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Variational characterizations of separability and entanglement of formation
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In this paper we develop a mathematical framework for the characterization of separability and entanglement
of formation (EOP of general bipartite states. These characterizations are variational in nature, meaning that
separability and EOF are given in terms of a function that is to be minimized over the manifold of unitary
matrices. A major benefit of such a characterization is that it directly leads to a numerical procedure for
calculating EOF. We present an efficient minimization algorithm and apply it to the bound entangid 3
Horodecki states; we show that their EOF is very low and that their distance to the set of separable states is also
very small. Within the same variational framework we rephrase the results by WddeWootters, Phys.

Rev. Lett.80, 2245(1998] on EOF for 2< 2 states and also present some progress in generalizing these results
to higher-dimensional systems.
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[. INTRODUCTION sition of a separable state still has non-negative eigenvalues,
just as the original state. Thus, if the partial transposition of
The problem of finding necessary and sufficient condi-statep is not a statdi.e., does not have non-negative eigen-
tions under which a quantum state of a composite system igalues summing to)] thenp is not separabléi.e., it is an
separable has received considerable attention in the last fesntangled staje The importance of this criterion was soon
years. The prototype example of a nonseparable state isr@alized when Horodeckét al. proved[2] that it is also a
pair of two-level particles in a singlet state, a so-called EPRsyfficient criterion for 2<2 and 2 3 systems. For an intro-

pair, named after Einstein, Podolsky, and Rosen, who usegyction to recent results on this subject, see, g3jand[4].
this sort of a state to show that quantum mechanics exhibits | 5 state is entangled, one could ask for a measure of the

strong nonlocal correlations, which seem to violate the relaz,ount of entanglement. For pure states, a measure gener-

tivity principle. ally agreed upon is the von Neumann subsystem entropy: the

A pure state of a composite system is separable iff it Caréntropy of the partial trace of the state projector. For mixed

be written as the direct product of the subsystem Statessﬁtates, the situation is much more difficult. Not only is there
|Wag)=|PA)®|Pg). A nonseparable pure state @n-

tangled state cannot be decomposed in this way, e.g. th&© single measure of entanglement that is. suited for every
singlet state ()] 1)—| 1)|1))/v2 consists of a superposition purpose, but calculating the values of the different proposed

of separable states but is itself not separable measures and proving statements about them is exceedingly

Nowadays, the importance of entangled states goes pdifficult. Among the proposed measures are the entanglement

yond a mere fundamental interest, since EPR pairs are tH formation [5], the entanglement of distillatioff], and
basic resources of quantum techniques such as quantuiflative entropy of entanglemefsi].
cryptography, quantum teleportation, and quantum error cor- N this paper, we focus on separability, on entanglement of
rection. A mixed state is separable iff its density matrix canformation(EOF), and on the related concept of concurrence.
be written as a convex linear combination of pure produc?ll these subjects are related, because states are separable
states; for a bipartite system this reads and only if their EOF is zero. A closed-form expression ex-
ists for the EOF of X2 systems in terms of their concur-
rence[7]. A closed-form expression also exists for isotropic
P:k; wiupuf| @ ") (v, (@ states of general systerf].
The purpose of this paper is to give variational character-
wherew, are positive weights summing to 1. The separabil-izations of separability and EOF for genefiag., any dimen-
ity problem consists of finding a criterion for checking siong bipartite states. Such a characterization is of the form
whether such a decomposition is possible for a given stateQ(p)=minf(p,T), that is, the state property under study can
Despite the simple formulation of this problem, a com-be found as the minimal value of some specific function over
plete solution to this date has not been found. An importanthe manifold of unitary matrices. In Sec. Il it will be shown
achievement was the discovery by Peres of a necessary coiew this can be done. The language of Sec. Il is matrix
dition for separability1]. He noted that th@artial transpo-  analysis, not only because this allows to state the results in a
most succinct way but also because it gives clues towards
generalizations.

if

K
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mization procedure. In Sec. Ill we describe the procedurehe w, are the mixing weights of th& pure state vectors
that we have used, and some interesting results we have ofj;ky The numbeK is called thecardinality of the ensemble.

tained with it. NecessarilyK cannot be smaller than the raRk Since there
generally are an infinite number of ensembles realizing a
Il VARIATIONAL CHARACTERIZATIONS particular mixed state, we are free to cho#skarger thanR

if this suits our purposes. It will turn out that in the general

It is well known that mixed states can be realized by ancase, we will even be forced to také€>R. Specifically,
ensemble of pure states in an infinite number of ways. Théockhart proved in[13] that, except in the bipartite case
determination of the separability of a state and the determiwhere one of the particles is a qubit or the Hilbert-space
nation of its entanglement of formation have in common thadimension is 9, the set of separable states for wKiehR is
a particular realization of a state has to be found such thad set of measure zero. Moreover, fdx N systems, the set
some property holds for all pure states in that realization. Irof separable states for which the cardinaktys greater than
order to find this optimal realization, it is of considerable (R*%/4 is an open dense set.
interest to have a mathematically elegant way of “generat- Now, p=EE=1Wk|t//k)<$k| or p=YW¥T whereWis a

ing” all possible realizations of a state. In Sec. Il A we will KxK diagonal matrix withw,,=w, and the columns of

recollect a result by Hughston, Jozsa, and Wootters that anyre thek vectorsy*. This decomposition of is reminiscent

realization of a state is related to the eigenvalue decompospf the eigenvalue decomposition pfp=®M®T, whereM

tion of the state via some right-unitary matrix. is anRx R diagonal matrix whose diagonal elements are the
The required property for separability is that all pure eigenvalues op and the columns o are theR eigenvec-

states in the realization must be product states. In Sec. Il Byg. Sincep is Hermitian,® is a unitary matrix.

we give a number of useful mathematical expressions for this |t can now easily be proven that these two decompositions

property. This then leads to a variational characterization ofyyst be related by aRx K right-unitary matrixT; this has

Separabi"ty, the tOpiC of Sec. Il C. For Ca|Cu|a'[ing the EOF Ofbeen proven first by Hughston, Jozsa, and Woot]@]:s

the state, the property of the optimal realization is that the | emma 1 For a general statg, with eigenvalue decom-

so-called average entanglement of the realization is minima ositionp=®M®T, there is a matrix¥ and a non-negative

This property and an ensuing variational characterization ofjiagonal matrixw such thatp=¥WW¥ T iff there is anR

EOF will be discussed in Sec. IID. x K matrix T such that
In this way, searching all possible realizations for some
property amounts to passing through all right-unitary matri- PWY2=pM2T,

ces and test the property in question. However, this would be
a very impractical way to determine separability or EOF if With
there would not be some bound on the dimension of these
matrices, or, which is the same thing, on the number of pure
states in the optimal realization. Luckily, such a bound exists

In the case of separability, Horodecki provédl] that e . .
(N;N,)2 pure statesF:)r Iess));uffice wherelgl afd I\]Iz are of T fo_rm an orthonormal set irtX. Stat_ed in matrix-
% . T algebraic terms, the proof becomes very simple.
the dimensions of the subsystem Hilbert spaces. Uhimann Proof Eirst of all. it is obvious thatbMd = wWw
[12] proved that a similar bound holds for the determination I .d' v f ’ Eq. (2). Conversely, denoteX
of EOF: the number of pure states in the optimal realizatior{0 owsi/z rectly from - £g. (). v y: -
need not be larger than the square of the rank of the state.:_qiw and con5|der the s!ngular-value dgcompogltlon of
In Sec. IIE we discuss the so-called concurrence of %-X:UW whergU IS a un|tar'yR><R matrix, V a ”ght'
state, a quantity that is closely related to the EOF. We give affnitary RX. K m_atnx, andX a dlagonaIRxJIr? matrix TW'th
alternative proof of an important result on the concurrence Opon—negatlrve d|a2g;o?al glements. Fram ® =¥Ww we
2x 2 states by Wootter7]. One of the virtues of this alter- 9t OMe '=U2°U". Since bOthTM a?/d ET are positive
native proof is that it yields an additional result on the exacSemidefinite, it follows that =U &M “>'U so thatX

S - : Tt
amount of pure states in the optimal realization. We then~ ®M “>TUV. This is precisely Eq(2), with T=® U\E

report some progress in generalizing the concurrence concept .
P prog g g P Remarkt is noteworthy that the elements \fandM are

to higher-dimensional bipartite states. .
In Appendix A, finally, a method is described for reducing "élated to each other independentlydfand ¥,

the set of unitary matrices that has to be examined in the case
of separability testing. Under some circumstances, this
method directly yields an optimal realization without any s follows from the observations thd s unitary and that
need for searching. We have not yet investigated whether thig,s -olumns of¥ have norm 1.

method is applicable to the EOF case.

TT =1R. 2

Right-unitarity of the matrixT means that th& row vectors

Wy= (TTM T)kk'

B. Characterization of product states

A. Relation between different realizations of a state A state of arN, X N,, system is separable iff there exists a

Consider a raniR statep in an (N;XN,)-dimensional realizing ensemble consisting solely of product vectgrs
Hilbert space, realized by an ensembpilg,|4*)}i_,, where  =yt®y? with y'e H, and ¥ < H, (in this paper we use
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superscripts for enumerating vectors and subscripts for de- 0 0 1
noting vector componentsProduct vectors can be character- 0 0 -1 0
ized easily by rearranging their components in matrix form. S=0.®0.=

For anN;N, vectorx, letX be anN; XN, matrix such that YUV to -1 0 of’
x=2; X;je'®e!. For product vectors this gives 1 0 0 o

PR = ke B K= aX( BT, (Ref. [7)).

Obviously, product vectors are characterized by the condition
that the rank ofs is 1. A necessary and sufficient condition -

for this is that all 2¢2 mi ¢ b We can now formulate a general necessary and sufficient
of .'S 'S that a minors ofy mus e.zeio, Of, MOT€ " condition for the separability of a mixed state. As mentioned
succinctly, that thesecond compound matriof ¢ must be  pefore, the statp=dM®" is separable iff there exists a

zero: C,(1)=0 ([10], 0.8.1. The second compound matrix decompositiorp=YWW¥ T with ¥ WY2=dMY2T, such that
of an N3 XN, matrix is an[N;(N;—1)/2]X[N»(N,—1)/2]  all 4* are product states, @(*,¢')=0, for all k=1.

C. Condition for separability

matrix with elements Now
Co( A iin=AAr — A Ay, i<i’, j<j'. C(*, ") = Wb, Wy ) N wew,
R
The elements o€, are all possible X2 minors ofA. The _ TokTal p q
second compound matrix has a lot of useful properties such _Mzzl Jww, C(‘/m_p¢ ,\/m_qu ) @)
as C,y(AB)=C,(A)Cy(B), Co(1n) =lhn-1ys2s and
C(A 1) =[C,(A)] ! ([10], 0.8.1. where we have exploited the bilinearity of the fo@nGiven

For practical applications it is sometimes better to conthe eigenvalue decomposition ofp, the entity
sider a (N;—1)X(N,—1) submatrix ofC,, the one con- C(m,¢P,\m,¢% can be calculated in a straightforward
taining the elementsC,(A)ii+1y,g,j+1) Only. It is easily way. Let us organize its components into a set of matrices
seen that the vanishing of this submatrix is already sufficiena(®) e M,
for A being of rank 1.

From the expression for the second compound matrix, ALY =C(Vmy¢P, Jmgd?) , = \MDTS YD M;  (4)
which is quadratic inA, it will prove useful to construct a

bilinear function of twoN; X N, matrices, denoted(A,B), this means that thpg entry of the(a)th A matrix equals the
a entry of the matrixC(y/m, P, m,49). Using this nota-
C(A,B)iiny,jH=AiBirj»— Ay /By, i<i’, j<j’. tion, Eq.(3) can be written concisely as
Obviously,C(A,A)=C,(A), so thatC(A,A)=0 if and only C(* ¢ = (TTADT) [ wiw,.
if A has rank 1. More specifically, we can apply this to the _ ] ]
state vectorss®: ¢X is a product vector it(FX,7%) =0. The state is therefore separable iff we can find RxK

In the following, we will only use a symmetrized version Matrix T, with K=R, such that

of C, which we will denote by TTt=1
=g,

K oy — 7k T ~1 Tk _
Since this is a bilinear function in the elementsiofwe can

> . . Here, k ranges from 1 tdK and « enumerates all tuples of
express this in matrix notation

indices (,i’,j,j’) with 1<i<i’sN; and 1=j<j’'<N,.
As noted before, it is also sufficient to consider only the
tuples (,i+1,,j+1).

Testing separability requires that the syst@nbe solved
for T. Another approach, however, is to consider
(TTAT), as entries of a matrix indexed lyandk and to
try to minimize a matrix norm of this matrix as a function of
T. The state is then separable iff this minimum is zero. Ob-

C(‘//k, l;bl)(a): (WTS{Q)W)kI ’

where the notatior(a) is a shorthand for the index tuple
(i,i",j,i"). The matricesS!?), which we callindicator ma-
trices are defined as

(a) _qla) _ . .
Sinain=Sinan =1 viously, one can use whatever matrix norm one prefers, e.g.,
the Hilbert-Schmidt nornfalso called the Frobenius norm or
5E|“> U —— thel, norm) |A[5==; ;|A; j|>=TrAAT. Thusp is separable
P07 (GSPNUR iff
all other elements being zero. Note that&have rank equal
to 4. For the case of 22 systems, there is only one indica- min >, [(TTA@T),,/2=0. (6)
tor matrix and it is equal to TK ak
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where the minimum has to be taken over Kl=R and all S, o
RX K matricesT for which TT'=1g. The minimalK is [k = D UG * (elee)(ePeen)T,
called thecardinality of the state. bhpa

One can also use thig¢ norm(sum of absolute valugand

o and the partial trace equals
minimize S, (| (TTAT), /. For 2X2 systems, thé; norm

is theaverage concurrencef the ensemble, as introduced by ‘ ok ~~k o s
Wootters in[7], and the minimum is theoncurrenceof the ph=Tra(lW ) () =2 (E Yig(¥pg) )(e )(eP)
statep. Note that in the context of separability testing it does WA

not matter whether one uses TA®T),, or =TT

(TTA(a)T)kk/Wk .

To end this paragraph, we derive an alternative expressioThis is precisely the matriB¥ from the previous paragraph.
for the I, norm [|[(C,(¥))l,. Define Bx=9X(*) T, with Remark The entropy of this partial trace matri can be
eigenvaluke decomposition B¥=U*SKUK"  [with 3*  expressed in terms of the singular valuesyf Let 3*
=Diag(oy)]. Using the properties oE, we find =U*S VK be the singular value decompositionyf (that is,

the Schmidt decomposition af*), with UX unitary andv*
ITC(F)IR_1]2= D T CH(P)Co() 1=, TrC,(B) right-unitary (supposing thatN;<N,) and =¥ a positive
k k semidefinite diagonal matrix, thepl=UX(Z"?U%" and
H(p}) =H((29?) = —2Z;(0})* logy(a}).
=D TrC,(3H=2 > ofol In the present framework only the eigenvectef® are
k ki known, and the vectorgX are to be sought by looking for an

. - - appropriateT-matrix. We therefore want to expreﬁ in
=3 [Ij Uin_Ei (o7) terms of T and the¢P. We get
5 R

13 (S ot -3 @y W= VTN~ D Ty (3"

I I 4=

Let us use the symbah,(T) as a shorthand for the right-
1 Ky2_ ky2 k
N sz [(Tr297=Tr(Z57] hand side of the previous expression
R
=320 [(TrBY?~Tr(BY?]. A= S ToThlmomed?(39)7,
p.a=1

This result can be interpreted easily: a positive definite Her-
mitian matrix is of rank 1 iff the square of its trace equals the
trace of its square.

pA=A(T)IW,
W =TrA(T)=(TTMT) .

D. Entanglement of formation The last equation follows from the fact thalt is normalized.
Within the same framework, we can also give a varia- The EOF is thus:
tional characterization of the E®fp) of a mixed statep.
This quantity is defined as the average entanglement of the . .
pure states in a realizing ensemble, minimized over all pos- E(P>=T:<”k21 WkH(pi):TLngl GlA(L, (@)
sible realizing ensembld$]. The von Neumann entropil ’ ’
of a statep is —Trplog, p. Introducing the functiorh(x) with
= —xlog, x, we can expreshl as a function of the eigenval-
ues\y of p:H(p)==h(\y). The entanglement of a pure G(A)=—Tr{Alog,[ A/Tr(A)]}=H(A)—h[Tr(A)]. (8
state » of a bipartite system(A, B) is the entropy of the
partial trace of the projector dfy):E(¢)=H(pa) With po  The minimum has to be taken over &R and allRxK
=Trg(|¥)(¥|). The average entanglement of an ensemblenatricesT for which TT'=15. Note that, since a state is
{wy, %} is =, W E(¢); the EOF is then found as the mini- separable iff its entropy of formation is zero, E@) gives an
mal value over all ensembles realizipg alternative for Eq(6) for testing separability.
In this paragraph, we will derive an expression Eip) Equation(7) can be brought to a more suitable form if we

that is better suited for calculation than the defining equationgnarge the set of matrices® with K—R zero matrices for
Let {wy,y} be the realizing ensemble with least averagep> R Then we can always use square and, therefore, unitary
entanglement andm,, ¢} the realizing ensemble corre- T matrices. Following a result by Uhimari2], the cardi-
sponding to the eigenvalue decompositiorpoile first ex-  nality K must lie between the ranR and the square of the
press the partial trace of the projector #f in terms of  rank. This guarantees that the EOF can be found by restrict-
P y*=3, Yfe' @6, hence ing oneself to finite-sized matrices.

K K
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E. Concurrence The last inequality does not apply wher<3.

The first analytic formula for calculating EOF has been e second inequality gives, fér=1,
found by Wootterg7] and is valid for 2<2 systems. A basic n n
property used in deriving the formula is the so-called con- E |di|>Sl—(z Si)-
currence of a state. The concurrence is also useful for testing i=1 i=2

separability, because ax2 state is separable iff its concur-

rence equals zero. In this section we do two things: first wéPPlied to the problem at hand, we find that the minimal
rederive Wootters's results in a shorter way, based on thaverage concurrence must be—(Z;_,07), or zero if this
concepts we have introduced above and using an interestifij/antity is negative. Here we have fit=4. LettingK be
theorem from matrix analysis. This rederivation gives hintslarger than 4 can give no improvement, since this amounts to
toward the generalization of the concurrence concept tdlst addingK—4 zero singular values, and this does not

higher-dimensional systems, which is the second topic of thiifluence the inequalities of the theorem.
section. If R<4, we could try to decreas€to 3, but then the third

inequality comes into play,
1. The 2X2 case 3 B

In this paragraph we give a shorter proof of Wootters'’s E |di|>_(gl_2 O'i):
results on the EOF of 22 systemd7]. For the case of 2 i=1 =2
X 2 systems, formul&5) becomes particularly simple, since
there is only one X2 minor to consider, so that there is just
a single symmetric matria(®).

The concurrence of a pure stat¢g equals C(y)
=|4"Sy|. For the pure states* in a decomposition of, we  Therefore, ifR=3 ando;,— o, — 03<0, puttingK =4 gives
get C(=|(VTSV),d =|(W Y2 TTATWA?) .| zero concurrence, whillé =3 gives nonzero concurrence. In
=[(TTAT) /Wy . other words, these states are separablatifeas} four prod-

The average concurrence of a realizationgofs thus  uct statesiK=4). Furthermore, a rank-3 state is separable in
given by, |(TTAT), and the concurrence pfis the mini-  three product state(=3) iff oy~ op— 03=0.
mal average concurrence over all possible realizations, i.e., If R=2, we can safely puK=2, since then the third
over all possible right-unitary matricds SinceA is symmet-  inequality does not apply.
ric, its singular-value decomposition assumes a special form, \We have thus proven the following theorem.
known as the Takagi eigenvalue decompositidi®], 4.4.4: Theorem 2The concurrence of a’22 state with eigen-
A=UTXU (again,U is unitary and® is positive semidefinite value decompositiop=dM® " equals
diagonal. Since we consider all possible the matrixU can
be absorbed i, so that the expression for the concurrence R
becomes mipS(T'ST)l. So, T'ST runs through all pos- C(p)=max 0,01~ .Zz o1
sible complex symmetri& X K matrices withR prescribed -

Singular Value§ (|f K>R thenK—R zero Singular values Wherea-i are the Singu|ar values of the matrix
have to be added td) and the average concurrence equals
the sum of the moduli of the diagonal elements. A= MdTo,® o, d M,

The following theorem by Thompson gives a precise re-
lationship between the moduli of the diagonal elements of sorted in descending order. The optimal cardinefitgquals
complex square-symmetric matrix and its singular valueghe rank R, except in the case wheR=3 and o1<o0,

[14]. + o3, where the optimaK is 4.

Theorem 1 (Thompsan)et d,,...,d, be complex num- Because of the statement about the optimal cardinality, this
bers ands, ,...,s, nonnegative real numbers, enumerated sdheorem is an improvement over Wootters's theorem.
that|d,|=---=|d,| ands;=---=s,. A complex symmetric
matrix exists withd,,...,d, as its diagonal elements and 2. Relation between concurrence and entanglement of formation
S1,...,Sy as its singular values, if and only if For the sake of completeness, we rephrase the rest of

Wootters’s results of7] in the present setting.

so that

C(p)k=3=|o1— 0~ 03|.

K K The entanglement of a pure state is a convex, monotonic
21 |di|§21 si, 1lsksn, function £ of the concurrence of the staté() =&(C(#)).
o o Hence, the EOF, which is the average pure-state entangle-

ment, equals

>

n
i=1i#k

k—1 n

> di| -, |d: s( s—)—s, 1<k=n,

& 1l lal o E(p)=min2 wi(|(TTAT)jud/wi).
T

n-3 n-2

|— _ _ o _ Because of the convexity off, this gives E(p)
di| —|dp_o| —|dn di|<2, si—S,_1—5Sn. Yy g p
izl ] =ldn—2] =] 1| = |d] Zl Lot =mint ECJ(TTAT) ), where equality holds only if all
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quantities (TTAT) |/w, are equal. Using Thompson’s theo- case we could define@ncurrence vectoas the vector of,
rem again and the monotonicity &f this minimum is equal norms of the diagonal elements BfAT,
to &(o1—Zj-107) = E(C(p)).

We therefore look for an optimdl matrix, yielding mini-
mal average concurrencghus equal toC(p)], and for
which, additionally, all the quantitie§(TTAT)|/w,—the
ensemble member concurrences—are edaatl thus also A state is therefore separable ifffeexists such that the con-
equal toC(p)]. There exists ' for which=,(T'TAT'),is  currence vector is zero. From the previous paragraph, a nec-
equal to C(p); indeed, with A=UTSU, set UT’ essary condition then follows immediately:
=Diag(1j,i,...,)), then T'TAT' =Diag(1-1,—1,...,

Clay(T)= ; [(TTADT) . (9)

R
—1)Z, and the trace of this matrix i, — (o, +...+ o). If @ @
this quantity is positive, it is equal t€(p); if not, p is 0(1 )ggz U‘( ' V@), (10
separable and we immediately have that a maffixexists
such that al|(T"TAT") . /w, are equalzero. where thes(® are the singular values oA®, sorted in
Concerning the nonseparable states, for any orthogonalescending order.
matrix O, Tr(T'O)TA(T'O)=TrT'TAT'. As shown in[7], Unfortunately, this condition is not a sufficient one for

using a suitabl®d we can make al((T'O)"AT’O),, equal  separability. Numerical experiments showed that criterion
to a constantr timesw, (exploiting the fact thaT’TAT’ is  (10) is weaker than the Peres criterion, which is a nonsuffi-
a real diagonal matrix hereSumming overk then yields cient criterion itself. The main reason for this failure is that
Clp)=|=(T'O)TAT'O) | =|a= W, |=]a|, so that all the components of the vector concurrer(® must be
(T'O)TAT'O)«=C(p)wix. Then, = |((T'O)TAT O)y made zero by one and the samieTypically, however, the
=C(p), so thatT=T'0 is the matrix we were looking for. matricesA(® all have different singular vectorghe rows of

If one is interested in obtaining the optimal ensemble exthe U matrix), so that theJ () matrices in the decomposition
hibiting a member concurrence @(p), one is forced to Al =T (DY@ cannot all be absorbed hat the same
actually calculate the required orthogonal mat@x In [7]  time.
the existence of such &b is proven. Here, we show th& It is easy, however, to find a stronger criterion than crite-
can be found as a product of three rotation matricesion (10): as Eq.(9) is linear in the matriceé\(?), the con-
015,013,044, corresponding to rotations in the 12 plane, 13dition (10) must also hold for every linear combination of the
plane, and 14 plane, respectively. For example, matricesA(®). Denoting thejth singular valugsorted in de-

scending orderof the linear combinatiort ,)x(,Al*) by

Cos¢y, sing;; 0 0O o;(x), it follows that another, and potentially stronger, nec-
—sin¢g;, C€os¢;, 0 0O essary condition for separability is given by
= o 1 of R
0 o 01 n‘l«'s\ch(X)—;2 a;(x)=<0, (12)

xe M

After applying these rotationéwith rotation anglesp,; as  \here M is the number of tuplega). Again, one could
yet to be determingd we get four differentT matrices in  choose to consider all possiod® or just the minimal sub-
SUCCGSSion:TJ_:T,, T2:T1012, T3:T2013, and T=T, set with (a) — (l g+ 1’] ’j + 1) .

=T30,4. The corresponding rotation angles are chosen S0 Nymerical experiments now showed that criterian) is
that after every step at least one member concurrence b%‘ctually stronger than the Peres criterion, proviadda(®)

; T _ t . - ' o
comes equal t&(p), i.e., (TjAT);;=C(p)(T{MT;);; for  zre used. In the section on numerical results we will give an
1=2, 3, 4, respectively. Here we have used the fornmla  example where conditiofL1) even seems to be sufficient for
=(T"MT). Denoting Aj=(T[AT;) and B;=(T/MT;),  determining separability. It would be very interesting if one
this leads to the condition that the vector (&), cos¢y;)  could prove this to be true for every state, but we have not
must be in the null space of thex2 submatrix ofA;_;  yet been able to do this.

—C(p)Bj_, consisting of its first anglith rows and columns. In the remainder of this paragraph, we will present an-

A short calculation then yields the optimal rotation angle atother possible generalization of the concurrence. This gener-
each step. Note that in the last stg¢p=@) not only the fourth  alization has the benefit that we can prove that a state is
member concurrence should become equ&(tp), but also  separable iff its generalized concurrence is zero, but it also

the first one. has the drawback that it is as hard to calculate as the en-
tanglement of formation. Some properties of this generalized
3. Towards a generalized concurrence concurrence are presented and a number of open questions

According to Eq.(5), a state is separable iff a right- &€ formulated. .
unitary matrix T can be found such that the diagonal ele- Consider first the pure states. A pure stétes a product
ments Of everyTTA(a)T are zero. In ana'ogy with defining State |ffl,[/ iS a rank-l matl’iX. Th|S means that a|l><2 mi-
the average concurrence of a realization of 'a2state as nors of yy must be zero. Denote the generalization of the
thel, norm of the diagonal elements Bf AT, in the general matrix S= oy® 0y, to then,; X n, case as
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S=(0y®0,, -2)®(0y®0y,-2). (12

U,V |

<max>, oioj|wij|
UV i

The matrix"Sy then picks out one specific>22 minor of

. In order to consider all minors, we can apply local unitary gmaXZ oioj|wij| = maxz i (e ki)
operations to the stat¢ and put the result again under the weS i k<l 1]
action of S Specifically, we define the generalized concur-
rence of a pure state as follows. =2 maxoyo|=2010.
Definition 1 The generalized concurrence of a pure state k<t
o) is

Here we have used the well-known fact that the constrained
maximum of a linear function over a convex set is reached
on an extreme point of the set. We, therefore, find an upper
bound on C(¢)<20,0,. Moreover, this bound can be
reached by settind) =V=1, which givesw=0,60 and
TW|=0’X’12. This proves the theorem.

We now turn our attention to mixed states.
. ~ - ) Definition 2 The generalized concurrence of a mixed state
with  ¢=U;3V, and X=diag(e1,02,....00) [N s the minimal generalized concurrence of all ensembles

C(y)=maxy (UaV)Ts(UaV)yl, 13
u,v

where the maximum is taken over all special unitary matrice
U e SU(n;) andV e SU(n,).
Theorem 3The generalized concurrence of a pure state

=min(ny,ny)] equals that realizep,
C(¢)=2040;, (14 _ o o
C(p)= min X, pimaxy'T(U'eV)TS(U eV y|.
independent of the dimensions of the system. A pure state is RGN
a product state if its generalized concurrence is zero. (16)

Proof. Rewriting yy=U;3 V1 in vector form, we have)
=U,®Vve =U,;®V,3;0e'®€', with € being a basis
vector of the standard vector basis. Let @de-€'(e/)T be a
basis vector of the standard matrix basis. Then

Again, U' andV' are special unitary matrices.

Theorem 4The generalized concurrence function is con-
vex, i.e.,C(xp1+[1—x]po)=<XxC(p1) +(1—x)C(p2).

Proof. Actually, any functionf defined in this way is con-
vex: starting from ari defined on pure states, first extend the
C(lﬂ):ma%E o, O_J_Tr[(eij e (UaV)TS(UsV)] definition to ensembles of pure states as 'ghe ensemble aver-

uv | age of thefs of the pure states; then to mixed states as the
minimal value off of all possible realizing ensembles. Let
_ i T {pi:j, "} (=1,2) be an optimal realizing ensemble mgf.
_Tfﬁ;j 7ioi e (o, 0)U] Then {xpoa #AHUL(L - x)pa. % is a realizing en-
semble ofxp;+(1—Xx)p, with ensemblef equal toxf(p;)
+(1—x)f(p,). As this combined ensemble need not be op-
timal, f(xp,+[1—x]p,) could be smaller than this ensemble
f, but, in any case, it is not larger.

The first important question, concerning the relevance of
’ this definition of generalized concurrence, is: is it true fhat
is separable if and only i€(p) =07 It is easy to see that this
is indeed the case.

XTIV (o, O)V]‘

=ma>{2 O'iO'jWij

uv | i

with Theorem 5A mixed statep is separable if and only if
C(p)=0.
w=uev=[UT(oy®0)U][UT(s,®0)U].  (15) Proof. A state p is separable iff it is contained in the

convex closure of the set of pure product states. A pure state
Here, o denotes the Hadamard produ@omponentwise, is a product state iff it has zero concurrence. By the previous
producy. theorem it then follows that if a stajeis separable, then its
Denoting by|w| the matrix obtained fromv by taking the  concurrence cannot exceed the value of zero. From the defi-
absolute values of all matrix entries, we can easily prove thatition of concurrence we see that negative values cannot oc-
every row sum and every column sum [@f is not larger cur, so the concurrence @f must equal zero. On the other
than 1, and the sum of all entries j#f| is not larger than 2. hand, if a state has zero concurrence, then, by the definition
Now, asu andv are antisymmetricw is symmetric and of concurrence, there must exist an ensemble realiziig
has a zero diagonal. Thereforg,and|w/ lie in the span of which every pure state has zero concurrence. Hence, these
the generalized Pauli matrices,;j=€' +e'. Moreover, by  pure states are product states and separable.
the above sum statements, and noting that the sum of all Consider the pure state satg={#:C()=C}. By the
entries of everyr, is equal to 2, we have thaw| must lie in  convexity of C, every mixed state in the convex closure of
the convex closure of the s&&{0}U{o;;;i<j}. Hence, ¢ has C(p)<C. Letting C run from its minimal to its
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maximal value, we get a one-parameter family of convextimes starting from different initial values. It achieves very
subsets convfc) of the total state space. A given staie high accuracy(up to 10 significant digifsin a relatively
with concurrenceC(p) can only belong to those convex sub- short time(on a 300-MHz PC it takes typically 1 min for a
sets withC=C(p). 3% 3 statg. We then apply the algorithm to the calculation of
By its very definition, the generalized concurrence is aEOF for certain families of X3 states.
locally invariant measure: any local unitary rotation can be
absorbed in théJ' andV'. In the 2x2 case this definition A. Algorithm for minimization
reduces to the conventional one for concurrence due to the
special property of matriced e SU(2) that UToyU =0oy.
While this generalization of concurrence has a number o
desirable properties, it also has a number of undesirabl
ones: first of all, the generalized concurrencaads generally

an entanglement monotori&M). According to a theorem Cand th ; led li h v find
concerning entanglement monotones in R&6] (Theorem mal anc then perform a so-called line searc to actually fin
the minimum along that direction. Recall from Sec. II D that

3), the restriction of any EM to pure states should yield a

Our algorithm for calculating the entanglement of forma-
Fion is based on a modified conjugate-gradient minimization
Brocedure. Starting from an initial poifit=T,, conjugate-
gradient algorithms iteratively seek a direction along which
progress in minimizing the objective functig{T) is maxi-

unitarily invariant concave function of the partial trace of the K
pure state. In this case, this function equéls2\\ Ao, E(p)=min X, G(A(T)),
where\ , , are the two largest eigenvalues of the partial trace Tk k=1

[this follows from the fact that B(yy') =9y =US2UT,

wherej/=U3V]. However, this function is not concave as
can be readily checked numerically, unless this partial trace K
is a 2X2 matrix, i.e., we are dealing with.a>@\l_sy.stem. g(T)=2, G(A(T)).

Secondly, the entanglement of formation will in general k=1
not be related to this generalized concurrence even for pure S )
states: while the former depends on all Schmidt coefficientyVe see here that minimization is to be done over the unitary
for 2x N systems is there an unambiguous relation betweefard line search has to be replaced by a geodesic sgifth
generalized concurrence and EQFe same relation as in the A geodesic on the unitary manifold is a one-parameter sub-
2X 2 cas¢. Furthermore, it remains to be proven that in the9roup of the unitary groupT(t) =T, exp(X), whereXis a
mixed-state case, an optimal ensemble can be found foikew-Hermitian matrix giving the directioftangent vectar
which every member has a generalized concurrence equal & the geodesic. Through a geodesic search one looks for the

the generalized concurrence of the mixed state. optimal t for which g[ To exp¢X)] is minimal. _
In steepest-descent minimization, the direction for the line

search is taken to be minus the gradient of the objective
ll. NUMERICAL RESULTS function in the current point. Conjugate-gradient methods
improve on this by taking the direction of the previous step
In this section we present an application of the variationaklso in account; if not, the progress made in the previous step
characterizations of separability and EOF. Since these chacould be partly undone by the new iteration. We have used a
acterizations involve looking for the minimum of a function modification of the Polak-Ribie formula for calculating the
over a finite-dimensional manifold, it must be possible tosearch directiorj18]; the search direction for iterationis
find a numerical algorithm that actually calculates that mini-based on the gradient at the current point and on the search
mum. As a result, it must be possible to calculate the EOFlirection for the previous iteration—1,
for any bipartite state and, moreover, to give the optimal

so that, in the present case

realization of the statéfrom the optimalT matrix). Xi=—(VQg)i+vXi_1,
Actually, such an approach has already been taken by

Zyczkowski[16], who used the method of simulated anneal- ((V@)i—7(Vy)i—1.,(VQ)i)

ing in order to find the global minimum. Unfortunately, Y= (VO)i—1.(V)i_1)

while this method is generally known for its good local-

minima-avoidance properties, it requires an inordinateyhere(,) is the inner product of the embedding space, being
amount of iteration steps if high accuracy is required. If onein this case the standard Hilbert-Schmidt inner product
is interested in calculating and comparing the EOF of a fam<x,y>:TrxyT_ The symbolr denotes parallel transport of

ily of parametrized states, a large number of significant digitshe gradient vector at thei € 1)th point to theith point
is required. In our experience, this is only possible in a reag|ong the geodesicl 7],

sonable amount of time when the utmost attention is given to
the gradient-following properties of the method, especially 7(Vy);_;=exp(X;_1tj_1/2)(Vg)i_1 exp— X_1ti_1/2).
when considering larger system dimensions.

In the following paragraphs, we present a minimization For the line search, we have used the method described in
algorithm that is based on a conjugate-gradient method. TEL8], again modified to take into account that the search is
avoid local minima, the algorithm is executed a number ofperformed along the geodegi€T; exp(tX;)).
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Any minimization algorithm actually finds local minima. 1 &
To find the global minimum, we select a number of starting .98
points at random and let the minimization algorithm work .96
from these points. The minimum is then taken over all the
results. While this procedure does not guarantee that the glo ‘
bal minimum is actually found, we found that trying about 0.01
ten starting points gives satisfactory results. X 0.0075

B. Calculation of the gradient 550% 0.0025

In this paragraph we give an analytic expression for the 1
gradient of the target functiom(T). Conjugate-gradient 0.8
methods perform better if an explicit expression is given; in D 4
the absence of such an expression, the gradient has to & 0.2
approximated numerically. 0

_To calculate the gradient, we have to select an arbitrary g, 1. Entanglement of formation for Horodecki states as a
direction or tangent vectoX, which for the unitary manifold  fynction ofa ande; linear scale.
is a skew-Hermitian matrix. The geodesic on the unitary

manifold along this direction and passing throuigfis given  |oyest value has a very small “basin of attraction.” Situa-

by T.=To exp(eX) or To(1+ €X), for small e. The gradient  tjons |ike this are tough nuts for any numerical routine to
of a scalar function on the manifold can be calculated fromy 50k

the variation of the function along the geodesic using The first interesting results were obtained on the Horo-
f decki 3x 3 state§11]. These states were introduced to show
at(T)) S > " )
=(Vf,X), that the Peres criterion is not sufficient for determining sepa
de rability. These states exhibiiound entanglementheir en-
) ] o tanglement of formation is nonzero, while their entanglement
where(,) is the Hilbert-Schmidt inner product. of distillation is zero(they have positive partial transposi-

I The gradient of the target functiog(T) is given as fol-  tjon). The density matrix of a Horodecki>33 state is
ows.

Lemma 2 Fa 0 0 0 a 0 0O O af
0O a 0O O OOUOTG OGO
(VI(T))kplt=1=G(QPK,Q,p) — G(QPK,QKY),

oMl PP 00a000000
where 1000aooooo
~ o~ = a 0 0 0a O O O a
PA= m.m.dP( BT P@)= 1782 '
Q pMad™(&%) 0 000O0ad00O0 0
and 000 O0O0ObOTC
A 0 0 OO O O Oao
G(B,A)=—TrBlogr—4- la 0 00ao0c 0 bl

The details of the calculation are given in Appendix B. ~ Wherea is a parameter between 0 and 1, inclusively, &nd

=(1+a)/2 andc=1—a?%2. Note that, since these states
are not full rank(their rank is 7 and neither is their partial
transpose, these states lie on the boundary of the set of states
As a preliminary test, we have calculated the entangleand also on the boundary of the set of bound entangled
ment of formation of several states of &2 system, and states.
compared the numerical values with those obtainable from The result of the calculation is shown in Fig. 1. Here the
Wootters's formula. Furthermore, we considered a oneentanglement of formation has been calculated for a mixture
parameter family of X 3 states called isotropic states, and of the Horodecki states with the maximally mixed state
compared the numerical values with the EOF calculatesp(a)+(1—e)l/9. In Fig. 1, the scale is linear, while in Fig.
from Terhal and Vollbrecht's formulg8]. In all cases, agree- 2 the scale is logarithmic, so that the borderline of the set of
ment was complete within numerical-machine precision, exseparable states is clearly visible. The “floor” in the loga-
cept for some isotropic states where there was a very smalithmic picture at—10 is an artifact; the algorithm stops
deviation from the formula for parameter values closé.to when the entanglement gets below 19
This can be explained by the fact that for these parameter Note from these results that the Horodecki states have a
values, there are two local minima of the target function thatrather low entanglement of formatio@bout 0.0109 fora
are extremely close in value, and that the minimum with=0.225 and that their distance to the manifold of separable

C. Results
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FIG. 4. Effect of cardinality on calculation of entanglement of
formation.

FIG. 2. Entanglement of formation for Horodecki states as atoward_s finding a §i_mp|e and efficient operational criterion
function of a ande; logarithmic scale. for testing separability.

states is also smale=0.93 fora=0.225, that is, mixing the IV. CONCLUSIONS
state with just 7% of the identity destroys all entanglement

At first sight, the fact that the appearance of the set of sepa- We have pregented a matrix .a_malytlca_tl framework within
. . . which the questions of separability of mixed states and cal-
rable states is not convex might seem confusing. Howeve

. . ! : rCulating their entanglement of formation can be formulated
the parameten appears in a nonlinear way in the density

matrix so that the matrices lie on a nonrectilinear curve in the" o elegant and practical way. A main result is that, at least

Euclidean state space. The figure, on the other handy has in principle, it IS NOW pOSS|bIe_ to calculate the EOF of any
i ) . state, or determining whether it is a separable state or not. Of
parameter and therefore gives a distorted image.

Figure 3 shows the entanglement of formation for the par_(:ourse, for larger dimensions the subproblem of minimizing

ticular value ofa=0.225 and fore going to 1. From this the respective target function becomes increasingly more

. | o time consuming. Not only the EOF itself, but also an optimal
figure, we are led to conjecture that the derivativestbe- =

o ensemble realizing the state can be calculated.
comes infinite ae=1.

The above-mentioned calculations have been performe We have extended results on the concurrence and EOF of
with the cardinalitvk set to 14. Eiqure 4 shows the gffect of 9><2 systems by also including the cardinality of the optimal

using different K yllﬁ the calc.ulagtlionS' here=1 and a ensembles. More importantly, we have tried to generalize the
—0.225. It is seen that the valile=14 is optimal for calcu- concept of concurrence to general systems and have shown

; T . that this generalized concurrence has potential to supply a
lating the entanglement of formation in this case. g b PRl

: fast test for separability of general bipartite states.
For these same Horodecki states, we have also tested the | ", future, we will use the presented methods to gen-

Corrzjer(:tllijzreg conndmfrn ;Or Sel?atrar?]”'gﬁq'(tll)] ti)tased :)r:it?r;e | erate more numerical results about EOF of higher-
generalized concurrence. 1t turned out, quite SUrprisiNglyy;,qngiona states, for example, to chart the “unknown ter-
that the condition correctly pinpointed all separable states

hich ified b ing th its to Fia. 2. Thi fitory” of bound-entangled states, or just as a means for
}galdcs Wsaiovﬁg '2 thgtclgl;?L?_)arrlT?'ght (E)ere;g ?n Oortfﬁt éte IS’testing various conjectures. Another interesting topic for fu-
u P 9 imp P ture work is trying to prove the conjectured sufficiency of the

E generalized concurrence test for separability.
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APPENDIX A: PRESELECTION OF T MATRIX

The topic of this appendix is a method for reducing the se

of T matrices over which the minimuii®) has to be taken in

a separability test. In some cases the method already yield’s

the optimalT matrix without need for performing a minimi-

zation procedure. This method is based on a method used

blind identification for array processifd9].
Consider the expression

2 B A(a),
X pa” *pq

where Al?) is as defined in Eq4) andBj; is a symmetric
matrix. When we substitute E(R) in it, we get, using bilin-
earity of C,

R
% ququ:pqul quc(\/m_p¢p'\/m_q¢q)
K

Bpq >

1 k=1

12

p

TlpTqu VWi W, C( ’pka ¢I)

M= 2=

quTlpTqu) VWi w, C( 4%, )

kI

1

M =

. (TTBT* )iV wiew C( 4%, ¢).

kI

Note that, just likeB, (TTBT*) is also symmetric.

Suppose that the stajeis indeed a separable one, then
there exist matrice¥ leading to a product-state decomposi-

tion, i.e., toC(¢*,4') being identically zero fok=1. Con-
sider one such matriX. There exist symmetric matricd?
for which (TTBT*) is diagonal, say equal to some Indeed,
by right unitarity of T one just has to take

B=TAT". (A1)
Using such &B in the above expression, we find
> B, AlY=0 (A2)
< Prd g

for all a.
We can now reverse the reasoning and say that any

PHYSICAL REVIEW A 64 052304
BB*=TAT'T*A*T'
=T|AIPTT.

Hence, the column vectors dfmust be the eigenvectors of
B*. Given then, all the symmetric matric8sthat satisfy
g.(A2), we only have to consider matricEswvhose column

ectors are the eigenvectors of one sBB* .

We have thus found a general method for reducing the

search space. We will now show that under some conditions

this reduced search space contains nothing but the oplimal
so that no search has to be done at all. In that case, one just
has to take on®8 satisfying Eq.(A2), and construct & from

its eigenvectors. The first requirement for this is that the

cardinalityK must equal the rank, so thatT is then unitary;

the reason is that otherwise E&1) has no unique solution.

Let us suppose that the firft(P<K) state vectors in the

ensemble realizingp are product vectors:|¢<)=|aX)

®|B%),1<k<P. Therefore, C(y*,4*) will be zero for k

<P. Now, the matrice(y*,4') for k<l andk=1>P are

in general(that is, for all states except for a subset of mea-

sure zer® linearly independent as long as the number of

matrices does not exceed the number of matrix elements. If
the latter requirement is not fulfilled, then of course a depen-
dence must exist between the matrices. If the requirement is
fulfilled then the matrices can still be dependent provided the

K vectorsyX (beingm=KN;N, complex variablessatisfy a

system ofN;(N;—21)Ny(N,—1)/4—K(K—-1)/2-K+P+1

polynomial equations of degred=K(K—-1)+2(K—-P)

[each equation corresponds to a minor of raf —1)/2

+K—P of a matrix containing ¥ 'S{9W¥),, as elements

Using the Schwarz-Zippel theoref0], we find that the set

of vectors obeying just one of those polynomial equations

has measure zero with respect to the set of all possible sets of

K vectors.A fortiori, this also holds for the set of vectors

obeying all polynomial equations. We thus get a second re-

quirement for the automatic optimality @f namely, that the
cardinality K must satisfy the inequality

K(K—-1) N1(N3—1) Np(Np—1)
5 tK-P=—— -

(A3)

It then follows that %, ,B,4A,q can only be zero if
(T'BT*)=0 for all k#| and k=I1>P. In other words,
(TTBT*) is necessarily a diagonal matrix fany B satisfy-

ing Eq. (A2), and anyT obeying Eq.(Al) for such aB is

optimal.

We have not investigated whether this technique for re-
ducing the search space is also applicable for calculating the
EOF, that is, whether sonikthat is optimal with respect to
Eq. (7) can be found in the reduced search space.

leading to a product-state decomposition must be found from APPENDIX B: CALCULATION OF THE GRADIENT

some symmetri® that satisfies EqLA2). That is, instead of

searching for & in the complete set of unitary matrices, we

only have to considefl that follow, using Egqs(Al) and
(A2), from suchB. If T is squardthat is,K =R), T is unitary,
and sinceB=TAT',

OF THE AVERAGE ENTANGLEMENT

The geodesic on the unitary manifold along a direction
(skew-Hermitian matrixand passing throughy, is given by
T =Toexp(eX) or To(1+ eX), for smalle. The gradient of a
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scalar function on the manifold can be calculated from theSetting f(x) =h(x) = —xlog,(X) so thatf(A)=H(A), we

variation of the function along the geodesic using

df(Te)
Je

=(Vf,X).

To avoid notational clutter, we have SE equal tol in the
rest of the appendix.

Let us recollect that the function @f that is to be mini-
mized isg(T) =2, G(A(T)), whereG(A)= —Tr(A log,[A/

ATr(A)]) and Ap(T) =27 1 ToTa/mpmgdP(9) .
Lemma 3 For HermitianA and B,

Jd
EG(AJF eB) E=0= G(B,A),
where
G(B,A)=—Tr(Blog, A)+Tr(B)log, Tr(A).

Proof. We use the following formula fromi21] (formula
6.6.3), which applies for a Hermitian matri&(t) function
of a parameter t with eigendecomposition A(t)
=U(t)A(t)U(t)", and for analytic function§

%f(A(t))zU[(Af()\i A)ijeUTA’UUT.

Here,e is the Hadamard product amdf (\;(t),\(t)) are the
“divided differences”

FON(D) =TV (1)
Ni(H) = Nj(1)
f (N (1))

For A(t)=A+1tB, it follows that

for i#]
ATN(D),N(D)= .

for i=j

%Trf(A(T)) =2 AN(D).(D)(UTBU);
t 1

=0

=Trf'(A)UTBU=Trf’(A)B.

havef’(x)=—(1+Inx)/In2 and

d
—TrH(A+tB)

T =—Tr(1+InA)B/In 2.

t=0

Furthermore,

d
ﬁh(AHB) =—(1+InTrA)TrB/In2,

t=0

so that the lemma follows.
Proceeding in a similar fashion, we can expandT,) up

to first order ine. PuttingQP%= Jm,m,¢P($%)",
A(T)= % TokTkQpq
=p2ﬂ [ Spdqit €(Xpdgit SpiX 0 1QP
= QM+ e% (XpkQP*—X4pQ ),

where we have used the fact thatis skew Hermitian. In-
serting this expression ind(de)2 G(A(T))|.—o We see
that Q¥ serves the role of A” and = (X QP*— X, ,Q*P)
that of “B.” Exploiting linearity of G with respect to its first
argument, we arrive at the expression

a9(T,
g; Lo XodG(Q%, QM - G(QP Q)
€ p'k

(in the last term we have interchanged the indikesd p).
Therefore,

(VA(T)plt=1=G(QPX,QPP) — G(QPX,QXK).
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