) . qu goal is now to flr_1d the inequality that bounds the
Pr(£2) %5 fidelities F and G, assuming the most general form of the
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operation{A,}. The only requirement that has to be satisfied A. Operation fidelity
by the set of the operatofs is the completeness condition Let us start with the operation fidelify. The matrix ele-
described by Eq(6). ment(Q|0"*YQ)|Q) appearing in the definition df in Eq.

(8) is equivalently given by the expectation value over the
density matrixp®(Q) defined in Eq.(5) of the following
operator:

In this section, we will simplify the expression for the 1
fidelities F and G to the form that makes them more man- & 2 A 8 A
ageable in the optimization procedure. Our first step will be P()= N(|Q><Q|®H®' celrlela)Qle.- el
an explicit calculation of the integrals over the space of pure o
states|Q)), which can be done with the help of tools devel- +181® - - ®|QNQ|). (11

oped in the theory of representations of the rotation groupU ing the ab definii h imation fideli
Throughout this section, we shall follow strictly the notation —5"d the above definition, the mean estimation fidelity may

of Ref.[15] for the angular momentum algebra and the eIe—be written compactly as

ments of rotation matrices.
To simplify subsequent expressions, we begin with a gen- F= f dQ>, TIP(Q)A,|Q)NQ|ENAT. (12)

eral observation that the indexappearing in Eqg4) and(5) r

could, in principle, also be known classically after the opera- . N )

tion. Summation over the indexin Egs.(4) and (5) means Ve will now expresP() in terms of the angular momen-

that the operation is imperfect, and it averages statisticalljum operators. Expressing the projectién)((2| as a com-

different output states. This results in the loss of a fraction ofination of the Pauli matrices

the information extracted from the initial quantum state. As 1

we are interested in the optimal operations saturating the |Q>(Q|:—[ﬁ+ sin( 0)cos{¢)(}x

guantum-mechanical bound on the fidelities, we can assume 2

with no loss of generality that both and s are known. In

such a case, we may use a single index to label batids.

For this reason, we will assume in the following that the

indexsis trivial, i.e., it assumes only a single value for each

r, and that consequently, it may be dropped from furthe

IIl. FIDELITIES

+sin(@)sin( ¢) oV + cog 0) 7] (13

we can write the operatcf?(Q) in terms of the total angular
Imomentum operators for the composite systenN afubits

notation. Thus, we restrict our attention to quantum opera- 1 N

tions that are known in the literature as idfH8] or efficient P(Q)= >N > [1+5sin(6)cog ¢) o7+ sin( 6)sin( ¢) o

[5]. i=1

In the following calculations, it will be convenient to use "y

the decomposition of the complete Hilbert spacéNajubits +cog 6)oi]

into subspaces with the fixed value of the total angular mo- 1. 1 A A

mentum operator. This decomposition has the ot = E}HN[sin( 6)cod ¢)I*+ sin( 6)sin( ¢) I
. 20 +cog 6)37], (14)

il

QRQH= EBHJ- , (100  Where the index enumerates the qubits. In the following, it
i=1 a=1 will be convenient to switch to the pair of the angular mo-

mentum raising and lowering operatal$ =J*+iJY, using

wherej=N/2 is the largest value of the angular momentumWhat we have

appearing in the decomposition, thg's assume values in R 1. 1/1 . R
the sef{j,j—1, ...,—|j]} and are arranged in a nonascend- P(Q)= EJHN Ee“/’sin( 0)J~

ing order. Here};, denotes the subspace corresponding to

the total angular momentum valjie We note thaj,=j and 1 . .

j.<j for a>1, as there is only one representation wjth +§e*'¢sm( 6)J" +cog 9)Jz>- (15
=N/2 corresponding to the fully symmetric subspace. For

completeness, in Appendix A, we present a simple derivatiofyi this expression for the operat®{(Q), we may write
of the multiplicities of the angular momentum representathe mean fidelityF as

tions appearing in Eq10). The action of a tensor product of
the unitary operators)®N(Q) in each of the subspacés;

is given by the corresponding representation of the rotation
group. In order to simplify the notation, we will henceforth
use the same symbbl(Q) to denote the action df®N(Q)

on the whole ensembles of qubits, as for a single qubit.

1 1 1
st N
F=5+3 Z Tr(zJ AK_,A
+ArklAj+jZArf<oAI) | 16)
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where all the terms involving the Euler angl@shave been
collected to three integrakk,, r=—1,0,1, defined as

k= [ dok@layol 1
with the functionsk ({}) given by
k_1(Q)=€e?sing,
Ko(2)=cos#, (18)

ki (Q)=e""¢sing.

Explicit calculation of the integralk ,, performed in Appen-
dix B, yields the following expressions:

N 1 o
Ker=FD+n)

. 1

“Grnen 9

PHYSICAL REVIEW A 64 052307

B. Estimation fidelity

We will now evaluate the integral over the space of pure
states in the expression for the estimation fideBtygiven by

6= [ 60T ARl QM@ 0)F. @3

As we discuss in Appendix B, the projection on the product
state|Q)(Q|*N may be represented as

[QNQIEN=0(Q)]};])(:i|0T(Q), (24)

where j=N/2 and|j;j) belongs to the subspace with the

total angular momentujand is the eigenvector aF cor-
responding to the eigenvalyeThus, we have

G=f dQZ [(T10T(Q)0Q)|1)?
XTTATA,0(Q)]j;5)(:i10T(@Q)]. (25)

We may now swap the order of the integration o¢erand
the summation over, and change for eaahthe integration

wherej=N/2 andJ;" 37 denote the angular momentum op- yariables fromQ to ', such that
erators restricted to the completely symmetric subspace of
the N qubits defined by the angular momentjymN/2. The

I 0Q")=0%Q,)0(Q).
operatorK , vanish outside this space, as they are defined as

(26)

integrals of totally symmetric projection operators Using this parametrization, we havé|UT(Q,)U(Q)|1)/?
|Q)( Q=N =(1+cos#')/2 and

Inserting the explicit form of the operatof, into Eq. 1
(16) yields =53 JdQ'(1+cose')Tr[AIArU(Qr)U(Q')U;j>

F= ! + ! r

2 2i(jt1(2j+1) x(j;i[07 Q)0 Q)] (27)
S U This expression may be decomposed into two parts accord-
- +AT + T zpt
XEr T EJ A Art E‘] Ard; Ar+‘]ZAr‘]JAr)' ing to the two terms in the factorlcos#’. The first part

involves the integral
(20)

. . 1 .
The operation fidelity may be equivalently expressed in f dQ'UQN]j;j):jlot Q= 2j+1]j’ (28

terms of the Hermitian operato®, J¥, andJ? as

which is proportional to the identity operatﬁr, truncated to

the completely symmetric subspace. Consequently, the sum-
mation overr for this term may be easily performed that
yields the constant value 1/2. The second part may be ex-

pressed with the help of the operat%d; defined in Eq(17),

F—l 1
T2 2 D@2+

xS TOAJA+ PAIAIATAD. @1

which gives
We note that this expression is completely symmetric with L TAAL) 1
respect to the three Cartesian components of the angular mgs _ + MAAL) L ATA 1 >t
mentum. Furthermore, it may be easily checked that each of” 2 Z 2j+1 3 Z TIAAU QKU ()]

the traces appearing in the sum ovén the above formula is
invariant with respect to the transformation of the operator

(29

A, according to
A —U(Q)AUT(Q), (22

whereU(Q) is an arbitrary rotation matrix.

Inserting the explicit form ORO yields

G=s+

ATA I Jzt
s A DE T & MAAL@)I0@)].

(30
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This expression for the estimation fidelity allows one to de- sin( 6,)cos ¢,)
rive easily the optimal estimation strategy, i.e., the mapping

from the set of outcomesto guesses), for a given quan- Q,=| sin(6,)sin(¢,) | . (33
tum operation{A,}. In order to derive this strategy, we first coso
note that It is seen thatQ, is a unit vector pointing in the direction
. Azt L Ay , ay defined by the Euler angle3, . Obviously, the scalar prod-
U Q) JjU (€) =sin(6;)cos ¢r) i+ sin(6;)sin( 1) J; uct A]Q, is maximized when the two vectors are parallel.
.- Thus, for a givem, the corresponding Euler anglés and 6,
+cog6;)J;. D should be chosen, such that
. : : . A
This allows us to write each of the traces in the sum ovar Q,= ) (34)
the form of a scalar producA]Q, between two three- VATA,

dimensional real vector&, and €}, defined as . )
Of course, the value of the third Euler anglemay be arbi-

I A;r Arj?) trary, as it introgluces only an irrelevant overall phase factor.
If the vectorA, is zero, then the guess has to be made com-
A=| TIATAI) (32)  pletely randomly. Thus, the maximum value of the trace for a
Tr(ArTArjjz) specificr in Eq. (30) is gi\./en'by\/A,T.Ar, and the maximum
value of the estimation fidelity attainable for a given opera-
and tion {A,} is defined by
1 1

G VITHATA IO 1P+ [TrATA 3 12+ [TrATA, 39 12 (35)

T2 rD2 D) Z

As in the case of the operation fidelity, this expression isand
invariant with respect to an arbitrary transformation of the

operatorsA, according to the rotation group. 1 1

ez 2 0
V. DECOMPOSITION where the term$andg depending explicitly on the operation
Let us now summarize the constrained optimization prob{Ar} are given by

lem describing the trade-off between the operation fidélity

and the estimation fidelitys. These two quantities may be 1 Aun At moA AUA+ A~ A
written as =571 Z Tro(PAJAT+ A IA] + A JAT
1 1 (38)
F= 2 3G+ @8 and
Y VITHATA I 2+ [TrATA 3 12+ [TrATA 3 2. (39)

9= %i+1

It is worthwhile to look first at the extreme cases. The maxi-quantum estimation we obtaig=j, which sets the upper
mum value of the operation fidelity itself is of courBe=1.  bound on the region of interest fgr We will demonstrate in
This corresponds tb=j(j +1). This limit is achieved by the Sec. VII that the maximum value éfttainable in the case of
identity operation, for which it is easy to check ttg0.  optimal estimation is equal tb=j2. Expressing this in terms
Hence, we may assume in the following tlggis a nonnega- of the fidelities, we get that =G.

tive quantity. The other extreme case is the optimization of The operatorg&r must satisfy, in general, the complete-
the estimation fidelity alone, which has been studied previness condition described in E(). However, since the ini-
ously[3]. According to these results, in the limit of optimal tial state of theN qubits lies in the completely symmetric
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subspace, we need to consider the action of these operators Tr(ATA,)
only on the fully symmetric subspace describedHyy. Con- = rr
sequently, for the purpose of our discussion we shall assume
that A, :H;—H ", and that the trace-preserving condition The values of(f(A,),g(A,)) are insensitive to the rescaling
takes the form of A,, so\, are free variables up to the constraint

ST 44

3 AlA-T;. (40) S =1, (45)

Henceforth, we replace the trace-preserving condition by theesulting from the weaker trace preserving condition. Hence,
milder requirement, obtained by taking the trace of the aboveach ,g) point is aconvexcombination of independent
equation (f(A)),9(A))). As we are interested in the boundary of al-
lowed (f,g) points, it suffices to examine the case when the
Ata | \, are all zero except for one value fThis means that our
Tr Z ArAr|=2]+1. (41) problem is solved by using only one operation element,
which we denote by&, obeying the constraint T,@(TA)zj
We will perform the optimization under this weakened con-* 1. This observation has also been used in quantum rate-
straint and then show that the optimdl,§) curve may be distortion theory[18]. Afte[ deriving the bound for f(,g)
attained by a set oA, that is actually trace preserving. based on a single elemeA; we will demonstrate in Sec.
Weakening the completeness condition allows us to introV!ll that the operatorA may be used in a canonical way to
duce an important simplification in further calculations. Asconstruct a quantum operation satisfying the original full
we noted in Sec. Ill A, the expression for the operation fi-completeness condition.
delity is invariant with respect to rotations performed on the
operatorsA, . This is also the case of the weaker trace- . o
preserving condition described in Eg1). Consequently, we  We will now show that the optimization problem may be

. - . simplified even further: namely, that it is sufficient to con-
may always modify each of the operatdshy an operation id tordh that d ‘1 for the state bF qubit
of the form A,—U(Q)A,UT(Q), such that the vector de- plaer operator a co Not ranster the state BT qublts

. i SN . = beyond the fully symmetric subspace.
fined in Eq.(32) is aligned along the axis, and moreover, its ~ “According to our discussion of the structure of the Hilbert
z component is nonnegative. In explicit terms, we assume

AR AT A AYY A pAng i Space of the whole ensemble, the operétﬂf{j—>H®N may
that Tr(A;AJj)=Tr(A,AJj)=0, and Tr(y;AJj)=0. This be viewed as consisting of entries,, each entry acting
allows us to replace the square root appearing in(g9. by “

. L aa o . from A, :H;—H; . As the angular momentum operators are
a much simpler expression 'P(IAriz). An important advan- I~ M, g P

tage of this step is that the latter expression is quadratic irtl)l,0Ck dlagona_l and they do not mix subspaces W'.th different
a’s, we may introduce the following decomposition of the

V. FULLY SYMMETRIC SUBSPACE

the matrix elements of the operatdks. quantitiesf andg:
Our next step will be the representation folind g as
linear combinations (ﬁjﬂ
f= 21 Nofj (A, (46)
f= 2 )\rf(Ar)y
r and
il
_ E ~ 5 Lil) .
g= - )\rg(Ar)! (4 ) g= 2::]_ )\agja(Aa)’ (47)
where where the positive coefficients, are given by
N=Tr(ATA,), (49

f(A)= o THOATAT PAJAT+ AJFA,
! : (433 and the functionéj,(é) andgj,(é) are defined as

fj/(B)= —==-Tr(J},BIB"+J!,BJBT+J/,BIB"),
. 1 . nn Tr(B™B) ! !
9(A)= ———Tr(ATAJ}), (43b
Tr(ATA) 1
9j/(B)=——=-=Tr(B'BJ)). (49)
and the nonnegative coefficients are given by Tr(B'B)
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Here, J . Jj, } andf]] denote the angular momentum opera- Henceforth, we drop the index and consider a single
tors truncated to the subspaktg, . As before, the values of operatorA mapping the fully symmetric subspagg onto

(f; (Aa)&], (Aa)) are insensitive to the rescalmgag bya @ certam subspace{;, with the tot;_al angular momentum
mualtiplicati\je factor, so consequently, are free variables €dual toj’. We may also assume with no loss of generality,
up to the constraint that the operatoA;, is normalized in such a way that

(50

e

Hence, again, eachf (g) point is aconvexcombination of =
independentf; (A,),g; (A,)). Consequently, itis sufficient m
to examine the much simpler case when all theare all

zero except for one value ef. This means that out problem

reduces to finding the upper boundaries of individualThe explicit expressions for the functiorfy(A;)) and
(f;r,9;/) regions, wherg' ej,j—1,... j—[j]. gj (A ») then take the following form:

I<J s’ |A )P (51)

i’ j i'-1 j-1

fi (A= 2 E m'ml(j A m P+ X 2 VG Hm D —m)(j+m+1)(j—m)

m'=—j Mm=-j m'=—j’ Mm=-j
XRe ("’ | A [j;my((j s m’ + 1A [j;m+1))*] (52
[
and gi(A)=g;. (A, (54b)
J-/
= 2

As the next step to simplify the problem, we note that the R
phases of the matrix elemen(ts ;m’|A;,|j;m) may be set to Hence, the operatdk’ will be always more optimal that the
make all of them real and nonnegative. This maximizes th@riginal operatom
second term in Eq52) while leaving unchanged the expres-  The explicit construction of the operatdr is given by
sions forg;,(A;/) and Tr(A].T,A]-/).

We will now demonstrate that among all the curves

bounding the allowed regions of ¢ ,g;), the curve forj’ A jm) = Ghn=i+i'|Aplism), if n=j-2j
= encompasses the largest region in thg) plane, which (i )= 0, if n<j—2j".
includes all other bounds obtained fpr<j. For this pur- (55)

pose, we will show that given an arbitrary operaﬁqr 'H;

—H; satisfying the conditiorgj,(Aj,)BO, it is possible to
construct an operato@\’:Hj—>Hj mapping the fully sym-
metric space, such that

fL(A)=1;(A)),

(54a

it

J

fi(AhY= 2> E (m'+j=iHml s m (A myP+

m'=—j’

><R€[<j’:m’lAjflj:mX(J":m’+1|Ajf|i;m+1>)*]

It is straightforward to check that the operatht defined
above automatically satisfies conditions given by Eggb)
and(540). In order to prove that conditio(b43g is also sat-

isfied, let us expresfsj(A’) in terms of the matrix elements
of the operatofj’;m’|A;,|j;m)

i"-1  j-1

> E Vj—j"+m +1)(j —m)(j+m+1)(j—m)

m'=—j’

(56)
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The second term of the above formula majorizes the second U
term of Eq.(52), since forj>j’ we have gh@)= >, m(ak)?, (63b)
m:Ik
N2j—j +m +1=\j +m +1, (57) .
k
and all the other factors have been assumed to be nonnega- k(ak):le (ap)?, (630
— 'k

tive. This observation may be combined with the decompo-
sition of the first term in Eq(56) into two parts proportional ;4
tom’ andj—j’, which yields

m=(—m)

. « o . m)(j+m+21)(j+k—m)(j—k+m+1).
fi(AN)=1 (A +(—])a(A)). (58 (64)
Since j>|’ and we have assumed thg(A )=0, this  We may now use the same reasoning as before to restrict our

proves that Eq(54a is indeed satisfied. Of course, the con- interest to a single vecta® with a fixed value ofk. This

dition g(A;)=0 is fulfilled automatically for all the opera- Vvector should be normalized to unitya {Ta=1. The al-

tors relevant to the trade-off, as according to our discussiofpwed region forf and g is defined as a union of regions
from Sec. |V the whole reg|on of interest fgns 0<g<] bounded by curves obtained for dlf'ferEk1$ with the index

k running from —2j to 2j. We will now discuss several

properties of the curves depending on the sigrk,ofvhich

will allow us to restrict our search for the optimality curve to
We will now show that the search for the trade-off curvea smaller set ok’s.

may be decomposed into a set of even simpler independent,

constrained optimization problems. To proceed further, it

will be convenient to introduce vector notation. Let us define

VI. OPTIMIZATION

A. Casek<0

For negativek, we note that given an arbitrary vectaf,
one may use its elements in the same order to construct a
vectora X simply by takinga *=a¥. A simple calculation
shows that

l,=—j+max0k),

U= +min(k,0), (59)

where the index is from the range- 2j <k=2j. For brev- f* @) =1a"),
ity, we also denote - ok

. g (a9 =g"@) —k. (65)
af=(ism—KklA[j;m), (60) _

Thus, one may obtain from any trade-off curve fo£0 a

wherel,<m=u,, and we assume that all the matrix ele- certain trade-off curve for-k>0, which is shifted along the
ments are real and nonnegative. We can now introdijce 49 axis towards higher values. All the trade-off curves kor
+1 real vectors <0 are, hence, suboptimal, and we may further restrict our

attention only to the case &=0.
akz(ark,a:‘kﬂ, k). (62)

Uk
B. Casek=0
The length of the vector with the indekis equal to 2+1

—|k|. These vectors are diagonal stripes of the matri
(] ;m|A,—|j ;n). Using the vector notation, we have

We will now show that the trade-off curves obtained for
)ﬁ<'s greater or equal tq/2j lie completely within the region
bounded by the curve correspondingkte 0. This will allow
2j us to exclude alk= JZ_J from further analysis. In order to
f= > k@), (629  Pprove the above lemma, we will demonstrate that the maxi-

k=-2j mum value off attained by the trade-off curves fae /2
lies below the minimum value of on the trade-off curve
obtained fork=0.

We start from the observation that the complete trade-off
curve fork=0 lies above the valué=j2. Indeed, let us
define the vector®=(siny,0, . . .,0,cosy) with y from the
range 0 tow/4. It is straightforward to check that we have
f9(a%)=j? over this range ofy, whereasg®(a®) =jcos 2,
which can assume any value between 0 prchus, for any
g from the range &g=<| relevant to the trade-off curve we
have a vector such that the corresponding valukei®farger
or equal toj?. Consequently, the complete trade-off curve

g—Zg ),

k=-2j

(62b)

2j
1= > h&a@),

k== 2j

(620

with

Uy Ug— 1

fk<ak>:EI m(m—k)(a;>2+m2| AW L
=k

m=ly

(633

occupies the region of the (g) plane defined by the condi-
tion f=j2.
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Next, we prove in Appendix C that for an arbitrary nor-
malized vector®, the functionf¥(a") is bounded by 1.0
=i+ D (66) il
2° Ry
2 09t
The right-hand side of the above bound may be compared -ZF
with the minimum value of°=j2 on the trade-off curve for E o085
k=0. If for a givenk the general upper bound éh given by g
the right-hand side of Eq66) is below the valug?, then the 2 osl
trade-off curve obtained for this specifowill definitely be g
majorized by the trade-off curve correspondingteO over 8‘ ors |
the whole region of interest. Hence, we may excludekall )
satisfying j(j+1)—k?/2<j2, which after simplification 07l
yields k=2j. Consequently, we may restrict our attention '
to nonnegativek’s from the range 0.65 e
: 05 055 06 065 07 075 0.8 0.85 0.9
0=<k<\2j. 67) Estimation fidelity G

Recalling .that 2=N, it is_thus sufficient to conside.k’s FIG. 2. The trade-off curves for the ensembleNof 10 qubits
from a finite set of only VN] values. The number of inde- ptained by solving the optimization problem flr=0 (solid), k
pendent real variables that have to be optimized for a given — 1 (gashegt k=2 (dotted dashedandk=3 (dotted. The allowed
is equal toN+1—k. region is a union of the regions bounded by each of these curves.

VII. NUMERICAL PROCEDURE The valuex=0 corresponds to optimizing without any
constraint org¥, whereas in the limik — oo, the optimization

Our task is now reduced to finding the trade-off curves fo , k
gives the maximum attainable value gf and the corre-

a set ofk’s defined in Eq.(67). To complete this task, we | ‘ :
shall resort to numerical means. For a givendefine i, sponding value of*. Thus, the procedure of calculating the
—1+1)X (u—l+1) real symmetric matrice* and G¥: trade-off curve for a givelk may be summarized as follows:

the matrix 7¥ has I, (I,— k), (I, +1)(I,—k+1) Uy for N's from the range &\ <« find the normalized eigen-
. 7 y vy < k k . .
i on e dagonal andfj2f ..o onaiher oL TA Sorespendns o e et
. . K g
side Of the dlagonal. The matrix haSlk,|k+ 1,...Uon the pomt(fk()\),gk()\)) on the trade-off curve.
:h?'grls?g?ﬂdmi r:]z:‘))/(_rrlé)wmugreht:e_nme;hgg &feLagringe MUl \we have performed numerically the task of finding the
Ipliers ”' q imum of V'hg X > valu og. eigenvectors. In numerical calculations, it is convenient to
Specifically, we need to optimize the expression change the parametrization of the trade-off curve according
k() + Mg (a%) — whk(a) = (a8 T( FK+ N GK— u1)ak to A =x/(1—x) with x running from O to 1, and to diagonal-
(@)FAg@) —phi(@) =(@) g =) (68 ize the rescaled matrix @x) Fk+xGX. We note that this
matrix is of the tridiagonal form, for which there exist effi-

with the constraints cient numerical algorithmgl9]. After finding the normalized
KK eigenvectors, we can plot the parametrized trade-off curve
g'(@)=g, (f4(x),g¥(x)) for all relevantk’s from the range given by Eq.
e ks (67), and next find on this basis the region of fidelities al-
h*(a“)=1, (69

lowed in quantum mechanics. To illustrate this procedure, we
plot in Fig. 2 the trade-off curves fod=10 and the relevant
range ofk’s. It is seen that the quantum mechanically al-
lowed region is bounded by a single trade-off curve obtained
for k=0. This was the case also in all other cases we inves-
tigated numerically. The actual bounds on the operation fi-

and\,u being the Lagrange multipliers.

Differentiating the right hand side of E(68) with respect
to the elements of the vectaf we obtain that the maximum
occurs when

(FK4NG*—pu)a=0, (70) delity F versus the estimation fidelit@ for several values of
N are shown in Fig. 1.
that is, a® is an eigenvector of the matri€*+\G* corre- On the basis of our numerical studies, we conjecture that

sponding to its maximum eigenvalue. Assuming that this eithe trade-off curve fok=0 is always optimal. This conjec-
genvector is normalized to one, the valugga$ given by the  ture is supported by the fact that both the extreme points
product @)TG¥a¥, which implicitly depends o through  corresponding tx=0 andx=1 are attained only fok=0.

the vectoraX. In order to plot the trade-off curve as a func- Indeed, we have seen in Sec. VI B that for a given nonnega-
tion f%(g*) we would need to invert this relation. However, tive k the whole trade-off curve lies beloy(j +1)—k?/2.

we may equivalently consider the trade-off curve as param€onsequently, the maximum value déf=j(j+1) corre-
etrized by the Lagrange multiplier running from 0 toos. sponding to unit operation fidelity is achieved only for
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=0. This is also the case of the other extreme point corre- . n
sponding to the optimal estimation: it is straightforward to f d=(j;m|ALAZ|j;n)
note that for anyk=0, the expression fogk has the same

maximum value equal tg=j. This value is obtained for the

unique vector of the fornak= (0,0, . . .,1). Thecorrespond- =(2j+1) E | dE(Gm[OE)]jsm’)
ing value of fX is fk=j(j—k). Thus, for optimizedg, the mLn=o

largest attainable value &f equal toj?, is obtained only for X (j;m'|ATAlj;n W' |[OT(2)|j:n). (75
k=0.

The integral over the product of the elements of rotation
VIIl. ATTAINABILITY OF THE BOUND matrices(j;m|U(E)|j;m")=D! _(E) may be performed

We will now show that the trade-off curves computed in explicitly using the standard formula

the previous section are tight, i.e., that they may be attained S

by physically realizable operations. So far, we have consid- f d= D:nm,( )[Dnn,( )* = —m”_ (76)
ered only the trade-off curve generated by a single operator 2j+1
A:H;—H ®N satisfying the condition T§'A)=1. The criti-  \yith the help of the above identity, we have

cal step that allowed us to focus on a single operator was the
replacement of the full trace-preserving condition in Ef) o
by its trace. We will now present a method for constructing a f d=(j ;mIA;Aalj;m

complete quantum operation from a single operdtpsuch

that it generates the same point on the fidelity trade-off ) (=)

curve. =(2j+1) fd” mr (2)
The classical outcome of the operation we construct has m’.n’ 7_‘

the continuous form of a triplet of Euler angles that we will X[DLn,(E)]’%j;m’IA*Alj;n’>

denote by=. The operation element corresponding to a spe-
cific outcomeE is given by '

= E 5mn5m n’ <J m |ATA|J n >
=2j+10(E)A0T(E). (72

It is straightforward to verify that the operation fidelfyand
the estimation fidelityG for this operation are given, respec-

= 5mnTr(ATA) = Smn- (77

This completes the proof that the operat{dw:} satisfies the

tively, by full trace-preserving condition in the symmetric subspace of
1 1 R the N-qubit Hilbert space. Consequently, the trade-off curve
F=2toGrn W (72 calculated for a single operatdr is attained also by com-
plete quantum operations.
and

IX. DISCUSSION

G= (73 In this paper, we calculated the fidelity trade-off for finite
ensembles of identically prepared qubits. This trade-off re-
~ ~ ' . lates the quality of estimating the quantum state of the qubits
Wh_eref(A) andg(A) are d.efmed n Eqs(.43a) an?](43b). ffo the minimum disturbance of the original that has to be
This confirms that we obtain the same point on the trade-Offy o quced in course of this procedure. The obtained trade-
curve as for the operatoh itself. The only condition we off curves may also be viewed as a characterization of a

need to check is the completeness of the operation on thgpecific asymmetric quantum cloning procedure, which

>t mg(A),

fully symmetric subspacg(; given N qubits produces the same number of clones with a
decreased fidelityF, and additionally an arbitrarily large
f d= AlA-=1 . (74) number of cIon(_as with a lower fidelit.
== The calculation of the trade-off curve was based on a

combination of analytical techniques and numerical calcula-

Of course, outsidé{;, the value of this integral vanishes, as tions. The results obtained analytically allowed us to reduce
the operatOtA is assumed to be zero there and the rotatiorsignificantly the complexity of the optimization problem.
matricesU (E) do not mix subspaces with different values of One should note that a single operamrHJ—>H®N map-
the angular momentum. ping the fully symmetric subspace onto the whole Hilbert

In order to prove that the completeness condition given byspace ofN qubits contains 2"1(N+1) independent real
Eq. (74) is indeed satisfied, let us consider the matrix ele-variables. If one wanted to find numerically the trade-off
ment of the left-hand side of the above expression in theyrve assuming such general form of the oper&oprthe
eigenbasis of the angular momentum operdfor number of parameters in the optimization problem would
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explode exponentially with the size of the ensemble. Fortu- Tr[Z(,B)]=(2 coshg)N. (A2)

nately, we were able to demonstrate that the problem of find-

ing the tr_ade-offbclurve can Ee_ Fedlu?edfﬁNI] independenﬁ On the other hand, summation of the trace of the operator

optimization problems, each involving only no more than 79 in all the subspaces vields

N+1 real parameters. This is a substantial reduction of theXp(ZB )1 tbsp A

problem, which enables one to handle numerically much i i

larger ensembles of qubits. T 7 _ 2mp

Nz = i e

There are several elements of our paper that could be [2(B)] i’:JZ—UJ Hi mzz_j,

investigated further. First, it would be interesting to prove j _ _

our conjecture that the trade-off curve obtained Ker0 is .S sinhB(2j"+1)

always optimal. This would reduce further the complexity of N My sinhpB

the problem remaining to solve numerically. We have made

Several Observations that m|ght be helpful in th|S pI’OOf. FirStCOmparing equa' powers @98 in this expression with the

numerical calculations suggest that the eigenvalues of thgxpansion of the left-hand side of EqA2) given by
matrix F* considered in Sec. VIl belong to the analytically (2 coshp)N yields

defined set {—v(v—1)/2+2jv—j?v=0,1,... u—I,}.

The largest of these eigenvalues ji§j+1)—k(k+1)/2,

which itself improves the upper bound given in HGS). M=

Inspection of numerical results suggests also that the value of

g“(a") corresponding to maximizetf(a¥) is equal tok/2.

Thus, both the extreme points of all trade-off curves Kor

>0 lie beneath the one obtained fo# 0. This observation,

combined with a demonstration that the curves have appro-

priate monotonicity and convexity properties, might prove APPENDIX B: EVALUATION OF INTEGRALS K,

the universally optimal character of ttke=0 curve. .
Another interesting direction is investigating in more de- In this appendix, we calculate explicitly the integrils

tail quantum operations that saturate the trade-off inequalitydefined in Eq.(17). For this purpose, it is convenient to

We have shown that given a single operator that generatedvitch to the angular momentum representation resulting

the values of andG lying on the trade-off curve, one may from the decomposition of the tensor product Hilbert space

construct a complete quantum operation that satisfies the fufif the N qubits into the direct sum of subspaces with the

trace-preserving condition. The described operation had #xed value of the total angular momentum operator. In this

continuous classical outcome in the form of a triplet of Euler'epresentation, the stat@)“" lies in the completely sym-

angles. It would be interesting to investigate operations witimetric subspace characterized by the angular momentum

a finite [7] (and possibly minimaJ8]) number of outcomes =N/2 and it is given by

that also saturate the quantum mechanical bound on the R

fidelities. 10)*N=0(Q)|j:), (B1)

(A3)
i"=i-lil

2]
2+j’

2]
j+jr+1

2j"+1
2j+1

2j+1
=i’

. (A4)

It is seen that the total number of subspaces in the decom-
position (10) is =, _; | uj = (F})-
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APPENDIX A: MULTIPLICITIES OF ANGULAR

MOMENTUM REPRESENTATIONS (j;mIKTIj;n>=f dQk,(Q)(j:m|0(Q)]j:j)
In this Appendix, we derive the multiplicitieg;, of sub- R
spaces with the fixed value of the angular momentum X(j;il0T(Q)]j;n). (B2)
appearing in the decomposition of the Hilbert spaceNof
qubits. Let us consider the operator We shall use the standard notation from Ré&6] to denote

the matrix elements of the unitary rotation operators appear-
ing in the above formula

N
2(8)= Qexppof) =exp2p3), (A1)
) R o .
' (1:m[0Q)j;])=Dhy(Q),
where the subscriptenumerates the qubits. From the tensor- A _ o
product representation given on the left-hand side of the <j;j|UT(Q)|j;n>:[D{]j(Q)]*:(—1)“‘17)',,1,](0),
above formula we immediately obtain that (B3)
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where in the second line, we have made use of the symmetryAPPENDIX C: DERIVATION OF THE BOUND ON  F¥(a")

properties of the rotation matrix elements. H . K
. re, w rive an r nd on the functi

The functionsk,(Q)) may also be expressed as elementsde ere, we derive an upper bound on the functiéf"),

. ) fined in Eq(63a), for k=0. For this purpose, let us rewrite
of rotation matnce;s for the value of the total angular momen-y;:n defined in Eq(64) to the form
tum equal to one:

k 2 k 2 Kk 2 Kk 2
k,l(Q)=\/§D];10(Q), ’yﬁ]:\/ (j—m+§ —<5) j+m+l—5) —(5) }
Ko(Q)=Dgo( ), (B4) 1
ki (Q)=—\2D1 Q). Using the inequality
\/(XE_XE)(Xé_Xi)$X1X3—X2X4a (C2

With this notation, we may use the standard expression for .
the integrals of triple products of rotation matrix elements invalid for any realx;=x,=0 andx;=x,=0, we obtain that

terms of the Wigner 3-symbols Y<K, (C3)
(jim[Kq]j;n) where
k k k\?2
) . . kK _ici _ __ - S
=:ﬁ<—1>“*'f dODL(Q)DL, (DL(Q) om=1(+1) ("“ 2 (m 21 (2) - ©9
j j 1\ i 1 We will also use the inequality between the geometric and
= \/E(_l)nﬂ'( )( ) (B5)  arithmetic means to estimate
m —-n *1/\j —j O
: : k ok <} k2 kN2
AnBm 1= 2[(am) +(am+1) ] (C5)

and
R _ _ _ We may now use the inequalities given in EGS3) and(C5)
(];m|K0|j;n>=(—1)“*1f dQD'mj(Q)DLn,j(Q)DéO(Q) to find an upper bound on the second term in EBga. A
simple rearrangement of the terms yields

- ] ] 1\ /] j 1 Uy 1 Ut
=D L o i —j o fk(ak)stI m(m—k)(a'fn)2+§m2| SK[(ak)2+(ak, )2

—'k —'k

(86 ”k 1 1
=> m(m—k)(ay)>+ 5 51 (@) >+ 5 8y, (@)’
Inserting the explicit form of the 3-symbols yields m=ly
e JiEn)(j=n+1) S

(1sm[K . 1]jin)= S 1 (B7) + S(Om 1+ op)(an)? (C8)

(J+D(2j+1)

m=1I,+1 2

We may now add to the right-hand side two terms of the

and K ky2 K (K2 ; ;
form 5,k_1(a|k) 12 andﬁuk(auk) /2, which are nonnegative
(jim[Kolj;n)= 5mn(_1)(+1). (Bg)  as can be easily checked, and use the identity
' ' i+ i+
1 k2
Z(sk Ky—i(i — —K)— —
The expressions appearing on the right-hand sides of the 2(5m*1+5m) J(j+1)=m(m-=k) 2° €7

above formulas are proportional to the operrclﬁb?sandf]Z This finallv vields
restricted to the completely symmetric subspace with the to- yy "
k

tal angular momentury Thus, the integral& . may be con- fhay= S m(m—k)(ak)?
veniently written as m=1y m
Roymr—e 3 B9 = k2
AN+ 9 # 3 (10D -mm—k— | ah?
and K2\ Uk
1 =[iG+1)- 5) > (ap)? (8
=y

Ko=—m—J?, B10
O (+D(2j+ 1) (B10 ‘. . o cu kg
If the vectora® is normalized to unity, |.e.2m:|k(am) =1,
where by the subscrigtwe have denoted the angular mo- we obtain the bound given in E¢6).
mentum operators truncated to the subspace characterized by We note that fok=0 the derived bound is tight as it can

the angular momentumn be achieved foa"=°=(1/\2j+1, ... ,1A2j +1).
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