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Quantum systems subject to the action of classical stochastic fields
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In this paper we investigate the averaged dynamics of quantum systems under the influence of classical
stochastic fields. This influence is modeled using a stochastic Hamiltonian evolution for the system-density
matrix. From the averaged dynamics, a general characterization of the short-time decoherence behavior is
obtained. General applicable short-time perturbation expansions for the input-output fidelity and its generali-
zations for mixed states are developed. The master equations of the systems that can be worked out without a
perturbative expansion, i.e., any system subject to dispersive noise and the quantum harmonic oscillator subject
to amplitude noise, are extensively analyzed. In both cases all non-Markovian features are worked out in an
exact way. We apply these cases to the study of heating of trapped ions.
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I. INTRODUCTION

The study of open quantum systems@1–4# plays an im-
portant role in various fields of physics. The central probl
in the study of these systems consists in characterizing
effects originated by the interaction with the external wor
In general, it is desirable to avoid this perturbative acti
which works as an ‘‘eraser’’ of quantum properties of a
initial state of the system.

The most natural and unavoidable external influence
due to thermal reservoirs. This subject was largely inve
gated and characterized for different systems and situati
Another type of influence is due to stochastic fields gen
ated in the experimental device that constitutes and mon
the system of interest.

The notable experimental advances of the last dec
have allowed to monitor directly these types of influences
different systems. For example, numerous theoretical and
perimental investigations were devoted to quantum elec
dynamic cavities@5–8#, trapped ions@9–17#, laser systems
etc. The high experimental accuracy and sensitiv
achieved, has permitted to test different hypotheses and
oretical approaches that describe the environment-system
teraction. For this reason, it is highly desirable to obt
exact evolutions and solutions of the different models.

In this paper we develop a systematic study of the in
ence of classical stochastic fields on quantum systems.
influence will be modeled by the introduction of a stochas
Hamiltonian in the evolution of the system density matr
Thus, the statistical properties of the system will be obtain
from the averaged density matrix

r~ t !5^rst~ t !&, ~1!

where^¯& means average over the stochastic realization
the force fields.

It is well known, that a stochastic field that exchang
energy with a quantum system, induces—in a long-ti
regime—an averaged dynamics that is equivalent to a re
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voir at infinite temperature@18,19#, i.e., it continuously feeds
energy in the system. Therefore, this model will give corr
results in a time regime previous to the time in which t
effects of the stochastic fields are saturated by the influe
of the thermal environment.

In general, the origin of these stochastic fields is due
many uncorrelated random sources. Therefore, after invok
the central-limit theorem, we will assume that the stocha
fields are Gaussian noises. In this manner, all the statis
field properties can be specified by providing their intens
and their characteristic correlation time. In any real proble
the field noise spectrum is not flat, which implies correlati
times different from zero. In consequence, the evolution
r(t) will be non-Markovian.

The paper is organized as follows. In Sec. II we define
stochastic dynamics and obtain the exact averaged de
matrix evolution. Furthermore, we sketch the procedure
develop perturbative expansions. These points can be
tained from a previous work on non-Markovian dissipati
stochastic wave vectors@20#. Nevertheless, a stochast
Hamiltonian dynamics is a much more simple case, the
fore, here we reobtain it in order to clarify the later calcu
tions. In Sec. III, we study the short-time decoherence
namics induced by the noises. As a measure of
decoherence processes, we use the input-output fidelity
its generalizations for mixed states. General applicable sh
time perturbation expansions are developed. In Sec. IV
present the cases whose averaged evolutions can be obt
in an exact way, i.e., any system subject to dispersive n
and the quantum harmonic oscillator subject to amplitu
noise. Special attention is paid to the latter case. The e
time-convolutionless evolution for the density matrix and
closed expression for the Wigner function are obtained.
Sec. V we apply the results of the previous section to
study of heating of trapped ions. The short- and long-ti
regimes are studied. The population’s behavior for differ
initial conditions and the problem of noise-induced decoh
ence are worked out. The case of an ion subject to disper
noise is briefly analyzed. In Sec. VI we give the conclusio

II. DENSITY-MATRIX DESCRIPTION

In this section we define the stochastic dynamics and
tain the master equation for the averaged-density matrix
©2001 The American Physical Society10-1
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ADRIÁN A. BUDINI PHYSICAL REVIEW A 64 052110
A. Stochastic evolution

A stochastic Hamiltonian dynamics is characterized
the evolution

i\
d

dt
rst~ t !5@H1lH̃~ t !,rst~ t !#, ~2!

whereH describes the free evolution of the system andH̃(t)
represents a stochastic Hamiltonian given by

H̃~ t !5 (
a51

n

l a~ t !Va , ~3!

where Va are operators acting on the Hilbert space of
system andl a(t) are complex Gaussian stochastic proces
with zero mean value, whose correlations are defined by

xab~ t,t1![^^ l a* ~ t !l b~ t1!&&. ~4!

We remark that due to the Hermiticity ofH̃(t), it follows
that if l a(t) were complex numbers there would be an ind
a8 such thatl a8(t) is the complex conjugate ofl a(t) (Va8
5Va

†), i.e., l a8(t)5 l a* (t), otherwiseH̃(t) would not be Her-
mitian. Note that in the particular case where an operatorVa
is Hermitian, the noisel a(t) ought to be real.

B. Master equation

Now we wish to find the exact evolution of the average
density matrix,

i\
d

dt
^rst~ t !&5^@H1lH̃~ t !,rst~ t !#&. ~5!

Here we have to take the average of a linear stochastic m
tiplicative equation. Fortunately, this kind of average can
obtained exactly by applying Novikov’s theorem@21,22#.
This theorem gives an exact result for the mean value of
product of a Gaussian noise and any functional of that no
Using the fact thatrst(t) is a functional of all noisesl a(t)
and thatH̃(t) is Hermitian, after applying Novikov’s theo
rem, we obtain@20#

^H̃~ t !rst~ t !&5E
0

t

dt1xab~ t,t1!Va
† K drst~ t !

d l b~ t1!L ,

~6!

^rst~ t !H̃~ t !&5E
0

t

dt1xab~ t,t1!K drst~ t !

d l b~ t1!L Va
† .

Here and from now on, we assume the convention of ad
tion over repeated indices. Inserting expressions~6! into Eq.
~5!, it follows that

i\
d

dt
^rst~ t !&5@H,^rst~ t !&#1lE

0

t

dt1xab~ t,t1!

3FVa
† ,K drst~ t !

d l b~ t1!L G . ~7!
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To go ahead with this result, we now need to know the
pression for the ‘‘response function’’drst(t)/d l b(t1). We
obtain this object by following Refs.@21,22#. After integrat-
ing Eq. ~2! formally, we obtaini\rst(t)5rst(0)1*0

t du@H

1lH̃(u),rst(u)# and taking a functional derivative with re
spect tol b(t1), we get (t.t1)

i\
drst~ t !

d l b~ t1!
5H l@Vb ,rst~ t1!#

1E
t1

t

duFH1lH̃~u!,
drst~u!

d l b~ t1! G J , ~8!

where we have assumed that at the initial time, the sys
and the noises are uncorrelated. Now, if this expressio
differentiated with respect tot, an equation for the variationa
derivative of the stochastic matrix is obtained

i\
d

dt

drst~ t !

d l b~ t1!
5FH1lH̃~ t !,

drst~ t !

d l b~ t1!G . ~9!

The initial condition of this equation follows from the firs
term of the right-hand side of Eq.~8!. Note that the varia-
tional derivative follows the same evolution as the stocha
density matrix. Therefore we can write

drst~ t !

d l b~ t1!
52 i

l

\
Gst~ t,t1!@Vb ,rst~ t1!#Gst

† ~ t,t1!, ~10!

where the propagatorGst(t,t1) is given by

Gst~ t,t1!5 dexp2
i

\ E
t1

t

du„H1lH̃~u!…e. ~11!

Here d¯e indicates time ordering. Performing the average
expression~10! over the noise realizations, we note th
rst(t1)→r(t1). This can be seen by using the identi
Gst(t1 ,t1)5I . Inserting the average of Eq.~10! in Eq. ~7!,
the exact evolution of the density matrix follows:

d

dt
r~ t !52

i

\
@H,r~ t !#2S l

\ D 2E
0

t

dt1xab~ t,t1!

3†Va
† ,^Gst~ t,t1!@Vb ,r~ t1!#Gst

† ~ t,t1!&‡.

~12!

As was expected, this equation is nonlocal in time.

C. Time-convolutionless master equation

Here we will obtain an equivalent exact evolution that
local in time. This goal can be achieved by expressing
stochastic matrix at an intermediate time as

rst~ t1!5Gst
† ~ t,t1!rst~ t !Gst~ t,t1!. ~13!

Here we have used the fact that at all times the stocha
evolution is unitary, thusGst

21(t,t1)5Gst
† (t,t1). From this

expression, we can write the functional derivative~10! as
0-2
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QUANTUM SYSTEMS SUBJECT TO THE ACTION OF . . . PHYSICAL REVIEW A 64 052110
drst~ t !

d l b~ t1!
52 i

l

\
@Gst~ t,t1!VbGst

† ~ t,t1!,rst~ t !#. ~14!

Finally, introducing this expression into Eq.~7!, we obtain

d

dt
^rst~ t !&52

i

\
@H,^rst~ t !&#2S l

\ D 2E
0

t

dt1xab~ t,t1!

3†Va
† ,^@Gst~ t,t1!VbGst

† ~ t,t1!,rst~ t !#&‡.

~15!

This expression gives us the desired time-convolution
evolution. It will be the starting point of the rest of our pap

D. Perturbative expansions

In general, the average in expression~15! cannot be ob-
tained without appealing to a perturbative scheme. Since
desirable to work out the free evolution in an exact way,
starting point is the density matrix evolution in the intera
tion picture,

d

dt
^r̂st~ t !&52S l

\ D 2E
0

t

dt1xab~ t,t1!

3@Va
†~ t !,^@Ĝst~ t,t1!Vb~ t1!Ĝst

† ~ t,t1!,r̂st~ t !#&#.

~16!

Here the hat symbol indicates the explicitly time-depend
objects. The difficulty with this expression consists in obta
ing the average of the product of two functionals of a set
Gaussian noises: the stochastic matrixr̂st(t) and the channe
propagatorsĜst(t,t1)Vb(t1)Ĝst

† (t,t1). This average can be
worked out in an perturbative way, using a generalization
Novikov’s theorem. The details of this procedure can
found in Ref. @20#. Here, we only show the second-ord
approximation,

d

dt
r̂~ t !.2S l

\ D 2E
0

t

dt1xab~ t,t1!†Va
†~ t !,@Vb~ t1!,r̂~ t !#‡.

~17!

In order to obtain this result, in Eq.~16! we have only re-
tained the zeroth-order contribution of the stochastic dyna
ics, Ĝst(t,t1).I , which imply the discarding of terms o
order w(l/\)4. Using the Jacobi identity, it is possible t
rewrite this evolution as a time-dependent Kossakows
Lindblad generator with an effective Hamiltonian@19#.

III. SHORT-TIME DYNAMICS AND FIDELITIES

An important topic in the theory of open quantum syste
is the short-time dynamics induced by the environme
Many quantities have been introduced to characterize
problem @23–29#. Here, in a first step, we are interested
characterizing the physical magnitudes that control the de
herence processes at short times. Therefore, we will ass
that initially the system is in a pure stater(0)5uC&^Cu, and
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as a measure of the decoherence processes we will us
input-output fidelity@27#

F~ t !5Tr@ r̂~ t !r~0!#5^Cur̂~ t !uC&. ~18!

In the short-time regime, the fidelity can be expanded as

F~ t !512
v0t

G1
2S v0t

G2
D 2

2¯ , ~19!

where in order to gain insight into the problem, we ha
introduced the quantityv0 , which represents a characterist
frequency of the system. The constantsG can be obtained
from 1/(Gn)n5n!Tr@(dn/dtn) r̂(t)u t50r(0)#, where the de-
rivatives of the density matrix follow from the master equ
tions obtained in the previous section~see Appendix!. Up to
second order, we obtain

1

G1
50 ~20!

and

1

G2
5l

A^^H̃&&C

\v0
, ~21!

where we have defined

^^H̃&&C5xab@^Va
†Vb&C2^Va

†&C^Vb&C#. ~22!

Here^V&C[^CuVuC& is an operator average over the initi
quantum state andxab[xab(t,t1)u t5t150 .

Equation~20! shows in general that the decoherence p
cesses evolve at least quadratically in time for short tim
On the other hand, note that the expression for the sec
fidelity damping rateG2 is independent of the correlatio
times of the noises. It expresses that the fidelity loss i
characteristic period of time 2pv0

21 is given by the initial

stochastic Hamiltonian variance^^H̃&&C , measured in units
of the characteristic system energy\v0 . The variance is
over the noises and over the initial quantum state. In t
way, the environment influence can be attenuated by red
ing the noise intensities, or by selecting preferential sta
that reduce the quantum operator averages@25#.

We remark that the same conclusions are obtained
studying the short-time behavior of the idempotency def
d(t)512Tr@r2(t)# @23#.

A. Fidelities for mixed states

In the context of quantum information theory@26–29#,
the necessity of ‘‘measuring’’ the decoherence proces
when a system begins in a mixed state naturally arises
this case, the definition~18! is not useful and other quantitie
have been proposed. Here, in a second step, we will exam
the short-time behavior of these generalized fidelities, c
sidering that the quantum system evolves under the actio
classical stochastic fields.
0-3
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ADRIÁN A. BUDINI PHYSICAL REVIEW A 64 052110
The entanglement fidelity@26–28# is defined by

Fe~ t !5Tr@ r̂ rs~ t !r rs~0!#512
v0t

G1e
2S v0t

G2e
D 2

2¯ .

~23!

Herer rs(0)5uC rs&^C rsu, where the stateuC rs& is a purifi-
cation of the initial system density matrix, i.e
Trr@ uC rs&^C rsu#5r(0), wheres denotes the original system
and r denotes an ancillary system. The matrixr̂ rs(t) is the
result of applying tor rs(0), theoriginal propagator extende
to the ancillary Hilbert space with the identity. The consta
Ge can be obtained in a similar way as in the previous ca
Up to second order, we obtain

1

G1e
50 ~24!

and

1

G2e
5l

A^^H̃&&Crs

\v0
, ~25!

where ^^H̃&&Crs
is the same as in Eq.~22!, but now the

operator averages are given by^V&Crs
[Tr@r(0)V#, i.e., an

average over the initial mixed state.
Expressing the initial state as an arbitrary mixture of p

states

r~0!5(
i

pi uC i&^C i u, ~26!

whereS i pi51, the averaged fidelity@26–28# is defined by

Fa~ t !5(
i

piF~ uc i&)512
v0t

G1a
2S v0t

G2a
D 2

2¯ , ~27!

whereF(uC i&) indicates the input-output fidelity for the pur
stateuC i&. The characteristic constantsGa are

1

G1a
50 ~28!

and

1

G2a
5l

A(
i
pi^^H̃&&C i

\v0
, ~29!

where ^^H̃&&C i
is the same as in expression~22!, but per-

forming the operator averages with the stateuC i&.
Finally, we mention a natural generalization of the defi

tion ~18! analyzed by Jozsa in Ref.@29#. In this generaliza-
tion, the fidelity between two mixed statesrb andra is de-
fined by

F~rb ,ra!5$Tr@~ArarbAra!1/2#%2. ~30!

As in the previous generalizations, it is possible to expan
05211
s
e.
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F„r̂~ t !,r~0!…512
v0t

G1m
2S v0t

G2m
D 2

2¯ . ~31!

In this case, the derivation of the damping rates is m
complicated. In the Appendix, we have developed a gen
first-order perturbation theory, which allows us to treat th
problem. We get

1

G1m
50 ~32!

and

1

G2m
5l

A(
i
Pi^^H̃&&F i

8

\v0
. ~33!

The probabilitiesPi and the statesuF i& are, respectively, the
eigenvalues and eigenvectors of the initial density matrix

r~0!uF i&5Pi uF i&. ~34!

Unlike the previous cases, the average^^H̃&&F i
8 is given by

^^H̃&&F i
8 5xab@^Va

†Vb&F i
2^Va

†DVb&F i
#, ~35!

where the operatorD is

D5 (
$PjÞ0%

uF j&^F j u. ~36!

Here the sum is extended only to the eigenvectorsuF j& of
r~0! with nonzero eigenvalues. Furthermore, the expans
~31! is valid only under the conditiont2!$Pi%. Note that
1/G2m vanish when the initial density matrix has suppo
over the whole Hilbert space. This property is not a quant
one. In fact, it will be also present if we apply the perturb
tion theory of the Appendix to the classical definition
fidelity between two probability distributions@26# „for ex-
ample, Eq.~30! when @rb ,ra#50….

From the previous result, we realize that the differen
between the short-time dynamics of the different generali
fidelities is given by the kind of quantum average perform
over the operators that define the stochastic Hamiltonian
fact, in all cases, the influence of the noises only app
through their amplitudes without any information about th
correlation times. Furthermore, the inequality relations t
one can find between the different damping rates coinc
with the ones obtained in Refs.@26–28#.

IV. EXACT NONPERTURBATIVE EVOLUTIONS

In this section we will work out some cases whose av
aged evolutions can be treated to all orders in the interact
This possibility is highly dependent on the properties of t
noise correlations and on the commutation relations of
different operators that describe the problem. Fortunat
there are situations of practical interest, where the aver
0-4
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QUANTUM SYSTEMS SUBJECT TO THE ACTION OF . . . PHYSICAL REVIEW A 64 052110
term in the master equation~15! can be obtained in an exac
and easy way.

A. White noises

When the stochastic fields are characterized by unco
lated white fluctuations,

xab~ t,t1!5dab~ t2t1!, ~37!

the average in Eq.~15! can be trivially calculated, giving rise
to a standard Lindblad generator,

d

dt
r~ t !52

i

\
@H,r~ t !#2S l

\ D 2

~@Va
† ,r~ t !Va#

1@Va
†r~ t !,Va#!. ~38!

In obtaining this result, we have used the fact thatGst(t,t)
5I . Note that in this correlation model, any physical info
mation must be introduced in anad hocmanner through the
intensity of the noises.

B. Dispersive noise

Here we analyze a second example that can be worked
in an exact, non-perturbative way. We will assume that
stochastic Hamiltonian has only one term,H̃(t)5 l (t)V, and
that it does not induce energy excitations in the system,

@H,V#50. ~39!

This condition implies that the operatorV commutes with
the stochastic propagatorGst , and as a consequence th
variational derivative of the stochastic density matrix@Eq.
~14!# does not depend explicitly on the noise. This fact
lows us to perform the averaging in a trivial way, resulting

d

dt
r~ t !52

i

\
@H,r~ t !#2S l

\ D 2S E
0

t

dsx~ t,s! D †V,@V,r~ t !#‡,

~40!

wherex(t,s) is the noise correlation.
If we assume white noise and the operatorV proportional

to the HamiltonianH, the master equation~40! reduces to
Milburn’s model of intrinsic decoherence@30#. On the other
hand, dispersive noise can be used to represent la
intensity fluctuations in a trapped ion@14#.

C. Quantum harmonic oscillator
subject to color-amplitude noise

Now we will obtain the density-matrix evolution that co
responds to a quantum harmonic oscillator subject to
influence of ‘‘amplitude noise.’’ This means that the fie
fluctuations induce energy excitations in the system. T
Hamiltonians describing this situation are

H5\v0a†a, H̃~ t !5 i\@u~ t !a†2u* ~ t !a#, ~41!
05211
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wherev0 represents the natural frequency of the oscillat
a†(a) represents the creation~annihilation! operator, and
u(t) is a general complex Gaussian stochastic field.

In what follows we will apply the results of Sec. II. Firs
as in Ref.@16#, we note that the stochastic propagator cor
sponding to the evolution~41! can be written, in the interac
tion representation, as

Ĝst~ t,t1!5exp@ if~ t,t1!#D@v~ t,t1!#, ~42!

where D@v#5exp@va†2va# is the displacement operato
f(t,t1) is a phase factor~which turns out to be important fo
the current problem!, and the amplitudev(t,t1) is given by
the formula

v~ t,t1!5lE
t1

t

dt8u~ t8!exp~ iv0t8!. ~43!

Using the properties

D@v#aD†@v#5a2v, D@v#a†D†@v#5a†2v* , ~44!

from Eq. ~14!, it is possible to obtain

dr̂st~ t !

du~ t1!
5l@a†~ t1!,r̂st~ t !#,

~45!
dr̂st~ t !

du* ~ t1!
52l@a~ t1!,r̂st~ t !#,

where the terms proportional tov andv* have canceled out
due to the commutator operation. Now, the average of
variational derivatives can be performed in a trivial way g
ing rise, after a little algebra, to the exact evolution,

dr̂~ t !

dt
5

1

2
h~ t !~@a,r̂~ t !a†#1@ar̂~ t !,a†# !

1
1

2
h~ t !~@a†,r̂~ t !a#1@a†r̂~ t !,a# !

1j~ t !~@a†,r̂~ t !a†#1@a†r̂~ t !,a†# !

1j* ~ t !~@a,r̂~ t !a#1@ar̂~ t !,a# !, ~46!

where we have defined

h~ t ![l2E
0

t

dt1$^^u* ~ t !u~ t1!&&exp@2 iv0~ t2t1!#1c.c.%,

j~ t ![2l2E
0

t

dt1^^u~ t !u~ t1!&&exp@ iv0~ t1t1!#. ~47!

We remark that, to our knowledge, these expressions w
not previously reported. This Lindblad-like generator giv
the exact non-Markovian evolution of an harmonic oscilla
subjected to color Gaussian fluctuations. Notice that this e
lution is the same that would be obtained in a second-or
approximation @Eq. ~17!#, implying that all higher-order
terms give a total null contribution.
0-5
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1. Wigner function

An alternative and equivalent description to that given
a density matrix, is that obtained with the use of phase-sp
distributions. These methods are of considerable practica
terest, since they allow one to deal with functions rather th
operators.

The Wigner function is defined by@31,32#

W~a,a* !5
1

p E d2z exp@2za* 1az* #xw~z,z* !,

~48!

where the characteristic functionxw(z,z* ) is given by

xw~z,z* !5Tr@r exp~za†2z* a!#. ~49!

Using Eq.~46!, it is possible to obtain the exact evolution
the characteristic function,

]

]x
xw~z,z* ,t !52$uzu2h~ t !1~z* !2j~ t !1z2j* ~ t !%xw~z,t !,

~50!

which can be immediately integrated as

xw~z,z* ,t !5expF2E
0

t

dt8$uzu2h~ t8!1~z* !2j~ t8!

1z2j* ~ t8!%Gxw~z,z* ,0!. ~51!

In this way, specifying the correlation properties of the s
chastic fieldu(t) and the initial condition of the system
xw(z,z* ,0), it is possible to obtain the exact Wigner functio
by quadrature. Alternatively, from Eqs.~48! and ~50!, it is
possible to obtain the temporal evolution of the Wigner fun
tion,

]

]t
W~a,a* ,t !5h~ t !

]2W~a,a* ,t !

]a]a*
2j~ t !

]2W~a,a* ,t !

]2a

2j* ~ t !
]2W~a,a* ,t !

]2a*
. ~52!

Notice that this dynamics is governed by diffusive proces
with time-dependent diffusion coefficients.

2. Rotating-wave approximation and analytical signals

A common description of a field is in terms of analytic
signals@33#. This description is equivalent to applying th
rotating-wave approximation~RWA!, which consists in dis-
carding antiresonant terms. In the present problem this
responds to assuminĝ̂u(t)u(t1)&&50, and in consequenc

j~ t !50. ~53!

Under this condition, and proposing the following time d
pendence of the density matrix,

r̂~ t ![r̂„t~ t !…, ~54!
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where the dimensionless parametert(t) is given by

t~ t ![E
0

t

dt8h~ t8!, ~55!

the evolution of the density matrix can be written as

dr̂~t!

dt
5

1

2
~@a,r̂~t!a†#1@ar̂~t!,a†#

1@a†,r̂~t!a#1@a†r̂~t!,a#). ~56!

Thus, we realize that under the condition~53!, all the non-
Markovian effects are described by a time renormalizat
given by t(t). We remark that Eq.~56! provides an ex-
tremely simple result, which in the RWA is exact at all orde
in the interaction. Note that in the parametert, this evolution
is Markovian and coincides with that obtained in Ref.@15#.

V. HEATING OF TRAPPED IONS

The theory of the heating of the vibrational modes o
trapped ion due to the presence of stochastic electrical fi
has been explored in many works@15–17#. Here, unlike
these works, we will apply the results of Sec. IV, whic
allow us to work all non-Markovian effects in an exact wa

The interaction of a single ion of massM interacting with
a classical stochastic electric fieldE(t) can be described by
the Hamiltonians~41! with u(t)5 ieE(t)/A2M\v0, e being
the ion charge@16#. Furthermore, for simplicity we will as-
sume thatE(t) has the properties of a stationary analytic
signal, with correlation ^^E* (t)E(t1)&&5^uEu2&exp(2ut
2t1 u/T), where ^uEu2& represents the rms electric-fiel
strength. In this manner, we have^^u(t)u(t1)&&50 and

^^u* ~ t !u~ t1!&&5
e2

2M\v0
^uEu2&exp~2ut2t1u/T!.

~57!

From the definitions ofh(t) @Eq. ~47!# andt(t) @Eq. ~55!# it
is possible to obtain

t~ t !5
l2T

t1
FexpS 2

t

TD cos~v0t12f!2cos~2f!1
t

TG ,
~58!

where we have defined

1

t1
5

e2^uEu2&
M\v0

T

11v0
2T2 , tanf5v0T. ~59!

The dimensionless parametert(t) contains all the informa-
tion about the non-Markovian effects. Thus, it is of intere
to study its behavior for short and long times. In the sho
time limit we obtain

ts~ t !5 lim
t→0

t~ t !.l2S t

td
D 2

, ~60!
0-6
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where the ‘‘characteristic decoherence time’’td is

td5A2M\v0

e2^uEu2&
. ~61!

This last expression has a clear physical interpretation:
term DP5A2M\v0 is the momentum quantum of the sy
tem; the termDF5Ae2^uEu2& represents the square root
the rms force acting on the system. Therefore, a Newton-
law is satisfied: (DP/td)5DF, expressing thattd is the av-
erage time over which the fluctuations create, or destroy
excitation quantum in the system. This averaged time is
dependent of the correlation timeT.

In the long-time regime (t@v0 ,T), we obtain

t l~ t !5 lim
t→`

t~ t !.l2
1

t1
~ t2t0!, ~62!

wheret05T(12v0
2T2)/(11v0

2T2). The timet0 represents a
usual slippage present in any non-Markovian evolution. T
time t1 defines the characteristic long-time scale. In terms
the characteristic decoherence time, it can be written as

t15F 2T

11v0
2T2G21

td
2. ~63!

Fixing the timetd , this expression reaches a minimal val
whenv0T51. Thus, the worse situation, where the ‘‘heati
influence’’ of the stochastic field—in the long-tim
regime—is maximized, occurs when the maximum of t
noise spectrum is centered at the natural frequency of the
trap.

Now we will analyze some properties that are of spec
interest in the theory of ion trapping.

A. Fidelity damping rates

In the RWA, from Eq.~21! it is possible to obtain

1

G2
5

l

v0td
@112~^a†a&C2^a†&C^a&C!#. ~64!

From this expression it is easy to see that, in the short-t
regime, the least affected states are the coherent ones.
that in this time scale, the coherence loss of these state
only originated by the ‘‘vacuum’’ contribution. Any othe
state will have a faster fidelity loss.

We remark that it is possible to realize that the states le
affectedat any timeare the coherent ones. This follows aft
considering that the Wigner function is governed by pur
diffusive processes@see Eq.~52! under the RWA#.

B. Mean excitation number

A central quantity of interest is the mean excitation nu
ber ^n&5Tr@ra†a#. From Eq.~56! it follows that

d^n~t!&
dt

51, ~65!
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which can be immediately integrated, giving

^n~ t !&5t~ t !1^n~0!&. ~66!

From this result, we realize that the dimensionless param
t(t) gives the mean excitation number when the trapped
starts in its ground state. In fact, the expression~66! and the
previous analysis oft(t) for short and long times, coincide
exactly with those obtained by James for the heating of
ground state@16#. Furthermore, in a Markovian approxima
tion, Eq. ~66! reduces to the expressions obtained in Re
@15,17#.

C. Populations

In this section we will obtain the evolution of the trappe
ion populations, which are given by the diagonal elements
the density matrix,Pn5^nur̂un&. The time evolution ob-
tained from Eq.~56! is

dPn~t!

dt
5@~n11!Pn11~t!1nPn21~t!2~2n11!Pn~t!#.

~67!

We remark that this evolution was obtained by Lamorea
@17# in a Markovian approximation. In contrast, here we a
working all non-Markovian effects in an hidden way throug
the parametert(t). Furthermore, we will solve exactly thi
infinite set of coupled equations by introducing the char
teristic function@34#

Q~x,t!5 (
n50

`

~12x!nPn~t!. ~68!

This function allows us to obtain the populations by diffe
entiation

Pn~t!5
~21!n

n!

]n

]nx
Q~x,t!U

x51

. ~69!

From Eqs. ~67!–~69!, the evolution of the characteristi
function is given by

]Q~x,t!

]t
52H xQ~x,t!1x2

]Q~x,t!

]x J . ~70!

This equation can be solved using the method of charac
istics. We get

Q~x,t!5
1

x
gS t1

1

xD , ~71!

whereg(x) is an arbitrary function that must be determin
by the initial condition:g(1/x)5xQ(x,0). After a simple
manipulation result

Q~x,t!5
1

11tx
QS x

11tx
,0D . ~72!

In the next, we will analyze the behavior of the populatio
for different initial conditions of interest.
0-7
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1. Thermal state

If at the beginning the trapped ion is in a thermal state,
initial populations are given by

Pn~0!5
n̄n

~ n̄11!n11 , n̄5
1

exp~b\v0!21
~73!

and the initial characteristic function is

Q~x,0!5
1

11n̄x
. ~74!

From Eq.~72! it follows that the evolved characteristic func
tion is

Q~x,t !5
1

11@t~ t !1n̄#x
. ~75!

Comparing the two previous expressions, we realize tha
any time the populations correspond to that of a thermal s
of the system witĥ n(t)& quanta. This fact permits us t
define the temperature of the system at all instants of
nonequilibrium evolution, which is given by

b~ t !5
1

\v0
lnF 1

^n~ t !&
11G . ~76!

In the context of ion trapping, only very low temperatur
are of interest. In particular, we can affirm that when t
trapped ion starts in its ground state, all the populations
occupied following a thermal distribution, with the temper
ture given by expression~76!.

FIG. 1. Dimensionless temperatureb21/\v0 as a function of
time for an ion that starts in its ground state. The parameters u
were as follows:l51, curve a, v0T510, v0t15105; curveb,
v0T510, v0t1537; curvec, v0T510, v0t1522; curved, v0T
510, v0t1516.
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In Fig. 1, we have plotted the time-dependence of
dimensionless temperatureb21/\v0 when the ion starts in
its ground state. The oscillatory behavior is a purely no
Markovian effect.

2. Fock state

Now we assume that the trapped ion begins in a num
stateuno&,

Pn~0!5dn,no
. ~77!

The initial generating function is given by

Q~x,0!5~12x!no, ~78!

and its temporal evolution is

Q~x,t !5
1

11t~ t !x F12
x

11t~ t !xGno

. ~79!

Consistently, we note that in the caseno50, the distribution
of the populations reduces to that of a thermal state. In g
eral, performing annth derivative, it is possible to obtain
general closed expression for then population. Of special
interest is the short-time behavior. We obtain

Pno
~ t !.12~112no!ts~ t !,

Pn~ t !.
n.!

n,! ~ un2nou!! @ts~ t !# un2nou, ~80!

where n. (n,) is the maximum~minimum! of the pair
(n,no), and ts(t) is given by Eq.~60!. The first result ex-
presses that the initial population can be abandoned eithe
creating or destroying any one of the originalno quanta, in
addition to the possibility of a vaccuum excitation. The
processes are incoherent, giving rise to the factor
12no). The second expression can be interpreted in a s
lar way: an arbitrary stateun& can be populated after creating
or destructing,un2nou quanta excitations; the number o
ways in which these processes can be realized is given by
combinatorial ofn. and n, . The number of ways follows
after considering the indistinguishability of then final exci-
tation quanta.

In Fig. 2, we have plotted the populations of the sta
n50,1,3,4, when the ion starts in its first excited staten
51. The short-time behavior, for populations different fro
the initial condition, have a polynomial increase with tim
The population revivals are a consequence of the n
Markovian character of the evolution.

It is interesting to note that it is possible to characterize
intermediate-time regime. As an example, we study
population of the ground state, which is given by

P0~ t !5
@t~ t !#no

@11t~ t !#no11 . ~81!

This expression starts from zero with a polynomial grow
and reaches its maximum value whentmax(t)5no , with
P0(tmax)5@no#

no/@11no#
no11. Later on, it follows a monotic

ed
0-8



on
e

. I
al
ld
nt

ni

f a

f
t

tia

e
site

.

und
the

e in
-

er-
e

ak

in

co-
rre-

ce
ian
ex-

q.

te
he

QUANTUM SYSTEMS SUBJECT TO THE ACTION OF . . . PHYSICAL REVIEW A 64 052110
decrease. This behavior is characteristic of all populati
different from the initial condition, and comes from th
structure of the master equation~56!. Thus, each stateun& has
a characteristic time where it is occupied most probably
addition to this behavior, we have to consider the reviv
originated from the nonzero correlation time of the fie
Nevertheless, in general they have disappeared on this i
mediate time scale.

3. Coherent state

Finally we give the exact analytical results when the i
tial state is coherent, i.e.,

Pn~0!5
n̄n

n!
exp~2n̄!. ~82!

The initial generating function is

Q~x,0!5exp~2n̄x!, ~83!

and its time dependence is given by

Q~x,t !5
1

11t~ t !x
expF2n̄

x

11t~ t !xG . ~84!

Again, if n̄50, the generating function reduces to that o
thermal state.

D. Noise-induced decoherence

As in the case of thermal reservoirs, the influence o
classical stochastic force on a quantum system leads to
destruction of the quantum-mechanical nature of an ini
state. Here we will study the decoherence phenomena

FIG. 2. Population behavior as a function of time for Fock sta
with n50,1,3,4 for an ion starting in its first excited state. T
parameters used were as follows:l51, v0T510, v0t1537.
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means of the Wigner function. As an initial condition w
choose a superposition of two coherent states with oppo
amplitudes~a ‘‘Schrödinger-cat’’ state!,

r~0!5
1

N ~ ua0&1u2a0&)~^a0u1^2a0u!, ~85!

whereN52@11exp(22ua0u2)# is a normalization constant
Using Eqs.~48! and~51!, in the RWA, the explicit expression
for the Wigner function is

W~a,a* ,t !5
1

NK~ t ! FexpH 2
ua2a0u2

K~ t ! J
1expH 2

ua1a0u2

K~ t ! J 12F~a,a* ,t !G ,
~86!

where the fringe functionF(a,a* ,t) is given by

F~a,a* ,t !5e22ua0u2 expH 2
uau22ua0u2

K~ t ! J
3cosF2

Im~aa0* !

K~ t ! G ~87!

and the width function is

K~ t !5
1

2
1t~ t !. ~88!

From expression~86!, we explicitly see that the initial
Wigner function consists of two Gaussians centered aro
6a0 and interference fringes in between. In contrast to
results obtained for a thermal bath@35#, the center of the
Gaussians does not move as time evolves. The functionK(t)
governs both the width of the Gaussians and the chang
fringe visibility. From the limiting behaviors of the dimen
sionless parametert(t), Eqs.~60! and~62!, we realize that at
short times, the Wigner function is characterized by a sup
diffusive behavior, converging to a diffusive behavior in th
long-time limit. This behavior can be classified as a ‘‘we
non-Markovian effect’’@36#.

In Fig. 3 we have plotted the fringe function in the orig
of the complex planeF(0,0,t) for a cat state withua0u252.
We realize that increasing the correlation timeT, the phe-
nomena of recoherence occurs, i.e., oscillations in the de
herence process. Note that the effect of increasing the co
lation timeT is to narrow the recurrence peaks.

E. Dispersive noise

Finally, we will analyze a trapped ion under the influen
of dispersive noise. In this case, the stochastic Hamilton
must not induce excitations in the energy system. As an
ample, we chooseH̃(t)5 l (t)N, whereN5a†a is the num-
ber operator. Working in the interaction picture, from E
~40! the exact density-matrix evolution reads

s

0-9
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d

dt
r̂~ t !52S l

\ D 2F E
0

t

dsx~ t,s!G†N,@N,r̂~ t !#‡. ~89!

In the Fock-state basis, the density-matrix elements evolv

d

dt
r̂nm~ t !52S l

\ D 2F E
0

t

dsx~ t,s!G~n2m!2r̂nm~ t !, ~90!

with solution

r̂nm~ t !5exp@2g~ t !~n2m!2#r̂nm~0!. ~91!

Here, the decay functiong(t) is given by

g~ t !5S l

\ D 2E
0

t

dt8E
0

t8
dsx~ t8,s!. ~92!

As in the previous case, all non-Markovian effects are int
duced through a time scaling given here byg(t). Proposing
the noise correlationx(t,s)5^ED

2 &exp(2ut2su/TD), where
^ED

2 & is the strength of the ‘‘stochastic dispersive energ
the time scaling results in

g~ t !5S l

\ D 2

^ED
2 &TDF t2TDH 12expS 2

t

TD
D J G . ~93!

From the asymptotic behavior of this function, it is possib
to conclude that the short-time regime depends quadratic
on time and is independent of the correlation time,TD. In the
long-time regime, the dispersive effect can be attenuated
reducing the product̂ED

2 &TD .

FIG. 3. Fringe function in the origin of the complex plane as
function of time. The parameters used were as follows:l51,
ua0u252, curvea, v0T58, v0t15141; curveb, v0T512, v0t1

5141; curvec, v0T527, v0t15141; curved, v0T570, v0t1

5141.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied—with the density-mat
formalism—the averaged dynamics of quantum systems s
ject to the influence of classical stochastic forces. From
averaged dynamics, we have constructed general applic
short-time perturbative expansions for some fidelities, s
as the input-output fidelity, the entanglement fidelity, and
averaged fidelity. The evolution of any system subject
dispersive noise was obtained in an exact way. The para
matic case of the harmonic oscillator under the action
amplitude noise is another example that was worked ou
all orders.

From these cases and from the analysis of the short-t
fidelities behavior, we can give some general characteris
of the averaged dynamics. The short-time dynamics
associated with decoherence—depend quadratically in t
and is characterized by the average time needed by the
tuations to induce an excitation quantum in the system. T
characteristic decoherence time is independent of the no
correlation time and is given in terms of the rms fluctuati
of the force field. On the other hand, in the long-time regim
for the case of amplitude noise—associated w
heating—we have argued that the influence of the stocha
field can be attenuated by reducing the noise intensity or
detuning the noise spectrum with respect to the natural
quency of the system. On the contrary, the dispersive ef
can be attenuated reducing both the intensity and the no
correlation time.

In the study of non-Markovian effects, we have show
that this feature is introduced in the evolutions through
time scaling. In the case of amplitude noise, the scaling gi
rise to revivals in the averaged dynamics. This fact was s
in the population behavior and in the behavior of the de
herence phenomena. On the other hand, the scaling for
persive noises only introduces a slow down of all the ir
versible processes.

As an application of our results, we have studied the pr
lem of heating of trapped ions. The previous exact results
the heating of the ground state@37# were generalized for
arbitrary initial conditions. We have proved that an initi
thermal state maintains this property during the whole n
equilibrium evolution, allowing us to define temperature
any time. We remark that this theoretical result agrees w
the measurements reported by Wineland’s group about
heating with ‘‘natural reservoirs’’@11#. The short-time behav-
ior for initial Fock conditions was clearly interpreted from
the indistinguishability of the elementary incoherent exci
tions. Furthermore the noise-induced decoherence prob
was studied by means of the Wigner function. This functi
has a diffusivelike behavior, in which the interference ter
exhibit the phenomena of recoherence. This behavior
direct consequence of the non-Markovian evolution.

The results concerning the heating of trapped ions can
straightforwardly applied to quantum electrodynamic ca
ties, or to any system that can be described by a harm
approximation. In general, any other system must be wor
out in a perturbative way. Finally, we hope that the pres
0-10



e

r
th
R
hi
n

on

a

n
t

tr

o

rs

n,

ion,

the
l,

the
um
bu-

ly

he

l-

QUANTUM SYSTEMS SUBJECT TO THE ACTION OF . . . PHYSICAL REVIEW A 64 052110
results can be useful for identifying different sources of d
coherence and heating in different systems.
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APPENDIX: FIRST-ORDER PERTURBATION THEORY
FOR THE MIXED-STATE FIDELITY

In this appendix we will develop a first-order perturbati
theory for the fidelity

F~rb ,ra!5$Tr@~ArarbAra!1/2#%2. ~A1!

We will assume that one of the states can be expressed
power series around the other,

rb5ra2«s~1!2«2s~2!2¯ . ~A2!

Here the symbol« denotes the expansion parameter a
Tr@s (m)#50 for all m. In a similar way, we will assume tha

F~rb ,ra!512«F ~1!2«2F ~2!2¯ . ~A3!

Inserting Eq.~A2! in Eq. ~A1!, we get

F~rb ,ra!5$Tr@M1/2#%2, ~A4!

where the matrixM is given by

M5ra
22«Aras~1!Ara2«2Aras~2!Ara2¯ . ~A5!

Now, in order to perform the trace operation in Eq.~A4!, we
need to find the eigenvalues and eigenvectors of the ma
M

M5(
j

Pj~«!uF j~«!&^F j~«!u. ~A6!

From the usual stationary perturbation theory, up to first
der, we get

Pj~«!5~Pj !
22«Pj^F j us~1!uF j&1q~«2! ~A7!

and

uF j~«!&5uF j&1«uF j
~1!&1q~«2!,
ra

p
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whereuF j
(1)& is the first-order correction to the eigenvecto

andPj (uF j&) are the eigenvalues~eigenvectors! of the ma-
trix ra ,

rauF j&5Pj uF j&. ~A8!

In this manner, inserting Eq.~A6! in Eq. ~A4! results in

F~rb ,ra!5H(
j

@~Pj !
22«Pj^F j us~1!uF j&1q~«2!#1/2J 2

.

~A9!

Maintaining in this expression the first-order contributio
we arrive at

F~rb ,ra!512«(
j

^F j us~1!uF j&2q~«2!. ~A10!

This equation gives us the desired first-order expans
whose validity is subjected to the condition«!$Pj%. It is
important to note that the sum over states is restricted to
eigenvectors ofra with nonzero eigenvalues, i.e., in genera
the sum is not the trace operation. In fact, only when
matrix ra has support over the whole Hilbert space, the s
is the trace operation and therefore the first-order contri
tion cancels.

Now we will apply this result to calculate perturbative
F„r̂(t),r(0)…, where the evolution ofr̂(t) is given by the
master equation obtained is Sec. II. First, we expandr̂(t) as

r̂~ t !5 r̂~0!1
d

dt
r̂~ t !U

t50

t1
1

2!

d2

dt2
r̂~ t !U

t50

t21¯ .

~A11!

Up to second order, the more direct way to obtain t
density-matrix derivatives is from the master equation~17!.
We get

d

dt
r̂~ t !U

t50

50 ~A12!

and

d2

dt2
r̂~ t !U

t50

52S l

\ D 2

xab†Va
† ,@Vb ,r̂~0!#‡. ~A13!

Therefore we can identify«↔t2 and s (1)↔2(1/2)(d2/
dt2) r̂(t)u t50 . Using the Hermiticity of the stochastic Hami
tonianH̃(t), the expressions of Sec. III follow.
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