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Exact uncertainty relations
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The Heisenberg inequalityDXDP>\/2 can be replaced by an exactequality, for suitably chosen measures
of position and momentum uncertainty, which is valid forall wave functions. The statistics of complementary
observables are thus connected by an ‘‘exact’’ uncertainty relation. Results may be generalized to angular
momentum and phase, photon number and phase, time and frequency, and to states described by density
operators. Connections to energy bounds, entanglement, Wigner functions, and optimal estimation of an ob-
servable from the measurement of a second observable are also given.
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I. INTRODUCTION

One of the most striking features of quantum mechanic
the property that certain observables cannot simultaneo
be assigned arbitrarily precise values. This property does
compromise claims of completeness for the theory, sinc
may consistently be asserted that such observables ca
simultaneously bemeasuredto an arbitrary accuracy@1#. The
Heisenberg inequality

DXDP>\/2 ~1!

is therefore generally taken to reflect an essential incompl
ness in the applicability of classical concepts of position a
momentum to physical reality.

It was recently noted that this fundamental inequality m
be greatly strengthened—the degree to which classical
cepts are inapplicable may, surprisingly, be quantified
actly. In particular, one may define a measure of posit
uncertaintydX ~which arises naturally in classical statistic
estimation theory!, and a measure of nonclassical moment
uncertaintyDPnc ~which arises from a natural decompositio
of the momentum operator!, such that@2#

dXDPnc5\/2 ~2!

for all wave functions. Such an equality may be regarded
anexactuncertainty relation, and may be shown to imply t
usual Heisenberg inequality Eq.~1!. Thus, perhaps paradox
cally, the uncertainty principle of quantum mechanics m
be given a precise form.

In Ref. @2#, the above exact uncertainty relation w
merely noted in passing, with the emphasis being on o
properties ofdX andDPnc . Similarly, while the very exis-
tence of an exact form of the uncertainty principle was
cently shown to provide a sufficient basis for moving fro
classical equations of motion to the Schro¨dinger equation
@3#, the corresponding exact uncertainty relation Eq.~2! was
only briefly mentioned. The purpose of this paper, therefo
is to study the physical significance of Eq.~2! in some detail,
including its extensions to other pairs of conjugate obse
ables and to general states described by density operato

In the following section, it is shown that quantum obse
ables such as momentum, position, and photon number
a natural decomposition, into the sum of a classical an
1050-2947/2001/64~5!/052103~10!/$20.00 64 0521
is
ly
ot
it
not

e-
d

y
n-
-

n

s

y

er

-

,

-
.

-
ve
a

nonclassical component. The classical component co
sponds to the best possible measurement of the observ
on a given state, which is compatible with measuremen
the conjugateobservable. Complementarity implies that th
classical component cannot be equivalent to the observ
itself, i.e., there is, in general, a nontrivialnonclassical com-
ponent. It is this nonclassical component that reflects
mutual incompatibility of pairs of conjugate observables, a
the magnitude of which appears in the exact uncertainty
lations to be derived@e.g.,DPnc in Eq. ~2!#. The decompo-
sition into classical and nonclassical components is also
lated in a natural manner to quantum continuity equatio
and to quasiclassical properties of the Wigner function.

In Sec. III, a measure of uncertainty is defined for co
tinuous random variables such as position, which play
fundamental role in classical estimation theory and in Gau
ian diffusion processes. This measure, the ‘‘Fisher length’
the variable, may of course be calculated for quantum
servables as well, and appears asdX in the exact uncertainty
relation in Eq.~2!.

The ingredients of classical/nonclassical decompositi
and Fisher lengths are combined in Sec. IV to obtain a nu
ber of exact uncertainty relations, such as Eq.~2! and the
equality

dFDNnc51/2,

for phase and photon number, valid for all pure states. Th
relations generalize toinequalities for states described b
density operators, and are far stronger than the correspon
Heisenberg-type inequalities. A simple proof is given of t
property that localized quantum states have infinte kine
energy~arising from the contribution of the nonclassical m
mentum component!, and it is shown that a bound on Fish
length leads to an entropic lower bound for the ground-s
energies of quantum systems.

In Sec. V, it is shown that the decomposition of an o
servable of a given quantum system into classical and n
classical components is essentially nonlocal in nature, be
dependent in general on manipulations performed on a
ond system with which the first is entangled. The sign
cance of the relevant exact uncertainty relations is discus
with particular reference to Einstein-Podolsky-Rosen~EPR!-
type states.
©2001 The American Physical Society03-1
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MICHAEL J. W. HALL PHYSICAL REVIEW A 64 052103
A formal generalization of exact uncertainty relations,
arbitrary pairs of quantum observables, is noted in Sec.
Moreover, it is shown that a result of Ivanovic@4#, for com-
plete sets of mutually complementary observables on fi
Hilbert spaces~such as the Pauli spin matrices!, may be re-
interpreted as an exact uncertainty relation for the ‘‘collisi
lengths’’ of the observables.

Conclusions are given in Sec. VII.

II. CLASSICAL AND NONCLASSICAL COMPONENTS
OF QUANTUM OBSERVABLES

A. Classical momentum

The nonclassical momentum uncertaintyDPnc appearing
in Eq. ~2! is defined via a natural decomposition of the m
mentum observableP into ‘‘classical’’ and ‘‘nonclassical’’
components,

P5Pcl1Pnc . ~3!

This decomposition is state dependent, and will be defi
explicitly further below. In particular, it will be shown tha
the classical component Pcl corresponds to the best possib
estimate of momentum, for a given quantum state, whic
compatible with a position measurement. It will be seen fur-
ther below thatPcl is also related to the momentum flow
the classical continuity equation for the position probabil
density, and to an average momentum arising naturally fr
quasiclassical properties of the Wigner function. Howeve
is the ‘‘best estimate’’ interpretation above that provides
most general basis for generalization to other observable

As a starting point, recall that in classical mechanics, o
may simultaneously obtain precise values for position a
momentum, whereas in quantum mechanics, one m
choose to accurately measure either one or the other.
therefore reasonable to ask the following question: If I m
sure one of these observables precisely, on a known quan
state, then what is the best estimate I can make for the v
of the other observable? Such an estimate of momen
from the measurement of position will be called aclassical
estimate ofP, since it assigns simultaneous values toX and
P.

It will be shown that thebest classical estimate ofP,
given the measurement resultX5x on a quantum system
described by wave-functionc(x), is given by

Pcl~x!5
\

2i S c8~x!

c~x!
2

c* 8~x!

c* ~x!
D 5\@argc~x!#8. ~4!

More generally, for a quantum system described by den
operatorr, one has

Pcl~x!ª
^xuPr1rPux&/2

^xurux&
, ~5!

which reduces to the first expression forr5uc&^cu.
The experimentalist’s procedure for measuring the cla

cal momentum component for stater is thus to~i! prepare
the system in stater; ~ii ! measure the positionX; and~iii ! for
05210
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result X5x calculatePcl(x). Note that this is equivalent to
measurement of the Hermitian operator

Pcl5E dx Pcl~x!ux&^xu ~6!

on stater, which by construction commutes withX. Hence,
the statistics ofPcl are determined by those ofX. As stated
above, this procedure yields the best possible estimate o
momentum of the system that is compatible with simul
neous knowledge of the position of the system.

To prove thatPcl(x) provides the best classical estima
of P, consider some general classical estimate for momen
for stater. Since this estimate must, by definition, be com
patible with the measurement ofX, it is formally equivalent
to the measurement of some operatorP̃5*dx P̃(x)ux&^xu.
The average error of the estimate may therefore be quant
by the mean deviation ofP̃ from the momentum operatorP,

EPª^~P2 P̃!2&, ~7!

where^A& denotes the expectation value tr@rA#.
Using the cyclic property of the trace operation and eva

ating the trace in the position representation gives

^P̃P1PP̃&5E dx^xuP̃Pr1rPP̃ux&

5E dx P̃~x!^xuPr1rPux&

52E dx^xurux&P̃~x!Pcl~x!

52^P̃Pcl&,

and hence,

EP5^P2&1^P̃2&22^P̃Pcl&5^P2&2^Pcl
2 &1^~ P̃2Pcl!

2&.
~8!

Since the last term is positive, the average error is minimi
by the choiceP̃5Pcl as claimed.

B. Nonclassical momentum

The nonclassical momentum componentPnc is now de-
fined via Eq.~3!, as the difference of the quantum mome
tum P and the classical momentumPcl . From Eq.~5!, one
finds that the expectation values of the observablesP andPcl
are always equal~for the corresponding stater), and so

^P&5^Pcl&, ^Pnc&50. ~9!

The quantum momentumP in Eq. ~3! may therefore also be
interpreted as the sum of an average momentumPcl , and a
nonclassical momentum fluctuationPnc .

The magnitude of this nonclassical fluctuation is simp
related to the minimum average error for a classical estim
choosingP̃5Pcl in Eqs.~7! and ~8! yields
3-2
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EXACT UNCERTAINTY RELATIONS PHYSICAL REVIEW A64 052103
^Pnc
2 &5E P

min5^P2&2^Pcl
2 &. ~10!

It will be seen that, as a consequence of the exact uncerta
relation Eq.~2!, this minimum error does not vanish for an
state~although it may be arbitrarily small!, and hence, there
is always a residual amount of nonclassicality. Note fro
Eqs.~9! and~10! that the fluctuation strengthDPnc in Eq. ~2!
is a fully operational quantity, as it may be determined fro
the measured distributions ofP andPcl ~and hence, from the
measured distributions ofP andX).

Finally, since the decomposition into classical and no
classical components is state dependent,Pcl andPnc should,
strictly speaking, explicitly indicate their dependence on
given stater ~e.g., via the notationPcl

r and Pnc
r , respec-

tively!. This would, in particular, be necessary if one wish
to evaluate expectation values such as tr@sPcl

r #, for some
density operators other thanr. However, expectation value
will in fact only be evaluated for the corresponding stater
throughout this paper, and hence, explicit notational dep
dence on the state may be conveniently dispensed with, w
out leading to ambiguity.

C. Physical significance

It is seen that the classical momentum is the closest p
sible observable to the momentum observableP ~in a statis-
tical sense!, under the constraint of being comeasurable w
the conjugate position observableX. The nonclassical mo
mentum is then simply defined as the difference between
quantum momentum and the classical momentum. A sim
approach may be used to define corresponding decomp
tions of the position, angular momentum, and photon num
observables.

The decomposition in Eq.~3! attempts to demarcate cla
sical and nonclassical momentum properties. It is there
reasonable to hope that thenonclassicalcomponentPnc in
particular might play a fundamental role in describing t
essence of what is ‘‘quantum’’ about quantum mechan
This is indeed the case. A derivation of the Schro¨dinger
equation as a consequence of adding a nonclassical mo
tum fluctuation to a classical ensemble~with strength in-
versely proportional to the uncertainty in position!, has re-
cently been given@3#. In this paper, it will be shown that th
nonclassical components of quantum observables satisfy
act uncertainty relations, such as Eq.~2!, and hence, allow
one topreciselyquantify the fundamental uncertainty prin
ciple of quantum mechanics. It will further be shown that t
decomposition of observables into classical and nonclass
components helps to distinguish between local and nonl
features of quantum entanglement.

Several formal properties further support the physical s
nificance of the decomposition in Eq.~3!. First, the classica
and nonclassical components are linearly uncorrelated, i

VarP5VarPcl1VarPnc , ~11!

as follows immediately from Eqs.~9! and~10!. This implies
a degree of statistical, and hence, physical, independenc
Pcl andPnc . The same equations imply that the kinetic e
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ergy splits into a classical part^Pcl
2 /(2m)& and a nonclassica

part ^Pnc
2 /(2m)&. Note from Eq.~4! that the former contri-

bution vanishes for stationary states, leaving only a nonc
sical contribution to the kinetic energy of such states.

Second, the classical momentum component comm
with the conjugate observableX while the nonclassical com
ponent does not, i.e.,

@X,Pcl#50, @X,Pnc#5 i\. ~12!

Hence, it is thenonclassicalcomponent ofP that generates
the fundamental quantum property@X,P#5 i\.

Third, when the decomposition is generalized to mo
than one dimension~see Sec. VA!, one finds for pure state
that the commutativity property@Pj ,Pk#50 for the vector
components of momentum is preserved by the decomp
tion, i.e.,

@Pcl
j ,Pcl

k #505@Pnc
j ,Pnc

k #. ~13!

Fourth, the classical momentumPcl(x) associated with
positionX5x appears in the continuity equation@5#

]ucu2/]t1~]/]x!@ ucu2m21Pcl~x!#50,

following from the Schro¨dinger equation, and hence,Pcl cor-
responds to the flow momentum of a classical ensemble
particles described by probability densityucu2. This property
suggests an alternative ‘‘dynamical’’ approach to defini
classical/nonclassical decompositions such as Eq.~3!. How-
ever, such an approach may generally only be applied
systems with Hamiltonians that are quadratic in the obse
able to be decomposed.

Finally a ‘‘quasiclassical’’ approach to the decompositi
in Eq. ~3! is noted, based on an analogy between class
phase-space distributions and the Wigner function@6#

W~x,p!ª~2p\!21E dj e2 ipj/\^x2j/2urux1j/2&,

~14!

where the latter behaves, at least to some extent, like a
probability density for position and momentum@6#.

Now, for any true classical joint probability densit
w(x,p) on phase space, theaverageclassical momentum
associated with position x is given by pcl(x)
5*dp pprob(pux), where prob(pux) denotes the conditiona
probability that the momentum is equal top at positionx,
i.e., prob(pux)5w(x,p)/*dp w(x,p). The average classica
momentum at positionx is thus

pcl~x!5

E dp pw~x,p!

E dp w~x,p!

.

For quantumsystems, this immediately suggests defini
an analogous average classical momentum associated
position x, via replacement ofw(x,p) by the Wigner func-
tion @7#, to give
3-3
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MICHAEL J. W. HALL PHYSICAL REVIEW A 64 052103
Pcl~x!ª
E dp pW~x,p!

E dp W~x,p!

. ~15!

Remarkably, as shown elsewhere@8#, this is in factequiva-
lent to the definition in Eq.~5!. Note that this quasiclassica
approach reinforces the interpretation of Eq.~9!, that the mo-
mentum of a quantum particle comprises a nonclassical fl
tuationPnc about a classical averagePcl .

One may similarly define a corresponding classical co
ponent for the position observableX, by interchanging the
roles ofx andp in Eq. ~15!. This agrees with the analogou
definition based on Eq.~5!, corresponding to the more gen
erally applicable ‘‘best estimate’’ approach, and also with
definition given in Ref.@2# based on a semiclassical contin
ity equation.

III. FISHER LENGTH

The uncertainty measureDPnc in Eq. ~2! is now well
defined—it is the rms uncertainty of the nonclassical m
mentum componentPnc . However, it still remains to define
the measure of position uncertaintydX in Eq. ~2!. This is
done below for the general case of observables taking va
over the entire set of real numbers, such as position
momentum. Note thatdX is a purelyclassicalmeasure of
uncertainty, requiring no reference to quantum theory wh
soever.

For a random variableX that takes values over the who
range of real numbers, there are of course many poss
ways to quantify the spread of the corresponding distribut
p(x). Thus, for example, one may choose the rms unc
tainty DX, the collision length 1/*dx p(x)2 @9#, or the en-
semble length exp@2*dx p(x)ln p(x)# @10#. All of these ex-
amples have the desirable properties of having the same
as X, scaling linearly withX, being invariant under transla
tions of X, and vanishing in the limit asp(x) approaches a
delta function.

A further uncertainty measure satisfying the above pr
erties is

dXªF E
2`

`

dx p~x!S d ln p~x!

dx D 2G21/2

. ~16!

While this measure may appear unfamiliar to physicists, i
in fact closely related to the well-known Cramer-Rao
equality that lies at the heart of statistical estimation the
@11#

DX>dX. ~17!

Thus,dX provides a lower bound forDX. Indeed, more gen
erally, dX provides the fundamental lower bound for the rm
uncertainty ofany unbiased estimator forX @11#. The bound
in Eq. ~17! is tight, being saturated if and only ifp(x) is a
Gaussian distribution.

Equation~17! is more usually written in the form VarX
>1/FX , whereFX5(dX)22 is the ‘‘Fisher information’’ as-
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sociated with translations ofX @11–14#. It is, hence, appro-
priate to refer todX as theFisher length. From Eq.~16!, it is
seen that the Fisher length may be regarded as a measu
the length scale over whichp(x) @or, more precisely, lnp(x)#
varies rapidly.

Basic properties of the Fisher length are:~i! dY5ldX for
Y5lX; ~ii ! dX→0 asp(x) approaches a delta function;~iii !
dX<DX with equality only for Gaussian distributions; an
~iv! dX is finite for all distributions. This last property fol
lows since the integral in Eq.~16! may vanish only ifp(x) is
constant everywhere, which is inconsistent with*dx p(x)
51.

The Fisher length has the unusual feature that it depe
on the derivative of the distribution. Moreover, for this re
son, it vanishes for distributions that are discontinuous—
be expected from the above interpretation ofdX, since such
distributions varyinfinitely rapidly over azero length scale
(dX50 may be shown by replacing such a discontinuity
point x0 by a linear interpolation over an interval@x0
2e,x01e# and taking the limite→0). The Fisher length
also vanishes for a distribution that is zero over some in
val ~since lnp(x) in Eq. ~16! changes from2` to a finite
value over any neighborhood containing an endpoint of
interval!. While these features imply thatdX is not a particu-
larly useful uncertainty measure for such distributions@simi-
larly, DX is not a particularly useful measure for the Cauch
Lorentz distribution (a/p)(a21x2)21#, they areprecisely
the features that lead to a simple proof that the momen
uncertainty is infinite for any quantum system with a positi
distribution that is discontinuous or vanishes over some
terval ~as will be shown in Sec. IV!.

One further property of Fisher length worthy of note is
alternative interpretation as a ‘‘robustness length.’’ In p
ticular, suppose that a variable described byp(x) is sub-
jected to a Gaussian diffusion process, i.e.,ṗ5gp91sp8 for
diffusion constantg and drift velocity s. It then follows
from Eq. ~16! and de Bruijn’s identity@13# that the rate of
entropy increase is given by

Ṡ5g/~dX!2. ~18!

Since a high rate of entropy increase corresponds to a r
spreading of the distribution, and hence, nonrobustnes
diffusion, this inverse-square law implies that the Fish
lengthdX is a direct measure of robustness. Hence,dX may
also be referred to as arobustness length. This characteriza-
tion of robustness is explored for quantum systems in R
@2#.

Finally, note that Fisher length is not restricted to positi
observables, but may be calculated as per Eq.~16! for any
observable that takes values over the entire set of real n
bers, such as momentum. A Fisher length having sim
properties may also be defined for periodic observables s
as phase@8#.

IV. EXACT UNCERTAINTY RELATIONS

A. Position and momentum

In the previous two sections, the quantitiesDPnc anddX
have been motivated and discussed on completely inde
3-4
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EXACT UNCERTAINTY RELATIONS PHYSICAL REVIEW A64 052103
dent grounds. One is a measure of uncertainty for the n
classical component of momentum, while the other is a m
sure of uncertainty for position that appears naturally in
contexts of classical statistical estimation theory and Ga
ian diffusion processes.

It is a remarkable fact that for all pure states, these t
quantities are related by the simple equality in Eq.~2!, re-
peated here for convenience,

dXDPnc5\/2. ~19!

Thus, the Fisher length of position is inversely proportion
to the strength of the nonclassical momentum fluctuati
Noting from Eqs.~11! and ~17! that DP>DPnc and DX
>dX, respectively, the Heisenberg uncertainty relation

DXDP>\/2 ~20!

is an immediate consequence of thisexactquantum uncer-
tainty relation.

The existence of an exact uncertainty relation for posit
and momentum statistics greatly strengthens the usual s
ment of the uncertainty principle, from inequality to equali
and hence, the measures of uncertainty in Eq.~19! may be
regarded as more fundamental in nature than those in
~20!. Moreover, the phase-space area\/2 is promoted in sta-
tus, from a mere lower bound on joint uncertainty to
invariant quantity that precisely characterizes the joint unc
tainty of everywave function.

Thus, consider an ensemble of systems described by
c, on which independent measurements ofX andP are made
~on different subensembles!. From these measurements, o
may determine the statistics ofX andP @and hence, also the
statistics ofPcl and the variance ofPnc , from Eqs.~6! and
~11!, respectively#. The Heisenberg uncertainty relation co
nects these statistics via an inequality—if one calculatesDP,
then one knows only thatDX>\/(2DP), where the differ-
ence between the left-hand and right-hand sides depend
the particular wave-functionc describing the ensemble. I
contrast, the exact uncertainty relation provides an invar
equality connecting the statistics, where if one calculates
nonclassical momentum fluctuationDPnc , then one knows
immediately that the Fisher lengthdX is preciselyequal to
\/(2DPnc), regardless of the particular wave function.

A simple proof of Eq.~19! was given in Ref.@2#; a more
general result, valid for density operators, is proved bel
Before proceeding to the proof, however, several simple c
sequences of the exact uncertainty relation in Eq.~19! will be
noted.

First, recalling thatdX vanishes for position distribution
that are discontinuous or are zero over some interval~see
Sec. III!, it follows immediately from Eq.~19! that DPnc is
infinite in such cases. From Eq.~11!, the momentum uncer
tainty DP is then also infinite. Note that this conclusioncan-
not be derived from the Heisenberg inequality Eq.~20!, nor
from the entropic uncertainty relation for position and m
mentum@15#. The exact uncertainty relation Eq.~19! is thus,
significantly stronger than the latter inequalities.

A second related consequence worth mentioning i
simple proof that any well-localized pure state, i.e., one
05210
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which the position distribution vanishes outside some fin
interval, has an infinite energy~at least for any potentia
energy that is bounded below!. This is immediately implied
by the property

E5~8m!21\2~dX!221^Pcl
2 &/~2m!1^V~x!& ~21!

@following from Eqs.~10! and ~19!#, and noting thatdX50
for such states. Note that this ‘‘paradox’’ of standard qua
tum mechanics~that it generally requires infinite energy t
localize a quantum system! is a consequence of the simp
external potential model, rather than of some deep inco
pleteness of the theory. Note also that this property is pu
quantum in nature, since the divergent term—the noncla
cal part of the kinetic energy—vanishes in the limit\→0.

Third, the propertydX,` ~see Sec. III! immediately im-
plies from the exact uncertainty relation Eq.~19! that DPnc
can never vanish, i.e.,

DPnc.0. ~22!

Thus, all pure states necessarily have a nonzero degre
nonclassicality associated with them@16#. This result is intu-
itively appealing, and provides further support for the phy
cal significance of the classical and nonclassical compone

Fourth, for allreal wave-functionsc(x), including energy
eigenstates, one hasPcl[0 from Eq. ~4!. Hence, the exac
uncertainty relation reduces to the simpler identity

dXDP5\/2. ~23!

This result holds more generally whenever the phase ofc is
at most linear inx.

Equation ~19! for pure states will now be proved as
special case of the more generalinequality

dXDPnc>\/2, ~24!

holding for states described by density operators. While
an exact uncertainty relation, this inequality is still mu
stronger than the corresponding Heisenberg inequality in
~1!. Not only is it saturated forall pure states~not just the
‘‘minimum uncertainty’’ states!, but it implies that generali-
zations of the above consequences hold forany quantum
state.

Inequality ~24! is an immediate consequence of Eq.~10!
and the relations

\2

4~dX!2
1^Pcl

2 &5E dx
z^xuPrux& z2

^xurux&
<^P2&, ~25!

which hold for all density operatorsr. The equality in Eq.
~25! is obtained by substituting Eqs.~5! and~6! for the clas-
sical momentum componentPcl , and the representation

~dX!2252
1

\2E dx
^xuPr2rPux&2

^xurux&
, ~26!
3-5
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MICHAEL J. W. HALL PHYSICAL REVIEW A 64 052103
for the Fisher length, following from the definition ofdX in
Eq. ~16! and the identity (d/dx)^xuAux&5( i /\)^xu@P,A#ux&
~derived by expanding in momentum eigenkets!. The in-
equality in Eq.~25! is obtained by defining the statesum&
5r1/2Pux&, un&5r1/2ux&, and using the Schwarz inequality

z^xuPrux& z25 z^mun& z2<^mum&^nun&5^xuPrPux&^xurux&.

Remarkably, for the special case of a pure state, direct
stitution of r5uc&^cu into the integral in Eq.~25! yields
equality on the right-hand side, and hence, the exact un
tainty relation Eq.~19!.

Finally, note that whereas the Heisenberg inquality E
~20! is symmetric with respect to position and momentu
this symmetry is broken by the exact uncertainty relation
~19!. Instead, one hastwo ~symmetrically related! exact un-
certainty relations, given by Eq.~19! and the corresponding
conjugate equality

DXncdP5\/2. ~27!

The latter exact uncertainty relation is proved in a forma
equivalent manner; similarly implies the Heisenberg inequ
ity; requires the variance in position to be infinite for sta
with momentum distributions that are discontinuous or t
vanish over a continuous range of momentum values;
implies that the variance of the nonclassical componen
position is strictly positive.

B. Energy bounds

Equations ~10! and ~24! immediately yield the lower
bound

E>~8m!21\2~dX!221^V& ~28!

for the average energyE of any state, where from Eq.~23!
one has equality for allreal wave functions. Thus, energy
bounds may be obtained via bounds on the Fisher lengthdX.

A number of upper and lower bounds for the Fisher len
are given by Demboet al. @14#, and by Romera and Dehes
@17#, which hence yield corresponding bounds on energy.
example, the ‘‘isoperimetric inequality’’@14#

dX<~2pe!21/2eS,

whereS52*dx p(x)ln p(x) is the position entropy, implies
via Eq. ~28! the generalentropic lower bound

E>~4m!21pe\2e22S1^V&. ~29!

Equation~29! may be exploited to estimate ground-sta
energies, by maximizing the position entropy for a giv
value of ^V&. Note this gives a lower bound onE0, in con-
trast to the usual upper bounds provided by variational m
ods. For example, for a harmonic oscillator withV(x)
5mv2x2/2, the entropy is well known to be maximized for
given value of̂ x2& by a Gaussian distribution. Substitutin
such a distribution into Eq.~29! and minimizing with respec
to ^x2& then yields the estimateE0>\v/2, where the right-
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hand side is in fact the correct ground-state energy~because
the ground-state probability distribution is indeed Gaussia!.

As a nontrivial example of Eq.~29!, consider a particle
bouncing in a uniform gravitational field, withV(x)5mgx
for x>0. For a fixed valuêx&5l, one finds that the entropy
is maximized by the exponential distributionp(x)
5l21exp(2x/l) (x>0), yielding the lower bound

E>p\2~4mel2!211mgl.

Minimizing with respect tol then gives the estimate

E0>~3/2!@p/~2e!#1/3~mg2\2!1/3'1.249 ~mg2\2!1/3,

which is comparable to the exact value of (mg2\2/2)1/3a0
'1.856 (mg2\2)1/3 obtained by solving the Schro¨dinger
equation@18#, wherea0 denotes the first Airy function zero

C. Phase, angular momentum, and photon number

The decomposition of angular momentum and pho
number into classical and nonclassical components is
cussed in detail elsewhere@8#. One finds, for example, tha
the best estimate of photon number on stater, which is com-
patible with a phase measurement resultF5f, is given by
@cf. Eq. ~5!#

Ncl~f!5
^fuNr1rNuf&/2

^furuf&
,

where N is the photon number operator anduf& is the
Susskind-Glogower phase state(n exp(inf)un&. One also has
an additivity property VarN5VarNcl1VarNnc analogous to
Eq. ~11!. A Fisher lengthdF for the phase distribution is
defined analogously to Eq.~16! ~where integration is re-
stricted to a reference interval of length 2p), and satisfies a
modified form of Cramer-Rao inequality@8#.

The corresponding exact uncertainty relations are

dFDJnc5\/2, ~30!

dFDNnc51/2, ~31!

for phase and angular momentum and for phase and ph
number, respectively, and are proved exactly as per Eq.~19!
above for all pure states. For more general states descr
by density operators, the right-hand sides become lo
bounds. These exact uncertainty relations are far stron
than the corresponding Heisenberg-type inequalities@19#.

V. ENTANGLEMENT AND CORRELATION

A. Higher dimensions

Exact uncertainty relations for vector observables are
interest not only because the world is not one dimensio
but because some physical properties, such as entanglem
require more than one dimension for their very definition.
is therefore indicated here how Eq.~2! may be generalized to
the case ofn-vectorsX andP. This case has also been briefl
considered in Ref.@2#. For simplicity, only pure states will be
considered.
3-6
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First, one has the vector decomposition

P5Pcl1Pnc ~32!

into classical and nonclassical components, wherePcl com-
mutes withX, and

Pcl~x!5^xuPclux&5
\

2i S ¹c

c
2

¹c*

c*
D 5\¹@argc# ~33!

is the best estimate ofP from measurement valueX5x for
statec ~one may also derivePcl(x) from a continuity equa-
tion or a Wigner function approach, as per Sec. IIC!.

In analogy to Eqs.~9! and ~11!, one may derivê P&
5^Pcl& and the generalized linear independence property

Cov~P!5Cov~Pcl!1Cov~Pnc!, ~34!

where then3n covariance matrix ofn vectorA is defined by
the matrix coefficients

@Cov~A!# jk5^AjAk&2^Aj&^Ak&. ~35!

Note that since the vector components ofP commute, as do
the vector components ofPcl , then

@Pnc
j ,Pnc

k #5@Pj2Pcl
j ,Pk2Pcl

k #

5~\2/ i !~] j]k2]k] j !@argc#

50,

as claimed in Eq.~13!.
The notion of Fisher length for one dimension generali

to the matrix inverse

CovF~X!ª H E dnx p~x!@¹ ln p~x!#@¹ ln p~x!#TJ 21

,

~36!

whereAT denotes the vector transpose ofA. For the case of
one dimension, this reduces to the square of the Fisher le
dX, just as the covariance matrix in Eq.~35! reduces to the
square ofDA. Moreover, as per the covariance matrix, t
matrix in Eq. ~36! is real, symmetric, and nonnegative. F
nally, the matrix is the inverse of the ‘‘Fisher informatio
matrix’’ of statistical estimation theory@11#. For these rea-
sons CovF(X) will be referred to as theFisher covariance
matrix of X. One has the generalized Cramer-Rao inequa
@11#

Cov~X!>CovF~X!, ~37!

with equality for Gaussian distributions.
One may show, via direct calculation of Cov(Pcl), that the

generalized exact uncertainty relation

CovF~X!Cov~Pnc!5~\/2!2I n ~38!

holds for all pure states, whereI n denotes then3n unit
matrix. This exact uncertainty relation, being a symme
05210
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matrix equality, comprisesn(n11)/2 independent equalities
The corresponding Heisenberg matrix inequality

Cov~X!Cov~P!>~\/2!2I n , ~39!

follows immediately from Eqs.~34!, ~37!, and~38!.

B. Entangled particles

Consider now the case of two one-dimensional partic
with respective position and momentum observab
(X(1),P(1)) and (X(2),P(2)). Such a system corresponds
n52 above, and the corresponding nonclassical momen
components associated with wave functionc follow from
Eqs.~32! and ~33! as

Pnc
(1)5P(1)2\

] argc~x1 ,x2!

]x1
,

Pnc
(2)5P(2)2\

] argc~x1 ,x2!

]x2
. ~40!

For entangled states~e.g., a superposition of two produc
states!, it follows that the nonclassical momentum of partic
one will typically depend on the position observable of p
ticle two, and vice versa. Hence, if some unitary transform
tion ~e.g., a position displacement! is performed on thesec-
ond particle, then the nonclassical momentum of thefirst
particle is typically changed.

The decomposition into classical and nonclassical com
nents is therefore essentially nonlocal: the decomposition
a single-particle observable typically depends upon acti
performed on another particle with which the first is e
tangled. Conversely, all such decompositions are invar
under actions performed on a secondunentangled particle.
The nonlocality inherent in quantum entanglement is th
reflected by the nonlocality of classical/nonclassical deco
positions.

The exact uncertainty relation corresponding to the
composition of momentum in Eq.~40! is given by the matrix
equality of Eq.~38!, with n52. This leads to three indepen
dent inequalities, two of which may be chosen as as ge
alizations of the exact uncertainty relation in Eq.~2! for each
individual particle.

There are many ways of choosing the third independ
inequality. However, one particular choice provides an int
esting connection with the Pearson correlation coefficien
classical statistics. The latter coefficient is defined for t
compatible observablesA andB, in terms of the coefficients
Cjk of the corresponding covariance matrix Cov(A,B), by
@11#

r P~A,B!ªC12/~C11C22!
1/2, ~41!

and provides a measure of the degree to whichA andB are
linearly correlated. It ranges between21 ~a high degree of
linear correlation with negative slope! and 11 ~a high de-
gree of linear correlation with positive slope!. One may
analogously define the ‘‘Fisher’’ correlation coefficient
3-7
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terms of the coefficientsCjk
F of the corresponding Fisher co

variance matrix CovF(A,B), by

r F~A,B!ªC12
F /~C11

F C22
F !1/2. ~42!

This also provides a measure of correlation ranging betw
21 and11, and is equal to the Pearson correlation coe
cient for all Gaussian distributions.

The third equality may now be chosen as the simple c
relation relation

r P~Pnc
(1) ,Pnc

(2)!1r F~X(1),X(2)!50, ~43!

as may be verified by direct calculation from Eq.~38!. It is
seen that the exact uncertainty relation in Eq.~38! thus con-
strains both uncertaintyand correlation.

For example, if the nonclassical momentum compone
of particles one and two are positively correlated, then
position observables are negatively correlated, and v
versa. More generally, the degree of nonclassical momen
correlation is seen to be precisely determined by the de
of position correlation. Note forunentangledparticles that
Eq. ~43! is trivial: both the Pearson and the Fisher correlat
coefficients vanish identically. The exact uncertainty relat
in Eq. ~38! thus reduces in this case to the exact uncerta
relations~19! for each particle.

C. EPR correlations

A nice example is provided by the approximate EPR st

c~x1 ,x2!5Ke2(x12x22a)2/4s2
e2(x11x2)2/4t2

eip0(x11x2)/(2\),

whereK is a normalization constant ands!1!t in suitable
units. One may then calculate

^X(1)2X(2)&5a, Var~X(1)2X(2)!5s2!1,

^P(1)1P(2)&5p0 , Var~P(1)1P(2)!5\2/t2!1,

and hence,c is an approximate eigenstate of the relati
position and the total momentum, i.e., one may write

X(1)2X(2)'a, P(1)1P(2)'p0 . ~44!

This state is thus an approximate version of the~nonnormal-
izable! ket considered by Einstein, Podolsky, and Rosen
connection with the completeness of the quantum the
@20#.

For statec, one finds from Eq.~33! that the classica
components of momentum are constant, each being equ
p0/2. Hence, one has CovPnc5CovP from Eq. ~34!. Then,
since equality holds in Eq.~37! for Gaussian distributions
the exact uncertainty relation corresponding toc follows
from Eq. ~38! as

Cov~X!Cov~P!5~\/2!2I n . ~45!

Equation~43! reduces to~recalling thatr P andr F are equiva-
lent for Gaussian distributions! the correlation relation

r P~X!1r P~P!50.
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This latter result is consistent with Eq.~44!, which implies
thatX(1) andX(2) are highly positively correlated for statec
@r P(X)'1#, while P(1) and P(2) are highly negatively cor-
related@r P(P)'21#.

It is of interest to consider the effect of measurements
the approximate EPR statec. First, for a position measure
ment on particle two, with resultX(2)5x, the state of particle
one collapses to the wave function obtained by substitu
x25x and renormalizing. It follows that the classical m
mentum componentPcl

(1) remains equal top0/2. Hence, the
momentum decomposition of particle one is not altered
knowledge ofX(2).

Conversely, for a momentum measurement on part
two with resultP(2)5p, one finds via straightforward calcu
lation of the appropriate Gaussian integrals that the stat
particle one collapses to the wave function

c~x1uP(2)5p!5K8e2(x11a/2)2/(s21t2)/4eip̃x1 /\,

whereK8 is a normalization constant and

p̃5
s2p1t2~p02p!

s21t2
'p02p.

It follows that the classical momentum componentPcl
(1) is

not invariant under a measurement ofP(2), changing from
p0/2 to p̃. Hence, there is a ‘‘nonlocal’’ effect on th
classical/nonclassical decomposition of momentum for p
ticle one, brought about by a measurement ofP(2). Thus, the
strong correlation betweenP(1) and P(2) for statec in Eq.
~44! may be considered nonlocal in nature. Similar resu
hold with respect to the position correlation.

VI. OTHER OBSERVABLES

Exact uncertainty relations may be formally extended i
very general way to arbitrary pairs of Hermitian observabl
Unfortunately, the physical significance of such an extens
is not entirely clear, as will be seen below. However, for t
case of a complete set of mutually complementary obse
ables on a finite Hilbert space, such as the Pauli spin ma
ces, it will be shown that results in the literature provide
very satisfactory form of exact uncertainty relation.

First, consider the case ofany two observablesA and B
represented by Hermitian operators, and for stater define

Bcl
A
ª(

a
ua&^au

^auBr1rBua&/2

^aurua&
. ~46!

Here, ua& denotes the eigenket ofA with eigenvaluea, and
the summation is replaced by integration for continuo
ranges of eigenvalues.

Clearly the above expression generalizes Eqs.~5! and~6!,
and indeedBcl

A may be interpreted as providing the best e
timate ofB compatible with the measurement ofA on stater.
Note thatAcl

A 5A, i.e., A is its own best estimate. One ma
further defineBnc

A via the decomposition
3-8
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B5Bcl
A 1Bnc

A ,

and obtain the relations

^B&5^Bcl
A &, VarB5VarBcl

A 1VarBnc
A

for stater, in analogy to Eqs.~9! and ~11!.
If one is then prepared to define the quantitydBA by

~dBA!225(
a

^au~ i /\!@B,r#ua&2

^aurua&
,

in analogy to Eq.~26!, then precisely as per the derivation
Eq. ~24! one may show that

~dBA!DBnc
A >\/2, ~47!

with equality for all pure states.
Thus, there is a very straightforward generalization of E

~2! to arbitrary pairs of observables. A difficulty is, howeve
how to provide a meaningful statistical interpretation ofdBA.
Note in particular that, unlike the Fisher lengthdX, this
quantity is not a function of the probability distributio
^aurua& in general. Possibly, noting the commutator that a
pears in the definition ofdBA, one may interpret this quantit
as a measure of the degree to which a measurement ofA can
distinguish betweenB-generated translations of stater, i.e.,
between unitary transformations of the formeixB/\re2 ixB/\

@21#. Here, such an attempt will not be made, although i
noted that the case of arbitrary quadrature observables
single-mode field should provide a simple test.

Finally, it is pointed out that a rather different type
exact uncertainty relation exists for a set ofn11 mutually
complementary observablesA1 ,A2 , . . . ,An11 on an
n-dimensional Hilbert space. Such sets are defined by
property that the distribution of any member is uniform f
an eigenstate of any other member, and are known to e
whenn is a power of a prime number@22#. As an example
one may choosen52, and takeA1 , A2, and A3 to be the
Pauli spin matrices.

Let L denote the collision length of probability distribu
tion $p1 ,p2 , . . . ,pn%, defined by@9#

Lª1/(
j

~pj !
2.

Note thatL is equal to one for a distribution concentrated
a single outcome, and is equal ton for a distribution spread
uniformly over alln possible outcomes. It hence provides
direct measure of the spread of the distribution over
space of outcomes@9#.

One may show that@4#

(
i

1/Li511tr@r2#<2, ~48!
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whereLi denotes the collision length of observableAi for
stater. This reduces to strict equality for all pure states, a
thus, provides an exact uncertainty relation for the collis
lengths of any set ofn11 mutually complementary observ
ables. For example, ifL j51 for some observableAj ~mini-
mal uncertainty!, then Li5n for all iÞ j ~maximal uncer-
tainty!. Ivanovic has shown that Eq.~48! may be used to
derive an entropic uncertainty relation for theAi @4#, while
Brukner and Zeilinger have interpreted Eq.~48! as an addi-
tivity property of a particular ‘‘information’’ measure@23#.

VII. CONCLUSIONS

The existence of exact uncertainty relations connect
the statistics of complementary observables greatly stren
ens the usual statement of the uncertainty principle: the l
of knowledge about an observable, for any wave function
precisely determined by the lack of knowledge about t
conjugate observable. The measures of lack of knowle
must of course be chosen appropriately~as the nonclassica
fluctuation strength and the Fisher length!. What is remark-
able is that such measures may be chosen at all.

The decomposition of the momentum observable i
classical and nonclassical components has a number of
physical consequences. The classical component chara
izes that part of the momentum comeasurable with posit
while the nonclassical component successfully character
the ‘‘quantum’’ nature of the momentum observableP ~in-
cluding the exact uncertainty relation Eq.~2!, the nonclassi-
cal part of the kinetic energy, and the nonlocality inherent
the momentum correlations of entangled particles!. It has
been shown elsewhere that the nonclassical position and
mentum uncertainties characterizes the robustness of q
tum systems with respect to Gaussian noise processes@2#,
and the notion of a nonclassical momentum fluctuation
versely related to position uncertainty has been success
used as a starting point forderiving the Schro¨dinger equation
@3#.

The exact uncertainty relations in Eqs.~2!, ~30!, ~31!, and
~38! are formal consequences of the Fourier transformati
that connect the representations of conjugate quantum
servables. Hence, they may be extended to any domai
which such transformations have physical significance. T
includes the time-frequency domain, discussed elsewhere@8#
~where the ‘‘classical’’ component of the frequency is ess
tially the so-called ‘‘instantaneous frequency’’@24#!, as well
as Fourier optics, and image processing.

It would be of interest to determine whether exact unc
tainty relations exist for relativistic systems. One is ha
pered in direct attempts by difficulties associated with o
particle interpretations of the Klein-Gordon and Dira
equations. It would perhaps therefore be more fruitful to fi
consider extensions to general field theories.

Finally, note that the definition of the Fisher covarian
matrix in Eq. ~36! suggests an analogous definition of
‘‘Wigner’’ covariance matrix CovW , defined via the coeffi-
cients of its matrix inverse
3-9
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@CovW
21# jkªE d2nz W21

]W

]zj

]W

]zk
.

Here,W denotes the Wigner function of the state, andz de-
notes the phase-space vector (x,p). It would be of interest to
r,

og

nf.

.

05210
determine to what degree this matrix is well defined, and
what extent its properties characterize nonclassical feat
of quantum states.
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