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Fidelity trade-off for finite ensembles of identically prepared qubits
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We calculate the trade-off between the quality of estimating the quantum state of an ensemble of identically
prepared qubits and the minimum level of disturbance that has to be introduced by this procedure in quantum
mechanics. The trade-off is quantified using two mean fidelities: the operation fidelity, which characterizes the
average resemblance of the final qubit state to the initial one, and the estimation fidelity, describing the quality
of the obtained estimate. We analyze properties of quantum operations saturating the achievability bound for
the operation fidelity versus the estimation fidelity, which allows us to reduce substantially the complexity of
the problem of finding the trade-off curve. The reduced optimization problem has the form of an eigenvalue
problem for a set of tridiagonal matrices, and it may be easily solved using standard numerical tools.

DOI: 10.1103/PhysRevA.64.052307 PACS number~s!: 03.67.2a, 03.65.Wj, 03.65.Ta
n-
it

-
f

th
o

p
te
n
m
m
s
sid
e
ta
s
e
o
g
io

a

th
th
v
a

r
a

e
ven

rve

r a
n

del-
ti-
tems
ure
for

n-
f an
um
g to
s-

on
and

dis-
nd

the

lly
ra-
n
the
n
al-
of

r

the
I. INTRODUCTION

It is a well-known fact that given a single copy of a qua
tum system, it is, in general, impossible to determine
quantum state exactly@1#. This principle is closely related to
the no-cloning theorem@2#, which prevents one from produc
ing multiple faithful copies from a single unknown state. O
course, the situation becomes different when one is given
ensemble of identically prepared quantum systems. With
increasing size of such an ensemble, one can extract m
and more precise information on its preparation@3#.

An important effect that usually accompanies an attem
to determine the unknown preparation of a quantum sys
is the disturbance of its original state. The state disturba
is generally a penalty for gaining classical information fro
a quantum system. This fundamental feature of quantum
chanics has been discussed from many different point
view, depending on the particular physical scenario con
ered@4,5#. A recent paper@6# presented the description of th
trade-off between the information gain and the quantum s
disturbance motivated by the problem of quantum state e
mation @3,7–10#. In this approach, the classical outcom
gained from an operation on the quantum system is c
verted into a guess what the original state was. Accordin
the general quantum-mechanical rule linking the informat
gain with the state disturbance, the better guess can be m
on average, the less the final state of the system should
semble the initial one. Natural parameters for quantifying
trade-off in this context are mean fidelities, defined using
scalar product between the relevant state vectors, and a
aged over many realizations of the scenario. The first qu
tity of interest is the operation fidelityF, which parametrizes
the average resemblance of the state of the system afte
operation to the original one. The second quantity, known
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1050-2947/2001/64~5!/052307~14!/$20.00 64 0523
s

an
e
re

t
m
ce

e-
of
-

te
ti-

n-
to
n
de

re-
e
e
er-
n-

the
s

the estimation fidelityG, tells us how good an estimate on
can provide on the basis of the classical outcome of a gi
operation. In the plane of the fidelitiesF and G, quantum
mechanics imposes a bound in the form of a trade-off cu
limiting the maximum values ofF and G that can be
achieved simultaneously for any quantum operation. Fo
single copy of ad-level system, the trade-off curve betwee
F andG may be described in simple analytical terms@6#.

In this paper, we discuss a more general case of the fi
ity trade-off, when one is given a finite ensemble of iden
cally prepared systems. We shall assume that these sys
are qubits prepared in an arbitrary, randomly selected, p
state. Of course, the penalty—i.e., the state disturbance—
gaining information is expected to be smaller for an e
semble compared to the single system case. In the limit o
infinite number of copies, we may determine the quant
state exactly and reset the state of all the qubits accordin
this precisely known information. Then, in principle, no di
turbance needs to occur. Our interest here will be focused
the intermediate case between the single-copy operations
nearly perfect estimation of large ensembles. We shall
cuss the trade-off curve between the operation fidelity a
the estimation fidelity in the most general case when
ensemble consists of a finite numberN of qubits.

The two fidelities used in our paper have fundamenta
different practical meanings. Informally speaking, the ope
tion fidelity F deals with the intrinsic quantum informatio
remaining in the state of a quantum system. In contrast,
estimation fidelity G describes the classical informatio
gained from the measurement. This classical information
lows us, for example, to generate arbitrarily many copies
the initial state with the same fidelityG. Consequently, for
finite ensembles, the fidelitiesF andG take values from dif-
ferent ranges. For example,F may easily be equal to one fo
any size of the ensemble~which simply means that nothing
is done to the qubits! but, in contrast,G51 means that we
are able to generate arbitrarily many perfect copies using
©2001 The American Physical Society07-1
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KONRAD BANASZEK AND IGOR DEVETAK PHYSICAL REVIEW A 64 052307
result of the estimation. Previous work on quantum state
timation @3# demonstrated that the maximum attainable e
mation fidelity for an ensemble consisting ofN qubits isG
5(N11)/(N12). As we justify later, this is also the valu
for the operation fidelity in the limit of optimal quantum
state estimation. Of interest here is what happens below
value forG and above this value forF, as this describes th
region where we try to convert part of the quantum inform
tion contained in the initial state into a classical guess.

Finding the trade-off curve for an ensemble ofN qubits
presents, in principle, a rather complicated problem. A g
eral quantum operation can map the initial state of the qu
onto the full Hilbert space with the dimensionality 2N, which
grows exponentially with the size of the ensemble. Furth
more, the classical operation outcomes used for the est
tion cana priori assume values from an arbitrarily large s
In this paper, we demonstrate in several steps that it is p
sible to reduce the general problem of finding the trade
curve toO(AN) independent constrained optimization pro
lems, each involvingO(N) real variables. The reduced opt
mization problems have the quadratic form, and they may
solved numerically by finding the eigenvectors of certa
tridiagonal matrices. This is a substantial reduction of
complexity of the problem compared to its original formul
tion, which allows us to deal numerically with much larg
ensembles. Furthermore, numerical evidence strongly
gests that, in general, just one fromO(AN) optimization
problems gives the full trade-off curve, but a strict ma
ematical proof of this conjecture is lacking. Most impo
tantly, we achieve the reduction of the complexity witho
imposing any restrictions on the generality of quantum
erations considered, and the calculated trade-off curves
both tight and universal.

The results of our paper are summarized in Fig. 1, wh
we depict the trade-off curves calculated using our appro
for several exemplary values ofN. All the curves have a
common extreme point attained forF51 andG51/2. This
point is reached when the ensemble is simply left intact,
the corresponding value for the estimation fidelityG51/2
describes making a completely random guess about the
of the qubits. The other extreme point for each trade-
curve, corresponding to optimal quantum state estimation
given byF5G5(N11)/(N12). In this limit, the fidelity of
the qubits remaining after the operation is exactly the sa
as the fidelity of our guess. One can give a simple intuit
argument that this should be the case:F is always an upper
bound onG, since one can always set the state of the qu
equal to the guess state. It is plausible that this bound ma
achieved in the limit where we only care about maximizi
G. Between the two extreme points, the depicted trade
curves illustrate how with increasingN, the extraction of
classical information has less of an effect on the state of
qubits after the operation.

The problem considered in this paper may be viewed a
special case of quantum cloning, i.e., generating a la
number of imperfect copies from a given ensemble@11#. As
we noted, given a classical estimate of the quantum state
may use it to generate an infinite number of qubits with
same fidelity as the estimate@12#. Thus, the trade-off curve
05230
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presented in this paper describe the optimal performanc
an asymmetric quantum copying machine that givenN iden-
tical pure qubits producesN clones with the fidelityF, and in
addition, arbitrarily many clones with the fidelityG.

The paper is organized as follows. First, in Sec. II, w
formulate the problem of the fidelity trade-off in quantitativ
terms. In Sec. III, we simplify the formulas for the fidelitie
using the angular momentum representation of the rota
group. This provides explicit expressions for the fideliti
that are suitable for further calculations. In Sec. IV, we arg
that in order to find the trade-off curve it suffices to consid
a single-quantum operation element, thus substantially
ducing the complexity of the problem. We further demo
strate in Sec. V, that it is sufficient to consider operations t
map the initial state of the qubits only onto the fully sym
metric subspace. With these results in hand, we define in
VI the reduced optimization problem that yields the actu
trade-off curve. The numerical solution to this problem

FIG. 1. The trade-off curves between the operation fidelityF
and the operation fidelityG, depicted using absolute~top! and rela-
tive ~bottom! scaling of the axes, for several values of the ensem
size: N51 ~solid!, N55 ~dashed!, N520 ~dotted dashed!, andN
5100 ~dotted!.
7-2
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FIDELITY TRADE-OFF FOR FINITE ENSEMBLES OF . . . PHYSICAL REVIEW A 64 052307
discussed in Sec. VII. Next, we show in Sec. VIII that t
calculated trade-off curves are achievable, by construc
explicit quantum operations attaining the derived bou
Section IX concludes the paper.

II. FORMULATION OF THE PROBLEM

We begin with an ensemble ofN qubits all prepared in the
same pure stateuV&. We shall use the following notation:

uV&5Û~V!u↑&, ~1!

i.e., the stateuV& is represented as a result of a unitary o
erationÛ(V) on a reference stateu↑&, which we will take for
concreteness to be the spin-up state along thez axis, ŝzu↑&
5u↑&. The group of the unitary transformationsÛ(V) may
be conveniently parametrized using the two-dimensiona
reducible representation of the rotation group. Thus,V may
be considered as an abbreviation for the triplet of the Eu
angles (f,u,z), and

Û~V!5exp~2 ifŝz/2!exp~2 iuŝy/2!exp~2 i zŝz/2!.
~2!

The third Euler anglez introduces a trivial overall phas
factor in the definition of the statesuV& and, in principle, it
could be set to zero. However, we will keep it as an ind
pendent variable in order to adhere strictly to standard an
lar momentum algebra notation that we will use later. T
canonical volume element in the group of unitary transf
mationsÛ(V) is given by

dV5
1

8p2
sinu du df dz. ~3!

We assume that the initial stateuV& of the ensemble ofN
qubits is randomly selected according to the probability d
tribution given by this measure.

Initially, the composite state of the ensemble of the qub
is described by a tensor productuV&^Vu ^ N. We assume tha
the qubits are submitted to an action of a certain quan
operation, which may, in general, act collectively on t
whole ensemble. Such an operation is described by a s
operators$Ârs% acting in the 2N-dimensional tensor produc
Hilbert space of all the qubits@13#. The classical outcome o
the operation is given by the indexr, and it is correlated with
the final quantum state of the qubits. The probabilitypr(V)
of obtaining the resultr is given by

pr~V!5(
s

Tr~Ârs
† ÂrsuV&^Vu ^ N!. ~4!

The conditional transformation of the ensemble correspo
ing to the outcomer is described by the formula

%̂ r
out~V!5

1

pr~V! (
s

ÂrsuV&^Vu ^ NÂrs
† . ~5!
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The summation over the indexs maps in general pure state
onto mixed ones, and it may be viewed as responsible
introducing excess stochastic fluctuations@14#. In general,
the indexs may assume values from a different set for ea
r. For the operation to be trace preserving, the set of
operators$Ârs% must satisfy the completeness relation of t
form

(
rs

Ârs
† Ârs5 1̂. ~6!

With the above notation for quantum operations, we c
now define explicitly the two quantities central to this pap
the operation fidelityF and the estimation fidelityG. The
operation fidelityF quantifies the average resemblance of
state after the operation to the original one. Let us cons
the reduced single-qubit density matrix after the operati
averaged over allN qubits

%̂ r
red~V!5

1

N
@Tr2-N%̂ r

out~V!1Tr1,3-N%̂ r
out~V!1 •••

1Tr1-(N21)%̂ r
out~V!#, ~7!

where the subscript of the trace symbol Tr labels the rang
qubits over which the trace operation is performed. The
pectation value of the above expression on the initial s

^Vu%̂ r
red(V)uV& tells us how much on average the state o

single qubit after the operation resembles its initial valu
This quantity, summed over the possible outcomesr of the
operation with the corresponding weightspr and averaged
over the initial state of the qubits, yields the mean operat
fidelity for an ensemble of identically prepared qubits

F5E dV(
r

pr~V!^Vu%̂ r
red~V!uV&. ~8!

The second quantity of interest is the estimation fide
G. Given the classical outcomer of the operation, we can
make a guessuV r& what the original state of the qubits wa
A natural way to quantify the quality of the guess is to ta
the squared absolute value of the scalar product between
guess and the original state, equal tou^V r uV&u2. The estima-
tion fidelity is obtained by averaging this expression over
sets of possible operation outcomesr and the input states
uV&:

G5E dV(
r

pr~V!u^V r uV&u2. ~9!

The estimation fidelity depends not only on the quant
operation$Ârs% itself, but also on the estimation rule used
make the guess, described by the mappingr °uV r&. We will
demonstrate in the following how to define this mapping in
way that optimizes the estimation fidelity for a given arb
trary quantum operation.

Our goal is now to find the inequality that bounds t
fidelities F and G, assuming the most general form of th
7-3
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KONRAD BANASZEK AND IGOR DEVETAK PHYSICAL REVIEW A 64 052307
operation$Ârs%. The only requirement that has to be satisfi
by the set of the operatorsÂrs is the completeness conditio
described by Eq.~6!.

III. FIDELITIES

In this section, we will simplify the expression for th
fidelities F and G to the form that makes them more ma
ageable in the optimization procedure. Our first step will
an explicit calculation of the integrals over the space of p
statesuV&, which can be done with the help of tools deve
oped in the theory of representations of the rotation gro
Throughout this section, we shall follow strictly the notatio
of Ref. @15# for the angular momentum algebra and the e
ments of rotation matrices.

To simplify subsequent expressions, we begin with a g
eral observation that the indexs appearing in Eqs.~4! and~5!
could, in principle, also be known classically after the ope
tion. Summation over the indexs in Eqs.~4! and ~5! means
that the operation is imperfect, and it averages statistic
different output states. This results in the loss of a fraction
the information extracted from the initial quantum state.
we are interested in the optimal operations saturating
quantum-mechanical bound on the fidelities, we can ass
with no loss of generality that bothr and s are known. In
such a case, we may use a single index to label bothr ands.
For this reason, we will assume in the following that t
indexs is trivial, i.e., it assumes only a single value for ea
r, and that consequently, it may be dropped from furt
notation. Thus, we restrict our attention to quantum ope
tions that are known in the literature as ideal@16# or efficient
@5#.

In the following calculations, it will be convenient to us
the decomposition of the complete Hilbert space ofN qubits
into subspaces with the fixed value of the total angular m
mentum operator. This decomposition has the form@17#

^
i 51

N

H5 %
a51

S 2 j
b j c D

Hj a
, ~10!

where j 5N/2 is the largest value of the angular momentu
appearing in the decomposition, thej a’s assume values in
the set$ j , j 21, . . . ,j 2 b j c% and are arranged in a nonascen
ing order. Here,Hj 8 denotes the subspace corresponding
the total angular momentum valuej 8. We note thatj 15 j and
j a, j for a.1, as there is only one representation withj
5N/2 corresponding to the fully symmetric subspace. F
completeness, in Appendix A, we present a simple deriva
of the multiplicities of the angular momentum represen
tions appearing in Eq.~10!. The action of a tensor product o
the unitary operatorsÛ ^ N(V) in each of the subspacesHj 8
is given by the corresponding representation of the rota
group. In order to simplify the notation, we will hencefor
use the same symbolÛ(V) to denote the action ofÛ ^ N(V)
on the whole ensembles of qubits, as for a single qubit.
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A. Operation fidelity

Let us start with the operation fidelityF. The matrix ele-
ment^Vu%̂ r

red(V)uV& appearing in the definition ofF in Eq.
~8! is equivalently given by the expectation value over t
density matrix%̂ r

out(V) defined in Eq.~5! of the following
operator:

P̂~V!5
1

N
~ uV&^Vu ^ 1̂^ •••^ 1̂1 1̂^ uV&^Vu ^ •••^ 1̂

1 1̂^ 1̂^ •••^ uV&^Vu!. ~11!

Using the above definition, the mean estimation fidelity m
be written compactly as

F5E dV(
r

Tr@ P̂~V!Âr uV&^Vu ^ NÂr
†#. ~12!

We will now expressP̂(V) in terms of the angular momen
tum operators. Expressing the projectionuV&^Vu as a com-
bination of the Pauli matrices

uV&^Vu5
1

2
@ 1̂1sin~u!cos~f!ŝx

1sin~u!sin~f!ŝy1cos~u!ŝz# ~13!

we can write the operatorP̂(V) in terms of the total angula
momentum operators for the composite system ofN qubits

P̂~V!5
1

2N (
i 51

N

@ 1̂1sin~u!cos~f!ŝ i
x1sin~u!sin~f!ŝ i

y

1cos~u!ŝ i
z#

5
1

2
1̂1

1

N
@sin~u!cos~f!Ĵx1sin~u!sin~f!Ĵy

1cos~u!Ĵz#, ~14!

where the indexi enumerates the qubits. In the following,
will be convenient to switch to the pair of the angular m
mentum raising and lowering operatorsĴ65 Ĵx6 i Ĵy, using
what we have

P̂~V!5
1

2
1̂1

1

N S 1

2
eif sin~u!Ĵ2

1
1

2
e2 if sin~u!Ĵ11cos~u!ĴzD . ~15!

With this expression for the operatorP̂(V), we may write
the mean fidelityF as

F5
1

2
1

1

N (
r

TrS 1

2
Ĵ2Âr K̂21Âr

†

1
1

2
Ĵ1Âr K̂1Âr

†1 ĴzÂr K̂0Âr
†D , ~16!
7-4
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where all the terms involving the Euler anglesV have been
collected to three integralsK̂t , t521,0,1, defined as

K̂t5E dV kt~V!uV&^Vu ^ N, ~17!

with the functionskt(V) given by

k21~V!5eif sinu,

k0~V!5cosu, ~18!

k1~V!5e2 if sinu.

Explicit calculation of the integralsK̂t , performed in Appen-
dix B, yields the following expressions:

K̂615
1

~ j 11!~2 j 11!
Ĵ j

7 ,

K̂05
1

~ j 11!~2 j 11!
Ĵ j

z , ~19!

where j 5N/2 andĴ j
7 ,Ĵ j

z denote the angular momentum o
erators restricted to the completely symmetric subspac
the N qubits defined by the angular momentumj 5N/2. The
operatorsK̂t vanish outside this space, as they are defined
integrals of totally symmetric projection operato
uV&^Vu ^ N.

Inserting the explicit form of the operatorsK̂t into Eq.
~16! yields

F5
1

2
1

1

2 j ~ j 11!~2 j 11!

3(
r

TrS 1

2
Ĵ2Âr Ĵ j

1Âr
†1

1

2
Ĵ1Âr Ĵ j

2Âr
†1 ĴzÂr Ĵ j

zÂr
†D .

~20!

The operation fidelity may be equivalently expressed
terms of the Hermitian operatorsĴx, Ĵy, and Ĵz as

F5
1

2
1

1

2 j ~ j 11!~2 j 11!

3(
r

Tr~ ĴxÂr Ĵ j
xÂr

†1 ĴyÂr Ĵ j
yÂr

†1 ĴzÂr Ĵ j
zÂr

†!. ~21!

We note that this expression is completely symmetric w
respect to the three Cartesian components of the angular
mentum. Furthermore, it may be easily checked that eac
the traces appearing in the sum overr in the above formula is
invariant with respect to the transformation of the opera
Âr according to

Âr→Û~V!ÂrÛ
†~V!, ~22!

whereÛ(V) is an arbitrary rotation matrix.
05230
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B. Estimation fidelity

We will now evaluate the integral over the space of pu
states in the expression for the estimation fidelityG, given by

G5E dV(
r

Tr~Âr
†Âr uV&^Vu ^ N!u^V r uV&u2. ~23!

As we discuss in Appendix B, the projection on the produ
stateuV&^Vu ^ N may be represented as

uV&^Vu ^ N5Û~V!u j ; j &^ j ; j uÛ†~V!, ~24!

where j 5N/2 and u j ; j & belongs to the subspace with th
total angular momentumj and is the eigenvector ofĴz cor-
responding to the eigenvaluej. Thus, we have

G5E dV(
r

z^↑uÛ†~V r !Û~V!u↑& z2

3Tr@Âr
†ÂrÛ~V!u j ; j &^ j ; j uÛ†~V!#. ~25!

We may now swap the order of the integration overV and
the summation overr, and change for eachr the integration
variables fromV to V8, such that

Û~V8!5Û†~V r !Û~V!. ~26!

Using this parametrization, we have^↑uÛ†(V r)Û(V)u↑&u2
5(11cosu8)/2 and

G5
1

2 (
r
E dV8~11cosu8!Tr@Âr

†ÂrÛ~V r !Û~V8!u j ; j &

3^ j ; j uÛ†~V8!Û†~V r !#. ~27!

This expression may be decomposed into two parts acc
ing to the two terms in the factor 11cosu8. The first part
involves the integral

E dV8Û~V8!u j ; j &^ j ; j uÛ†~V8!5
1

2 j 11
1̂j , ~28!

which is proportional to the identity operator1̂j , truncated to
the completely symmetric subspace. Consequently, the s
mation overr for this term may be easily performed th
yields the constant value 1/2. The second part may be
pressed with the help of the operatorK̂0 defined in Eq.~17!,
which gives

G5
1

2 (
r

Tr~Âr
†Âr 1̂j !

2 j 11
1

1

2 (
r

Tr@Âr
†ÂrÛ~V r !K̂0Û†~V r !#.

~29!

Inserting the explicit form ofK̂0 yields

G5
1

2
1

1

2~ j 11!~2 j 11! (
r

Tr@Âr
†ÂrÛ~V r !Ĵ j

zÛ†~V r !#.

~30!
7-5
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This expression for the estimation fidelity allows one to d
rive easily the optimal estimation strategy, i.e., the mapp
from the set of outcomesr to guessesV r for a given quan-
tum operation$Âr%. In order to derive this strategy, we firs
note that

Û~V r !Ĵ j
zÛ†~V r !5sin~u r !cos~f r !Ĵ j

x1sin~u r !sin~f r !Ĵ j
y

1cos~u r !Ĵ j
z . ~31!

This allows us to write each of the traces in the sum overr in
the form of a scalar productAr

TVr between two three-
dimensional real vectorsAr andVr defined as

Ar5S Tr~Âr
†Âr Ĵ j

x!

Tr~Âr
†Âr Ĵ j

y!

Tr~Âr
†Âr Ĵ j

z!

D ~32!

and
i
he

ob

e

xi

o
v

al

05230
-
g

Vr5S sin~u r !cos~f r !

sin~u r !sin~f r !

cosu r

D . ~33!

It is seen thatVr is a unit vector pointing in the direction
defined by the Euler anglesV r . Obviously, the scalar prod
uct Ar

TVr is maximized when the two vectors are parall
Thus, for a givenr, the corresponding Euler anglesf r andu r
should be chosen, such that

Vr5
Ar

AAr
TAr

. ~34!

Of course, the value of the third Euler anglez r may be arbi-
trary, as it introduces only an irrelevant overall phase fac
If the vectorAr is zero, then the guess has to be made co
pletely randomly. Thus, the maximum value of the trace fo

specificr in Eq. ~30! is given byAAr
TAr , and the maximum

value of the estimation fidelity attainable for a given ope
tion $Âr% is defined by
G5
1

2
1

1

2~ j 11!~2 j 11! (
r

A@Tr~Âr
†Âr Ĵ j

x!#21@Tr~Âr
†Âr Ĵ j

y!#21@Tr~Âr
†Âr Ĵ j

z!#2. ~35!
n

As in the case of the operation fidelity, this expression
invariant with respect to an arbitrary transformation of t
operatorsÂr according to the rotation group.

IV. DECOMPOSITION

Let us now summarize the constrained optimization pr
lem describing the trade-off between the operation fidelityF
and the estimation fidelityG. These two quantities may b
written as

F5
1

2
1

1

2 j ~ j 11!
f ~36!
s

-

and

G5
1

2
1

1

2~ j 11!
g, ~37!

where the termsf andg depending explicitly on the operatio

$Âr% are given by

f 5
1

2 j 11 (
r

Tr~ ĴxÂr Ĵ j
xÂr

†1 ĴyÂr Ĵ j
yÂr

†1 ĴzÂr Ĵ j
zÂr

†!

~38!

and
g5
1

2 j 11 (
r

A@Tr~Âr
†Âr Ĵ j

x!#21@Tr~Âr
†Âr Ĵ j

y!#21@Tr~Âr
†Âr Ĵ j

z!#2. ~39!
r

f

e-

c

It is worthwhile to look first at the extreme cases. The ma
mum value of the operation fidelity itself is of courseF51.
This corresponds tof 5 j ( j 11). This limit is achieved by the
identity operation, for which it is easy to check thatg50.
Hence, we may assume in the following thatg is a nonnega-
tive quantity. The other extreme case is the optimization
the estimation fidelity alone, which has been studied pre
ously @3#. According to these results, in the limit of optim
-

f
i-

quantum estimation we obtaing5 j , which sets the uppe
bound on the region of interest forg. We will demonstrate in
Sec. VII that the maximum value off attainable in the case o
optimal estimation is equal tof 5 j 2. Expressing this in terms
of the fidelities, we get thatF5G.

The operatorsÂr must satisfy, in general, the complet
ness condition described in Eq.~6!. However, since the ini-
tial state of theN qubits lies in the completely symmetri
7-6
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subspace, we need to consider the action of these oper
only on the fully symmetric subspace described byHj . Con-
sequently, for the purpose of our discussion we shall ass
that Âr :Hj→H ^ N, and that the trace-preserving conditio
takes the form

(
r

Âr
†Âr5 1̂j . ~40!

Henceforth, we replace the trace-preserving condition by
milder requirement, obtained by taking the trace of the ab
equation

TrS (
r

Âr
†Âr D 52 j 11. ~41!

We will perform the optimization under this weakened co
straint and then show that the optimal (f ,g) curve may be
attained by a set ofÂr that is actually trace preserving.

Weakening the completeness condition allows us to in
duce an important simplification in further calculations. A
we noted in Sec. III A, the expression for the operation
delity is invariant with respect to rotations performed on t
operatorsÂr . This is also the case of the weaker trac
preserving condition described in Eq.~41!. Consequently, we
may always modify each of the operatorsÂr by an operation
of the form Âr→Û(V)ÂrÛ

†(V), such that the vector de
fined in Eq.~32! is aligned along thez axis, and moreover, its
z component is nonnegative. In explicit terms, we assu
that Tr(Âr

†ÂĴj
x)5Tr(Âr

†ÂĴj
y)50, and Tr(Âr

†ÂĴj
z)>0. This

allows us to replace the square root appearing in Eq.~39! by
a much simpler expression Tr(Âr

†Âr Ĵ j
z). An important advan-

tage of this step is that the latter expression is quadrati
the matrix elements of the operatorsÂr .

Our next step will be the representation off and g as
linear combinations

f 5(
r

l r f ~Âr !,

g5(
r

l rg~Âr !, ~42!

where

f ~Â!5
1

Tr~Â†Â!
Tr~ ĴxÂĴ j

xÂ†1 ĴyÂĴ j
yÂ†1 ĴzÂĴ j

zÂ†!,

~43a!

g~Â!5
1

Tr~Â†Â!
Tr~Â†ÂĴj

z!, ~43b!

and the nonnegative coefficientsl r are given by
05230
ors

e

e
e

-

-

-

-

e

in

l r5
Tr~Âr

†Âr !

2 j 11
. ~44!

The values of„f (Âr),g(Âr)… are insensitive to the rescalin
of Âr , sol r are free variables up to the constraint

(
r

l r51, ~45!

resulting from the weaker trace preserving condition. Hen
each (f ,g) point is a convexcombination of independen
„f (Âr),g(Âr)…. As we are interested in the boundary of a
lowed (f ,g) points, it suffices to examine the case when t
l r are all zero except for one value ofr. This means that our
problem is solved by using only one operation eleme
which we denote byÂ, obeying the constraint Tr(Â†Â)5 j
11. This observation has also been used in quantum r
distortion theory@18#. After deriving the bound for (f ,g)
based on a single elementÂ, we will demonstrate in Sec
VIII that the operatorÂ may be used in a canonical way t
construct a quantum operation satisfying the original f
completeness condition.

V. FULLY SYMMETRIC SUBSPACE

We will now show that the optimization problem may b
simplified even further: namely, that it is sufficient to co
sider operatorsÂ that do not transfer the state ofN qubits
beyond the fully symmetric subspace.

According to our discussion of the structure of the Hilbe
space of the whole ensemble, the operatorÂ:Hj→H ^ N may
be viewed as consisting of entriesÂa , each entry acting
from Âa :Hj→Hj a

. As the angular momentum operators a
block diagonal and they do not mix subspaces with differ
a ’s, we may introduce the following decomposition of th
quantitiesf andg:

f 5 (
a51

S 2 j
b j c D

la f j a
~Âa! ~46!

and

g5 (
a51

S 2 j
b j c D

lagj a
~Âa!, ~47!

where the positive coefficientsla are given by

la5Tr~Âa
†Âa!, ~48!

and the functionsf j 8(B̂) andgj 8(B̂) are defined as

f j 8~B̂!5
1

Tr~B̂†B̂!
Tr~ Ĵ j 8

x B̂Ĵj
xB̂†1 Ĵ j 8

y B̂Ĵj
yB̂†1 Ĵ j 8

z B̂Ĵj
zB̂†!,

gj 8~B̂!5
1

Tr~B̂†B̂!
Tr~B̂†B̂Ĵj

z!. ~49!
7-7
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Here,Ĵ j 8
x , Ĵ j 8

y , andĴ j 8
z denote the angular momentum oper

tors truncated to the subspaceHj 8 . As before, the values o
„f j a

(Âa),gj a
(Âa)… are insensitive to the rescaling ofÂa by a

multiplicative factor, so consequentlyla are free variables
up to the constraint

(
a51

S 2 j
b j c D

la51. ~50!

Hence, again, each (f ,g) point is aconvexcombination of
independent„f j a

(Âa),gj a
(Âa)…. Consequently, it is sufficien

to examine the much simpler case when all thela are all
zero except for one value ofa. This means that out problem
reduces to finding the upper boundaries of individu
( f j 8 ,gj 8) regions, wherej 8P j , j 21, . . . ,j 2 b j c.
h

th
s-

es

05230
-

l

Henceforth, we drop the indexa and consider a single

operatorÂj 8 mapping the fully symmetric subspaceHj onto
a certain subspaceHj 8 with the total angular momentum
equal toj 8. We may also assume with no loss of general

that the operatorÂj 8 is normalized in such a way that

15Tr~Âj 8
† Âj 8!

5 (
m852 j 8

j 8

(
m52 j

j

z^ j 8;m8uÂj 8u j ;m& z2. ~51!

The explicit expressions for the functionsf j 8(Âj 8) and

gj 8(Âj 8) then take the following form:
f j 8~Âj 8!5 (
m852 j 8

j 8

(
m52 j

j

m8mz^ j 8;m8uÂj 8u j ;m& z21 (
m852 j 8

j 821

(
m52 j

j 21

A~ j 81m811!~ j 82m8!~ j 1m11!~ j 2m!

3Re@^ j 8;m8uÂj 8u j ;m&~^ j 8;m811uÂj 8u j ;m11&!* # ~52!
s

and

gj 8~Âj 8!5 (
m852 j 8

j 8

(
m52 j

j

mz^ j 8;m8uÂj 8u j ;m& z2. ~53!

As the next step to simplify the problem, we note that t
phases of the matrix elements^ j 8;m8uÂj 8u j ;m& may be set to
make all of them real and nonnegative. This maximizes
second term in Eq.~52! while leaving unchanged the expre
sions forgj 8(Âj 8) and Tr(Âj 8

† Âj 8).
We will now demonstrate that among all the curv

bounding the allowed regions of (f j 8 ,gj 8), the curve forj 8
5 j encompasses the largest region in the (f ,g) plane, which
includes all other bounds obtained forj 8, j . For this pur-
pose, we will show that given an arbitrary operatorÂj 8 :Hj

→Hj 8 satisfying the conditiongj 8(Âj 8)>0, it is possible to
construct an operatorÂ8:Hj→Hj mapping the fully sym-
metric space, such that

f j~Â8!> f j 8~Âj 8!, ~54a!
e

e

gj~Â8!5gj 8~Âj 8!, ~54b!

Tr~Â8†Â8!5Tr~Âj 8
† Âj 8!. ~54c!

Hence, the operatorÂ8 will be always more optimal that the
original operatorÂj 8 .

The explicit construction of the operatorÂ8 is given by

^ j ;nuÂ8u j ;m&5H ^ j 8;n2 j 1 j 8uÂj 8u j ;m&, if n> j 22 j 8

0, if n, j 22 j 8.
~55!

It is straightforward to check that the operatorÂ8 defined
above automatically satisfies conditions given by Eqs.~54b!
and ~54c!. In order to prove that condition~54a! is also sat-
isfied, let us expressf j (Â8) in terms of the matrix element
of the operator̂ j 8;m8uÂj 8u j ;m&
f j~Â8!5 (
m852 j 8

j 8

(
m52 j

j

~m81 j 2 j 8!mz^ j 8;m8uÂj 8u j ;m& z21 (
m852 j 8

j 821

(
m52 j

j 21

A~2 j 2 j 81m811!~ j 82m8!~ j 1m11!~ j 2m!

3Re@^ j 8;m8uÂj 8u j ;m&~^ j 8;m811uÂj 8u j ;m11&!* #. ~56!
7-8



o

e
po
l

n-
-
io

ve
e

,
n

e-

tri

t our

s

l

to

ct a

our

or

xi-

-off

e

e

ve
-

FIDELITY TRADE-OFF FOR FINITE ENSEMBLES OF . . . PHYSICAL REVIEW A 64 052307
The second term of the above formula majorizes the sec
term of Eq.~52!, since for j . j 8 we have

A2 j 2 j 81m811>Aj 81m811, ~57!

and all the other factors have been assumed to be nonn
tive. This observation may be combined with the decom
sition of the first term in Eq.~56! into two parts proportiona
to m8 and j 2 j 8, which yields

f j~Â8!> f j 8~Âj 8!1~ j 2 j 8!g~Âj 8!. ~58!

Since j . j 8 and we have assumed thatg(Âj 8)>0, this
proves that Eq.~54a! is indeed satisfied. Of course, the co
dition g(Âj 8)>0 is fulfilled automatically for all the opera
tors relevant to the trade-off, as according to our discuss
from Sec. IV, the whole region of interest forg is 0<g< j .

VI. OPTIMIZATION

We will now show that the search for the trade-off cur
may be decomposed into a set of even simpler independ
constrained optimization problems. To proceed further
will be convenient to introduce vector notation. Let us defi

l k52 j 1max~0,k!,

uk5 j 1min~k,0!, ~59!

where the indexk is from the range22 j <k<2 j . For brev-
ity, we also denote

am
k 5^ j ;m2kuÂj u j ;m&, ~60!

where l k<m<uk , and we assume that all the matrix el
ments are real and nonnegative. We can now introducej
11 real vectors

ak5~al k
k ,al k11

k , . . . ,auk

k !. ~61!

The length of the vector with the indexk is equal to 2j 11
2uku. These vectors are diagonal stripes of the ma

^ j ;muÂj u j ;n&. Using the vector notation, we have

f 5 (
k522 j

2 j

f k~ak!, ~62a!

g5 (
k522 j

2 j

gk~ak!, ~62b!

15 (
k522 j

2 j

hk~ak!, ~62c!

with

f k~ak!5 (
m5 l k

uk

m~m2k!~am
k !21 (

m5 l k

uk21

gm
k am

k am11
k ,

~63a!
05230
nd
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x

gk~ak!5 (
m5 l k

uk

m~am
k !2, ~63b!

hk~ak!5 (
m5 l k

uk

~am
k !2, ~63c!

and

gm
k 5A~ j 2m!~ j 1m11!~ j 1k2m!~ j 2k1m11!.

~64!

We may now use the same reasoning as before to restric
interest to a single vectorak with a fixed value ofk. This
vector should be normalized to unity, (ak)Tak51. The al-
lowed region forf and g is defined as a union of region
bounded by curves obtained for differentk’s, with the index
k running from 22 j to 2j . We will now discuss severa
properties of the curves depending on the sign ofk, which
will allow us to restrict our search for the optimality curve
a smaller set ofk’s.

A. CasekË0

For negativek, we note that given an arbitrary vectorak,
one may use its elements in the same order to constru
vector a2k simply by takinga2k5ak. A simple calculation
shows that

f 2k~a2k!5 f k~ak!,

g2k~a2k!5gk~ak!2k. ~65!

Thus, one may obtain from any trade-off curve fork,0 a
certain trade-off curve for2k.0, which is shifted along the
g axis towards higher values. All the trade-off curves fork
,0 are, hence, suboptimal, and we may further restrict
attention only to the case ofk>0.

B. CasekÐ0

We will now show that the trade-off curves obtained f
k’s greater or equal toA2 j lie completely within the region
bounded by the curve corresponding tok50. This will allow
us to exclude allk>A2 j from further analysis. In order to
prove the above lemma, we will demonstrate that the ma
mum value off attained by the trade-off curves fork>A2 j
lies below the minimum value off on the trade-off curve
obtained fork50.

We start from the observation that the complete trade
curve for k50 lies above the valuef 5 j 2. Indeed, let us
define the vectora05(sinx,0, . . .,0,cosx) with x from the
range 0 top/4. It is straightforward to check that we hav
f 0(a0)> j 2 over this range ofx, whereasg0(a0)5 j cos 2x,
which can assume any value between 0 andj. Thus, for any
g from the range 0<g< j relevant to the trade-off curve w
have a vector such that the corresponding value off is larger
or equal to j 2. Consequently, the complete trade-off cur
occupies the region of the (f ,g) plane defined by the condi
tion f > j 2.
7-9
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Next, we prove in Appendix C that for an arbitrary no
malized vectorak, the functionf k(ak) is bounded by

f k~ak!< j ~ j 11!2
k2

2
. ~66!

The right-hand side of the above bound may be compa
with the minimum value off 05 j 2 on the trade-off curve for
k50. If for a givenk the general upper bound onf k given by
the right-hand side of Eq.~66! is below the valuej 2, then the
trade-off curve obtained for this specifick will definitely be
majorized by the trade-off curve corresponding tok50 over
the whole region of interest. Hence, we may exclude allk’s
satisfying j ( j 11)2k2/2< j 2, which after simplification
yields k>A2 j . Consequently, we may restrict our attenti
to nonnegativek’s from the range

0<k,A2 j . ~67!

Recalling that 2j 5N, it is thus sufficient to considerk’s
from a finite set of onlydANe values. The number of inde
pendent real variables that have to be optimized for a givek
is equal toN112k.

VII. NUMERICAL PROCEDURE

Our task is now reduced to finding the trade-off curves
a set ofk’s defined in Eq.~67!. To complete this task, we
shall resort to numerical means. For a givenk, define (uk
2 l k11)3(uk2 l k11) real symmetric matricesF k andG k:
the matrix F k has l k( l k2k),(l k11)(l k2k11), . . . ,uk(uk

2k) on the diagonal, andg l k
k /2,g l k11

k , . . . ,gur21
k on either

side of the diagonal. The matrixG k hasl k ,l k11, . . . ,uk on
the diagonal. We may now use the method of Lagrange m
tipliers to find the maximum off having fixed the value ofg.
Specifically, we need to optimize the expression

f k~ak!1lgk~ak!2mhk~ak!5~ak!T~F k1lG k2m1!ak

~68!

with the constraints

gk~ak!5g,

hk~ak!51, ~69!

andl,m being the Lagrange multipliers.
Differentiating the right hand side of Eq.~68! with respect

to the elements of the vectorak we obtain that the maximum
occurs when

~F k1lG k2mI !ak50, ~70!

that is, ak is an eigenvector of the matrixF k1lG k corre-
sponding to its maximum eigenvalue. Assuming that this
genvector is normalized to one, the value ofg is given by the
product (ak)TG kak, which implicitly depends onl through
the vectorak. In order to plot the trade-off curve as a fun
tion f k(gk) we would need to invert this relation. Howeve
we may equivalently consider the trade-off curve as para
etrized by the Lagrange multiplierl running from 0 to`.
05230
d

r

l-

i-

-

The valuel50 corresponds to optimizingf k without any
constraint ongk, whereas in the limitl→`, the optimization
gives the maximum attainable value ofgk and the corre-
sponding value off k. Thus, the procedure of calculating th
trade-off curve for a givenk may be summarized as follows
for l ’s from the range 0<l,` find the normalized eigen
vector ofF k1lG k corresponding to the largest eigenvalu
and use it to calculate (ak)TF kak and (ak)TG kak which give
the point„f k(l),gk(l)… on the trade-off curve.

We have performed numerically the task of finding t
eigenvectorsak. In numerical calculations, it is convenient t
change the parametrization of the trade-off curve accord
to l5x/(12x) with x running from 0 to 1, and to diagonal
ize the rescaled matrix (12x)F k1xG k. We note that this
matrix is of the tridiagonal form, for which there exist effi
cient numerical algorithms@19#. After finding the normalized
eigenvectors, we can plot the parametrized trade-off cu
„f k(x),gk(x)… for all relevantk’s from the range given by Eq
~67!, and next find on this basis the region of fidelities a
lowed in quantum mechanics. To illustrate this procedure,
plot in Fig. 2 the trade-off curves forN510 and the relevan
range ofk’s. It is seen that the quantum mechanically a
lowed region is bounded by a single trade-off curve obtain
for k50. This was the case also in all other cases we inv
tigated numerically. The actual bounds on the operation
delity F versus the estimation fidelityG for several values of
N are shown in Fig. 1.

On the basis of our numerical studies, we conjecture t
the trade-off curve fork50 is always optimal. This conjec
ture is supported by the fact that both the extreme po
corresponding tox50 andx51 are attained only fork50.
Indeed, we have seen in Sec. VI B that for a given nonne
tive k the whole trade-off curve lies belowj ( j 11)2k2/2.
Consequently, the maximum value off 5 j ( j 11) corre-
sponding to unit operation fidelity is achieved only fork

FIG. 2. The trade-off curves for the ensemble ofN510 qubits
obtained by solving the optimization problem fork50 ~solid!, k
51 ~dashed!, k52 ~dotted dashed!, andk53 ~dotted!. The allowed
region is a union of the regions bounded by each of these curv
7-10
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50. This is also the case of the other extreme point co
sponding to the optimal estimation: it is straightforward
note that for anyk>0, the expression forgk has the same
maximum value equal tog5 j . This value is obtained for the
unique vector of the formak5(0,0, . . .,1). Thecorrespond-
ing value of f k is f k5 j ( j 2k). Thus, for optimizedg, the
largest attainable value off, equal toj 2, is obtained only for
k50.

VIII. ATTAINABILITY OF THE BOUND

We will now show that the trade-off curves computed
the previous section are tight, i.e., that they may be attai
by physically realizable operations. So far, we have con
ered only the trade-off curve generated by a single oper
Â:Hj→H ^ N satisfying the condition Tr(Â†Â)51. The criti-
cal step that allowed us to focus on a single operator was
replacement of the full trace-preserving condition in Eq.~40!
by its trace. We will now present a method for constructin
complete quantum operation from a single operatorÂ, such
that it generates the same point on the fidelity trade
curve.

The classical outcome of the operation we construct
the continuous form of a triplet of Euler angles that we w
denote byJ. The operation element corresponding to a s
cific outcomeJ is given by

ÂJ5A2 j 11Û~J!ÂÛ†~J!. ~71!

It is straightforward to verify that the operation fidelityF and
the estimation fidelityG for this operation are given, respe
tively, by

F5
1

2
1

1

2 j ~ j 11!
f ~Â! ~72!

and

G5
1

2
1

1

2~ j 11!
g~Â!, ~73!

where f (Â) and g(Â) are defined in Eqs.~43a! and ~43b!.
This confirms that we obtain the same point on the trade
curve as for the operatorÂ itself. The only condition we
need to check is the completeness of the operation on
fully symmetric subspaceHj

E dJ ÂJ
† ÂJ5 1̂j . ~74!

Of course, outsideHj , the value of this integral vanishes, a
the operatorÂ is assumed to be zero there and the rotat
matricesÛ(J) do not mix subspaces with different values
the angular momentum.

In order to prove that the completeness condition given
Eq. ~74! is indeed satisfied, let us consider the matrix e
ment of the left-hand side of the above expression in
eigenbasis of the angular momentum operatorĴ j

z
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E dJ^ j ;muÂJ
† ÂJu j ;n&

5~2 j 11! (
m8,n852 j

j E dJ^ j ;muÛ~J!u j ;m8&

3^ j ;m8uÂ†Âu j ;n8&^ j ;n8uÛ†~J!u j ;n&. ~75!

The integral over the product of the elements of rotat
matrices^ j ;muÛ(J)u j ;m8&5D mm8

j (J) may be performed
explicitly using the standard formula

E dJD mm8
j

~J!@D nn8
j

~J!#* 5
dmndm8n8

2 j 11
. ~76!

With the help of the above identity, we have

E dJ^ j ;muÂJ
† ÂJu j ;n&

5~2 j 11! (
m8,n852 j

j E dJ D mm8
j

~J!

3@D nn8
j

~J!#* ^ j ;m8uÂ†Âu j ;n8&

5 (
m8,n852 j

j

dmndm8n8^ j ;m8uÂ†Âu j ;n8&

5dmn Tr~Â†Â!5dmn . ~77!

This completes the proof that the operation$ÂJ% satisfies the
full trace-preserving condition in the symmetric subspace
the N-qubit Hilbert space. Consequently, the trade-off cur
calculated for a single operatorÂ is attained also by com
plete quantum operations.

IX. DISCUSSION

In this paper, we calculated the fidelity trade-off for fini
ensembles of identically prepared qubits. This trade-off
lates the quality of estimating the quantum state of the qu
to the minimum disturbance of the original that has to
introduced in course of this procedure. The obtained tra
off curves may also be viewed as a characterization o
specific asymmetric quantum cloning procedure, wh
given N qubits produces the same number of clones wit
decreased fidelityF, and additionally an arbitrarily large
number of clones with a lower fidelityG.

The calculation of the trade-off curve was based on
combination of analytical techniques and numerical calcu
tions. The results obtained analytically allowed us to redu
significantly the complexity of the optimization problem
One should note that a single operatorÂ:Hj→H ^ N map-
ping the fully symmetric subspace onto the whole Hilb
space ofN qubits contains 2N11(N11) independent rea
variables. If one wanted to find numerically the trade-
curve assuming such general form of the operatorÂ, the
number of parameters in the optimization problem wou
7-11
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explode exponentially with the size of the ensemble. Fo
nately, we were able to demonstrate that the problem of fi
ing the trade-off curve can be reduced todANe independent
optimization problems, each involving only no more th
N11 real parameters. This is a substantial reduction of
problem, which enables one to handle numerically mu
larger ensembles of qubits.

There are several elements of our paper that could
investigated further. First, it would be interesting to pro
our conjecture that the trade-off curve obtained fork50 is
always optimal. This would reduce further the complexity
the problem remaining to solve numerically. We have ma
several observations that might be helpful in this proof. Fi
numerical calculations suggest that the eigenvalues of
matrix F k considered in Sec. VII belong to the analytical
defined set $2n(n21)/212 j n2 j 2un50,1, . . . ,uk2 l k%.
The largest of these eigenvalues isj ( j 11)2k(k11)/2,
which itself improves the upper bound given in Eq.~66!.
Inspection of numerical results suggests also that the valu
gk(ak) corresponding to maximizedf k(ak) is equal tok/2.
Thus, both the extreme points of all trade-off curves fok
.0 lie beneath the one obtained fork50. This observation,
combined with a demonstration that the curves have ap
priate monotonicity and convexity properties, might pro
the universally optimal character of thek50 curve.

Another interesting direction is investigating in more d
tail quantum operations that saturate the trade-off inequa
We have shown that given a single operator that gener
the values ofF andG lying on the trade-off curve, one ma
construct a complete quantum operation that satisfies the
trace-preserving condition. The described operation ha
continuous classical outcome in the form of a triplet of Eu
angles. It would be interesting to investigate operations w
a finite @7# ~and possibly minimal@8#! number of outcomes
that also saturate the quantum mechanical bound on
fidelities.
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APPENDIX A: MULTIPLICITIES OF ANGULAR
MOMENTUM REPRESENTATIONS

In this Appendix, we derive the multiplicitiesm j 8 of sub-
spaces with the fixed value of the angular momentumj 8
appearing in the decomposition of the Hilbert space oN
qubits. Let us consider the operator

Ẑ~b!5 ^
i 51

N

exp~bŝ i
z!5exp~2b Ĵz!, ~A1!

where the subscripti enumerates the qubits. From the tens
product representation given on the left-hand side of
above formula we immediately obtain that
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Tr@ Ẑ~b!#5~2 coshb!N. ~A2!

On the other hand, summation of the trace of the opera
exp(2bĴz) in all the subspaces yields

Tr@ Ẑ~b!#5 (
j 85 j 2 b j c

j

m j 8 (
m52 j 8

j 8

e2mb

5 (
j 85 j 2 b j c

j

m j 8

sinhb~2 j 811!

sinhb
. ~A3!

Comparing equal powers ofeb in this expression with the
expansion of the left-hand side of Eq.~A2! given by
(2 coshb)N yields

m j 85S 2 j

21 j 8
D 2S 2 j

j 1 j 811D 5
2 j 811

2 j 11 S 2 j 11

j 2 j 8
D . ~A4!

It is seen that the total number of subspaces in the dec
position ~10! is ( j 85 j 2 b j c

j m j 85( b j c
2 j ).

APPENDIX B: EVALUATION OF INTEGRALS K̂t

In this appendix, we calculate explicitly the integralsK̂t
defined in Eq.~17!. For this purpose, it is convenient t
switch to the angular momentum representation resul
from the decomposition of the tensor product Hilbert spa
of the N qubits into the direct sum of subspaces with t
fixed value of the total angular momentum operator. In t
representation, the stateuV& ^ N lies in the completely sym-
metric subspace characterized by the angular momentuj
5N/2 and it is given by

uV& ^ N5Û~V!u j ; j &, ~B1!

where u j ; j & is the eigenvector ofĴz corresponding to the
eigenvaluej, andÛ(V) is the rotation matrix for the angula
momentumj. Of course, rotations cannot transfer the st
u j ; j & beyond the fully symmetric subspace. Consequen
the operatorsK̂t are nonzero only in this subspace. In th
basis of the eigenvectors of the operatorĴz, the matrix ele-
ments of these operators are given by

^ j ;muK̂tu j ;n&5E dVkt~V!^ j ;muÛ~V!u j ; j &

3^ j ; j uÛ†~V!u j ;n&. ~B2!

We shall use the standard notation from Ref.@15# to denote
the matrix elements of the unitary rotation operators appe
ing in the above formula

^ j ;muÛ~V!u j ; j &5D m j
j ~V!,

^ j ; j uÛ†~V!u j ;n&5@D n j
j ~V!#* 5~21!n2 jD 2n2 j

j ~V!,
~B3!
7-12
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where in the second line, we have made use of the symm
properties of the rotation matrix elements.

The functionskt(V) may also be expressed as eleme
of rotation matrices for the value of the total angular mom
tum equal to one:

k21~V!5A2D 210
1 ~V!,

k0~V!5D 00
1 ~V!, ~B4!

k1~V!52A2D 10
1 ~V!.

With this notation, we may use the standard expression
the integrals of triple products of rotation matrix elements
terms of the Wigner 3-j symbols

^ j ;muK̂61u j ;n&

57A2~21!n2 jE d VD m j
j ~V!D 2n2 j

j ~V!D 610
1 ~V!

5A2~21!n2 j S j j 1

m 2n 61D S j j 1

j 2 j 0D ~B5!

and

^ j ;muK̂0u j ;n&5~21!n2 jE d VD m j
j ~V!D 2n2 j

j ~V!D 00
1 ~V!

5~21!n2 j S j j 1

m 2n 0D S j j 1

j 2 j 0D .

~B6!

Inserting the explicit form of the 3-j symbols yields

^ j ;muK̂61u j ;n&5dm61,n

A~ j 6n!~ j 7n11!

~ j 11!~2 j 11!
~B7!

and

^ j ;muK̂0u j ;n&5dmn

m

~ j 11!~2 j 11!
. ~B8!

The expressions appearing on the right-hand sides of
above formulas are proportional to the operatorsĴ7 and Ĵz

restricted to the completely symmetric subspace with the
tal angular momentumj. Thus, the integralsK̂t may be con-
veniently written as

K̂615
1

~ j 11!~2 j 11!
Ĵ j

7 ~B9!

and

K̂05
1

~ j 11!~2 j 11!
Ĵ j

z , ~B10!

where by the subscriptj we have denoted the angular m
mentum operators truncated to the subspace characterize
the angular momentumj.
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APPENDIX C: DERIVATION OF THE BOUND ON F k
„aK

…

Here, we derive an upper bound on the functionsf k(ak),
defined in Eq.~63a!, for k>0. For this purpose, let us rewrit
gm

k defined in Eq.~64! to the form

gm
k 5AF S j 2m1

k

2
D 2

2S k

2
D 2GF S j 1m112

k

2
D 2

2S k

2
D 2G .

~C1!

Using the inequality

A~x1
22x2

2!~x3
22x4

2!<x1x32x2x4 , ~C2!

valid for any realx1>x2>0 andx3>x4>0, we obtain that

gm
k <d m

k , ~C3!

where

d m
k 5 j ~ j 11!2S m2

k

2D S m2
k

2
11D2S k

2D 2

. ~C4!

We will also use the inequality between the geometric a
arithmetic means to estimate

am
k am11

k <
1

2
@~am

k !21~am11
k !2#. ~C5!

We may now use the inequalities given in Eqs.~C3! and~C5!
to find an upper bound on the second term in Eq.~63a!. A
simple rearrangement of the terms yields

f k~ak!< (
m5 l k

uk

m~m2k!~am
k !21

1

2 (
m5 l k

uk21

d m
k @~am

k !21~am11
k !2#

5 (
m5 l k

uk

m~m2k!~am
k !21

1

2
d l k

k ~al k
k !21

1

2
d uk21

k ~auk

k !2

1 (
m5 l k11

uk21
1

2
~d m21

k 1d m
k !~am

k !2. ~C6!

We may now add to the right-hand side two terms of t
form d l k21

k (al k
k )2/2 andd uk

k (auk

k )2/2, which are nonnegative

as can be easily checked, and use the identity

1

2
~d m21

k 1d m
k !5 j ~ j 11!2m~m2k!2

k2

2
. ~C7!

This finally yields

f k~ak!< (
m5 l k

uk

m~m2k!~am
k !2

1 (
m5 l k

uk S j ~ j 11!2m~m2k!2
k2

2 D ~am
k !2

5S j ~ j 11!2
k2

2 D (
m5 l k

uk

~am
k !2. ~C8!

If the vectorak is normalized to unity, i.e.,(m5 l k

uk (am
k )251,

we obtain the bound given in Eq.~66!.
We note that fork50 the derived bound is tight as it ca

be achieved forak505(1/A2 j 11, . . . ,1/A2 j 11).
7-13
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