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Optomechanical scheme for the detection of weak impulsive forces
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We show that a cooling scheme and an appropriate quantum nonstationary strategy can be used to improve
the signal to noise ratio for the optomechanical detection of weak impulsive forces.
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A mechanical oscillator coupled to an optical mode by
radiation pressure provides a sensitive device able to de
very weak forces. Relevant examples are interferometers
the detection of gravitational waves@1# and atomic force
microscopes@2#. Up to now, the major limitation to the
implementation of sensitive optical measurements is gi
by thermal noise@3#. It has been proposed in Ref.@4# to
reduce thermal noise by means of a feedback loop base
homodyning the light reflected by the oscillator, playing t
role of a cavity mirror. The proposed scheme is a sort
continuous version of the stochastic cooling technique u
in accelerators@5#, because the homodyne measurement p
vides a continuous monitoring of the oscillator’s positio
and the feedback continuously ‘‘kicks’’ the mirror in order
put it in its equilibrium position. This proposal has be
experimentally realized in Ref.@6#, using the ‘‘cold damp-
ing’’ technique @7#, which is physically analogous to tha
proposed in Ref.@4# and which amounts to applying a vis
cous feedback force to the oscillating mirror.

Both the ‘‘stochastic cooling’’ scheme of Ref.@4# and the
cold damping scheme of Ref.@6# cool the mirror by over-
damping it, thereby strongly decreasing its mechanical s
ceptibility at resonance. As a consequence, the oscill
does not resonantly respond to the thermal noise, yieldin
this way an almost complete suppression of the resona
peak in the noise power spectrum, which is equivalent
cooling. However, the two feedback schemes cannot be
rectly applied to improve the detection of weak forces.
fact, the strong reduction of the mechanical susceptibility
resonance means that the mirror does not respond not on
the noise, but also to the signal, and we shall see that
signal to noise ratio~SNR! of the device in stationary con
ditions is actually never improved. Despite that, here
show how it is possible to design anonstationarystrategy
able to significantly increase the SNR for the detection
impulsiveclassical forces acting on the oscillator. This m
be of crucial importance in the field of metrology@8#, as well
as for the detection of gravitational waves@1#. We use a
quantum treatment, allowing us to show why a classical
proach provides an incomplete description of the opto
echanical scheme.

Let us consider a simplified system with a single m
chanical mode representing the movable mirror~with massm
and frequencyvm) of a coherently driven optical cavity. Th
optomechanical coupling between the mirror and the ca
field is realized by the radiation pressure. In the adiab
limit in which the mirror frequency is much smaller than th
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cavity free spectral rangec/2L (L is the cavity length! @9#,
one can focus on one cavity mode only~with annihilation
operatorb, frequencyvc , and cavity decay rategc! because
photon scattering into other modes can be neglected. T
adiabatic regime impliesvm!vc , and therefore the genera
tion of photons due to the Casimir effect, retardation a
Doppler effects are completely negligible. The cavity mo
is driven by a laser field with input power̀ and frequency
v0;vc . The dynamics of the system can be described
the following set of coupled quantum Langevin equatio
~QLEs! ~in the interaction picture with respect to\v0b†b!:

Q̇~ t !5vmP~ t !, ~1a!

Ṗ~ t !52vmQ~ t !2gmP~ t !1Gb†~ t !b~ t !1W~ t !1 f ~ t !,
~1b!

ḃ~ t !5S 2 ivc1 iv02
gc

2 Db~ t !12iGQ~ t !b~ t !1E

1Agcbin~ t !, ~1c!

whereQ and P are the dimensionless position and mome
tum operator of the movable mirror,gm is the mechani-
cal damping rate,G5(vc /L)A\/2mvm is the coupling
constant, f (t) is the classical force to be detected, a
E5A`gc /\v0. The noise terms in the QLEs are given b
the usual input noise operatorbin(t) @10#, associated with the
vacuum fluctuations of the continuum of electromagne
modes outside the cavity, and by the random forceW(t)
describing the Brownian motion of the mirror caused by t
coupling with other internal and external modes at the eq
librium temperatureT. The optical input noise correlation
function is ^bin(t)bin

† (t8)&5d(t2t8) @10#, while that
of the quantum Langevin forceW(t) is given by
@11,12# ^W(t)W(t8)&5(gm/2pvm)@Fr(t2t8)2 iFi(t2t8)#,
where Fr(t)5*0

Ãdvv cos(vt)coth(\v/2kBT), Fi(t)
5*0

Ãdvvsin(vt) with Ã the frequency cutoff of the reser
voir spectrum. The QLEs~1!, supplemented with the abov
correlation functions, provide anexactdescription of the sys-
tem dynamics, valid at all temperatures@12#.

In standard interferometric applications, the driving fie
is very intense. Under this condition the system is charac
ized by a semiclassical steady state with the internal ca
mode in a coherent stateub&, and a new equilibrium position
for the mirror, displaced byGubu2/vm . Then the dynamics is
©2001 The American Physical Society01-1
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well described by linearizing the QLEs~1! around the steady
state, and if we rename withQ(t) and b(t) the operators
describing the quantum fluctuations around the class
steady state, one gets

Q̇~ t !5vmP~ t !, ~2a!

Ṗ~ t !52vmQ~ t !2gmP~ t !1Gb@b~ t !1b†~ t !#

1W~ t !1 f ~ t !, ~2b!

ḃ~ t !5S 2
gc

2
2 iD Db~ t !12iGbQ~ t !1Agcbin~ t !,

~2c!

where we have chosen the phase of the cavity mode fiel
thatb is real andD5vc2v02G2b2/vm is the cavity mode
detuning. We shall consider from now onD50, which can
always be achieved by appropriately adjustingv0. In this
case the dynamics becomes simpler, because only the p
quadratureY(t)5 i @b†(t)2b(t)#/2 is affected by the mirror
position fluctuationsQ(t), while the amplitude field quadra
ture X(t)5@b(t)1b†(t)#/2 is not. The large cavity band
width limit gc@Gb is commonly considered, and in th
case the cavity mode dynamics adiabatically follows tha
the mirror position and it can be eliminated, i.e.,

Y~ t !.
4Gb

gc
Q~ t !1

Yin~ t !

Agc

, ~3!

whereYin(t)5 i @bin
† (t)2bin(t)#. In this limit, the movable

mirror can be used as a ponderomotive meter to dete
weak forcef (t) acting on it@13#, which will be proportional
to the displacement from the equilibrium positionQ(t). The
measured quantity is the output homodyne photocurr
Yout(t)52AgchY(t)2AhYin

h (t) @10#, whereh is the detec-
tion efficiency, andYin

h (t) is a generalized input noise, coin
ciding with the input noiseYin(t) in the case of perfect de
tection h51, and taking into account the additional noi
due to the inefficient detection in the general caseh,1 @14#.
This generalized input noise can be written asYin

h (t)
5 i @bh

†(t)2bh(t)#, with ^bh(t)bh
†(t8)&5d(t2t8), and it is

correlated with the input noisebin(t) according to
^bin(t)bh

†(t8)&5^bh(t)bin
† (t8)&5Ahd(t2t8) @14#.

The output of the homodyne measurement may be use
devise a phase-sensitive feedback loop to control the dyn
ics of the mirror. The effect of the feedback loop has be
described using quantum trajectory theory@15# and the mas-
ter equation formalism in Ref.@4#, and a classical descriptio
neglecting all quantum fluctuations in Ref.@6#. Here we shall
use a more general description of feedback based on Q
for Heisenberg operators, first developed in Ref.@16# and
generalized to the nonideal detection case in Ref.@14#. In
particular, we shall give a fully quantum description of t
cold damping scheme@7#. The adoption of a quantum trea
ment is justified by the fact that, as we shall see, in
presence of feedback the radiation quantum noise has im
tant effects, especially at low temperatures.
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In the proposal of Ref.@4#, feedback induces position
shifts controlled by the output homodyne photocurre
Yout(t). This is described by an additional term in the QL
for a generic operatorO(t) given by @14#

Ȯf b~ t !5 i
Agc

h
Yout~ t2t!@gscP~ t !,O~ t !#, ~4!

wheret is the feedback loop delay time, andgsc is the feed-
back gain. The feedback delay time is always much sma
than the typical time scale of the mirror dynamics and it c
be neglected. After the adiabatic elimination of the cav
mode, the mirror QLEs become

Q̇~ t !5vmP~ t !14GbgscQ~ t !2
gsc

2
Agc

h
Yin

h ~ t !

1gscAgcYin~ t !, ~5a!

Ṗ~ t !52vmQ~ t !2gmP~ t !1
2Gb

Agc

Xin~ t !1W~ t !1 f ~ t !,

~5b!

whereXin(t)5bin
† (t)1bin(t).

In the cold damping scheme of Ref.@6#, feedback is pro-
vided by the radiation pressure of another laser be
intensity-modulated by the time derivative of the output h
modyne photocurrent, and therefore one has the additio
term in the mirror QLEs:

Ȯf b~ t !5
i

hAgc

dYout~ t2t!

dt
@gcdQ~ t !,O~ t !#. ~6!

Again, in the zero delay limitt50, and adiabatically elimi-
nating the cavity mode, one has

Q̇~ t !5vmP~ t !, ~7a!

Ṗ~ t !52vmQ~ t !2gmP~ t !1
2Gb

Agc

Xin~ t !1W~ t !1 f ~ t !

2
4Gbgcd

gc
Q̇~ t !2

gcd

Agc

Ẏin~ t !1
gcd

2Agch
Ẏin

h ~ t !.

~7b!

We have introduced the input noiseẎin(t), with the correla-
tion function ^Ẏin(t)Ẏin(t8)&52 d̈(t2t8), and the same
holds for the associated generalized input noiseẎin

h (t).
The Eqs.~5! and~7! show that the two feedback schem

are not exactly equivalent. However, it is possible to see
they have very similar physical effects on the mirror dyna
ics, considering, for example, the Fourier transform of t
mechanical susceptibility in the two cases, that is,xsc(v)
5vm /@vm

2 1g1gm2v21 iv(gm1g1)# in the stochastic
cooling feedback scheme of Ref.@4# (g1524Gbgsc), and
xcd(v)5vm /@vm

2 2v21 iv(gm1g2)# in the cold damping
feedback scheme of Ref.@6# (g254Gbgcdvm /gc). These
1-2



t

s

m
is

o
e
he
n

is
ro

on

c
s,
,
in
th
c

m
t

t
tu

te

nl

-
sin
re

e

k
su

of

as

ral
ase,

e
one

for

ot

k is
, so
but

ll

ary
ing

RAPID COMMUNICATIONS

OPTOMECHANICAL SCHEME FOR THE DETECTION OF . . . PHYSICAL REVIEW A 64 051401~R!
expressions show that in both schemes the main effec
feedback is the modification of mechanical dampinggm
→gm1gi . In the stochastic cooling scheme, one also ha
frequency renormalizationvm

2 →vm
2 1g1gm , which is, how-

ever, usually negligible sincegm!vm . If the gainsgi are
appropriately chosen, one has a significant increase of da
ing and this increase is at the basis of the cooling mechan
proposed in Ref.@4# and realized in Ref.@6#. In fact, the
mechanical susceptibility at resonance is inversely prop
tional to the damping coefficient and, in the presence of fe
back, the oscillator becomes much less sensitive to the t
mal noise, yielding a complete suppression of the resona
peak in the noise power spectrum.

The classical treatment of Ref.@6# ~see also@17#! is
equivalent to replace the QLEs~5! and ~7! with classical
stochastic equations in which the back action no
2GbXin(t)/Agc and the feedback-induced noise terms p
portional toYin(t), Yin

h (t), Ẏin(t) and Ẏin
h (t) are neglected.

As a consequence, within the classical approach, the
effect of feedback is damping renormalizationgm→gm
1gi , while the increase of noise for increasing feedba
gain, due to the presence of the feedback-induced term
completely missed. This gives the wrong impression that
least in principle, unlimited cooling can be achieved for
creasing feedback gain. With a quantum treatment,
tradeoff between damping renormalization and feedba
induced noise leads to the existence of anoptimal feedback
gain, corresponding to the best achievable cooling. This li
on thermal noise suppression would be present even in
case of an ideal feedback loop with no electronic noise. I
a manifestation of quantum effects, showing the concep
difference with a purely classical description of cooling.

When the classical force we want to detect is charac
ized by a characteristic frequency, say,f (t)5 f 0 exp@2(t
2t1)

2/2s2#cos(vf t), spectral measurements are commo
performed and the detected signal is

S~v!5U E
2`

1`

dte2 ivt^Yout~ t !&FTm
~ t !U, ~8!

whereFTm
(t) is a ‘‘filter’’ function, approximately equal to

one in the time interval@0,Tm# in which the spectral mea
surement is performed, and equal to zero otherwise. U
Eq. ~3! and the input-output relation, the signal can be
written as

S~v!5
8Gbh

2pAgc
U E

2`

1`

dv8x~v8! f̃ ~v8!F̃Tm
~v2v8!U,

~9!

where f̃ (v) and F̃Tm
(v) are the Fourier transforms of th

force and of the filter function, respectively, andx(v) is
equal to xsc(v) or xcd(v), according to the feedbac
scheme considered. The noise associated with the mea
ment of the signal of Eq.~8! is given by
05140
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N~v!5H E
2`

1`

dtFTm
~ t !E

2`

1`

dt8FTm
~ t8!e2 iv(t2t8)

3^Yout~ t !Yout~ t8!& f 50J 1/2

, ~10!

where the subscriptf 50 means evaluation in the absence
the external force. Using again Eq.~3! and the input noises
correlation functions, the spectral noise can be rewritten

N~v!5H ~8Gbh!2

gc
E

2`

1`

dtFTm
~ t !E

2`

1`

dt8FTm
~ t8!

3e2 iv(t2t8)C~ t,t8!1hE
2`

1`

dtFTm
~ t !2J 1/2

,

~11!

where C(t,t8)5^Q(t)Q(t8)1Q(t8)Q(t)&/2 is the symme-
trized correlation function of the oscillator position. Spect
measurements are usually performed in the stationary c
that is, using a measurement timeTm much larger than the
oscillator relaxation time,Tm@1/gm . In this limit one has
FTm

(t).1 ; t, and the signalS(v) simply becomesS(v)

58Gbhux(v) f̃ (v)u/2pAgc. The oscillator in this case is
relaxed to equilibrium andC(t,t8) in Eq. ~11! is replaced by
the stationary correlation functionC(t2t8). Defining the
measurement timeTm so thatTm5*dtFTm

(t)2, Eq. ~11! as-
sumes the usual form

N~v!5H F ~8Gbh!2

gc
NQ~v!1h GTmJ 1/2

, ~12!

where NQ(v)5*dte2 ivtC(t). In this stationary case, th
SNR can be calculated for both feedback schemes, and
gets

S~v!

N~v!st5u f̃ ~v!u H TmFgmv

2vm
cothS \v

2kTD1
4G2b2

gc

1
gc

64G2b2h
S g2

2v2

vm
2

1
1

uxcd~v!u2
D G J 21/2

~13!

for the cold damping scheme, and a similar expression
the stochastic cooling scheme@g2

2v2 is replaced byg1
2(v2

1gm
2 ) and xcd by xsc#. In both cases, feedback does n

improve this stationary SNR at any frequency, due to thegi
2

term. This is not surprising because the effect of feedbac
to decrease the mechanical susceptibility at resonance
that the oscillator is less sensitive not only to the noise
also to the signal.

However, in the case of animpulsiveforce with a time
duration s!1/gm , the force spectrum could still be we
reproduced even if a much smaller timeTm , such thats
!Tm!1/gm , is used. This corresponds to a nonstation
situation because the system is far from equilibrium dur
1-3
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the whole measurement. In this case, the noise spectru
very different from the stationary form of Eq.~12! and it is
mostly determined by the initial state of the oscillator. It
therefore quite natural to devise a strategy in which the fe
back cooling scheme is applied before the measuremen
that the state at the beginning of the measurement is jus
cooled, equilibrium state in the presence of feedback,
turn off the feedback during the spectral measurement
this way the noise remains small during the whole meas
ment because the heating time 1/gm is much larger thanTm ,
while at the same time the signal is not significantly su
pressed because the mechanical susceptibility is just th
the absence of feedback. One expects that as long as
measurement time is sufficiently small,Tm!1/gm , the SNR
for the detection of the impulsive force@which has now to be
evaluated using the most general expressions~9! and ~11!#
can be significantly increased by the above nonstation
strategy.

This scheme can be straightforwardly applied whene
the ‘‘arrival time’’ t1 of the impulsive force is known: feed
back has to be turned off just before the arrival of the for
However, the scheme can be easily adapted to the case
impulsive force with an unknown arrival time, as it is th
case of a gravitational wave passing through an interfer
eter. In this case, it is convenient to repeat the process m
times, i.e., subject the oscillator to cooling-heating cycles
fact, cyclic cooling has been proposed, in a qualitative w
to cool the violin modes of a gravitational waves interfero
eter in @17#. Feedback is turned off for a timeTm during
which the spectral measurement is performed and the o
lator starts heating up. Then feedback is turned on and
oscillator is cooled, and then the process is iterated. Cy
cooling is efficient if the cooling timeTcool , which is of the
order of (gm1gi)

21, is much smaller thanTm . This is veri-
fied at sufficiently large gains and it has been experiment
proved in@17#. In the impulsive force limits!Tm , the per-
formance of the scheme is well characterized by a tim
averaged SNR, i.e.,

^S/N~v!&.
1

Tm1Tcool
E

0

Tm
dt1

S~v,t1!

N~v!
. ~14!

This average SNR can be significantly improved by cyc
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cooling, as it is shown in Fig. 1, where^S/N(v)& is plotted
~full line! in the case of the impulsive Gaussian force chos
above: one has an improvement by a factor 10 at resona
with respect to the no feedback case~dashed line!. Parameter
values are those of Ref.@6#, except that we have considere
T54 K, and the optimal value of the feedback gaing2

.305gm maximizing the SNR. The dotted line refers to th
classical̂ S/N(v)& calculated neglecting all quantum noise
the noise is underestimated, with a 15% error in the SNR
resonance. This shows that quantum noise has an apprec
effect already at liquid He temperatures and that a fu
quantum treatment is needed for a faithful description of
physics. It is possible to see that atT5300 K, at the corre-
sponding optimal feedback gain, there is instead no ap
ciable difference between the classical and quantum pre
tions, and that̂S/N(vm)& becomes 16 times larger than th
with no feedback.

In conclusion, we have presented a completely quan
description of the cold damping feedback scheme@7#, and
we have shown how the cooling schemes of Refs.@4,6# may
be used, within an appropriate nonstationary strategy, to
prove the detection of weak impulsive forces.

FIG. 1. The averaged spectral SNR of Eq.~14! in the presence
of the cold damping feedback scheme withg2582.4 kHz in the
full quantum treatment~full line!, in the classical approximation
~dotted line!, and without feedback~dashed line!. Other parameter
values are: v f5vm511.7 MHz, gm5270 Hz, G2b2/gc

510.3 Hz, T54 K, h50.99, s53.7 msec,Tm511 msec,Tcool

52 msec.
s
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