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Quantum systems subject to the action of classical stochastic fields
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In this paper we investigate the averaged dynamics of quantum systems under the influence of classical
stochastic fields. This influence is modeled using a stochastic Hamiltonian evolution for the system-density
matrix. From the averaged dynamics, a general characterization of the short-time decoherence behavior is
obtained. General applicable short-time perturbation expansions for the input-output fidelity and its generali-
zations for mixed states are developed. The master equations of the systems that can be worked out without a
perturbative expansion, i.e., any system subject to dispersive noise and the quantum harmonic oscillator subject
to amplitude noise, are extensively analyzed. In both cases all non-Markovian features are worked out in an
exact way. We apply these cases to the study of heating of trapped ions.
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I. INTRODUCTION voir at infinite temperaturgl8,19, i.e., it continuously feeds
energy in the system. Therefore, this model will give correct
The study of open quantum systelis-4] plays an im-  results in a time regime previous to the time in which the
portant role in various fields of physics. The central problemeffects of the stochastic fields are saturated by the influence
in the study of these systems consists in characterizing th@f the thermal environment.

effects originated by the interaction with the external world.  In general, the origin of these stochastic fields is due to
In general, it is desirable to avoid this perturbative action/Many uncorrelated random sources. Therefore, after invoking

which works as an “eraser” of quantum properties of any;E_heI dcentralc-;limit theorem, welwiIL_assume thatlfhﬁ stoch_as_ticl
initial state of the system. ields are Gaussian noises. In this manner, all the statistica

The most natural and unavoidable external influence igield properties can be specified by providing their intensity

due to thermal reservoirs. This subject was largely investi-and their characteristic correlation time. In any real problem,

ated and characterized for different svstems and situationthe field noise spectrum is not flat, which implies correlation
9 . . Yy > o fimes different from zero. In consequence, the evolution of
Another type of influence is due to stochastic fields gener- () will be non-Markovian

ated in the experimental device that constitutes and monitor3 The paper is organized as follows. In Sec. Il we define the

the system of interest. stochastic dynamics and obtain the exact averaged density
The notable expe_nmental advances of the_ last deca_dﬁ]atrix evolution. Furthermore, we sketch the procedure to
h_ave allowed to monitor directly these types of mf_luences idevelop perturbative expansions. These points can be ob-
different systems. For example, numerous theoretical and eXained from a previous work on non-Markovian dissipative
perimental investigations were devoted to quantum electrostochastic wave vector§20]. Nevertheless, a stochastic
dynamic cavitie§5-8], trapped iong9—-17], laser systems, Hamiltonian dynamics is a much more simple case, there-
etc. The high experimental accuracy and sensitivityfore, here we reobtain it in order to clarify the later calcula-
achieved, has permitted to test different hypotheses and th&ens. In Sec. Ill, we study the short-time decoherence dy-
oretical approaches that describe the environment-system imamics induced by the noises. As a measure of the
teraction. For this reason, it is highly desirable to obtaindecoherence processes, we use the input-output fidelity and
exact evolutions and solutions of the different models. its generalizations for mixed states. General applicable short-
In this paper we develop a systematic study of the influtime perturbation expansions are developed. In Sec. IV we
ence of classical stochastic fields on quantum systems. ThRFesent the cases whose averaged evolutions can be obtained
influence will be modeled by the introduction of a stochasticin &n exact way, i.e., any system subject to dispersive noise
Hamiltonian in the evolution of the system density matrix.@nd the quantum harmonic oscillator subject to amplitude
Thus, the statistical properties of the system will be obtained0ise. Special attention is paid to the latter case. The exact

from the averaged density matrix time-convolutionless evolution for the density matrix and a
closed expression for the Wigner function are obtained. In
p(t)={(ps(1)), (1)  Sec. V we apply the results of the previous section to the

study of heating of trapped ions. The short- and long-time

where(- -y means average over the stochastic realizations di¢9imes are studied. The population's behavior for different

the force fields. initial conditions and the problem of noise-induced decoher-
It is well known, that a stochastic field that exchanges€Ce are worked out. The case of an ion subject to dispersive

energy with a quantum system, induces—in a Iong-timenOise is briefly analyzed. In Sec. VI we give the conclusions.

regime—an averaged dynamics that is equivalent to a reser- L. DENSITY-MATRIX DESCRIPTION

In this section we define the stochastic dynamics and ob-
*Email address: adrian@if.ufrj.br tain the master equation for the averaged-density matrix.
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A. Stochastic evolution To go ahead with this result, we now need to know the ex-
A stochastic Hamiltonian dynamics is characterized byPression for the “response functiondps(t)/ 4l 4(t,). We
the evolution obtain this object by following Ref§21,22. After integrat-

ing Eq. (2) formally, we obtainiﬁpst(t)=pst(0)+f})d u[H

. d B ~ +)\H(u),pst(u)] and taking a functional derivative with re-
whereH describes the free evolution of the system &Hd) i% Opsi(t) AV
: L =i MVg.psi(ty)]
represents a stochastic Hamiltonian given by ol g(ty)
Fo=S | +ftdu H+\Fi(u) 5”5—“)} ®
H(t)_a:l a(t)va' (3) ty ' 5lﬁ(t1) '

where V, are operators acting on the Hilbert space of theWhere we have assumed that at the initial time, the system
System anda(t) are Comp|ex Gaussian stochastic processegnd the noises are uncorrelated. Now, if this eXpreSSion is
with zero mean Va|ue, whose correlations are defined by differentiated with reSpeCt D an equation for the variational
derivative of the stochastic matrix is obtained
Xap(Lt) =((I5(D1 5(t1))). 4

i i Opsi(t) —IH )\H(t) Opsi(t)
We remark that due to the Hermiticity ¢f(t), it follows dt ol 5(tq) "ol g(ty)
that if | ,(t) were complex numbers there would be an index o N ) ) _
a' such thatl . (t) is the complex conjugate df,(t) (V. The initial condition of this equation follows from the first

=V, i.e.,l . (t)=1%(t), otherwiseH (t) would not be Her- term of the right-hand side of Eq8). Note that the varia-
. . . tional derivative follows the same evolution as the stochastic
mitian. Note that in the particular case where an operdtor

is Hermitian, the noisé,(t) ought to be real. density matrix. Therefore we can write

. 9

B. Master equation = =i 7 Gs(t,t)[Vg,psit1) 1Ggi(t,t1),  (10)
Sl g(ty) f
Now we wish to find the exact evolution of the averaged-
density matrix, where the propagatds(t,t;) is given by
. d ~ i [t -
i 4 {pst(0)=([H+AH 1), ps(D)]). (5) Gst(t,tl)z{exp— %L du(H +)\H(u))}. (1)
1

Here we have to take the average of a linear stochastic MUlerer.- | indicates time ordering. Performing the average of
tiplicative equation. Fortunately, this kind of average can beexpression(lO) over the noise realizations, we note that

obtained exactly by applying Novikov's theoref21,22. (t))—p(ty). This can be seen by using the identit
This theorem gives an exact result for the mean value of th’JSt VP ; Y i y
st(t1,t1) =1. Inserting the average of EqL0) in Eq. (7),

product of a Gaussian noise and any functional of that nois§a exact evolution of the density matrix follows:
Using the fact thap(t) is a functional of all noises,(t)

and thatH(t) is Hermitian, after applying Novikov's theo- i N2t
rem, we obtairf20] giPO=—7[H.pO]=| & Jodtha,B(trtl)
~ t Opsi(t t t
(A(t)pst))= f dthaﬁ(t!tl)VIy<5lps—ti)> ' X[Vea (Gs(t,t)[ Vg, p(t1) IG(t 1)) ]
Sout) (6)
= ! P A ted, thi tion i local in time.
(pa D)= fodthaB(tltl)< 5|;(tt1)> T S was expecte is equation is nonlocal in time

C. Time-convolutionless master equation
Here and from now on, we assume the convention of addi-

tion over repeated indices. Inserting expressi@snto Eq.
(5), it follows that

Here we will obtain an equivalent exact evolution that is
local in time. This goal can be achieved by expressing the
stochastic matrix at an intermediate time as

iﬁ%(pst(t»=[H,<pst(t)>]+Aftdtlxaﬁ(t,tl) psi(t1) =GL(t,t) pei( D) Gt t). (13
0

So(t Here we have used the fact that at all times the stochastic
X[VT < psi )H 7 evolution is unitary, thusG;l(t,t1)=G;rt(t,tl). From this
@\ ol 5(tq) expression, we can write the functional derivatil€) as
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Spsi(t) DY ‘ as a measure of the decoherence processes we will use the
= =i [Gs(t,t1)VGe((t,ty), ps()]. (14  input-output fidelity[27]
Sl 5(tq) fi
Finally, introducing this expression into E), we obtain F(O=Tra(1)p(0)]=(¥|p(t)|¥). (18)
d i A2 rt In the short-time regime, the fidelity can be expanded as
m(Pst(t»: - %[H’<Pst(t)>]_ g) fodt1Xaﬁ(tit1) ot (o2
+ ; F(t)zl_F__<F_) — (19
X[Va ’<[Gst(t!tl)vﬁGst(t!tl)lpst(t)]>]' 1 2

(19  where in order to gain insight into the problem, we have

introduced the quantity,, which represents a characteristic

This expression gives us the desired time—convolutionlesprequency of the system. The constafitsan be obtained
evolution. It will be the starting point of the rest of our paper. ¢, 1(T,)"=nITr[ (d™dt") p(t) |, —op(0)], Where the de-
n : = )

_ _ rivatives of the density matrix follow from the master equa-
D. Perturbative expansions tions obtained in the previous sectiGgee Appendix Up to

In general, the average in expressidm®) cannot be ob- S€cond order, we obtain
tained without appealing to a perturbative scheme. Since it is

desirable to work out the free evolution in an exact way, the ~_0 (20
starting point is the density matrix evolution in the interac- Iy
tion picture,
and
d _ N
&(pst(t»_ _(g) jodt1XaB(tutl) 1 )\ RS o
. X . T, " hwe
XIVa(([Gai(t,t) V() GLi(t ) s D])]- ? e
(16) where we have defined
Here the hat symbol indicates the explicitly time-dependent <<F|>>‘If:XaB[<VZV,B>\I'_<V:ry>\I’<Vﬁ>‘If]' (22)

objects. The difficulty with this expression consists in obtain-

ing the average of the product of two functionals of a set ofyere(v),, =(W¥|V|¥) is an operator average over the initial
Gaussian noises: the stochastic mafi(t) and the channel  gyantum state angl 5= X ap(t,t2) =t —o-

propagatorsGe(t,t:)V4(t) G{(t,t1). This average can be  Equation(20) shows in general that the decoherence pro-

worked out in an perturbative way, using a generalization ofesses evolve at least quadratically in time for short times.
Novikov's theorem. The details of this procedure can bepn the other hand, note that the expression for the second
found in Ref.[20]. Here, we only show the second-order figelity damping ratel', is independent of the correlation

approximation, times of the noises. It expresses that the fidelity loss in a
d N\ 2 (t characteristic period of time 2w, * is given by the initial
ab(t):—(%) j dtl)(aﬁ(t,tl)[VZ(t),[Vﬁ(tl),,}(t)]]. stochastic Hamil_tor_1ian variandgH )y , measured_ in uni_ts

0 of the characteristic system energys,. The variance is

17 over the noises and over the initial quantum state. In this
. . . way, the environment influence can be attenuated by reduc-
:n.orgetrhto obt;ta;]n tf(]j|s resutlt_,bmt.EcqlEfi)tr\]/ve ?avr? otl_wly dre— ing the noise intensities, or by selecting preferential states
.ameA e zeroth-or .er gon ribution 9 e s ochastic dynamg, -+ e quce the quantum operator averdgss.

ics, Ggi(t,ty)=1, which imply the discarding of terms of  \nve remark that the same conclusions are obtained by

order ¢(\/#)*. Using the Jacobi identity, it is possible to studying the short-time behavior of the idempotency defect
rewrite this evolution as a time-dependent Kossakowskyss(t)=1—Tr[p%(t)] [23].

Lindblad generator with an effective Hamiltonifh9].

A. Fidelities for mixed states

Ill. SHORT-TIME DYNAMICS AND FIDELITIES . .
In the context of quantum information theof26-29,

An important topic in the theory of open quantum systemshe necessity of “measuring” the decoherence processes
is the short-time dynamics induced by the environmentwhen a system begins in a mixed state naturally arises. In
Many quantities have been introduced to characterize thithis case, the definitiofL8) is not useful and other quantities
problem[23—-29. Here, in a first step, we are interested in have been proposed. Here, in a second step, we will examine
characterizing the physical magnitudes that control the decahe short-time behavior of these generalized fidelities, con-
herence processes at short times. Therefore, we will assunsé&ering that the quantum system evolves under the action of
that initially the system is in a pure stgi€0)=|¥)(W¥|, and classical stochastic fields.
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The entanglement fidelity26—-28§ is defined by

a)ot (a)ot)z_

__F_2e

Fo()=Tr[ps(t)prs(0)]=1— T
le

(23

Here p,s(0)=|¥ (¥ |, where the stat¢¥ ) is a purifi-
cation of the initial system density matrix, i.e.,
Tr W, s){¥,s|1=p(0), wheres denotes the original system
andr denotes an ancillary system. The matpix(t) is the
result of applying tg,s(0), theoriginal propagator extended

PHYSICAL REVIEW A 64 052110

2

—_ (31)

F(b<t>.p<o>>=1_“’_°t_(w_ot

Fim T

In this case, the derivation of the damping rates is more
complicated. In the Appendix, we have developed a general
first-order perturbation theory, which allows us to treat this
problem. We get

to the ancillary Hilbert space with the identity. The constants
I'e can be obtained in a similar way as in the previous caseé"

Up to second order, we obtain

1

—=0 24
. (24)

and

1 V),

Tpe © hwo

o (25)

where <<i:|>>\yrs is the same as in Eq22), but now the
operator averages are given W)qerETF[P(O)V], i.e., an
average over the initial mixed state.

1
F—lm=0 (32)
NOLIGHA
F_m:)\h—wo' (33)

The probabilitiesP; and the stategb;) are, respectively, the
eigenvalues and eigenvectors of the initial density matrix
p(0)|®;)=Pi|D;). (34

Unlike the previous cases, the avera((;El))[j,i is given by

(AN, = Xapl (ViV o, ~(ViDVp)e ], (35

Expressing the initial state as an arbitrary mixture of pure

states

p<0>=2 i WV, (26)

whereX,;p;=1, the averaged fidelitj26—28 is defined by

ot (l)ot
1

2
Fa)=2 piF<|¢/i>)=1—§’—a—(F2a) — @)

where the operatdP is

D= 2 |®;ND]. (36)
{P;#0}

Here the sum is extended only to the eigenvect@rp} of

p(0) with nonzero eigenvalues. Furthermore, the expansion
(31) is valid only under the condition’<{P;}. Note that
1T,,, vanish when the initial density matrix has support
over the whole Hilbert space. This property is not a quantum

whereF (|¥})) indicates the input-output fidelity for the pure one. In fact, it will be also present if we apply the perturba-

state|¥;). The characteristic constarifs, are

1 J—
F—la—O (28)
and
NG

where((ﬁ))q,i is the same as in expressi¢®2), but per-
forming the operator averages with the stakg).

Finally, we mention a natural generalization of the defini-

tion (18) analyzed by Jozsa in Rdf29]. In this generaliza-
tion, the fidelity between two mixed statpg andp, is de-
fined by

F(pb,pa) =T (Vpapoypa) Y21}2. (30)

tion theory of the Appendix to the classical definition of
fidelity between two probability distributiong26] (for ex-
ample, Eq.(30) when[py,,p,]=0).

From the previous result, we realize that the difference
between the short-time dynamics of the different generalized
fidelities is given by the kind of quantum average performed
over the operators that define the stochastic Hamiltonian. In
fact, in all cases, the influence of the noises only appear
through their amplitudes without any information about their
correlation times. Furthermore, the inequality relations that
one can find between the different damping rates coincide
with the ones obtained in Refi26-2§.

IV. EXACT NONPERTURBATIVE EVOLUTIONS

In this section we will work out some cases whose aver-
aged evolutions can be treated to all orders in the interaction.
This possibility is highly dependent on the properties of the
noise correlations and on the commutation relations of the
different operators that describe the problem. Fortunately,

As in the previous generalizations, it is possible to expand there are situations of practical interest, where the average
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term in the master equatiqid5) can be obtained in an exact wherew, represents the natural frequency of the oscillator,
and easy way. a'(a) represents the creatiofannihilation operator, and
u(t) is a general complex Gaussian stochastic field.
A. White noises In what follows we will apply the results of Sec. Il. First,

o . as in Ref[16], we note that the stochastic propagator corre-
When the stochastic fields are characterized by uncorresponding to the evolutiofdl) can be written, in the interac-

Xap(t12)= Pap(t= 1), 37 Gutty=exdigti)Dlo(t)], (42
the average in EC{15) can be terla”y calculated, gIVIng rise where D[U]:eXF[UaT_Ua] is the disp]acement operator,
to a standard Lindblad generator, &(t,t,) is a phase factofwhich turns out to be important for

, the current problem and the amplitude (t,t;) is given by
d i N the formula
_ - _ = t
50 ﬁHy@](ﬁ(meowg t
+[VZp(t),Va]) (38) U(t,tl):)\ﬁldt u(t )equwot ) (43)

In obtaining this result, we have used the fact tBaf(t,t)  Using the properties
=1. Note that in this correlation model, any physical infor- + ft +
mation must be introduced in @&t hocmanner through the D[v]aD'[v]=a-v, Dlv]a'D[v]=a’'—v*, (44

intensity of the noises. from Eq.(14), it is possible to obtain

B. Dispersive noise Opsi(t) ey
S :)\[a (tl)lpst(t)]!
Here we analyze a second example that can be worked out u(ty)
in an exact, non-perturbative way. We will assume that the R (45
stochastic Hamiltonian has only one terrh(t) =I(t)V, and psit) = —\[a(ty),pe )],
that it does not induce energy excitations in the system, ou*(ty) *
[H,V]=0. (39 where the terms proportional toandv* have canceled out,

due to the commutator operation. Now, the average of the
This condition implies that the operatdft commutes with ~ variational derivatives can be performed in a trivial way giv-
the stochastic propagat@st’ and as a conseguence the Ing I’ise, after a little algebra, to the exact eVOIUtion,
variational derivative of the stochastic density mafrigg.

e ot e on e afeta 0L 0ot
d ! ME( + 2 nO((a" p(al +[a'h(D).a))
giP=—7IH.pO]-| & (JOdSX(t,S) [V.[V.p(1)]], 2
(40) +é([a,pta’]+[aTp(t),a™])
where x(t,s) is the noise correlation. +&*(H([a,p(t)al+[ap(t),a]), (46)

If we assume white noise and the operafoproportional
to the HamiltonianH, the master equatiof®0) reduces to
Milburn’s model of intrinsic decoherend&0]. On the other t
hand, dispersive noise can be used to represent Iasem(t)EXZJ' dt {((u* (t)u(ty)))exd —iwo(t—ty)]+c.c},
intensity fluctuations in a trapped idt4]. 0

where we have defined

t
C. Quantum harmonic oscillator &)= —)\Zf dty((u(t)u(ty)))exdiwg(t+t1)]. (47)
subject to color-amplitude noise 0

Now we will obtain the density-matrix evolution that cor- We remark that, to our knowledge, these expressions were
responds to a quantum harmonic oscillator subject to th@ot previously reported. This Lindblad-like generator gives
influence of “amplitude noise.” This means that the field the exact non-Markovian evolution of an harmonic oscillator
fluctuations induce energy excitations in the system. Theubjected to color Gaussian fluctuations. Notice that this evo-

Hamiltonians describing this situation are lution is the same that would be obtained in a second-order
5 approximation[Eq. (17)], implying that all higher-order
H=hwoa'a, H(t)=ia[u(t)a’—u*(t)a], (41) terms give a total null contribution.
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1. Wigner function where the dimensionless paramet€t) is given by
An alternative and equivalent description to that given by .
a density matrix, is that obtained with the use of phase-space T(t)EJ dt’ 5(t") (55)
distributions. These methods are of considerable practical in- 0 '

terest, since they allow one to deal with functions rather than
operators. the evolution of the density matrix can be written as
The Wigner function is defined by81,37]

dp(n) 1~ R +
1( ., 3.~z lap(na]+[ap(n).a’]
W(a,a*)=; d zexd —za* + az* |xu(2,2%), T
(48) +[a".p(r)a]+[ap(7),a]). (56)
where the characteristic functiop,(z,z*) is given by Thus, we realize that under the conditisB), all the non-
. bk Markovian effects are described by a time renormalization
xw(z,2")=Trlp expza’—z"a)]. (49 given by 7(t). We remark that Eq(56) provides an ex-

tremely simple result, which in the RWA is exact at all orders
in the interaction. Note that in the parametgthis evolution
is Markovian and coincides with that obtained in Rdf5].

Using Eq.(46), it is possible to obtain the exact evolution of
the characteristic function,

P
S w(ZZ50 = —{|2?n(t) +(2*)2E(t) + 22E* (1) xw(Z,1), V. HEATING OF TRAPPED IONS

(50) The theory of the heating of the vibrational modes of a
which can be immediately integrated as trapped ion due to the presence of stochastic electrical fields
has been explored in many work&5-17. Here, unlike
t these works, we will apply the results of Sec. IV, which
xw(z,2* 't)ZGXF{ _f dt'{[z]?5(t") +(z*)?&(t") allow us to work all non-Markovian effects in an exact way.
0 The interaction of a single ion of mas&interacting with
a classical stochastic electric fielt(t) can be described by
xw(2,2%,0). (1) the Hamiltoniang41) with u(t) =ieE(t)/V2M%wg, € being
the ion chargd16]. Furthermore, for simplicity we will as-
In this way, specifying the correlation properties of the sto-SUme that(t) has the properties of a stationary analytical
chastic fieldu(t) and the initial condition of the system Signal, with correlation ((E*(DE(t1)))=(|E|*)exp(-|t
xw(z,2*,0), itis possible to obtain the exact Wigner function ~t1[/T), where ([E|?) represents the rms electric-field
by quadrature. Alternatively, from Eq§48) and (50, it is  Strength. In this manner, we hay@u(t)u(t;)))=0 and
possible to obtain the temporal evolution of the Wigner func-

+Z2EF ()}

2

tion 2
’ (ur(tu(ty)))= (|E[*)exp(—[t—t|/T).
d PW(a,a* 1) PW(a,a* 1) 2w (57)
e * _ ) ) _ 1 )
2t Wi, a® )= n(t) —, ———— &) — B |
, From the definitions ofy(t) [Eq. (47)] and r(t) [Eq. (55)] it
IW(a,a* 1) is possible to obtain
—E () 62 °P
o
AT t t
Notice that this dynamics is governed by diffusive processes 7(1)= S codwol+2¢)—Cog2¢)+ 7|,
with time-dependent diffusion coefficients. (58)
2. Rotating-wave approximation and analytical signals where we have defined

A common description of a field is in terms of analytical )12
signals[33]. This description is equivalent to applying the 1 _eXEf) T tand— wgT (59)
rotating-wave approximatioRWA), which consists in dis- . Mhwg 1+ ngz' — @l
carding antiresonant terms. In the present problem this cor-
responds to assumifgu(t)u(t;)))=0, and in consequence The dimensionless parameteft) contains all the informa-
tion about the non-Markovian effects. Thus, it is of interest
&(t)=0. 53 1o study its behavior for short and long times. In the short-

. - . L time limit we obtain
Under this condition, and proposing the following time de-

pendence of the density matrix, ( )2
T_ 1

(D) =lim7(t)=\?

(60)
p(t)=p(7(1)), (54) =0
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where the “characteristic decoherence timgis which can be immediately integrated, giving
[2M A g 61 (n(t))=7(t)+(n(0)). (66)
Ta= \ 22/ [F 2y
‘ eX(|E[%) From this result, we realize that the dimensionless parameter

. . N . 7(t) gives the mean excitation number when the trapped ion
This last expression has a clear physical interpretation: thg

a X tarts in its ground state. In fact, the expresgi®® and the
term AP=y2M# w, is the momentum quantum of the sys- yrevious analysis of(t) for short and long times, coincide

tem; the termAF = Je*(|E[) represents the square root of gyacily with those obtained by James for the heating of the
the rms force acting on the system. Therefore, a Newton-likgyround statg16]. Furthermore, in a Markovian approxima-

law is satisfied: AP/7q)=AF, expressing that is the av-  tjon, Eq. (66) reduces to the expressions obtained in Refs.
erage time over which the fluctuations create, or destroy, ams 17,

excitation quantum in the system. This averaged time is in-
dependent of the correlation tine

. . . C. Populations
In the long-time regimeté wq,T), we obtain P

In this section we will obtain the evolution of the trapped-

_ ,1 ion populations, which are given by the diagonal elements of
T(O=1lm7()=\"—(t—to), (62 the density matrix,P,=(n|p|n). The time evolution ob-
t—oo 1 . .
tained from Eq.(56) is

whereto=T(1— wjT?)/(1+ wiT?). The timet, representsa  dp, (7)
usual slippage present in any non-Markovian evolution. The =[(N+1)Ppi1(1)+nP_1(7) = (2n+1)Pp(7)].
time 7, defines the characteristic long-time scale. In terms of (67)
the characteristic decoherence time, it can be written as

. We remark that this evolution was obtained by Lamoreaux

_ 2T 2 63) [17] in a Markovian approximation. In contrast, here we are
[ wOZTZ Td- working all non-Markovian effects in an hidden way through

the parameter(t). Furthermore, we will solve exactly this
Fixing the timer,, this expression reaches a minimal valueinfinite set of coupled equations by introducing the charac-
whenwyT=1. Thus, the worse situation, where the “heating teristic function[34]
influence” of the stochastic field—in the long-time

©

regime—is maximized, occurs when the maximum of the _ N
noise spectrum is centered at the natural frequency of the ion Q(x,7) ,go (1=X)"Pn(7). (68)
trap.
Now we will analyze some properties that are of specialThis function allows us to obtain the populations by differ-
interest in the theory of ion trapping. entiation
- . (=" "
A. Fidelity damping rates P”(T):T WQ(X'T) (69)
In the RWA, from Eq.(21) it is possible to obtain x=1
1 N From Egs. (67)—(69), the evolution of the characteristic
—=——[1+2((afa)y—(aMy(a)y)]. (64)  function is given by
Iy wo7g
From this expression it is easy to see that, in the short-time s XQ(X,7) +X | (70

regime, the least affected states are the coherent ones. Note
that in this time scale, the coherence loss of these states This equation can be solved using the method of character-
only originated by the “vacuum” contribution. Any other istics. We get

state will have a faster fidelity loss.

We remark that it is possible to realize that the states least B 1
affectedat any timeare the coherent ones. This follows after Qx,7)= ;g( ) (72)
considering that the Wigner function is governed by purely
diffusive processefsee Eq(52) under the RWA whereg(x) is an arbitrary function that must be determined

by the initial condition:g(1/x)=xQ(x,0). After a simple

B. Mean excitation number manipulation result

A central quantity of interest is the mean excitation num- 1
ber(n)=Tr[ pa'a]. From Eq.(56) it follows that Qx,7)= 1+ er 1+7'X'0 : (72)
d{n(7)) -1 (65) In the next, we will analyze the behavior of the populations
dr ' for different initial conditions of interest.
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3.0

In Fig. 1, we have plotted the time-dependence of the
dimensionless temperatu@ /% w, when the ion starts in
its ground state. The oscillatory behavior is a purely non-

25 Markovian effect.

2. Fock state

o
2
S 20
- Now we assume that the trapped ion begins in a number
£ state|n,),
e 1.5
§ P.(0)= 5n,n0- (77)
E 1.0 4 The initial generating function is given by
.cT) -
o Q(x,00=(1=x)", (78)
£ : o
a %°7 and its temporal evolution is
X Mo
00+ 77— Q(x,t)= 1+ 70X 1- 1+ X (79
0 5 10 15 20 25 30
Dimensionless Time, .t Consistently, we note that in the casg=0, the distribution
’ 0

of the populations reduces to that of a thermal state. In gen-

FIG. 1. Dimensionless temperatugs /4w, as a function of ~ €ral, performing amth derivative, it is possible to obtain a
time for an ion that starts in its ground state. The parameters usegeneral closed expression for thepopulation. Of special

were as follows:A=1, curvea, w,T=10, wgr;=105; curveb, interest is the short-time behavior. We obtain
woT=10, wgr;=237; curvec, wgT=10, wgr,=22; curved, wyT
=10, wor,= 16. Pn,(D=1—=(1+2n,)74(1),
1. Thermal state n.! _
o o Pn(t)= ———7 [7s(1)]" "), (80)
If at the beginning the trapped ion is in a thermal state, the n-!(|n—ng|)!

initial populations are given b
Pop g y where n. (n.) is the maximum(minimum) of the pair

nn . 1 (n,n,), and 74(t) is given by Eq.(60). The first result ex-
Pn(0)= T " exgBhwg) -1 (73 presses that the initial population can be abandoned either by
creating or destroying any one of the origimg| quanta, in
and the initial characteristic function is addition to the possibility of a vaccuum excitation. These
processes are incoherent, giving rise to the factor (1
+2n,). The second expression can be interpreted in a simi-
Q(x,0)= 1+nx’ (74 lar way: an arbitrary stat@) can be populated after creating,
or destructing,|n—n,| quanta excitations; the number of
From Eq.(72) it follows that the evolved characteristic func- ways in which these processes can be realized is given by the
tion is combinatorial ofn. andn_ . The number of ways follows
after considering the indistinguishability of timefinal exci-
tation quanta.

In Fig. 2, we have plotted the populations of the states
n=0,1,3,4, when the ion starts in its first excited state
Comparing the two previous expressions, we realize that at 1. The short-time behavior, for populations different from
any time the populations correspond to that of a thermal statghe initial condition, have a polynomial increase with time.
of the system with(n(t)) quanta. This fact permits us to The population revivals are a consequence of the non-
define the temperature of the system at all instants of th&larkovian character of the evolution.
nonequilibrium evolution, which is given by It is interesting to note that it is possible to characterize an

intermediate-time regime. As an example, we study the

Q(x,t)= (79

T+[r()+n)x’

B(t) = iln 1 i1 (76) population of the ground state, which is given by
h n(t '
wo [(n(t)) . - .
In the context of ion trapping, only very low temperatures ol)= [1+7(t)]F T (82)

are of interest. In particular, we can affirm that when the

trapped ion starts in its ground state, all the populations ar&his expression starts from zero with a polynomial growth
occupied following a thermal distribution, with the tempera-and reaches its maximum value whemp,(t)=n,, with
ture given by expressio(v6). Po( Tmad =[No]"/[1+n,]" L. Later on, it follows a monotic
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1.0 — T T T T T T means of the Wigner function. As an initial condition we
choose a superposition of two coherent states with opposite
i 7] amplitudes(a “Schradinger-cat” statg,
0.8 H — 1
P(0)=N(|ao>+|_ao>)(<ao|+<_ao|), (89
o 0.6 . where N'=2[ 1+ exp(—2|ag|?)] is a normalization constant.
_S Using Eqs(48) and(51), in the RWA, the explicit expression
© i ] for the Wigner function is
>
2 04} ]
T 0 g W(a,a* t)= ——|ex _—|a—ao|2
- 1 T NK(t) K(t)
n=0
02} . la+ agl?
n=3 +exp — ——— +2F(a,a* 1) |,
K(t)
5 n=4 g
(86)
0.0 N 1 . 1 N 1 . 1 . 1 N
0 5 10 15 20 25 30 where the fringe functiofr(«a,a* ,t) is given by
Dimensionless Time, o t
0 2 2
* 1) — a—2lag? || aol
FIG. 2. Population behavior as a function of time for Fock states Fla,a™,t)=e exp — KM
with n=0,1,3,4 for an ion starting in its first excited state. The
parameters used were as follows=1, w,T=10, wyr;=37. Im(aa(’)‘)
X co W (87)

decrease. This behavior is characteristic of all populations
different from the initial condition, and comes from the
structure of the master equati®6). Thus, each stat@) has

a characteristic time where it is occupied most probably. In 1

addition to this behavior, we have to consider the revivals K(t)= =+ 7(t). (898
originated from the nonzero correlation time of the field. 2

Nevertheless, in general they have disappeared on this inter- . o o
mediate time scale. From expression(86), we explicitly see that the initial

Wigner function consists of two Gaussians centered around
3. Coherent state * aq and interference fringes in between. In contrast to the
Finall e th iical | hen the ini results obtained for a thermal bafB5], the center of the
ial sl?z;ateyi;,vgo%;ree:]teie(axaCt analytical results when the N Gaussians does not move as time evc_JIves. The funst{oh _
P governs both the width of the Gaussians and the change in
an fringe visibility. From the limiting behaviors of the dimen-
Pn(0)=—exp—n). (82)  sionless paramete(t), Egs.(60) and(62), we realize that at
n: short times, the Wigner function is characterized by a super-
diffusive behavior, converging to a diffusive behavior in the
long-time limit. This behavior can be classified as a “weak

and the width function is

The initial generating function is

_ = non-Markovian effect[36].
Qx,0)=exp(—nx), ®3 In Fig. 3 we have plotted the fringe function in the origin
and its time dependence is given by of the complex plané (0,01) for a cat state witjag|?=2.

We realize that increasing the correlation timgthe phe-
nomena of recoherence occurs, i.e., oscillations in the deco-

. (84)  herence process. Note that the effect of increasing the corre-
lation timeT is to narrow the recurrence peaks.

_ 1 _ X
Q(x,t)= mex —nm

Again, if n=0, the generating function reduces to that of a
thermal state. E. Dispersive noise

Finally, we will analyze a trapped ion under the influence
D. Noise-induced decoherence of dispersive noise. In this case, the stochastic Hamiltonian
As in the case of thermal reservoirs, the influence of anust not induce excitations in the energy system. As an ex-
classical stochastic force on a quantum system leads to trample, we choosél(t)=I(t)N, whereN=a'a is the num-

destruction of the quantum-mechanical nature of an initiaber operator. Working in the interaction picture, from Eqg.
state. Here we will study the decoherence phenomena bi40) the exact density-matrix evolution reads
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1.0 — 7 VI. SUMMARY AND CONCLUSIONS

. In this paper, we have studied—with the density-matrix
formalism—the averaged dynamics of quantum systems sub-
0.8 1 7] ject to the influence of classical stochastic forces. From the
averaged dynamics, we have constructed general applicable
short-time perturbative expansions for some fidelities, such
0.6 1 . as the input-output fidelity, the entanglement fidelity, and the
a /IR averaged fidelity. The evolution of any system subject to
dispersive noise was obtained in an exact way. The paradig-
0.4 i matic case of the harmonic oscillator under the action of
b amplitude noise is another example that was worked out at
. . all orders.

From these cases and from the analysis of the short-time
fidelities behavior, we can give some general characteristics
] d of the averaged dynamics. The short-time dynamics—
associated with decoherence—depend quadratically in time
0.0 — ——r—7 and is characterized by the average time needed by the fluc-
0 5 10 15 20 25 30 tuations to induce an excitation quantum in the system. The

Dimensionless Time. .t characteristic decoherence time is independent of the noise-
T correlation time and is given in terms of the rms fluctuation

FIG. 3. Fringe function in the origin of the complex plane as aOf the force field. On the other hand, in the long-time regime,

function of time. The parameters used were as follows:1, for the case of amplitude noise—associated with

Fringe Function

0.2 A ]

ftdsx(t,s)

0

[N.IN.p(D]]. (89

|ag|?=2, curvea, woT=8, wyr;=141; curveb, woT=12, wor; heating—we have argued that the influence of the stochastic
=141; curvec, wglT=27, wom;=141; curved, woT=70, wom;  field can be attenuated by reducing the noise intensity or by
=141. detuning the noise spectrum with respect to the natural fre-
quency of the system. On the contrary, the dispersive effect
d_ A2 can be attenuated reducing both the intensity and the noise-
atP= _(%) [ correlation time.
In the study of non-Markovian effects, we have showed
In the Fock-state basis, the density-matrix elements evolve abat this feature is introduced in the evolutions through a
g RE time scaling. IIn thehcase of arrljpgtude noise,kt]hefscaling gives
R _ PR rise to revivals in the averaged dynamics. This fact was seen
ﬁp””‘(t)_ _<ﬁ) {f dsx(t,8) |(n=m)"pnm(1), (90 in the population behavior and in the behavior of the deco-
herence phenomena. On the other hand, the scaling for dis-

0

with solution persive noises only introduces a slow down of all the irre-
. - versible processes.
Pam(t) =exd — y(t)(n—=m)“]pn(0). 91 As an application of our results, we have studied the prob-

lem of heating of trapped ions. The previous exact results for
the heating of the ground staf87] were generalized for
N\ 2 [t o arbitrary initial conditions. We have proved that an initial
y(t)z(%) f dt'f dsy(t’,s). (92 thermal state maintains this property during the whole non-
0 0 equilibrium evolution, allowing us to define temperature at
. . . . any time. We remark that this theoretical result agrees with
As in the previous case, aI_I non_-Markowan effects are introsp& measurements reported by Wineland's group about ions
duced through a time scaling given here $ft). Proposing  heating with “natural reservoirs['11]. The short-time behav-

Here, the decay function(t) is given by

()=

2 e,

; ; _ 2
th92 noise correlat|orp((t,s)—“<ED)exp.(—|t'—S|/TD), Where  jor for initial Fock conditions was clearly interpreted from
(Ep) is the strength of the “stochastic dispersive energy,”the indistinguishability of the elementary incoherent excita-
¢ was studied by means of the Wigner function. This function
t—TD{ 1—ex;{ _ T_)] (93 has a diffusivelike behavior, in which the interference terms
D
direct consequence of the non-Markovian evolution.
From the asymptotic behavior of this function, it is possible = The results concerning the heating of trapped ions can be
on time and is independent of the correlation tiMg, Inthe  ties, or to any system that can be described by a harmonic
long-time regime, the dispersive effect can be attenuated bgpproximation. In general, any other system must be worked

the time scaling results in tions. Furthermore the noise-induced decoherence problem
exhibit the phenomena of recoherence. This behavior is a

to conclude that the short-time regime depends quadraticallgtraightforwardly applied to quantum electrodynamic cavi-

reducing the produc\tE%)TD. out in a perturbative way. Finally, we hope that the present
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results can be useful for identifying different sources of de-where|q>§1)> is the first-order correction to the eigenvectors
coherence and heating in different systems. andP; (|®;)) are the eigenvalue@igenvectorsof the ma-
trix pa,
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APPENDIX: FIRST-ORDER PERTURBATION THEORY Maintaining in this expression the first-order contribution,
FOR THE MIXED-STATE FIDELITY we arrive at
In this appendix we will develop a first-order perturbation
theory for the fidelity F(pp,pa)=1—82 (®j|ocV|d))—9(e?). (AL0)
j
F(pb.pa) ={T (Vpapp\pa) "1}, (A1)

This equation gives us the desired first-order expansion,
We will assume that one of the states can be expressed asmose validity is subjected to the conditien<{P;}. It is

power series around the other, important to note that the sum over states is restricted to the
2 @ eigenvectors op, with nonzero eigenvalues, i.e., in general,
Pp=pa— &0 e O (A2) " the sum is not the trace operation. In fact, only when the

Clmatrix pa has support over the whole Hilbert space, the sum

Here the symbole denotes the expansion parameter an Is the trace operation and therefore the first-order contribu-

Tr[o(™]=0 for all m. In a similar way, we will assume that

tion cancels.
F(pp,pa)=1—eFV—g2F@ ... (A3) Now we will apply this result to calculate perturbatively
F(p(t),p(0)), where the evolution op(t) is given by the
Inserting Eq.(A2) in Eq. (A1), we get master equation obtained is Sec. Il. First, we expgaftdl as
Fpp.pa) ={TTMY7]}?, (A4) o d_ 1 d?_ ,
o p)=p(0)+ 4D tHoramp(t)) 54
where the matriXM is given by t=0 : t=0
(Al11)
_ 2
M=p2—&\pao ™ \pa—e?\pao®pa—-++.  (A5) Up to second order, the more direct way to obtain the
Now, in order to perform the trace operation in E44), we \c/i\«/ensny-matrlx derivatives is from the master equatidi).
: - : We get
need to find the eigenvalues and eigenvectors of the matrix
M
d
P =0 (A12)
dt o
M=2. Pi(e)|®(e))(®(2)]. (A6)
and
From the usual stationary perturbation theory, up to first or- ) )
der, we get ds A .
X qeP| = —(g) XaslVE [V R(0)]]. (AL3)
Pi(e)=(P))?—eP(®@;|cM|®))+ () (A7) t=0
and Therefore we can identifye—t? and ¥ —(1/2)(d?%
) dt?)p(t)];~o. Using the Hermiticity of the stochastic Hamil-
|®i(8))=|D))+&|DiM)+ D(e?), tonianH (t), the expressions of Sec. Il follow.
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