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We show that a cooling scheme and an appropriate quantum nonstationary strategy can be used to improve
the signal to noise ratio for the optomechanical detection of weak impulsive forces.
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A mechanical oscillator coupled to an optical mode by thecavity free spectral range/2L (L is the cavity length[9],
radiation pressure provides a sensitive device able to deteone can focus on one cavity mode orilyith annihilation
very weak forces. Relevant examples are interferometers faperatorb, frequencyw., and cavity decay ratg.) because
the detection of gravitational wavd4] and atomic force photon scattering into other modes can be neglected. This
microscopes[2]. Up to now, the major limitation to the adiabatic regime implie&,<w., and therefore the genera-
implementation of sensitive optical measurements is giveiion of photons due to the Casimir effect, retardation and
by thermal noisg3]. It has been proposed in Rd#] to Doppler effects are completely negligible. The cavity mode
reduce thermal noise by means of a feedback loop based d# driven by a laser field with input powgr and frequency
homodyning the light reflected by the oscillator, playing thewo~w. The dynamics of the system can be described by
role of a cavity mirror. The proposed scheme is a sort otthe following set of coupled quantum Langevin equations
continuous version of the stochastic cooling technique usetQLES (in the interaction picture with respect favbb):
in accelerator§5], because the homodyne measurement pro-
vides a continuous monitoring of the oscillator’s position, Q(t)=wyP(1), (1a
and the feedback continuously “kicks” the mirror in order to
put it in its equilibrium position. This proposal has been 5 \_ _ +
experimentally realized in Ref6], using the “cold damp- PU=~onQl) = ymP(t) + Gb (t)b(t)+W(t)+f(t)(,1b)
ing” technique [7], which is physically analogous to that
proposed in Ref[4] and which amounts to applying a vis-

cous feedback force to the oscillating mirror. b(t)= —iwc+iwo—ﬁ)b(t)+2iGQ(t)b(t)+E
Both the “stochastic cooling” scheme of Ré¢#] and the 2
cold damping scheme of R€ff6] cool the mirror by over- +yebin(t) (10
c™in 1

damping it, thereby strongly decreasing its mechanical sus-
ceptibility at resonance. As a consequence, the Oscmat%hereQ and P are the dimensionless position and momen-
does not resonantly respond to the thermal noise, yielding "Ehm operator of the movable mirrory,, is the mechani-
this way an almost complete suppression of the resonance, damping rate.G=(« /L)\/h/ZTwm is the coupling
peak in the noise power spectrum, which is equivalent to ' N M

cooling. However, the two feedback schemes cannot be dlgonstant,f(t) is the classical force to be detected, and

rectly applied to improve the detection of weak forces. InE = V¥ Ye/fiwo. The noise terms in the QLEs are given by

fact, the strong reduction of the mechanical susceptibility af€ Usual input noise operatoy, (t) [10], associated with the
resonance means that the mirror does not respond not only ¥cuum fluctuations of the continuum of electromagnetic
the noise, but also to the signal, and we shall see that th@0des outside the cavity, and by the random fortkt)
signal to noise ratidSNR) of the device in stationary con- describing the Brownian motion of the mirror caused by the
ditions is actually never improved. Despite that, here wecoupling with other internal and external modes at the equi-
show how it is possible to design ronstationarystrategy I|br|um ter_nperatureT+ The optical input noise c_orrelatlon
able to significantly increase the SNR for the detection ofunction is (bin(t)bjs(t"))=5(t—t") [10], while that
impulsiveclassical forces acting on the oscillator. This may©f the quantum Langevin force)\(t) is given by
be of crucial importance in the field of metrolofg], as well ~ [11,12 OMOWM(")) = (ym/2Tmwm) [ F(t—t") —i F(t—t')],

as for the detection of gravitational waves]. We use a Where  F (t)=J7dww cosEt)coth@iw/2kgT),  Fi(t)
guantum treatment, allowing us to show why a classical ap= 7 dwwsin(wt) with w the frequency cutoff of the reser-
proach provides an incomplete description of the optomvoir spectrum. The QLES$1), supplemented with the above

echanical scheme. correlation functions, provide aaxactdescription of the sys-
Let us consider a simplified system with a single me-tem dynamics, valid at all temperaturg<].
chanical mode representing the movable mifmith massm In standard interferometric applications, the driving field

and frequencyn,,) of a coherently driven optical cavity. The is very intense. Under this condition the system is character-
optomechanical coupling between the mirror and the cavityzed by a semiclassical steady state with the internal cavity
field is realized by the radiation pressure. In the adiabatienode in a coherent statg), and a new equilibrium position
limit in which the mirror frequency is much smaller than the for the mirror, displaced b| 8|%/ w,. Then the dynamics is
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well described by linearizing the QLE$) around the steady In the proposal of Ref[4], feedback induces position
state, and if we rename witQ(t) and b(t) the operators shifts controlled by the output homodyne photocurrent
describing the quantum fluctuations around the classicaY,,(t). This is described by an additional term in the QLE

steady state, one gets for a generic operata®(t) given by[14]
QO =enP(®) (8 Orplt) =i gvoma— IOPD, 0], @

: = — _ + 4 T
P =~0nQ(D) = ynP(D)+ GA[bL) +bI(L)] wherer is the feedback loop delay time, agg is the feed-
+W(t)+1(1), (2b)  back gain. The feedback delay time is always much smaller
than the typical time scale of the mirror dynamics and it can

. Yo . ) be neglected. After the adiabatic elimination of the cavity
b()=| =5 —1A|b(t) +2iGBQ(t) + Vyebin(), mode, the mirror QLES become
(20 g 5
A(t)=wyP(t)+4 - 25\

where we have chosen the phase of the cavity mode field so Q)= mP (1) +4GAgs Q1) 2 " in(t)
that 8 is real andA = w.— wy— G? %/ w,, is the cavity mode
detuning. We shall consider from now adn=0, which can +gSC‘/7chn(t)* (58
always be achieved by appropriately adjustiag. In this 26
case the dynamics becomes simpler, because only the phas _ _ _
quadrature() =i[b'(1) ~ b(1) /2 is affected by the miror ()~ ~ @mQ = ymPL+ T Xin (MDD,
position fluctuation®)(t), while the amplitude field quadra- (5b)

ture X(t)=[b(t)+bT(t)]/2 is not. The large cavity band- ;
width limit y.>Gp is commonly considered, and in this WhereX,(t) =b;,(t) +bj,(t).
case the cavity mode dynamics adiabatically follows that of In the cold damping scheme of R¢6], feedback is pro-

the mirror position and it can be eliminated, i.e., vided by the radiation pressure of another laser beam
intensity-modulated by the time derivative of the output ho-
4G Yin(t) modyne photocurrent, and therefore one has the additional
Y(t)= Q(t)+ , (3 term in the mirror QLEs:
Ye \/7C
R L P [ dYoult—1)
whereY;,(t)=i[bj,(t) —b;,(t)]. In this limit, the movable Osp(t)= T [9:4Q(1),0(1)]. (6)

mirror can be used as a ponderomotive meter to detect a N Ye
weak forcef (t) acting on it[13], which will be proportional
to the displacement from the equilibrium positiQ{t). The
measured quantity is the output homodyne photocurren
Youtl() =2yenY(t) — V7Y (t) [10], wherey is the detec-
tion efficiency, andy/?(t) is a generalized input noise, coin-
ciding with the input noiseY;,(t) in the case of perfect de-

Again, in the zero delay limit=0, and adiabatically elimi-
pating the cavity mode, one has

Q(t)=wnP(1), (78

tection »=1, and taking into account the additional noise p(t)=—w,,Q(t)— y,P(t)+ ZG—'BXin(t)nLW(t)H(t)
due to the inefficient detection in the general casel [14]. Vre
This generalized input noise can be written ¥§ (t) 4G
=i[bl(t)=b,(t)], with (b,(t)bl(t"))=8(t—t'), and it is _ Bgch(t)_%ym(tH Ged Y2 (1).

. . . . n
correlated with the input noiseb;,(t) according to Ye \/y—c 2\vem
(bin(b](t"))=(b, ()bl (")) = ns(t ") [14] 7D

The output of the homodyne measurement may be used to
_devise a pha}se-sensitive feedback loop to control the dynamye have introduced the input noi¥e, (t), with the correla-
ics of the mirror. The effect of the feedback loop has beeq. functi Vo (Y (1)) = — B(t—t d th
described using quantum trajectory theft$] and the mas- 10" function (Yin( ') in(t')) . ( ! ), and the same
ter equation formalism in Ref4], and a classical description holds for the associated generalized input ndiggt).
neglecting all quantum fluctuations in RE8]. Here we shall The Egs.(5) and(7) show that the two feedback schemes
use a more general description of feedback based on QLE&€ not exactly equivalent. However, it is possible to see that
for Heisenberg operators, first developed in Hd6] and  they have very similar physical effects on the mirror dynam-
genera"zed to the nonideal detection case in W] In iCS, ConSidering, for example, the Fourier transform of the
particular, we shall give a fully quantum description of the mechanical susceptibility in the two cases, thatyig(w)
cold damping schem]. The adoption of a quantum treat- = @m/[ @5+ 01 Ym— @?+iw(yy+9:)] in the stochastic
ment is justified by the fact that, as we shall see, in thecooling feedback scheme of R¢#] (g;=—4GpBgsc), and
presence of feedback the radiation quantum noise has impOXﬁcd(w)Iwm/[wzm—wz-l—iw(ym-i— 0,)] in the cold damping
tant effects, especially at low temperatures. feedback scheme of Reff6] (9,=4GBgcqwm/yc)- These
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expressions show that in both schemes the main effect of +oo to o ielt-t)
feedback is the modification of mechanical dampimg N(w)= f_ thTm(t)f_ dt’'Fy (t)e '

—vmt0;. In the stochastic cooling scheme, one also has a

frequency renormalizatiom? — w2+ g1 ¥m, Which is, how- 172

ever, usually negligible since,<w,,. If the gainsg; are X<Yout(t)Yout(t/)>f—0} : (10)
appropriately chosen, one has a significant increase of damp-

ing and this increase is at the basis of the cooling mechanisihere the subscridt=0 means evaluation in the absence of

proposed in Ref[4] and realized in Ref[6]. In fact, the  the external force. Using again E) and the input noises

mechanical susceptibility at resonance is inversely proporgorrelation functions, the spectral noise can be rewritten as
tional to the damping coefficient and, in the presence of feed-

back, the oscillator becomes much less sensitive to the ther-
mal noise, yielding a complete suppression of the resonance N(w)=
peak in the noise power spectrum.

The classical treatment of Ref6] (see also[17]) is , ) +oo 12
equivalent to replace the QLES) and (7) with classical xe 't C(t,t) + ﬂf thTm(t)2] .
stochastic equations in which the back action noise o
2GBXin(t)/\y. and the feedback-induced noise terms pro- (11

portional toY;,(t), Y7 (1), Yin(t) and Y7 (t) are neglected.

As a consequence, within the classical approach, the only. . : \ "
. ) A rized correlation function of the oscillator position. Spectral
effect of feedback is damping renormalizatiop,— vm . .
measurements are usually performed in the stationary case,

+g;, while the increase of noise for increasing feedbac . . :
gain, due to the presence of the feedback-induced terms,ﬁgat IS, using & measurement tiig, much larger than the

completely missed. This gives the wrong impression that, scillati)r relaxation timej_l'm> Uym- _In this limit one has
least in principle, unlimited cooling can be achieved for in- Tm(t)_1 v t,~and the signaB(w) simply becomesS(w)
creasing feedback gain. With a quantum treatment, the= 8G,877|X(w)f(w)|/21-r\/%. The oscillator in this case is
tradeoff between damping renormalization and feedbackrelaxed to equilibrium an€(t,t") in Eq. (11) is replaced by
induced noise leads to the existence ofamtimal feedback the stationary correlation functionC(t—t'). Defining the
gain, corresponding to the best achievable cooling. This limitmeasurement tim&,, so thatTm=fthTm(t)2, Eqg. (11) as-
on thermal noise suppression would be present even in thymes the usual form

case of an ideal feedback loop with no electronic noise. It is

a manifestation of quantum effects, showing the conceptual N(@) {

(8GBn)? [+ =
T”f wthTm(t)f_m dt'Fr (1)

where C(t,t")=(Q(t)Q(t") +Q(t")Q(t))/2 is the symme-

, : , ow \ (8GB7)°
difference with a purely classical description of cooling. ———Ng(w)+7

When the classical force we want to detect is character-
ized2 byza characteristic frequency, sdy(t)=foexd—(t  where Ng(w)=/dte '“"C(r). In this stationary case, the
—t))920°]cos(w;t), spectral measurements are commonlysNR can be calculated for both feedback schemes, and one

12
Tm] ; (12)

performed and the detected signal is gets
. S(w) Y@ ho| 4G2B2
S(w):Uw dte” (Yo t)Fr_(1)], (8 mst=|f(w)|['rm mCOt KT +T
—-1/2
. - . . Ye gng 1
whereF (t) is a “filter” function, approximately equal to + +
o T = - 64G°B%n\ wp  |xcd@))?

one in the time interval0,T,,] in which the spectral mea- m cd
surement is performed, and equal to zero otherwise. Using (13
Eqg. (3) and the input-output relation, the signal can be re-
written as for the cold damping scheme, and a similar expression for

the stochastic cooling schenfigsw? is replaced byg?(w?

N +y§1) and y.q by xscl- In both cases, feedback doegsﬁnot
C NF( o\ E o improve this stationary SNR at any frequency, due toghe
f,m do’x(w)f(e )FTm(w ). term. This is not surprising because the effect of feedback is

(9) to decrease the mechanical susceptibility at resonance, so

that the oscillator is less sensitive not only to the noise but
~ - also to the signal.
where f(w) andFy (w) are the Fourier transforms of the  However, in the case of aimpulsiveforce with a time
force and of the filter function, respectively, andw) is  duration o<1/y,,, the force spectrum could still be well
equal to ys(w) or x.q(w), according to the feedback reproduced even if a much smaller tinig,, such thato
scheme considered. The noise associated with the measuréT ,<1/y,,, is used. This corresponds to a nonstationary
ment of the signal of Eq(8) is given by situation because the system is far from equilibrium during
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the whole measurement. In this case, the noise spectrum is
very different from the stationary form of E¢l2) and it is
mostly determined by the initial state of the oscillator. It is
therefore quite natural to devise a strategy in which the feed-
back cooling scheme is applied before the measurement, so
that the state at the beginning of the measurement is just the
cooled, equilibrium state in the presence of feedback, and
turn off the feedback during the spectral measurement. In
this way the noise remains small during the whole measure-
ment because the heating timeyl/is much larger tha ,,,
while at the same time the signal is not significantly sup-
pressed because the mechanical susceptibility is just that in
the absence of feedback. One expects that as long as the FIG. 1. The averaged spectral SNR of Etf) in the presence
measurement time is sufficiently small,,<1/y,,, the SNR  of the cold damping feedback scheme wigh=82.4 kHz in the
for the detection of the impulsive for¢evhich has now to be full quantum treatmentfull line), in the classical approximation
evaluated using the most general expressi@sand (11)] (dotted ling, and without feedbackdashed ling Other parameter
can be significantly increased by the above nonstationaryalues —are: wi=wp=11.7 MHz, y,=270 Hz, G?B%/y,
strategy. =10.3 Hz,T=4 K, =0.99, 0=3.7 usec, T;,=11 usec, T¢qo
This scheme can be straightforwardly applied whenevei 2 #Sec.
the “arrival time” t, of the impulsive force is known: feed-
back has to be turned off just before the arrival of the forcecooling, as it is shown in Fig. 1, whe(&/N(w)) is plotted
However, the scheme can be easily adapted to the case of &ull line) in the case of the impulsive Gaussian force chosen
impulsive force with an unknown arrival time, as it is the above: one has an improvement by a factor 10 at resonance
case of a gravitational wave passing through an interferomwith respect to the no feedback cadashed ling Parameter
eter. In this case, it is convenient to repeat the process manalues are those of Refi6], except that we have considered
times, i.e., subject the oscillator to cooling-heating cycles. IMT=4 K, and the optimal value of the feedback gajn
fact, cyclic cooling has been proposed, in a qualitative way=305y,, maximizing the SNR. The dotted line refers to the
to cogl the violin modes. of a gravitational waves inteffefom'classicakS/N(w)) calculated neglecting all quantum noises:
eter in[17]. Feedback is turned off for a tim&, during  the noise is underestimated, with a 15% error in the SNR at
which the spectral measurement is performed and the 0sCifasonance. This shows that quantum noise has an appreciable
lator starts heating up. Then feedback is turned on and thggect already at liquid He temperatures and that a fully
OSC”,lato,r IS (.:o.oled., and then thg process |s'|ter.ated. CyCIIE]uantum treatment is needed for a faithful description of the
cooling is eff|C|en_tl|f _the cooling timd oo, Wh'Ch_ IS of th_e physics. It is possible to see that’t 300 K, at the corre-
o_rder of (VT"TLgi) 1S muqh smallgr thail, . This is vert- sponding optimal feedback gain, there is instead no appre-
fied at sufficiently large gains and it has been experlmentallyéiabIe difference between the classical and o
guantum predic

formance of the ‘schemé 6 well characierizad by  timelons, and thatS/N(w,,)) becomes 16 times larger than that
averaged SNR, i.e., with no feedback.
In conclusion, we have presented a completely quantum
Tm  S(w,t;) description of the cold damping feedback schemp and
mfo 4N (14 we have shown how the cooling schemes of Refs| may
be used, within an appropriate nonstationary strategy, to im-
This average SNR can be significantly improved by cyclicprove the detection of weak impulsive forces.
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