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The Heisenberg inequalitk XAP=%/2 can be replaced by an examuality, for suitably chosen measures
of position and momentum uncertainty, which is valid &lrwave functions. The statistics of complementary
observables are thus connected by an “exact” uncertainty relation. Results may be generalized to angular
momentum and phase, photon number and phase, time and frequency, and to states described by density
operators. Connections to energy bounds, entanglement, Wigner functions, and optimal estimation of an ob-
servable from the measurement of a second observable are also given.
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I. INTRODUCTION nonclassical component. The classical component corre-
sponds to the best possible measurement of the observable,
One of the most striking features of quantum mechanics i&n a given state, which is compatible with measurement of
the property that certain observables cannot simultaneousie conjugateobservable. Complementarity implies that the
be assigned arbitrarily precise values. This property does nafassical component cannot be equivalent to the observable
compromise claims of completeness for the theory, since iitself, i.e., there is, in general, a nontriviabrclassical com-
may consistently be asserted that such observables canrinent. It is this nonclassical component that reflects the
simultaneously beneasuredo an arbitrary accuradyl]. The = mutual incompatibility of pairs of conjugate observables, and
Heisenberg inequality the magnitude of which appears in the exact uncertainty re-
lations to be derivede.g.,AP, in Eqg. (2)]. The decompo-
AXAP=1/2 (1) sition into classical and nonclassical components is also re-
lated in a natural manner to quantum continuity equations

is therefore generally taken to reflect an essential incomplet ind to quasiclassical properties of the Wigner function.

ness in the applicability of classical concepts of position an In Sec. Ill, a measure of uncertainty is defined for con-

molrt'nentum to Ehysut:a(lj rtf]alt'%. fund tal lit tinuous random variables such as position, which plays a
was recently noted that this fundamental INeQUalIty Mayy, 43 mental role in classical estimation theory and in Gauss-

be greatly strengthened—the degree to which classical COR= 1 diffusion processes. This measure, the “Fisher length” of

cepts are ingpplicable may, surprisingly, be quantified_ Xthe variable may of course be calculated for quantum ob-
actly. In particular, one may define a measure of positio '

. ] . . ; OSIION 0 v ables as well, and appearssasin the exact uncertaint
uncertaintysX (which arises naturally in classical statistical relation in Eq.(2) PP y
estimation theory and a measure of nonclassical momentum The ingredients of classical/nonclassical decompositions

upfﬁrtamtyA P[[‘C (which atrlses frzotrr? a2r1atural decomposition and Fisher lengths are combined in Sec. IV to obtain a num-
of the momentum operafprsuch tha(2] ber of exact uncertainty relations, such as EY.and the
OXAP=1/2 (2)  equality

for all wave functions. Such an equality may be regarded as ODPAN,=1/2,
anexactuncertainty relation, and may be shown to imply the
usual Heisenberg inequality E.). Thus, perhaps paradoxi- for phase and photon number, valid for all pure states. These
cally, the uncertainty principle of quantum mechanics mayrelations generalize tinequalities for states described by
be given a precise form. density operators, and are far stronger than the corresponding
In Ref. [2], the above exact uncertainty relation was Heisenberg-type inequalities. A simple proof is given of the
merely noted in passing, with the emphasis being on otheproperty that localized quantum states have infinte kinetic
properties oféX andAP,.. Similarly, while the very exis- energy(arising from the contribution of the nonclassical mo-
tence of an exact form of the uncertainty principle was re-mentum componejitand it is shown that a bound on Fisher
cently shown to provide a sufficient basis for moving from length leads to an entropic lower bound for the ground-state
classical equations of motion to the Scifirmger equation energies of quantum systems.
[3], the corresponding exact uncertainty relation &j.was In Sec. V, it is shown that the decomposition of an ob-
only briefly mentioned. The purpose of this paper, thereforeservable of a given quantum system into classical and non-
is to study the physical significance of ) in some detail, classical components is essentially nonlocal in nature, being
including its extensions to other pairs of conjugate observdependent in general on manipulations performed on a sec-
ables and to general states described by density operatorsond system with which the first is entangled. The signifi-
In the following section, it is shown that quantum observ-cance of the relevant exact uncertainty relations is discussed,
ables such as momentum, position, and photon number hawegth particular reference to Einstein-Podolsky-Ro$ERR-
a natural decomposition, into the sum of a classical and &pe states.
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A formal generalization of exact uncertainty relations, toresult X=x calculateP(x). Note that this is equivalent to
arbitrary pairs of quantum observables, is noted in Sec. Vimeasurement of the Hermitian operator
Moreover, it is shown that a result of lvano\i¢], for com-

lete sets of mutually complementary observables on finite
ﬂilbert spacegsuch a)fs the FI;auli spinymatric)esnay be re- PC':f dx Pei ()| x)(x| ©)
interpreted as an exact uncertainty relation for the “collision
lengths” of the observables. on statep, which by construction commutes wii Hence,
Conclusions are given in Sec. VII. the statistics oP, are determined by those of As stated
above, this procedure yields the best possible estimate of the
Il. CLASSICAL AND NONCLASSICAL COMPONENTS momentum of the system that is compatible with simulta-
OF QUANTUM OBSERVABLES neous knowledge of the position of the system.
To prove thatP.(x) provides the best classical estimate
A. Classical momentum of P, consider some general classical estimate for momentum

The nonclassical momentum uncertaitt,,. appearing for statep. Since this estimate must, by definition, be com-
in Eq. (2) is defined via a natural decomposition of the mo-Patible with the measurement ¥{ it is formally equivalent
mentum observabl® into “classical” and “nonclassical” to the measurement of some operakoe [dx P(x)|Xx){X|.
components, The average error of the estimate may therefore be quantified

P=Py+P,.. 3 by the mean deviation d® from the momentum operatd,

. _ P2

This decomposition is state dependent, and will be defined Ep=((P=P)?), @
explicitly _further below. In particular, it will be shown that where(A) denotes the expectation valud tiA].
the classical component.Pcorresponds to the best possible ; X .

. - .~ . Using the cyclic property of the trace operation and evalu-
estimate of momentum, for a given quantum state, which is,. ; 2 . ;

; . " . ating the trace in the position representation gives

compatible with a position measuremetitwill be seen fur-
ther below thatP, is also related to the momentum flow in ~ 5 B 5
the classical continuity equation for the position probability (PP+ PP)=I dx(x|PPp+pPPI|x)
density, and to an average momentum arising naturally from
quasiclassical properties of the Wigner function. However, it -
is the “best estimate” interpretation above that provides the Zf dx P(x){X|Pp+pP[x)
most general basis for generalization to other observables.

As a starting point, recall that in classical mechanics, one ~
may simultaneously obtain precise values for position and :ZJ dX(x|p[X)P) Pei(x)
momentum, whereas in quantum mechanics, one must _
choose to accurately measure either one or the other. It is =2(PPyg),

therefore reasonable to ask the following question: If | mea-

sure one of these observables precisely, on a known quantu@fd hence,

state, then what is the best estimate | can make for the value _ ~ _

of the other observable? Such an estimate of momentum&p={(P?)+(P?)—2(PP)=(P?) —(P3)+{((P—P)?.

from the measurement of position will be callectlassical (8)
estimate ofP, since it assigns simultaneous valuestand . . " L
P. Since the last term is positive, the average error is minimized

It will be shown that thebest classical estimate oP, by the choiceP= P, as claimed.
given the measurement res{t=x on a quantum system
described by wave-functior(x), is given by B. Nonclassical momentum

The nonclassical momentum componéhy; is now de-

) =#largy(x)]’. (4) fined via Eq.(3), as Fhe difference of the quantum momen-
tum P and the classical momentuRy,. From Eq.(5), one
finds that the expectation values of the observaBlasdP,

More generally, for a quantum system described by denSitﬁre a|Ways equaﬂfor the Corresponding stam, and so
operatorp, one has

IR ERAC
Pcl(x)_z< (%) - lﬁ*(X)

<P>=<Pcl>v <Pnc>=O- 9
(X|Pp+pP|x)/2
Pa(X)=——r—" v, 5 The quantum momentu® in Eq. (3) may therefore also be
(X plx) .
interpreted as the sum of an average momen®ym and a
which reduces to the first expression for | ) (i]. nonclassical momentum fluctuatiét,. .

The experimentalist's procedure for measuring the classi- The magnitude of this nonclassical fluctuation is simply
cal momentum component for stateis thus to(i) prepare related to the minimum average error for a classical estimate:
the system in statg; (i) measure the positioX; and(iii) for ~ choosingP= P, in Egs.(7) and(8) yields
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(Pa)y=ER"=(P?)—(P2). (100  ergy splits into a classical pafP2/(2m)) and a nonclassical
part (P2/(2m)). Note from Eq.(4) that the former contri-

It will be seen that, as a consequence of the exact uncertainfjution vanishes for stationary states, leaving only a nonclas-
relation Eq.(2), this minimum error does not vanish for any sical contribution to the kinetic energy of such states.
state(although it may be arbitrarily smajland hence, there ~ Second, the classical momentum component commutes
is always a residual amount of nonclassicality. Note fromwith the conjugate observab}ewhile the nonclassical com-
Egs.(9) and(10) that the fluctuation strengthP,,. in Eq.(2) ~ Ponent does not, i.e.,
is a fully operational quantity, as it may be determined from .
the me;/su[r)ed distribl?tions gfand Pe (aynd hence, from the [X,Pal=0, [X,Pnc]=if. (12)
measured distributions ¢ and X).

Finally, since the decomposition into classical and non
classical components is state dependBptandP,. should,

: ! S e . Third, when the decomposition is generalized to more
strictly speaking, explicitly indicate their dependence on %han one dimensiofsee Sec. VA one finds for pure states
given statep (e.g., via the notatiorP4, and P#

nc: M€SPEC-  that the commutativity propertyP!,PX]=0 for the vector

tively). This would, in particular, be necessary if one WiShedcomponents of momentum is preserved by the decomposi-
to evaluate expectation values such dsrB ], for some ion je.

density operatoo other tharp. However, expectation values ' _

will in fact only be evaluated for the corresponding state [PL,PK]=0=[Pl,,PX]. (13
throughout this paper, and hence, explicit notational depen-

dence on the state may be conveniently dispensed with, with- Fourth, the classical momentuf,(x) associated with
out leading to ambiguity. position X=x appears in the continuity equati]

Hence, it is thenonclassicalcomponent ofP that generates
‘the fundamental quantum propeftt,P]=i%.

2 21 —

C. Physical significance 3y1*lat+ (ol [ ¢1*m™*Pei(x)]=0,

It is seen that the classical momentum is the closest pogollowing from the Schrdinger equation, and hendg,, cor-
sible observable to the momentum observadblgn a statis- responds to the flow momentum of a classical ensemble of
tical sensg under the constraint of being comeasurable withparticles described by probability densji|%. This property
the conjugate position observable The nonclassical mo- suggests an alternative “dynamical” approach to defining
mentum is then simply defined as the difference between thelassical/nonclassical decompositions such as(&q.How-
quantum momentum and the classical momentum. A similagver, such an approach may generally only be applied to
approach may be used to define corresponding decomposiystems with Hamiltonians that are quadratic in the observ-
tions of the position, angular momentum, and photon numbeable to be decomposed.
observables. Finally a “quasiclassical” approach to the decomposition

The decomposition in Eq3) attempts to demarcate clas- in Eq. (3) is noted, based on an analogy between classical
sical and nonclassical momentum properties. It is therefor@hase-space distributions and the Wigner funcfi®h
reasonable to hope that tlmenclassicalcomponentP,,. in
particular might play a fundamental role in describing the . -1 —ipéihyy
essence of what is “quantum” about quantum mechanics. W(x,p)=(2m#) fdge Pk &2l plx+ £12),
This is indeed the case. A derivation of the Sclinger (14
equation as a consequence of adding a nonclassical momen- . -
tum fluctuation to a classical ensembith strength in- Wwhere t.he Iatter.behaves,_a}t least to some extent, like a joint
versely proportional to the uncertainty in positiphas re- Probability density for position and momentui. .
cently been giveii3]. In this paper, it will be shown thatthe ~ NOW. for any true classical joint probability density
nonclassical components of quantum observables satisfy e((x:P) on phase space, theverageclassical momentum
act uncertainty relations, such as Eg), and hence, allow @ssociated —with position x is given by pe(x)
one topreciselyquantify the fundamental uncertainty prin- —J 4P PProb(d[x), where probp|x) denotes the conditional
ciple of quantum mechanics. It will further be shown that theProbability that the momentum is equal oat positionx,
decomposition of observables into classical and nonclassichf probp|x) =w(x,p)/fdp w(x,p). The average classical
components helps to distinguish between local and nonlocd'°Mentum at position is thus
features of quantum entanglement.

Several formal properties further support the physical sig- d X

" > . : f P PW(X,P)

nificance of the decomposition in EB). First, the classical Pe(X) =
and nonclassical components are linearly uncorrelated, i.e., c!

fdpMnm
VarP = VarP+ VarP,,, (12)

For quantumsystems, this immediately suggests defining
as follows immediately from Eq$9) and(10). This implies an analogous average classical momentum associated with
a degree of statistical, and hence, physical, independence fposition x, via replacement oW(x,p) by the Wigner func-

P. andP,.. The same equations imply that the kinetic en-tion [7], to give
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sociated with translations of [11-14]. It is, hence, appro-
J dp pWX,p) priate to refer to5X as theFisher length From Eq.(16), it is
Po(X):= ) (15 seen that the Fisher length may be regarded as a measure of
f dp W(x,p) the length scale over whigh(x) [or, more precisely, Ip(x)]
varies rapidly.

L . Basic properties of the Fisher length afi¢:sY =\ 6X for
Remarkably, as shown elsewhd8d, this is in factequiva-  y—) x: (i) 5X—0 asp(x) approaches a delta functiofiij )

lent to the dgfinition in E.q(5). Note that this quasiclassical gsx< A X with equality only for Gaussian distributions; and

approach reinforces the interpretation of E9), that the mo-  (jy) X is finite for all distributions. This last property fol-

mentum of a quantum particle comprises a nonclassical flugopws since the integral in Eq16) may vanish only ifp(x) is

tuation P, about a classical averagg, . constant everywhere, which is inconsistent wjtx p(x)

One may similarly define a corresponding classical com—1 .

ponent for the position observabl by interchanging the  The Fisher length has the unusual feature that it depends

roles ofx andp in Eq. (15). This agrees with the analogous on the derivative of the distribution. Moreover, for this rea-

definition based on Eq5), corresponding to the more gen- son, it vanishes for distributions that are discontinuous—to

erally applicable “best estimate” approach, and also with thepe expected from the above interpretationsdf, since such

definition given in Ref[2] based on a semiclassical continu- gistributions varyinfinitely rapidly over azerolength scale

ity equation. (6X=0 may be shown by replacing such a discontinuity at
point X, by a linear interpolation over an intervélx,

ll. FISHER LENGTH —€,Xp+ €] and taking the limite—0). The Fisher length

also vanishes for a distribution that is zero over some inter-

The uncertainty measuraP,. in Eq. (2) is now well . . -
defined—it is the rms uncertainty of the nonclassical mo—vaI (since Inp(x) in Eq. (16) changes from— to a finite

mentum componer®,.. However, it still remains to define value over any neighborhood containing an endpoint of the

the measure of position uncertaingX in Eq. (2). This is interval). While these features imply thak is not a particu-
P 9. (). 1N larly useful uncertainty measure for such distributigsisni-
done below for the general case of observables taking valuqsrIy AX is not a particularly useful measure for the Cauchy-

over the entire set of real numbers, such as position an orentz distribution &/m)(a2+x2) 1], they areprecisely

momentum. Note thabX is a purelyclassicalmeasure of .

. s the features that lead to a simple proof that the momentum
uncertainty, requiring no reference to quantum theory what- TR . .
soever uncertainty is infinite for any quantum system with a position

For a random variabl that takes values over the whole distribution that is discontinuous or vanishes over some in-

- terval (as will be shown in Sec. IV
range of real numbers, there are of course many possible . o
. . AT One further property of Fisher length worthy of note is its
ways to quantify the spread of the corresponding distribution T ; p ”
alternative interpretation as a “robustness length.” In par-
p(x). Thus, for example, one may choose the rms uncer:

-1/2

tainty AX, the collision length 1dx p(x)? [9], or the en- jticular, suppose t_hat g va_riable descri__bed [jiix) is Isub-
semble length exp-fdx p(x)In p(x)] [10]. All of these ex- J€ctéd to a Gaussian diffusion process, pe=,yp”+op’ for
amples have the desirable properties of having the same uniféffusion constanty and drift velocity o. It then follows
as X, scaling linearly withX, being invariant under transla- fom Ed. (16) and de Bruijn's identity 13] that the rate of
tions of X, and vanishing in the limit ap(x) approaches a ©€NIropy increase is given by
delta function. o 2
A further uncertainty measure satisfying the above prop- S=7/(6X)" (18)
erties is Since a high rate of entropy increase corresponds to a rapid
) spreading of the distribution, and hence, nonrobustness to
5X=:{f’” dx p(x)(dln p(x)) (16) diffusion, this inverse-square law implies that the Fisher
o dx length 6X is a direct measure of robustness. Hen®¢ may
also be referred to asrabustness lengthThis characteriza-
While this measure may appear unfamiliar to physicists, it igion of robustness is explored for quantum systems in Ref.
in fact closely related to the well-known Cramer-Rao in-[2].
equality that lies at the heart of statistical estimation theory Finally, note that Fisher length is not restricted to position
[11] observables, but may be calculated as per (E6) for any
observable that takes values over the entire set of real num-
AX=6X. 17 bers, such as momentum. A Fisher length having similar
_ properties may also be defined for periodic observables such
Thus, 6X provides a lower bound fak X. Indeed, more gen- 54 phasés].
erally, 5X provides the fundamental lower bound for the rms
uncertainty ofany unbiased estimator foX [11]. The bound IV. EXACT UNCERTAINTY RELATIONS
in Eq. (17) is tight, being saturated if and only ff(x) is a .
Gaussian distribution. A. Position and momentum
Equation(17) is more usually written in the form Var In the previous two sections, the quantiti®®,,. and 6X
=1/Fy, whereFy=(58X) 2 is the “Fisher information” as- have been motivated and discussed on completely indepen-
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dent grounds. One is a measure of uncertainty for the nonwhich the position distribution vanishes outside some finite
classical component of momentum, while the other is a meainterval, has an infinite energgat least for any potential
sure of uncertainty for position that appears naturally in theenergy that is bounded belowThis is immediately implied
contexts of classical statistical estimation theory and Gausdy the property

ian diffusion processes.

It is a remarkable fact that for all pure states, these two E=(8m) 2(8X) 2+ (P3)/(2m)+(V(x)) (21)
guantities are related by the simple equality in E2), re-
peated here for convenience, [following from Egs.(10) and(19)], and noting that?X=0
SXAP . =H/2. (19 for such states. Note that this “paradox” of standard quan-

tum mechanicgthat it generally requires infinite energy to

Thus, the Fisher length of position is inversely proportionalloc@lize a quantum systenis a consequence of the simple
to the strength of the nonclassical momentum fluctuation€xtérmnal potential model, rather than of some deep incom-
Noting from Egs.(11) and (17) that AP=AP,. and AX pleteness of the theory. Note also that this property is purely

= 5X, respectively, the Heisenberg uncertainty relation quantum in nature, since the divergent term—the nonclassi-
cal part of the kinetic energy—vanishes in the lihit>0.

AXAP=#/2 (20 Third, the propertysX<« (see Sec. I)limmediately im-
plies from the exact uncertainty relation E49) that AP,
is an immediate consequence of tleisactquantum uncer- can never vanish, i.e.,
tainty relation.
The existence of an exact uncertainty relation for position AP,.>0. (22)
and momentum statistics greatly strengthens the usual state-

ment of the uncertainty principle, from inequality to equality, Thys, all pure states necessarily have a nonzero degree of
and hence, the measures of uncertainty in @) may be  ponclassicality associated with thda6]. This result is intu-
regarded as more fundamental in nature than those in E%’vely appealing, and provides further support for the physi-
(20). Moreover, the phase-space afga is promoted in sta- ¢4 significance of the classical and nonclassical components.
tus, from a mere lower bound on joint uncertainty to an  Foyrth, for allreal wave-functions/(x), including energy
invariant quantity that precisely characterizes the joint uncergigenstates, one hd&,=0 from Eq.(4). Hence, the exact

tainty of everywave function. _ uncertainty relation reduces to the simpler identity
Thus, consider an ensemble of systems described by state
¥, on which independent measurementXa@ndP are made SXAP=#4/2. (23

(on different subensembled=rom these measurements, one
may determine the statistics ®¥fand P [and hence, also the
statistics ofP, and the variance oP,., from Egs.(6) and
(12), respectively. The Heisenberg uncertainty relation con-
nects these statistics via an inequality—if one calculates
then one knows only thai X=7%/(2AP), where the differ-
ence between the left-hand and right-hand sides depends on SXAP. =%/2 (24)
the particular wave-functiony describing the ensemble. In ne ’
contrast, the exact uncertainty relation provides an invarianlg
equality connecting the statistics, where if one calculates th
nonclassical momentum fluctuatiaxP,., then one knows
immediately that the Fisher lengi#X is preciselyequal to

This result holds more generally whenever the phasg isf
at most linear irnx.

Equation (19) for pure states will now be proved as a
special case of the more geneimkquality

olding for states described by density operators. While not
&n exact uncertainty relation, this inequality is still much
stronger than the corresponding Heisenberg inequality in Eq.
X . (1). Not only is it saturated forll pure stategnot just the
hl(2AP,.), regardless of the particular wave function. “minimum uncertainty” statel but it implies that generali-

A simple proof of Eq.(19) was given in Ref[2]; a more zations of the above consequences hold day quantum

general result, valid for density operators, is proved below,State

Before proceeding to the proof,_however_, se_veral S|r_nple con- Inequality (24) is an immediate consequence of E40)
sequences of the exact uncertainty relation in(&6) will be and the relations

noted.

First, recalling thatsX vanishes for position distributions 5
that are discontinuous or are zero over some inte(seé h
Sec. ll)), it follows immediately from Eq(19) that AP, is 4(5X)?
infinite in such cases. From E¢L1), the momentum uncer-

tainty AP is then also infinite. Note that this conclusican-  \hich hold for all density operators. The equality in Eq.
not be derived from the Heisenberg inequality E20), nor  (25) js obtained by substituting Eq€5) and (6) for the clas-

from the entropic uncertainty relation for position and mo-sjcal momentum compone,;, and the representation
mentum[15]. The exact uncertainty relation EQ.9) is thus,

significantly stronger than the latter inequalities. 1
A second related consequence worth mentioning is a (5)()*2:__1 dx
simple proof that any well-localized pure state, i.e., one for h?

P 2
+<P§.>:f dx—K)((')(l;';;l <(P?3, (25

(X|Pp— pP|x)?

ooy #

052103-5



MICHAEL J. W. HALL PHYSICAL REVIEW A 64 052103

for the Fisher length, following from the definition @X in ~ hand side is in fact the correct ground-state enébgcause
Eq. (16) and the identity §/dx)(x|A|x)=(i/#){x|[P,A]|x)  the ground-state probability distribution is indeed Gaugsian
(derived by expanding in momentum eigenketShe in- As a nontrivial example of Eq(29), consider a particle
equality in Eq.(25) is obtained by defining the statég) bouncing in a uniform gravitational field, with/(x)=mgx
=pY2P|x), |v)=pY4x), and using the Schwarz inequality for x=0. For a fixed valuéx) =\, one finds that the entropy
is maximized by the exponential distributiorp(x)
Kx[Pp)P=[( el vy P< (il w){(v]v) = (x| PpP|x){x| p| x). =\"'exp(~x/\) (x=0), yielding the lower bound

Remarkably, for the special case of a pure state, direct sub- E=nfi?(4men?) t+mgh.
stitution of p=|)(#| into the integral in Eq(25) yields
equality on the right-hand side, and hence, the exact unce

tainty relation Eq.(19). = 1/3 2\1/3 2\1/3
Finally, note that whereas the Heisenberg inquality Eq. Eo=(3/2 /(2)"A(mg’h?) 1.249 (mg*h%)™,

(20) is symmetric with respect to position and momentum,which is comparable to the exact value oh¢?%2/2)3a,
this symmetry is broken by the exact uncertainty relation Eq~1.856 mg?%2)® obtained by solving the Schdinger

(19). Instead, one hatwo (symmetrically relatedexact un-  equation[18], wherea, denotes the first Airy function zero.
certainty relations, given by E@19) and the corresponding

conjugate equality

Minimizing with respect tax then gives the estimate

C. Phase, angular momentum, and photon number

AX,6P=%/2. (27 The decomposition of angular momentum and photon
number into classical and nonclassical components is dis-

The latter exact uncertainty relation is proved in a formallycussed in detail elsewhef8]. One finds, for example, that
equivalent manner; similarly implies the Heisenberg inequalthe best estimate of photon number on sgatehich is com-
ity; requires the variance in position to be infinite for statespatible with a phase measurement reskii ¢, is given by
with momentum distributions that are discontinuous or thaicf. Eq. (5)]
vanish over a continuous range of momentum values; and
implies that the variance of the nonclassical component of N ()= (¢INp+pN|¢)/2
position is strictly positive. ¢! (plple)y

where N is the photon number operator aneh) is the
Susskind-Glogower phase statg exp(n)|n). One also has
Equations (10) and (24) immediately yield the lower an additivity property Val=VarN+ VarN,. analogous to

B. Energy bounds

bound Eqg. (11). A Fisher lengthéd for the phase distribution is
i s defined analogously to Eq16) (where integration is re-
E=(8m) " "A%(6X) " *+(V) (28) stricted to a reference interval of lengthrp, and satisfies a
modified form of Cramer-Rao inequalif].
for the average enerdy of any state, where from Eq23) The corresponding exact uncertainty relations are
one has equality for alieal wave functionsThus, energy
bounds may be obtained via bounds on the Fisher led}th SDPAJ, =12, (30)
A number of upper and lower bounds for the Fisher length
are given by Dembet al.[14], and by Romera and Dehesa SOAN,.=1/2, (31
[17], which hence yield corresponding bounds on energy. For
example, the “isoperimetric inequality[’14] for phase and angular momentum and for phase and photon
number, respectively, and are proved exactly as per(Hj.
SX<(2me) V%S, above for all pure states. For more general states described

by density operators, the right-hand sides become lower
whereS= — [dx p(x)In p(X) is the position entropy, implies bounds. These exact uncertainty relations are far stronger
via Eq. (28) the generakntropiclower bound than the corresponding Heisenberg-type inequaljtl&s.

E=(4m) lmehZe 2+ (V). (29 V. ENTANGLEMENT AND CORRELATION
Equation(29) may be exploited to estimate ground-state A. Higher dimensions
energies, by maximizing the position entropy for a given Exact uncertainty relations for vector observables are of
value of (V). Note this gives a lower bound df, in con- interest not only because the world is not one dimensional,
trast to the usual upper bounds provided by variational methbut because some physical properties, such as entanglement,
ods. For example, for a harmonic oscillator with(x) require more than one dimension for their very definition. It
=mw?x?/2, the entropy is well known to be maximized for a is therefore indicated here how E&) may be generalized to
given value of(x?) by a Gaussian distribution. Substituting the case oh-vectorsX andP. This case has also been briefly
such a distribution into Eq29) and minimizing with respect considered in Ref2]. For simplicity, only pure states will be
to (x?) then yields the estimatg,=7 /2, where the right- considered.
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EXACT UNCERTAINTY RELATIONS

First, one has the vector decomposition

P="P¢+ Pnc (32

into classical and nonclassical components, whjecom-
mutes withX, and

h

\Y Vy*
Pa(0=(xPub) = | 2~

vy

=hV[argy] (33

is the best estimate d? from measurement valug=x for
stateys (one may also deriv@,(x) from a continuity equa-
tion or a Wigner function approach, as per Sec.)lIC

In analogy to Egs.(9) and (11), one may derive(P)

=(P|) and the generalized linear independence property

Cov(P)=Cov(P) + CovPyc), (34

where then X n covariance matrix of vectorA is defined by
the matrix coefficients

[Cov(A) Jjk=(AjAQ — (A (AK)-

Note that since the vector componentsfofommute, as do
the vector components &, then

(35

[Phe, P =[P~ Pl PR Y]
= (1211)(3)0h— ohy)[argy]
=0,

as claimed in Eq(13).

PHYSICAL REVIEW A64 052103

matrix equality, comprises(n+ 1)/2 independent equalities.
The corresponding Heisenberg matrix inequality

CouX)CouP)=(%/12)21,,, (39

follows immediately from Eqs(34), (37), and(38).

B. Entangled particles

Consider now the case of two one-dimensional particles,
with respective position and momentum observables
(XD, PM) and (X3),P?). Such a system corresponds to
n=2 above, and the corresponding nonclassical momentum
components associated with wave functignfollow from
Egs.(32) and(33) as

dargh(Xy,Xz)
D _p@)y_p I
P./=P f %, ,
dargy(Xy,Xz)

P%Z p@_p T (40)

X,

For entangled stateg.g., a superposition of two product
states, it follows that the nonclassical momentum of particle
one will typically depend on the position observable of par-
ticle two, and vice versa. Hence, if some unitary transforma-
tion (e.g., a position displacemeris performed on theec-
ond particle, then the nonclassical momentum of first
particle is typically changed.

The decomposition into classical and nonclassical compo-
nents is therefore essentially nonlocal: the decomposition of
a single-particle observable typically depends upon actions

The notion of Fisher length for one dimension generalize%erformed on another particle with which the first is en-

to the matrix inverse

-1
COVF(X)==U d™ pO)LV INp()ILV Inp(x)]T1
(36)

whereA" denotes the vector transpose/fFor the case of

one dimension, this reduces to the square of the Fisher leng

X, just as the covariance matrix in E@5) reduces to the

square ofAA. Moreover, as per the covariance matrix, the
matrix in Eg. (36) is real, symmetric, and nonnegative. Fi-
nally, the matrix is the inverse of the “Fisher information

matrix” of statistical estimation theory11]. For these rea-
sons Coy(X) will be referred to as théisher covariance

matrix of X. One has the generalized Cramer-Rao inequality

[11]
Cov(X)=Cov(X), (37)

with equality for Gaussian distributions.
One may show, via direct calculation of C®¥), that the
generalized exact uncertainty relation
CoVe(X)CouP,o) = (%/2)21, (38

holds for all pure states, wherg, denotes thenXn unit

tangled. Conversely, all such decompositions are invariant
under actions performed on a secomgentangled particle.
The nonlocality inherent in quantum entanglement is thus
reflected by the nonlocality of classical/nonclassical decom-
positions.

The exact uncertainty relation corresponding to the de-
ﬁPmposition of momentum in E@40) is given by the matrix
equality of Eq.(38), with n=2. This leads to three indepen-
dent inequalities, two of which may be chosen as as gener-
alizations of the exact uncertainty relation in E2). for each
individual particle.

There are many ways of choosing the third independent
inequality. However, one particular choice provides an inter-
esting connection with the Pearson correlation coefficient of
classical statistics. The latter coefficient is defined for two
compatible observables andB, in terms of the coefficients
Cj« of the corresponding covariance matrix CAyB), by
[11]

rp(A,B)=C1,/(C11C0) "2 (41)
and provides a measure of the degree to wiicind B are
linearly correlated. It ranges betweenl (a high degree of
linear correlation with negative slopand +1 (a high de-
gree of linear correlation with positive slopeOne may

matrix. This exact uncertainty relation, being a symmetricanalogously define the “Fisher” correlation coefficient in
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terms of the coefficient€], of the corresponding Fisher co- This latter result is consistent with E¢44), which implies

variance matrix Coy(A,B), by that X" and X are highly positively correlated for state
E [rp(X)=~1], while P®) and P(? are highly negatively cor-
re(A,B):=Ci,/(CCo) " (42 related[rp(P)~—1].

It is of interest to consider the effect of measurements on

This also provides a measure of correlation ranging betweeg, o approximate EPR state First, for a position measure-
—1 and+1, and is equal to the Pearson correlation coeffijant on particle two, with resuk(®)=x, the state of particle

cient for all Gaussian distributions. , one collapses to the wave function obtained by substituting
The third equality may now be chosen as the simple cors, _y and renormalizing. It follows that the classical mo-

relation relation mentum componer®{} remains equal t@y/2. Hence, the

rp(PY P@) 41 (XD x@) =0, (43 ~ momentum deczomposition of particle one is not altered by
knowledge ofX(?),
as may be verified by direct calculation from H§8). It is Conversely, fc;r a momentum measurement on particle
seen that the exact uncertainty relation in B3§) thus con-  two with resultP(®)=p, one finds via straightforward calcu-
strains both uncertaintgnd correlation. lation of the appropriate Gaussian integrals that the state of

For example, if the nonclassical momentum componentgarticle one collapses to the wave function

of particles one and two are positively correlated, then the B
position observables are negatively correlated, and vice Y(x,| PP =p) =K' e (1t a?(e®+ agipxy/h
versa. More generally, the degree of nonclassical momentum
correlation is seen to be precisely determined by the degreghereK’ is a normalization constant and
of position correlation. Note founentangledparticles that
Eq. (43) is trivial: both the Pearson and the Fisher correlation 2 20

= Lo i : ) ~ _ op+7(Po—P)
coefficients vanish identically. The exact uncertainty relation p=———— —~
in Eq. (38) thus reduces in this case to the exact uncertainty oo T
relations(19) for each particle.

Po

It follows that the classical momentum componétif) is
C. EPR correlations not invariant under a measurement Bf?), changing from

A nice example is provided by the approximate EPR :staté)ol2 o p. Hence_, there is a _F‘O”'Oca' effect on the
classical/nonclassical decomposition of momentum for par-

B(Xg %) = K e~ (1= xp—a)140? o= (x1-+ x5) 21472 ipo(x1 + X2)/ (24). ticle one, brought about by a measuremenP&?. Thus, the
strong correlation betweeR) and P(?) for statey in Eq.
whereK is a normalization constant amck< 1< 7 in suitable  (44) may be considered nonlocal in nature. Similar results
units. One may then calculate hold with respect to the position correlation.

1 2)\ 1 2\ 2

(XD=xZ)=a, VarxV-x®)=o?<1, VI. OTHER OBSERVABLES

(PH+PEY=p,,  Var(PM+P@)=£2/72<1, Exact uncertainty relations may be formally extended in a

] . ) ~very general way to arbitrary pairs of Hermitian observables.

and hencey is an approximate eigenstate of the relative ynfortunately, the physical significance of such an extension

position and the total momentum, i.e., one may write is not entirely clear, as will be seen below. However, for the

case of a complete set of mutually complementary observ-

ables on a finite Hilbert space, such as the Pauli spin matri-

This state is thus an approximate version of thennormal- €S it will be shown that results in the literature provide a

izable ket considered by Einstein, Podolsky, and Rosen in/€"y satisfactory form of exact uncertainty relation.
connection with the completeness of the quantum theory FirSt, consider the case ahy two observables\ and B

XD-XP=~a, PH+pRxp,. (44)

represented by Hermitian operators, and for spatiefine

[20]. d by Hermiti df tiefi
For statey, one finds from Eq(33) that the classical

components of momentum are constant, each being equal to BA ::2 la)(al (a|Bp+pB|a)/2 (46)

po/2. Hence, one has CBy.= Cow from Eq. (34). Then, o4 (a|p|a)

since equality holds in Eq37) for Gaussian distributions,
the exact uncertainty relation corresponding tofollows  Here,|a) denotes the eigenket @ with eigenvaluea, and

from Eq. (38) as the summation is replaced by integration for continuous
B 2 ranges of eigenvalues.
CouX)CouP)=(A/2)1 . (45 Clearly the above expression generalizes Egjsand(6),
Equation(43) reduces tdrecalling thatr » andr are equiva- and indeeds;; may be interpreted as providing the best es-
lent for Gaussian distributionghe correlation relation timate ofB %ompa'_uble with the measurementAbn statep.
Note thatA,=A, i.e., Ais its own best estimate. One may
re(X)+rp(P)=0. further defineBﬁc via the decomposition
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whereL; denotes the collision length of observal#ie for
statep. This reduces to strict equality for all pure states, and
and obtain the relations thus, provides an exact uncertainty relation for the collision
lengths of any set ofi+1 mutually complementary observ-
ables. For example, if;=1 for some observabla; (mini-
mal uncertainty, thenL;=n for all i#j (maximal uncer-
tainty). lvanovic has shown that Eq48) may be used to
derive an entropic uncertainty relation for tAe [4], while
Brukner and Zeilinger have interpreted E¢8) as an addi-
tivity property of a particular “information” measurg23].

B=BA+B%

nc?

(BYy=(BA), VarB=VarB%+VarBj,

for statep, in analogy to Eqs(9) and (11).
If one is then prepared to define the quantpA by

_ (al(i/h)[B,p]|a)?
2_
(%M *=2 T

VII. CONCLUSIONS
in analogy to Eq(26), then precisely as per the derivation of

Eq. (24) one may show that The existence of exact uncertainty relations connecting

the statistics of complementary observables greatly strength-
ens the usual statement of the uncertainty principle: the lack

(85A)ABp =112, (47)  of knowledge about an observable, for any wave function, is
_ _ precisely determined by the lack of knowledge about the
with equality for all pure states. conjugate observable. The measures of lack of knowledge

Thus, there is a very straightforward generalization of Eqmust of course be chosen appropriatéig the nonclassical
(2) to arbitrary pairs of observables. A difficulty is, however, fiyctuation strength and the Fisher lengttWhat is remark-
how to provide a meaningful statistical interpretationsgh. able is that such measures may be chosen at all.
Note in particular that, unlike the Fisher lengéX, this The decomposition of the momentum observable into
quantity is not a function of the probability distribution ¢jassjcal and nonclassical components has a number of clear
(alp|a) in general. Possibly, noting the commutator that ap-ypysical consequences. The classical component character-
pears in the definition 06gA, one may interpret this quantity j, e hat part of the momentum comeasurable with position,

Z;Ss?nrgfiesl?\ukr)it(\j\tetzerB%ee%r(Sreattg dvvt?;hsgtrigizsgfrirtn;:it:ﬁ while the nonclassical component successfully characterizes
between unitary transformations of the foeﬁB’hpe*iX.B’f.; the “quantum” nature of the momentum observalfg(in-

. ... cluding the exact uncertainty relation E®), the nonclassi-
[21]. Here, such an attempt will not be made, although it is | part of the kinetic energy, and the nonlocality inherent in

noted that the case of arbitrary quadrature observables of _
the momentum correlations of entangled particlds has

single-mode field should provide a simple test. . "
J P P ¢ been shown elsewhere that the nonclassical position and mo-

Finally, it is pointed out that a rather different type o o i
exact uncertainty relation exists for a setrof 1 mutually mentum uncertainties characterizes the robustness of quan-

complementary ~ observablesA;,A,, ... A,.; on an UM systems with respect to Gaussian noise procd&des
n-dimensional Hilbert space. Such sets are defined by thand the notion of a nonclassical momentum fluctuation in-
property that the distribution of any member is uniform for Versely related to position uncertainty has been successfully
an eigenstate of any other member, and are known to existsed as a starting point faerivingthe Schradinger equation
whenn is a power of a prime numbég2]. As an example [3]-

one may choos@=2, and takeA;, A,, andA; to be the The exact uncertainty relations in Eq®), (30), (31), and

Pauli spin matrices. (38) are formal consequences of the Fourier transformations
Let L denote the collision length of probability distribu- that connect the representations of conjugate quantum ob-

tion {p1,p2, - - . ,Pn}, defined by{9] servables. Hence, they may be extended to any domain in

which such transformations have physical significance. This
includes the time-frequency domain, discussed elsew]i8¢re
(where the “classical” component of the frequency is essen-
tially the so-called “instantaneous frequendy?4]), as well

as Fourier optics, and image processing.

Note thatL is equal to one for a distribution concentrated on It would be of interest to determine whether exact uncer-
a single outcome, and is equal dor a distribution spread tainty relations exist for relativistic systems. One is ham-
uniformly over alln possible outcomes. It hence provides apered in direct attempts by difficulties associated with one-

direct measure of the spread of the distribution over theparticle interpretations of the Klein-Gordon and Dirac
space of outcome$®]. equations. It would perhaps therefore be more fruitful to first

One may show thd#] consider extensions to general field theories.
Finally, note that the definition of the Fisher covariance
matrix in Eg. (36) suggests an analogous definition of a
2 UL, =1+t p?]=<2, (48) “Wigner” covariance matrix Coy,, defined via the coeffi-
i cients of its matrix inverse

L::l/? (pj)2.
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IW IW determine to what degree this matrix is well defined, and to

[Covy' Tjke= f d*"zw? what extent its properties characterize nonclassical features

92 92 of quantum states.
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