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Variational characterizations of separability and entanglement of formation
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In this paper we develop a mathematical framework for the characterization of separability and entanglement
of formation ~EOF! of general bipartite states. These characterizations are variational in nature, meaning that
separability and EOF are given in terms of a function that is to be minimized over the manifold of unitary
matrices. A major benefit of such a characterization is that it directly leads to a numerical procedure for
calculating EOF. We present an efficient minimization algorithm and apply it to the bound entangled 333
Horodecki states; we show that their EOF is very low and that their distance to the set of separable states is also
very small. Within the same variational framework we rephrase the results by Wootters@W. Wootters, Phys.
Rev. Lett.80, 2245~1998!# on EOF for 232 states and also present some progress in generalizing these results
to higher-dimensional systems.
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I. INTRODUCTION

The problem of finding necessary and sufficient con
tions under which a quantum state of a composite syste
separable has received considerable attention in the last
years. The prototype example of a nonseparable state
pair of two-level particles in a singlet state, a so-called E
pair, named after Einstein, Podolsky, and Rosen, who u
this sort of a state to show that quantum mechanics exh
strong nonlocal correlations, which seem to violate the re
tivity principle.

A pure state of a composite system is separable iff it
be written as the direct product of the subsystem sta
uCAB&5uCA& ^ uCB&. A nonseparable pure state oren-
tangled state cannot be decomposed in this way, e.g.,
singlet state (u↑&u↓&2u↓&u↑&)/& consists of a superpositio
of separable states but is itself not separable.

Nowadays, the importance of entangled states goes
yond a mere fundamental interest, since EPR pairs are
basic resources of quantum techniques such as qua
cryptography, quantum teleportation, and quantum error
rection. A mixed state is separable iff its density matrix c
be written as a convex linear combination of pure prod
states; for a bipartite system this reads

r5 (
k51

K

wkuuk&^uku ^ uvk&^vku, ~1!

wherewk are positive weights summing to 1. The separab
ity problem consists of finding a criterion for checkin
whether such a decomposition is possible for a given sta

Despite the simple formulation of this problem, a com
plete solution to this date has not been found. An import
achievement was the discovery by Peres of a necessary
dition for separability@1#. He noted that thepartial transpo-
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sition of a separable state still has non-negative eigenval
just as the original state. Thus, if the partial transposition
stater is not a state~i.e., does not have non-negative eige
values summing to 1!, thenr is not separable~i.e., it is an
entangled state!. The importance of this criterion was soo
realized when Horodeckiet al. proved @2# that it is also a
sufficient criterion for 232 and 233 systems. For an intro
duction to recent results on this subject, see, e.g.,@3# and@4#.

If a state is entangled, one could ask for a measure of
amount of entanglement. For pure states, a measure ge
ally agreed upon is the von Neumann subsystem entropy
entropy of the partial trace of the state projector. For mix
states, the situation is much more difficult. Not only is the
no single measure of entanglement that is suited for ev
purpose, but calculating the values of the different propo
measures and proving statements about them is exceed
difficult. Among the proposed measures are the entanglem
of formation @5#, the entanglement of distillation@5#, and
relative entropy of entanglement@6#.

In this paper, we focus on separability, on entanglemen
formation~EOF!, and on the related concept of concurren
All these subjects are related, because states are separa
and only if their EOF is zero. A closed-form expression e
ists for the EOF of 232 systems in terms of their concu
rence@7#. A closed-form expression also exists for isotrop
states of general systems@8#.

The purpose of this paper is to give variational charac
izations of separability and EOF for general~i.e., any dimen-
sions! bipartite states. Such a characterization is of the fo
Q(r)5minTf(r,T), that is, the state property under study c
be found as the minimal value of some specific function o
the manifold of unitary matricesT. In Sec. II it will be shown
how this can be done. The language of Sec. II is ma
analysis, not only because this allows to state the results
most succinct way but also because it gives clues towa
generalizations.

The greatest benefit of a variational characterization
that it directly yields a method for actually calculating th
state propertyQ, albeit in a numerical fashion, using a min
©2001 The American Physical Society04-1
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mization procedure. In Sec. III we describe the proced
that we have used, and some interesting results we have
tained with it.

II. VARIATIONAL CHARACTERIZATIONS

It is well known that mixed states can be realized by
ensemble of pure states in an infinite number of ways. T
determination of the separability of a state and the deter
nation of its entanglement of formation have in common t
a particular realization of a state has to be found such
some property holds for all pure states in that realization
order to find this optimal realization, it is of considerab
interest to have a mathematically elegant way of ‘‘gene
ing’’ all possible realizations of a state. In Sec. II A we w
recollect a result by Hughston, Jozsa, and Wootters that
realization of a state is related to the eigenvalue decomp
tion of the state via some right-unitary matrix.

The required property for separability is that all pu
states in the realization must be product states. In Sec.
we give a number of useful mathematical expressions for
property. This then leads to a variational characterization
separability, the topic of Sec. II C. For calculating the EOF
the state, the property of the optimal realization is that
so-called average entanglement of the realization is minim
This property and an ensuing variational characterization
EOF will be discussed in Sec. II D.

In this way, searching all possible realizations for so
property amounts to passing through all right-unitary ma
ces and test the property in question. However, this would
a very impractical way to determine separability or EOF
there would not be some bound on the dimension of th
matrices, or, which is the same thing, on the number of p
states in the optimal realization. Luckily, such a bound exi
In the case of separability, Horodecki proved@11# that
(N1N2)2 pure states~or less! suffice, whereN1 and N2 are
the dimensions of the subsystem Hilbert spaces. Uhlm
@12# proved that a similar bound holds for the determinat
of EOF: the number of pure states in the optimal realizat
need not be larger than the square of the rank of the sta

In Sec. II E we discuss the so-called concurrence o
state, a quantity that is closely related to the EOF. We give
alternative proof of an important result on the concurrence
232 states by Wootters@7#. One of the virtues of this alter
native proof is that it yields an additional result on the ex
amount of pure states in the optimal realization. We th
report some progress in generalizing the concurrence con
to higher-dimensional bipartite states.

In Appendix A, finally, a method is described for reducin
the set of unitary matrices that has to be examined in the
of separability testing. Under some circumstances,
method directly yields an optimal realization without a
need for searching. We have not yet investigated whether
method is applicable to the EOF case.

A. Relation between different realizations of a state

Consider a rank-R stater in an (N13N2)-dimensional
Hilbert space, realized by an ensemble$wk ,uck&%k51

K , where
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the wk are the mixing weights of theK pure state vectors
uck&. The numberK is called thecardinality of the ensemble.
Necessarily,K cannot be smaller than the rankR. Since there
generally are an infinite number of ensembles realizing
particular mixed state, we are free to chooseK larger thanR
if this suits our purposes. It will turn out that in the gener
case, we will even be forced to takeK.R. Specifically,
Lockhart proved in@13# that, except in the bipartite cas
where one of the particles is a qubit or the Hilbert-spa
dimension is 9, the set of separable states for whichK5R is
a set of measure zero. Moreover, forN3N systems, the se
of separable states for which the cardinalityK is greater than
(R1.5)/4 is an open dense set.

Now, r5(k51
K wkuck&^cku or r5CWC†, whereW is a

K3K diagonal matrix withWkk5wk and the columns ofC
are theK vectorsck. This decomposition ofr is reminiscent
of the eigenvalue decomposition ofr:r5FMF†, whereM
is anR3R diagonal matrix whose diagonal elements are
eigenvalues ofr and the columns ofF are theR eigenvec-
tors. Sincer is Hermitian,F is a unitary matrix.

It can now easily be proven that these two decompositi
must be related by anR3K right-unitary matrixT; this has
been proven first by Hughston, Jozsa, and Wootters@9#.

Lemma 1. For a general stater, with eigenvalue decom-
positionr5FMF†, there is a matrixC and a non-negative
diagonal matrixW such thatr5CWC† iff there is anR
3K matrix T such that

CW1/25FM1/2T,

with

TT†51R . ~2!

Right-unitarity of the matrixT means that theR row vectors
of T form an orthonormal set inCK. Stated in matrix-
algebraic terms, the proof becomes very simple.

Proof. First of all, it is obvious thatFMF†5CWC†

follows directly from Eq. ~2!. Conversely, denoteX
5CW1/2 and consider the singular-value decomposition
X:X5USV, whereU is a unitaryR3R matrix, V a right-
unitary R3K matrix, andS a diagonalR3R matrix with
non-negative diagonal elements. FromFMF†5CWC† we
get FMF†5US2U†. Since bothM and S are positive
semidefinite, it follows thatS5U†FM1/2F†U so that X
5FM1/2F†UV. This is precisely Eq.~2!, with T5F†UV.

h
Remark. It is noteworthy that the elements ofW andM are

related to each other independently ofF andC,

wk5~T†MT!kk .

This follows from the observations thatF is unitary and that
the columns ofC have norm 1.

B. Characterization of product states

A state of anN13N2 system is separable iff there exists
realizing ensemble consisting solely of product vectorsc
5c1

^ c2 with c1PH1 and c2PH2 ~in this paper we use
4-2
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superscripts for enumerating vectors and subscripts for
noting vector components!. Product vectors can be characte
ized easily by rearranging their components in matrix for
For anN1N2 vectorx, let x̃ be anN13N2 matrix such that
x5( i , j x̃i j e

i
^ ej . For product vectors this gives

ck5ak
^ bk→c̃k5ak~bk!T.

Obviously, product vectors are characterized by the condi
that the rank ofc̃ is 1. A necessary and sufficient conditio
for this is that all 232 minors ofc̃ must be zero, or, more
succinctly, that thesecond compound matrixof c̃ must be
zero:C2(c̃)50 ~@10#, 0.8.1!. The second compound matri
of an N13N2 matrix is an@N1(N121)/2#3@N2(N221)/2#
matrix with elements

C2~A!~ i i 8!,~ j j 8!5Ai j Ai 8 j 82Ai j 8Ai 8 j , i , i 8, j , j 8.

The elements ofC2 are all possible 232 minors ofA. The
second compound matrix has a lot of useful properties s
as C2(AB)5C2(A)C2(B), C2(1n)51n(n21)/2, and
C2(A21)5@C2(A)#21 ~@10#, 0.8.1!.

For practical applications it is sometimes better to co
sider a (N121)3(N221) submatrix ofC2 , the one con-
taining the elementsC2(A)( i ,i 11),(j , j 11) only. It is easily
seen that the vanishing of this submatrix is already suffic
for A being of rank 1.

From the expression for the second compound mat
which is quadratic inA, it will prove useful to construct a
bilinear function of twoN13N2 matrices, denotedC(A,B),

C~A,B!~ i i 8!,~ j j 8!5Ai j Bi 8 j 82Ai j 8Bi 8 j , i , i 8, j , j 8.

Obviously,C(A,A)5C2(A), so thatC(A,A)50 if and only
if A has rank 1. More specifically, we can apply this to t
state vectorsck: ck is a product vector ifC(c̃k,c̃k)50.

In the following, we will only use a symmetrized versio
of C, which we will denote by

C~ck,c l !5C~ c̃k,c̃ l !1C~ c̃ l ,c̃k!.

Since this is a bilinear function in the elements ofC, we can
express this in matrix notation

C~ck,c l !~a!5~CTS~a!C!kl ,

where the notation~a! is a shorthand for the index tupl
( i ,i 8, j , j 8). The matricesS(a), which we callindicator ma-
trices, are defined as

S
~ i j !,~ i 8 j 8!

~a!
5S

~ i 8 j 8!,~ i j !

~a!
51,

S
~ i j 8!,~ i 8 j !
~a!

5S
~ i 8 j !,~ i j 8!

~a!
521,

all other elements being zero. Note that allShave rank equa
to 4. For the case of 232 systems, there is only one indica
tor matrix and it is equal to
05230
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S5sy^ sy5S 0 0 0 1

0 0 21 0

0 21 0 0

1 0 0 0

D ,

~Ref. @7#!.

C. Condition for separability

We can now formulate a general necessary and suffic
condition for the separability of a mixed state. As mention
before, the stater5FMF† is separable iff there exists
decompositionr5CWC† with CW1/25FM1/2T, such that
all ck are product states, orC(ck,c l)50, for all k5 l .

Now

C~ck,c l !5C~Awkc
k,Awlc

l !/Awkwl

5 (
p,q51

R
TpkTql

Awkwl

C~Ampfp,Amqfq!, ~3!

where we have exploited the bilinearity of the formC. Given
the eigenvalue decomposition ofr, the entity
C(Ampfp,Amqfq) can be calculated in a straightforwar
way. Let us organize its components into a set of matri
A(a)PMR ,

Apq
~a!5C~Ampfp,Amqfq!a5AMFTS~a!FAM ; ~4!

this means that thepq entry of the~a!th A matrix equals the
a entry of the matrixC(Ampfp,Amqfq). Using this nota-
tion, Eq. ~3! can be written concisely as

C~ck,c l !a5~TTA~a!T! lk /Awkwl .

The state is therefore separable iff we can find anR3K
matrix T, with K>R, such that

TT†51R ,

C2~ c̃k!a5~TTA~a!T!kk50 ; a,k. ~5!

Here,k ranges from 1 toK and a enumerates all tuples o
indices (i ,i 8, j , j 8) with 1< i , i 8<N1 and 1< j , j 8<N2 .
As noted before, it is also sufficient to consider only t
tuples (i ,i 11,j , j 11).

Testing separability requires that the system~5! be solved
for T. Another approach, however, is to consid
(TTA(a)T)kk as entries of a matrix indexed bya andk and to
try to minimize a matrix norm of this matrix as a function o
T. The state is then separable iff this minimum is zero. O
viously, one can use whatever matrix norm one prefers, e
the Hilbert-Schmidt norm~also called the Frobenius norm o
the l 2 norm! iAi2

25( i , j uAi , j u25Tr AA†. Thusr is separable
iff

min
T,K

(
a,k

u~TTA~a!T!kku250. ~6!
4-3
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where the minimum has to be taken over allK>R and all
R3K matricesT for which TT†51R . The minimal K is
called thecardinality of the state.

One can also use thel 1 norm~sum of absolute values! and
minimize (a,ku(TTA(a)T)kku. For 232 systems, thel 1 norm
is theaverage concurrenceof the ensemble, as introduced b
Wootters in@7#, and the minimum is theconcurrenceof the
stater. Note that in the context of separability testing it do
not matter whether one uses (TTA(a)T)kk or
(TTA(a)T)kk /wk .

To end this paragraph, we derive an alternative expres
for the l 2 norm i(C2(c̃k))ki2 . Define Bk5c̃k(c̃k)†, with
eigenvalue decomposition Bk5UkSkUk† @with Sk

5Diag(s i
k)#. Using the properties ofC2 we find

i@C2~ c̃k!#k51
n i2

25(
k

Tr@C2~ c̃k!C2~ c̃k!†#5(
k

Tr C2~Bk!

5(
k

Tr C2~Sk!5(
k

(
i , j

s i
ks j

k

5 1
2 (

k
F(

i , j
s i

ks j
k2(

i
~s i

k!2G
5 1

2 (
k

S (
i

s i
kD 2

2(
i

~s i
k!2

5 1
2 (

k
@~TrSk!22Tr~Sk!2#

5 1
2 (

k
@~Tr Bk!22Tr~Bk!2#.

This result can be interpreted easily: a positive definite H
mitian matrix is of rank 1 iff the square of its trace equals t
trace of its square.

D. Entanglement of formation

Within the same framework, we can also give a var
tional characterization of the EOFE(r) of a mixed stater.
This quantity is defined as the average entanglement of
pure states in a realizing ensemble, minimized over all p
sible realizing ensembles@5#. The von Neumann entropyH
of a stater is 2Tr r log2 r. Introducing the functionh(x)
52x log2 x, we can expressH as a function of the eigenval
ues lk of r:H(r)5(kh(lk). The entanglement of a pur
statec of a bipartite system~A, B! is the entropy of the
partial trace of the projector ofuc&:E(c)5H(rA) with rA
5TrB(uc&^cu). The average entanglement of an ensem
$wk ,ck% is (kwkE(ck); the EOF is then found as the min
mal value over all ensembles realizingr.

In this paragraph, we will derive an expression forE(r)
that is better suited for calculation than the defining equat
Let $wk ,ck% be the realizing ensemble with least avera
entanglement and$mp ,f% the realizing ensemble corre
sponding to the eigenvalue decomposition ofr. We first ex-
press the partial trace of the projector ofck in terms of
c̃k:ck5( i , j c̃ i j

k ei
^ ej , hence
05230
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uck&^cku5 (
i , j ,p,q

c̃ i j
k ~ c̃pq

k !* ~ei
^ ej !~ep

^ eq!†,

and the partial trace equals

rA
k 5TrB~ uck&^cku!5(

i ,p
S (

q
c̃ iq

k ~ c̃pq
k !* D ~ei !~ep!†

5c̃k~ c̃k!†.

This is precisely the matrixBk from the previous paragraph
Remark: The entropy of this partial trace matrixrA

k can be

expressed in terms of the singular values ofc̃k. Let c̃k

5UkSkVk be the singular value decomposition ofc̃k ~that is,
the Schmidt decomposition ofck!, with Uk unitary andVk

right-unitary ~supposing thatN1<N2! and Sk a positive
semidefinite diagonal matrix, thenrA

k 5Uk(Sk)2(Uk)† and
H(rA

k )5H((Sk)2)522( i(s i
k)2 log2(si

k).
In the present framework only the eigenvectorsfp are

known, and the vectorsck are to be sought by looking for a
appropriateT-matrix. We therefore want to expressrA

k in
terms ofT and thefp. We get

wkrA
k 5Awkc̃

kAwk~ c̃k!†5 (
p,q51

R

TpkTqk* Ampmqf̃p~f̃q!†.

Let us use the symbolDk(T) as a shorthand for the right
hand side of the previous expression

Dk~T!5 (
p,q51

R

TpkTqk* Ampmqf̃p~f̃q!†,

rA
k 5Dk~T!/wk ,

wk5Tr Dk~T!5~T†MT!kk .

The last equation follows from the fact thatrA
k is normalized.

The EOF is thus:

E~r!5min
T,K

(
k51

K

wkH~rA
k !5min

T,K
(
k51

K

G@Dk~T!#, ~7!

with

G~A!52Tr$A log2@A/Tr~A!#%5H~A!2h@Tr~A!#. ~8!

The minimum has to be taken over allK>R and all R3K
matricesT for which TT†51R . Note that, since a state i
separable iff its entropy of formation is zero, Eq.~7! gives an
alternative for Eq.~6! for testing separability.

Equation~7! can be brought to a more suitable form if w
enlarge the set of matricesf̃p with K2R zero matrices for
p.R. Then we can always use square and, therefore, uni
T matrices. Following a result by Uhlmann@12#, the cardi-
nality K must lie between the rankR and the square of the
rank. This guarantees that the EOF can be found by rest
ing oneself to finite-sizedT matrices.
4-4
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E. Concurrence

The first analytic formula for calculating EOF has be
found by Wootters@7# and is valid for 232 systems. A basic
property used in deriving the formula is the so-called co
currence of a state. The concurrence is also useful for tes
separability, because a 232 state is separable iff its concu
rence equals zero. In this section we do two things: first
rederive Wootters’s results in a shorter way, based on
concepts we have introduced above and using an intere
theorem from matrix analysis. This rederivation gives hi
toward the generalization of the concurrence concept
higher-dimensional systems, which is the second topic of
section.

1. The 2Ã2 case

In this paragraph we give a shorter proof of Wootter
results on the EOF of 232 systems@7#. For the case of 2
32 systems, formula~5! becomes particularly simple, sinc
there is only one 232 minor to consider, so that there is ju
a single symmetric matrixA(a).

The concurrence of a pure statec equals C(c)
5ucTScu. For the pure statesck in a decomposition ofr, we
get C(ck)5u(CTSC)kku5u(W21/2TTATW1/2)kku
5u(TTAT)kku/wk .

The average concurrence of a realization ofr is thus
given by(ku(TTAT)kku and the concurrence ofr is the mini-
mal average concurrence over all possible realizations,
over all possible right-unitary matricesT. SinceA is symmet-
ric, its singular-value decomposition assumes a special fo
known as the Takagi eigenvalue decomposition~@10#, 4.4.4!:
A5UTSU ~again,U is unitary andS is positive semidefinite
diagonal!. Since we consider all possibleT, the matrixU can
be absorbed inT, so that the expression for the concurren
becomes minT (ku(TTST)kku. So,TTST runs through all pos-
sible complex symmetricK3K matrices withR prescribed
singular valuesS ~if K.R then K2R zero singular values
have to be added toS! and the average concurrence equ
the sum of the moduli of the diagonal elements.

The following theorem by Thompson gives a precise
lationship between the moduli of the diagonal elements o
complex square-symmetric matrix and its singular valu
@14#.

Theorem 1 (Thompson). Let d1 ,...,dn be complex num-
bers ands1 ,...,sn nonnegative real numbers, enumerated
that ud1u>¯>udnu ands1>¯>sn . A complex symmetric
matrix exists withd1 ,...,dn as its diagonal elements an
s1 ,...,sn as its singular values, if and only if

(
i 51

k

udi u<(
i 51

k

si , 1<k<n,

(
i 51

k21

udi u2(
i 5k

n

udi u<S (
i 51,iÞk

n

si D 2sk , 1<k<n,

(
i 51

n23

udi u2udn22u2udn21u2udnu< (
i 51

n22

si2sn212sn .
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The last inequality does not apply whenn,3.
The second inequality gives, fork51,

(
i 51

n

udi u>s12S (
i 52

n

si D .

Applied to the problem at hand, we find that the minim
average concurrence must bes12(( i 52

K s i), or zero if this
quantity is negative. Here we have putK54. Letting K be
larger than 4 can give no improvement, since this amount
just addingK24 zero singular values, and this does n
influence the inequalities of the theorem.

If R,4, we could try to decreaseK to 3, but then the third
inequality comes into play,

(
i 51

3

udi u>2S s12(
i 52

3

s i D ,

so that

C~r!K535us12s22s3u.

Therefore, ifR53 ands12s22s3,0, puttingK54 gives
zero concurrence, whileK53 gives nonzero concurrence. I
other words, these states are separable in~at least! four prod-
uct states (K54). Furthermore, a rank-3 state is separable
three product states (K53) iff s12s22s350.

If R52, we can safely putK52, since then the third
inequality does not apply.

We have thus proven the following theorem.
Theorem 2. The concurrence of a 232 state with eigen-

value decompositionr5FMF† equals

C~r!5maxS 0,s12S (
i 52

R

s1D D ,

wheres i are the singular values of the matrix

A5AMFTsy^ syFAM ,

sorted in descending order. The optimal cardinalityK equals
the rank R, except in the case whenR53 and s1,s2
1s3 , where the optimalK is 4.
Because of the statement about the optimal cardinality,
theorem is an improvement over Wootters’s theorem.

2. Relation between concurrence and entanglement of formatio

For the sake of completeness, we rephrase the res
Wootters’s results of@7# in the present setting.

The entanglement of a pure state is a convex, monoto
function E of the concurrence of the state:E(c)5E„C(c)….
Hence, the EOF, which is the average pure-state entan
ment, equals

E~r!5min
T

(
k

wkE„u~TTAT!kku/wk….

Because of the convexity ofE, this gives E(r)
>minT E„(ku(TTAT)kku…, where equality holds only if all
4-5
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quantitiesu(TTAT)kku/wk are equal. Using Thompson’s theo
rem again and the monotonicity ofE, this minimum is equal
to E(s12( j .1s j )5E„C(r)….

We therefore look for an optimalT matrix, yielding mini-
mal average concurrence@thus equal toC(r)#, and for
which, additionally, all the quantitiesu(TTAT)kku/wk—the
ensemble member concurrences—are equal@and thus also
equal toC(r)#. There exists aT8 for which (k(T8TAT8)kk is
equal to C(r); indeed, with A5UT(U, set UT8
5Diag(1,i ,i ,...,i ), then T8TAT85Diag(1,21,21,...,
21)(, and the trace of this matrix iss12(s21...1sK). If
this quantity is positive, it is equal toC(r); if not, r is
separable and we immediately have that a matrixT9 exists
such that allu(T9TAT9)kku/wk are equal~zero!.

Concerning the nonseparable states, for any orthog
matrix O, Tr(T8O)TA(T8O)5Tr T8TAT8. As shown in@7#,
using a suitableO we can make all„(T8O)TAT8O…kk equal
to a constanta timeswk ~exploiting the fact thatT8TAT8 is
a real diagonal matrix here!. Summing overk then yields
C(r)5u(k„(T8O)TAT8O…kku5ua(kwku5uau, so that
„(T8O)TAT8O…kk5C(r)wk . Then, (ku„(T8O)TAT8O…kku
5C(r), so thatT5T8O is the matrix we were looking for.

If one is interested in obtaining the optimal ensemble
hibiting a member concurrence ofC(r), one is forced to
actually calculate the required orthogonal matrixO. In @7#
the existence of such anO is proven. Here, we show thatO
can be found as a product of three rotation matri
O12,O13,O14, corresponding to rotations in the 12 plane,
plane, and 14 plane, respectively. For example,

O125S cosf12 sinf12 0 0

2sinf12 cosf12 0 0

0 0 1 0

0 0 0 1

D .

After applying these rotations~with rotation anglesf1 j as
yet to be determined!, we get four differentT matrices in
succession:T15T8, T25T1O12, T35T2O13, and T5T4
5T3O14. The corresponding rotation angles are chosen
that after every step at least one member concurrence
comes equal toC(r), i.e., (Tj

TATj ) j j 5C(r)(Tj
†MTj ) j j for

j 52, 3, 4, respectively. Here we have used the formulawk

5(T†MT)kk . Denoting Aj5(Tj
TATj ) and Bj5(Tj

†MTj ),
this leads to the condition that the vector (sinf1j, cosf1j)
must be in the null space of the 232 submatrix ofAj 21
2C(r)Bj 21 consisting of its first andj th rows and columns
A short calculation then yields the optimal rotation angle
each step. Note that in the last step (j 54) not only the fourth
member concurrence should become equal toC(r), but also
the first one.

3. Towards a generalized concurrence

According to Eq. ~5!, a state is separable iff a righ
unitary matrix T can be found such that the diagonal e
ments of everyTTA(a)T are zero. In analogy with defining
the average concurrence of a realization of a 232 state as
the l 1 norm of the diagonal elements ofTTAT, in the general
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case we could define aconcurrence vectoras the vector ofl 1

norms of the diagonal elements ofTTA(a)T,

C~a!~T!5(
k

u~TTA~a!T!kku. ~9!

A state is therefore separable iff aT exists such that the con-
currence vector is zero. From the previous paragraph, a
essary condition then follows immediately:

s1
~a!<(

i 52

R

s i
~a! ;~a!, ~10!

where thes i
(a) are the singular values ofA(a), sorted in

descending order.
Unfortunately, this condition is not a sufficient one fo

separability. Numerical experiments showed that criter
~10! is weaker than the Peres criterion, which is a nonsu
cient criterion itself. The main reason for this failure is th
all the components of the vector concurrence~9! must be
made zero by one and the sameT. Typically, however, the
matricesA(a) all have different singular vectors~the rows of
theU matrix!, so that theU (a) matrices in the decompositio
A(a)5U (a)TS (a)U (a) cannot all be absorbed inT at the same
time.

It is easy, however, to find a stronger criterion than cri
rion ~10!: as Eq.~9! is linear in the matricesA(a), the con-
dition ~10! must also hold for every linear combination of th
matricesA(a). Denoting thej th singular value~sorted in de-
scending order! of the linear combination( (a)x(a)A

(a) by
s j (x), it follows that another, and potentially stronger, ne
essary condition for separability is given by

max
xPCM

s1~x!2(
j 52

R

s j~x!<0, ~11!

where M is the number of tuples~a!. Again, one could
choose to consider all possibleA(a) or just the minimal sub-
set with (a)5( i ,i 11,j , j 11).

Numerical experiments now showed that criterion~11! is
actually stronger than the Peres criterion, providedall A (a)

are used. In the section on numerical results we will give
example where condition~11! even seems to be sufficient fo
determining separability. It would be very interesting if on
could prove this to be true for every state, but we have
yet been able to do this.

In the remainder of this paragraph, we will present a
other possible generalization of the concurrence. This ge
alization has the benefit that we can prove that a stat
separable iff its generalized concurrence is zero, but it a
has the drawback that it is as hard to calculate as the
tanglement of formation. Some properties of this generali
concurrence are presented and a number of open ques
are formulated.

Consider first the pure states. A pure statec is a product
state iff c̃ is a rank-1 matrix. This means that all 232 mi-
nors of c̃ must be zero. Denote the generalization of t
matrix S5sy^ sy to then13n2 case as
4-6
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S5~sy% 0n122! ^ ~sy% 0n222!. ~12!

The matrixcTSc then picks out one specific 232 minor of
c̃. In order to consider all minors, we can apply local unita
operations to the statec and put the result again under th
action of S. Specifically, we define the generalized conc
rence of a pure state as follows.

Definition 1. The generalized concurrence of a pure st
uc& is

C~c!5max
U,V

ucT~U ^ V!TS~U ^ V!cu, ~13!

where the maximum is taken over all special unitary matri
UPSU(n1) andVPSU(n2).

Theorem 3. The generalized concurrence of a pure statc

with c̃5U1SV1
T and S5diag(s1 ,s2 ,...,sn) @n

5min(n1,n2)# equals

C~c!52s1s2 , ~14!

independent of the dimensions of the system. A pure sta
a product state if its generalized concurrence is zero.

Proof. Rewriting c̃5U1SV1
T in vector form, we havec

5U1^ V1vecS5U1^ V1( is ie
i
^ ei , with ei being a basis

vector of the standard vector basis. Let alsoei j 5ei(ej )T be a
basis vector of the standard matrix basis. Then

C~c!5max
U,V

U(
i , j

s is jTr@~ei j
^ ei j !~U ^ V!TS~U ^ V!#U

5max
U,V

U(
i , j

s is jTr@ei j UT~sy% 0!U#

3Tr@ei j VT~sy% 0!V#U
5max

U,V
U(

i , j
s is jwi jU,

with

w5u+v5@UT~sy% 0!U#+@UT~sy% 0!U#. ~15!

Here, + denotes the Hadamard product~componentwise,
product!.

Denoting byuwu the matrix obtained fromw by taking the
absolute values of all matrix entries, we can easily prove
every row sum and every column sum ofuwu is not larger
than 1, and the sum of all entries ofuwu is not larger than 2.

Now, asu and v are antisymmetric,w is symmetric and
has a zero diagonal. Therefore,w and uwu lie in the span of
the generalized Pauli matricessx,i j 5ei j 1eji . Moreover, by
the above sum statements, and noting that the sum o
entries of everysx is equal to 2, we have thatuwu must lie in
the convex closure of the setS5$0%ø$sx,i j ; i , j %. Hence,
05230
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C~c!5max
U,V

U(
i , j

s is jwi jU<max
U,V

(
i , j

s is j uwi j u

<max
wPS

(
i , j

s is j uwi j u5max
k, l

(
i , j

s is j~sx,kl! i j

52 max
k, l

sks l52s1s2 .

Here we have used the well-known fact that the constrai
maximum of a linear function over a convex set is reach
on an extreme point of the set. We, therefore, find an up
bound on C(c)<2s1s2 . Moreover, this bound can b
reached by settingU5V51, which gives w5sy% 0 and
uwu5sx,12. This proves the theorem.

We now turn our attention to mixed states.
Definition 2. The generalized concurrence of a mixed st

r is the minimal generalized concurrence of all ensemb
that realizer,

C~r!5 min
$pi ,c i %

(
i

pimax
Ui ,Vi

uc iT~Ui
^ Vi !TS~Ui

^ Vi !c i u.

~16!

Again, Ui andVi are special unitary matrices.
Theorem 4. The generalized concurrence function is co

vex, i.e.,C(xr11@12x#r2)<xC(r1)1(12x)C(r2).
Proof. Actually, any functionf defined in this way is con-

vex: starting from anf defined on pure states, first extend t
definition to ensembles of pure states as the ensemble a
age of thefs of the pure states; then to mixed states as
minimal value off of all possible realizing ensembles. Le
$pi ; j ,c i ; j% ( j 51,2) be an optimal realizing ensemble ofr j .
Then $xpi ;1 ,c i ;1%ø$(12x)pi ;2 ,c i ;2% is a realizing en-
semble ofxr11(12x)r2 with ensemblef equal tox f(r1)
1(12x) f (r2). As this combined ensemble need not be o
timal, f „xr11@12x#r2… could be smaller than this ensemb
f, but, in any case, it is not larger.

The first important question, concerning the relevance
this definition of generalized concurrence, is: is it true thar
is separable if and only ifC(r)50? It is easy to see that thi
is indeed the case.

Theorem 5. A mixed stater is separable if and only if
C(r)50.

Proof. A state r is separable iff it is contained in th
convex closure of the set of pure product states. A pure s
is a product state iff it has zero concurrence. By the previ
theorem it then follows that if a stater is separable, then its
concurrence cannot exceed the value of zero. From the d
nition of concurrence we see that negative values cannot
cur, so the concurrence ofr must equal zero. On the othe
hand, if a stater has zero concurrence, then, by the definiti
of concurrence, there must exist an ensemble realizingr in
which every pure state has zero concurrence. Hence, t
pure states are product states andr is separable.

Consider the pure state setscC5$c:C(c)5C%. By the
convexity of C, every mixed state in the convex closure
cC has C(r)<C. Letting C run from its minimal to its
4-7
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maximal value, we get a one-parameter family of conv
subsets conv(cC) of the total state space. A given stater
with concurrenceC(r) can only belong to those convex su
sets withC>C(r).

By its very definition, the generalized concurrence is
locally invariant measure: any local unitary rotation can
absorbed in theUi and Vi . In the 232 case this definition
reduces to the conventional one for concurrence due to
special property of matricesUPSU~2! that UTsyU5sy .

While this generalization of concurrence has a numbe
desirable properties, it also has a number of undesira
ones: first of all, the generalized concurrence isnot generally
an entanglement monotone~EM!. According to a theorem
concerning entanglement monotones in Ref.@15# ~Theorem
3!, the restriction of any EM to pure states should yield
unitarily invariant concave function of the partial trace of t
pure state. In this case, this function equalsf 52Al1l2,
wherel1,2 are the two largest eigenvalues of the partial tra
@this follows from the fact that TrB(cc†)5c̃c̃†5US2U†,
where c̃5USV#. However, this function is not concave a
can be readily checked numerically, unless this partial tr
is a 232 matrix, i.e., we are dealing with a 23N system.

Secondly, the entanglement of formation will in gene
not be related to this generalized concurrence even for p
states: while the former depends on all Schmidt coefficie
s i , the latter depends only on the two largest ones. So o
for 23N systems is there an unambiguous relation betw
generalized concurrence and EOF~the same relation as in th
232 case!. Furthermore, it remains to be proven that in t
mixed-state case, an optimal ensemble can be found
which every member has a generalized concurrence equ
the generalized concurrence of the mixed state.

III. NUMERICAL RESULTS

In this section we present an application of the variatio
characterizations of separability and EOF. Since these c
acterizations involve looking for the minimum of a functio
over a finite-dimensional manifold, it must be possible
find a numerical algorithm that actually calculates that mi
mum. As a result, it must be possible to calculate the E
for any bipartite state and, moreover, to give the optim
realization of the state~from the optimalT matrix!.

Actually, such an approach has already been taken
Zyczkowski@16#, who used the method of simulated anne
ing in order to find the global minimum. Unfortunatel
while this method is generally known for its good loca
minima-avoidance properties, it requires an inordin
amount of iteration steps if high accuracy is required. If o
is interested in calculating and comparing the EOF of a fa
ily of parametrized states, a large number of significant dig
is required. In our experience, this is only possible in a r
sonable amount of time when the utmost attention is give
the gradient-following properties of the method, especia
when considering larger system dimensions.

In the following paragraphs, we present a minimizati
algorithm that is based on a conjugate-gradient method
avoid local minima, the algorithm is executed a number
05230
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times starting from different initial values. It achieves ve
high accuracy~up to 10 significant digits! in a relatively
short time~on a 300-MHz PC it takes typically 1 min for
333 state!. We then apply the algorithm to the calculation
EOF for certain families of 333 states.

A. Algorithm for minimization

Our algorithm for calculating the entanglement of form
tion is based on a modified conjugate-gradient minimizat
procedure. Starting from an initial pointT5T0 , conjugate-
gradient algorithms iteratively seek a direction along wh
progress in minimizing the objective functiong(T) is maxi-
mal and then perform a so-called line search to actually fi
the minimum along that direction. Recall from Sec. II D th

E~r!5min
T,K

(
k51

K

G„Dk~T!…,

so that, in the present case

g~T!5 (
k51

K

G„Dk~T!….

We see here that minimization is to be done over the unit
manifold. This manifold is not Euclidean, so that the sta
dard line search has to be replaced by a geodesic search@17#.
A geodesic on the unitary manifold is a one-parameter s
group of the unitary group:T(t)5T0 exp(tX), whereX is a
skew-Hermitian matrix giving the direction~tangent vector!
of the geodesic. Through a geodesic search one looks fo
optimal t for which g@T0 exp(tX)# is minimal.

In steepest-descent minimization, the direction for the l
search is taken to be minus the gradient of the objec
function in the current point. Conjugate-gradient metho
improve on this by taking the direction of the previous st
also in account; if not, the progress made in the previous s
could be partly undone by the new iteration. We have use
modification of the Polak-Ribie`re formula for calculating the
search direction@18#; the search direction for iterationi is
based on the gradient at the current point and on the se
direction for the previous iterationi 21,

Xi52~“g! i1gXi 21 ,

g5
^~“g! i2t~“g! i 21 ,~“g! i&

^~“g! i 21 ,~“g! i 21&
,

where^,& is the inner product of the embedding space, be
in this case the standard Hilbert-Schmidt inner prod
^x,y&5Tr xy†. The symbolt denotes parallel transport o
the gradient vector at the (i 21)th point to thei th point
along the geodesic@17#,

t~“g! i 215exp~Xi 21t i 21/2!~“g! i 21 exp~2Xi 21t i 21/2!.

For the line search, we have used the method describe
@18#, again modified to take into account that the search
performed along the geodesicg„Ti exp(tXi)….
4-8
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Any minimization algorithm actually finds local minima
To find the global minimum, we select a number of starti
points at random and let the minimization algorithm wo
from these points. The minimum is then taken over all
results. While this procedure does not guarantee that the
bal minimum is actually found, we found that trying abo
ten starting points gives satisfactory results.

B. Calculation of the gradient

In this paragraph we give an analytic expression for
gradient of the target functiong(T). Conjugate-gradien
methods perform better if an explicit expression is given;
the absence of such an expression, the gradient has t
approximated numerically.

To calculate the gradient, we have to select an arbitr
direction or tangent vectorX, which for the unitary manifold
is a skew-Hermitian matrix. The geodesic on the unita
manifold along this direction and passing throughT0 is given
by Te5T0 exp(eX) or T0(11eX), for small e. The gradient
of a scalar function on the manifold can be calculated fr
the variation of the function along the geodesic using

] f ~Te!

]e
5^“ f ,X&,

where^,& is the Hilbert-Schmidt inner product.
The gradient of the target functiong(T) is given as fol-

lows.
Lemma 2.

~¹g~T!!kpuT515G~Qpk,Qpp!2G~Qpk,Qkk!,

where

Qpq5Ampmqf̃p~f̃q!†

and

G~B,A!52Tr B log2

A

Tr A
.

The details of the calculation are given in Appendix B.

C. Results

As a preliminary test, we have calculated the entang
ment of formation of several states of a 232 system, and
compared the numerical values with those obtainable fr
Wootters’s formula. Furthermore, we considered a o
parameter family of 333 states called isotropic states, a
compared the numerical values with the EOF calcula
from Terhal and Vollbrecht’s formula@8#. In all cases, agree
ment was complete within numerical-machine precision,
cept for some isotropic states where there was a very s
deviation from the formula for parameter values close to8

9.
This can be explained by the fact that for these param
values, there are two local minima of the target function t
are extremely close in value, and that the minimum w
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lowest value has a very small ‘‘basin of attraction.’’ Situ
tions like this are tough nuts for any numerical routine
crack.

The first interesting results were obtained on the Ho
decki 333 states@11#. These states were introduced to sho
that the Peres criterion is not sufficient for determining se
rability. These states exhibitbound entanglement: their en-
tanglement of formation is nonzero, while their entanglem
of distillation is zero~they have positive partial transpos
tion!. The density matrix of a Horodecki 333 state is

r~a!5
1

118a 3
a 0 0 0 a 0 0 0 a

0 a 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0

0 0 0 a 0 0 0 0 0

a 0 0 0 a 0 0 0 a

0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 b 0 c

0 0 0 0 0 0 0 a 0

a 0 0 0 a 0 c 0 b

4 ,

wherea is a parameter between 0 and 1, inclusively, andb
5(11a)/2 and c5A12a2/2. Note that, since these state
are not full rank~their rank is 7! and neither is their partia
transpose, these states lie on the boundary of the set of s
and also on the boundary of the set of bound entang
states.

The result of the calculation is shown in Fig. 1. Here t
entanglement of formation has been calculated for a mixt
of the Horodecki states with the maximally mixed sta
er(a)1(12e)1/9. In Fig. 1, the scale is linear, while in Fig
2 the scale is logarithmic, so that the borderline of the se
separable states is clearly visible. The ‘‘floor’’ in the log
rithmic picture at210 is an artifact; the algorithm stop
when the entanglement gets below 10210.

Note from these results that the Horodecki states hav
rather low entanglement of formation~about 0.0109 fora
50.225! and that their distance to the manifold of separa

FIG. 1. Entanglement of formation for Horodecki states as
function of a ande; linear scale.
4-9
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states is also small~e50.93 fora50.225, that is, mixing the
state with just 7% of the identity destroys all entangleme!.
At first sight, the fact that the appearance of the set of se
rable states is not convex might seem confusing. Howe
the parametera appears in a nonlinear way in the dens
matrix so that the matrices lie on a nonrectilinear curve in
Euclidean state space. The figure, on the other hand, hasa as
parameter and therefore gives a distorted image.

Figure 3 shows the entanglement of formation for the p
ticular value ofa50.225 and fore going to 1. From this
figure, we are led to conjecture that the derivative toe be-
comes infinite ate51.

The above-mentioned calculations have been perform
with the cardinalityK set to 14. Figure 4 shows the effect
using different K in the calculations; heree51 and a
50.225. It is seen that the valueK514 is optimal for calcu-
lating the entanglement of formation in this case.

For these same Horodecki states, we have also teste
conjectured condition for separability@Eq. ~11!# based on the
generalized concurrence. It turned out, quite surprisin
that the condition correctly pinpointed all separable sta
which was verified by comparing the results to Fig. 2. T
leads us to hope that Eq.~11! might be an important step

FIG. 2. Entanglement of formation for Horodecki states a
function of a ande; logarithmic scale.

FIG. 3. Entanglement of formation for Horodecki statea
50.225 as a function ofe; linear scale.
05230
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towards finding a simple and efficient operational criteri
for testing separability.

IV. CONCLUSIONS

We have presented a matrix analytical framework with
which the questions of separability of mixed states and c
culating their entanglement of formation can be formula
in an elegant and practical way. A main result is that, at le
in principle, it is now possible to calculate the EOF of a
state, or determining whether it is a separable state or not
course, for larger dimensions the subproblem of minimiz
the respective target function becomes increasingly m
time consuming. Not only the EOF itself, but also an optim
ensemble realizing the state can be calculated.

We have extended results on the concurrence and EO
232 systems by also including the cardinality of the optim
ensembles. More importantly, we have tried to generalize
concept of concurrence to general systems and have sh
that this generalized concurrence has potential to supp
fast test for separability of general bipartite states.

In the future, we will use the presented methods to g
erate more numerical results about EOF of high
dimensional states, for example, to chart the ‘‘unknown t
ritory’’ of bound-entangled states, or just as a means
testing various conjectures. Another interesting topic for
ture work is trying to prove the conjectured sufficiency of t
generalized concurrence test for separability.
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APPENDIX A: PRESELECTION OF T MATRIX

The topic of this appendix is a method for reducing the
of T matrices over which the minimum~5! has to be taken in
a separability test. In some cases the method already y
the optimalT matrix without need for performing a minimi
zation procedure. This method is based on a method use
blind identification for array processing@19#.

Consider the expression

(
p,q

BpqApq
~a!,

whereApq
(a) is as defined in Eq.~4! and Bi j is a symmetric

matrix. When we substitute Eq.~2! in it, we get, using bilin-
earity of C,

(
p,q

BpqApq5 (
p,q51

R

BpqC~Ampfp,Amqfq!

5 (
p,q51

R

Bpq (
k,l 51

K

Tkp
† Tlq

† AwkwlC~ck,c l !

5 (
k,l 51

K S (
p,q51

R

BpqTkp
† Tlq

† DAwkwlC~ck,c l !

5 (
k,l 51

K

~T†BT* !klAwkwlC~ck,c l !.

Note that, just likeB, (T†BT* ) is also symmetric.
Suppose that the stater is indeed a separable one, the

there exist matricesT leading to a product-state decompo
tion, i.e., toC(ck,c l) being identically zero fork5 l . Con-
sider one such matrixT. There exist symmetric matricesB
for which (T†BT* ) is diagonal, say equal to someL. Indeed,
by right unitarity ofT one just has to take

B5TLTT. ~A1!

Using such aB in the above expression, we find

(
p,q

BpqApq
~a!50 ~A2!

for all a.
We can now reverse the reasoning and say that anT

leading to a product-state decomposition must be found f
some symmetricB that satisfies Eq.~A2!. That is, instead of
searching for aT in the complete set of unitary matrices, w
only have to considerT that follow, using Eqs.~A1! and
~A2!, from suchB. If T is square~that is,K5R!, T is unitary,
and sinceB5TLTT,
05230
t

lds

in

m

BB* 5TLTTT* L* T†

5TuLu2T†.

Hence, the column vectors ofT must be the eigenvectors o
BB* . Given then, all the symmetric matricesB that satisfy
Eq. ~A2!, we only have to consider matricesT whose column
vectors are the eigenvectors of one suchBB* .

We have thus found a general method for reducing
search space. We will now show that under some conditi
this reduced search space contains nothing but the optimT,
so that no search has to be done at all. In that case, one
has to take oneB satisfying Eq.~A2!, and construct aT from
its eigenvectors. The first requirement for this is that t
cardinalityK must equal the rankR, so thatT is then unitary;
the reason is that otherwise Eq.~A1! has no unique solution
Let us suppose that the firstP(P<K) state vectors in the
ensemble realizingr are product vectors:uck&5uak&
^ ubk&,1<k<P. Therefore,C(ck,ck) will be zero for k
<P. Now, the matricesC(ck,c l) for k, l andk5 l .P are
in general~that is, for all states except for a subset of me
sure zero! linearly independent as long as the number
matrices does not exceed the number of matrix element
the latter requirement is not fulfilled, then of course a dep
dence must exist between the matrices. If the requireme
fulfilled then the matrices can still be dependent provided
K vectorsck ~beingm5KN1N2 complex variables! satisfy a
system ofN1(N121)N2(N221)/42K(K21)/22K1P11
polynomial equations of degreed5K(K21)12(K2P)
@each equation corresponds to a minor of rankK(K21)/2
1K2P of a matrix containing (CTS(a)C)kl as elements#.
Using the Schwarz-Zippel theorem@20#, we find that the set
of vectors obeying just one of those polynomial equatio
has measure zero with respect to the set of all possible se
K vectors.A fortiori, this also holds for the set of vector
obeying all polynomial equations. We thus get a second
quirement for the automatic optimality ofT, namely, that the
cardinalityK must satisfy the inequality

K~K21!

2
1K2P<

N1~N121!

2

N2~N221!

2
. ~A3!

It then follows that Sp,qBpqApq can only be zero if
(T†BT* )kl50 for all kÞ l and k5 l .P. In other words,
(T†BT* ) is necessarily a diagonal matrix forany Bsatisfy-
ing Eq. ~A2!, and anyT obeying Eq.~A1! for such aB is
optimal.

We have not investigated whether this technique for
ducing the search space is also applicable for calculating
EOF, that is, whether someT that is optimal with respect to
Eq. ~7! can be found in the reduced search space.

APPENDIX B: CALCULATION OF THE GRADIENT
OF THE AVERAGE ENTANGLEMENT

The geodesic on the unitary manifold along a directionX
~skew-Hermitian matrix! and passing throughT0 is given by
Te5T0 exp(eX) or T0(11eX), for smalle. The gradient of a
4-11
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scalar function on the manifold can be calculated from
variation of the function along the geodesic using

] f ~Te!

]e
5^¹ f ,X&.

To avoid notational clutter, we have setT0 equal to1 in the
rest of the appendix.

Let us recollect that the function ofT that is to be mini-
mized isg(T)5SkG„Dk(T)…, whereG(A)52Tr„A log2@A/
ATr(A)#… andDk(T)5(p,q51

R TpkTqk* Ampmqf̃p(f̃q)†.
Lemma 3. For HermitianA andB,

]

]e
G~A1eB!U

e50

5G~B,A!,

where

G~B,A!52Tr~B log2 A!1Tr~B!log2 Tr~A!.

Proof. We use the following formula from@21# ~formula
6.6.31!, which applies for a Hermitian matrixA(t) function
of a parameter t with eigendecomposition A(t)
5U(t)L(t)U(t)†, and for analytic functionsf,

d

dt
f „A~ t !…5U@„D f ~l i ,l j !…i j +U†A8U#U†.

Here,+ is the Hadamard product andD f „l i(t),l j (t)… are the
‘‘divided differences’’

D f „l i~ t !,l j~ t !…5H f „l i~ t !…2 f „l j~ t !…

l i~ t !2l j~ t !
for iÞ j

f 8„l i~ t !… for i 5 j

.

For A(t)5A1tB, it follows that

d

dt
Tr f „A~T!…U

t50

5(
i

D f „l i~ t !,l i~ t !…~U†BU! i i

5Tr f 8~L!U†BU5Tr f 8~A!B.
A

J.
rin

ys

v.

05230
eSetting f (x)5h(x)52x log2(x) so that f (A)5H(A), we
have f 8(x)52(11 ln x)/ ln 2 and

d

dt
Tr H~A1tB!U

t50

52Tr~11 ln A!B/ ln 2.

Furthermore,

d

dt
h~A1tB!U

t50

52~11 ln Tr A!Tr B/ ln 2,

so that the lemma follows.
Proceeding in a similar fashion, we can expandDk(Te) up

to first order ine. PuttingQpq5Ampmqf̃p(f̃q)†,

Dk~Te!5(
p,q

TpkTqk* Qpq

5(
p,q

@dpkdqk1e~Xpkdqk1dpkXqk* !#Qpq

5Qkk1e(
p

~XpkQ
pk2XkpQ

kp!,

where we have used the fact thatX is skew Hermitian. In-
serting this expression in (]/]e)SkG„Dk(Te)…ue50 we see
that Qkk serves the role of ‘‘A’’ and Sp(XpkQ

pk2XkpQ
kp)

that of ‘‘B.’’ Exploiting linearity of G with respect to its first
argument, we arrive at the expression

]g~Te!

]e
5(

p,k
Xpk„G~Qpk,Qkk!2G~Qpk,Qpp!…

~in the last term we have interchanged the indicesk andp!.
Therefore,

„¹g~T!…kpuT515G~Qpk,Qpp!2G~Qpk,Qkk!.
m.
@1# A. Peres, Phys. Rev. Lett.77, 1413~1996!.
@2# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett.

223, 1
~1996!.

@3# M. Lewenstein, D. Bruß, J. Cirac, B. Kraus, M. Kus,
Samsonowicz, A. Sanpera, and R. Tarrach, e-p
quant-ph/0006064.

@4# B. Terhal, e-print quant-ph/0101032.
@5# C. Bennett, D. DiVincenzo, J. Smolin, and W. Wootters, Ph

Rev. A54, 3824~1996!.
@6# V. Vedral, M. Plenio, M. Rippin, and P. Knight, Phys. Re

Lett. 78, 2275~1997!.
@7# W. Wootters, Phys. Rev. Lett.80, 2245~1998!.
@8# B. Terhal and K. Vollbrecht, e-print quant-ph/0005062.
t

.

@9# L. Hughston, R. Jozsa, and W. Wootters, Phys. Lett. A183, 14
~1993!.

@10# R. Horn and C. Johnson,Matrix Analysis ~Cambridge
University Press, Cambridge, England, 1985!.

@11# P. Horodecki, Phys. Lett. A232, 333 ~1997!.
@12# A. Uhlmann, e-print quant-ph/9704017~1997!.
@13# B. Lockhart, J. Math. Phys.41, 6766~2001!.
@14# R. C. Thompson, Linear Algebr. Appl.26, 65 ~1979!.
@15# G. Vidal, J. Mod. Opt.47, 355 ~2000!.
@16# K. Zyczkowski, Phys. Rev. A60, 3496~1999!.
@17# J. Dehaene, Cheng Yi, and B. De Moor, IEEE Trans. Auto

Control 42, 1596~1997!.
@18# R. Fletcher, Practical Methods of Optimization~Wiley,
4-12



on
),

VARIATIONAL CHARACTERIZATIONS OF . . . PHYSICAL REVIEW A 64 052304
New York, 1987!.
@19# J.-F. Cardoso, inProceedings of ICASSP ’91, ~IEEE, Piscat-

away, NJ, 1991!, Vol. 5, pp. 3109–3112.
@20# R. Zippel, in Proceedings of the International Symposium

Symbolic and Algebraic Manipulation (EUROSAM ’79
05230
Marseille, France, 1979, edited by E. Ng, Lecture Notes in
Computer Science Vol. 72~Springer, New York 1979!,
pp. 216–226.

@21# R. Horn and C. Johnson,Topics in Matrix Analysis~Cambridge
University Press, Cambridge, England, 1991!.
4-13


