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Optimal estimation of quantum dynamics
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We construct the optimal strategy for the estimation of an unknown unitary transformationUPSU(d). This
includes, in addition to a convenient measurement on a probe system, finding which is the best initial state on
which U is to act. WhenUPSU(2),such an optimal strategy can be applied to simultaneously estimate both
the direction and the strength of a magnetic field, and shows how to use a spin 1/2 particle to transmit
information about a whole coordinate system instead of only a direction in space.
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Consider an experimental deviceD that implements an
unknown unitary operationUPSU(d). A probe subsystem
A, which can be entangled with a second subsystemB, is
introduced inD and analyzed at its releasing. Suppose t
arbitrary manipulation is allowed on the global compos
system both at the preparation and analysis stages, whileD is
regarded as a black box. This paper addresses the que
‘‘Which is the best way of estimating the operationU?’’

The optimal estimation of the state of a quantum syst
has received a lot of attention in recent years@1–3#. A situ-
ation repeatedly considered in the literature is that of a s
1/2 system prepared in an unknown pure stateuc&PC 2. By
means of an optimal measurement on the system, the m
mal amount of information aboutuc& is retrieved. Here we
focus, instead, on the estimation of the dynamics of a qu
tum system~see also@4#!. This is done by analyzing, agai
through an adequate measurement, the changes that th
tial stateuc0&PC d

^ C d of the system undergoes under t
unknown evolution,UPSU(d). But contrary to what hap-
pens in state estimation, where only optimal measurem
need to be constructed, the optimal estimation of transfor
tions requires a double maximization: first, we need to fi
the stateuc0& of the composite system that best captures
information of the transformation~unitary evolutionU); and
second, a measuring strategy that optimally retrieves s
information fromU ^ I Buc0&, whereI stands for the identity
operator.

Not surprisingly, the optimal estimation of quantu
transformations—necessarily based on the possibility of
coding them on, and analyzing them from, a quant
system—is closely related to the capacity of quantum s
tems to carry information. Our results also give insight in
the role entanglement plays at enhancing the capabilities
quantum channel: it turns out that unitary transformations
optimally encoded in the quantum correlations between
two subsystems,A andB, and that, for instance, informatio
about a whole coordinate system$êx ,êy ,êz% can be trans-
mited by sending only one spin 1/2 system, provided tha
ebit of entanglement between the sender and the receiv
also available. The simultaneous determination of both
direction and the strength of a magnetic field, the tuning o
quantum channel, and the limits to espionage in a two-p
1050-2947/2001/64~5!/050302~4!/$20.00 64 0503
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protocol are other issues that can be addressed with the
timal scheme for the estimation of unitary operations, as
shall discuss. Let us mention here that our aim is not to fi
the optimal quantum program specifying a unitary operat
to be performed on some quantum data@5#, but the optimal
way ~initial state and measurememt! of obtaining informa-
tion about an unknown gate.

It is easy to come up with strategies that determineU with
an arbitrary accuracy provided that the black-box deviceD
can be used without restrictions. Here we are intereste
the opposite situation, namely whenD is used to perform the
transformationU only a reduced number of timesN. We will
first present an exhaustive analysis, comprising the opti
initial stateuc0& and the optimal measurement, for the ca
when D can only be used once,N51. For the generalN
case, and assuming thatD performs the transformations i
the formU ^ N, we are able to derive the generic form of th
optimal initial state of the system, up to some constants
depend on the chosen figure of merits~see Lemma 2!, and to
report the optimal POVM forN52, UPSU(2).

We start by shortly reviewing some of the elements
volved in quantum estimation strategies. First, a prior pr
ability distribution uniform with respect to the Haar measu
@6# expresses the fact that nothing is known aboutU before
resorting toD, except that it corresponds to a unitary evol
tion. Second, once the deviceD has performedU on the
probeA, a positive operator-valued measure~POVM! on A
and the~possibly! entangled systemB will extract the infor-
mation aboutU. Such POVM is a set$Gr% of positive op-
erators satisfying( rGr5I AB . And third, we need a notion o
how efficient a particular strategy—that is, an initial pro
stateuc0& and a POVM$Gr%—is, so that we can search fo
the best one. There are several ways of evaluating the s
egies, and the optimal solution may depend on the partic
election we make. One of the main results of this paper is
present the optimal probe stateuc0& and to show that it is the
same for a large class of figures of merits. Nevertheless
order to optimize the POVM, we will consider a specifi
fidelity-guided figure of merits, in which the outcomer of
the POVM, corresponding to the operatorGr , is followed by
a guessUr for the unknownU. We have chosen the functio

F~U,Ur ![U E
c
^fuUr

†Uuf&U2

5
1

d2
uTr~UUr

†!u2 ~1!
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to evaluate the guessUr . It quantifies, on average over a
statesuf&, how well Ur compares toU when transforming
uf&. Below we will give another interpretation to this fide
ity, whose average over outcomes and unknown operat
reads

F̄[(
r
E

SU(d)
dUPr~U !F~U,Ur !, ~2!

wherePr(U) is the probability that the POVM produces th
outcomer when the deviceD has implemented the operatio
U.

Let us suppose, then, thatD is to be used only once
Lemma 1 presents the optimal initial state of the probe
this case. It only assumes a covariantly averaged figur
merits as in Eq.~2!, but whereF(U,Ur) is any function
h(UUr

†) depending onU andUr throughUUr
† . Notice that

only pure states need to be considered for the probe sys
due to the linearity ofPr(U) in the initial state@see Eq.~4!#.
Therefore we take, without loss of generality, a compos
probeAB, whereA is thed—level system on whichU will
be performed andB is a secondd—level system, possibly
entangled withA.

Lemma 1.The optimal initial state for estimatingU after a
single performance can be chosen to be a maximally
tangled state, such as

uF&[
1

Ad
(
i 51

d

u i Ai B&. ~3!

The reason is that, as we next show, the stateU ^ I BuF&
can be subsequently manipulated, independently ofU, into
any other stateU ^ I Buc0& by just manipulating systemB.
Then, given any estimation strategy, specified by the PO
elements,$Gr%, and the corresponding guesses,$Ur%, for the
stateuc0& with a fidelity h̄, we can design another estimatio
procedure for the stateuF& attaining the same fidelity.

Proof. Let us consider the Schmidt decomposition of t
most general initial stateuc0&[( i 51

d l i um in i&, l i>l i 11

>0, ( il i
251. We first show that the Schmidt basis$um in i&%

is irrelevant as far as the average fidelity

h̄[(
r

trS GrE dUU^ I Buc0&^c0uU†
^ I Bh~UUr

†! D ~4!

is concerned@here tr(GrU ^ I Buc0&^c0uU†
^ I B) is the prob-

ability Pr(U)#. This is so because for anyX andYPSU(d),
the stateXA^ YBuc0& leads to the same maximalh̄, as can be
seen by noting that~i! any unitary transformationY in the
local basis ofB can be reabsorbed in the POVM elemen
Gr , whereas~ii ! if we prepareAB in stateX^ I Buc0& instead
of uc0&, then the shiftU→UX in the integration variablesU
of Eq. ~4!, simultaneous to a shiftUr→UrX for the guesses
leads again to the sameh̄. Therefore we can take

uc0&5(
i 51

d

l i u i Ai B&5I A^ M uF&, ~5!
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where M is a diagonal operator with entriesMii [Adl i .
Suppose now that the initial state isuF&. ThenD transforms
it into U ^ I BuF&. Let us consider a covariant POVM@2# on
B given by operators$MY[MY%, whereY runs isotropically
over SU(d) and *dY MY

†MY5I B . It transformsU ^ I BuF&
into U ^ MYuF&5UYT

^ M uF&5UYT
^ I Buc0& for some

known Y @here we have used that,;YPSU(d), I A^ YuF&
5YT

^ I BuF&#. But this is as if we would have started wit
stateYT

^ I Buc0&, which leads to the same average fidelity
uc0&. j

Let us now notice that our particular choice of fidelity, E
~1!, corresponds precisely to the probabilityu^FuUr

†U
^ I BuF&u2 that the stateUr ^ I BuF& behaves as if it wereU
^ I BuF&. ThereforeF(U,Ur) measures how similar the tw
operationsU and Ur are by comparing two related state
those that best capture the information of both transform
tions after a single run ofD.

Suppose finally that systemA, in the entangled stateuF&
with systemB, has already been introduced inD, which
produces the stateU ^ I BuF&—denoted byUuF& from now
on. Which is the best POVM that can be performed in ord
to learn aboutU from this state? We can rewrite the avera
fidelity of Eq. ~2! as

F̄15
1

d2 (
r

trFGrE dUUuF&^FuU†utr~UUr
†!u2G . ~6!

By means of a shiftU→V5Ur
†U in the integration vari-

ables, each of the integrals inside the trace has the f
Ur f 1Ur

† , where

f 1[E dVVuF&^FuV†uTrVu2

5d2^Fu E dVV^ 2~ uF&^Fu! ^ 2V†^ 2uF&. ~7!

We can now expand (uF&^Fu) ^ 2 using Eq.~3!, and apply
Schur’s lemma@6# to compute each term in the expansio
noticing the last integral involves two irreducibles represe
tations of SU(d), namely the symmetric and the antisymme
ric ones. A careful analysis~recalling that eachV is acting
only on the first half of the correspondinguF&) and patient
simple algebra leads to

f 15
1

d221
S d222

d2
I A^ I B1uF&^Fu D . ~8!

Thus uF& is the eigenvector off 1 with greatest eigenvalue
lm[2/d2, and Tr( Ur

†GrUr f 1 )<lmTr Gr in Eq. ~6!. Since
( rTrGr5d2, the maximal fidelity can be 2/d2 at most. A
covariant POVM@2# with operators and guesses given

$WuF&^FuW†,W%WPSU(d) reachesF̄152/d2, which is con-
sequently the optimal one.

This result is to be compared with the optimal fideli
F̄051/d2 made by blindly proposing a unitary transform
tion, sayI ~or any other!:
2-2
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E dU
uTrUu2

d2
5^Fu E dUUuF&^FuU†uF& ~9!

~the last integral is simplyI /d2 because of the Schur’
lemma! and also with theseparable fidelity F1

sep5(d
12)/@(d11)d2#, which is the best fidelity that can b
achieved without entanglingA andB, and can be compute
using Eq.~7! and the fact that a pure state ofA, say u0&, is
Ad^0BuF&. Finally, we note that a finite~and thus physical!
optimal measurement, actually one with the minimal num
of outcomes, consists in a von Neumann measurement
basis ofd2 maximally entangled states. For instance, on
Bell basis, with guessesI ,isx ,isy , and isz , for the SU(2)
case@4#. This completes the analysis ofN51 @7#.

Let us discuss some applications of the previous resu
Consider first the group SU~2!. Our optimal strategy can b
readily applied to determine a constant magnetic fieldBW

5Bm̂ by using the magnetic moment of a spin 1/2 partic
say an electron. LetHint5mW •BW be the interaction Hamil-
tonian, wheremW 5m(sx ,sy ,sz) and all physical constant
have been absorbed inm. Then after a timeT the spin has
evolved according to exp(2imBTm̂•sW ), and therefore we can
identify the directionm̂ of the magnetic field and its intensit
B ~actuallymBT). Our results show how tooptimallyextract
information aboutBW by means of an electron if this interac
oncewith the magnetic field~see also@4#!.

In the discussion above the information about the m
netic field BW is not contained in the state of the spin alon
but in the correlations between this spin and a second
Similarly, if two distant parties, Alice and Bob, want to use
recently establishedd-dimensional quantum channel,

(
i 51

d

ci u i A&→(
i 51

d

ci u i B&, ~10!

but Bob does not know the correspondence between stat
that is, he ignores the states$u i B&%—, they can benefit from a
maximally entangled stateuF& in order to tune the channe
Indeed, by Alice sending her half ofuF& down the channel,
Bob can estimate the whole unknown basis$u i B&%, or equiva-
lently, the transformationU5( i u i B&^ i Au, with a fidelity 2/d2,
which is 2(d11)/(d12) times greater than the fidelity h
could have obtained also after a single use of the chann
no entanglement would have been available. In a sense,
is a general manifestation of how entanglement enhance
capacity of a quantum channel, with traditional quantum
perdense coding@8# appearing as a particular case, nam
when the channel is used to transmit classical informa
only.

Let us further see this in the SU(2) case, by assuming
a spin 1/2 particle is used as a channel. Here an ebi
entanglement allows to transmit, by sending a single spin
particle, information about a whole transformationU(n̂,v)
PSU(2), or equivalently, a rotationR(n̂,v)PSO(3). In
other words, instead of using the spin of the particle to try
establish a common directionn̂ in space@that of the one-
05030
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qubit pure stateuc&^cu51/2(I 1n̂•sW )#, Alice can now send
information about a whole coordinate system$êx ,êy ,êz% to
Bob in order to establish a common reference frame. T
works as follows. The parties share the stateuF&5(u1A1B&
1u2A2B&)/A2, where$u i A&% and $u i B&% are given with re-
spect to reference frames of Alice and Bob, respectiv
Each party knows its own reference frame, but ignores
other one. If Alice sends her half ofuF& to Bob, then Bob
can estimate the rotationR(n̂,v) ~or corresponding unitary
U5u1B&^1Au1u2B&^2Au) that relates the two coordinat
frames.

Another scenario in which these results are relevant is
of two parties that are to collaborate in some task but do
trust each other. For instance, Bob needs to apply on a g
input stateuc& a unitary U that Alice’s computer can per
form, but he ignoresU. She is willing to assist Bob by com
putingUuc&, but without letting him find out which transfor
mation U is. Alice knows that Bob can estimateU at most
with a fidelity 2/d2.

So far we have analyzed a single run of the deviceD. In
practice, one would like to determineU with arbitrary preci-
sion, and this is only possible ifD is used many times. Sup
poseU is performed twice. A most general strategy consi
on sequentially introducing two probes,A1 and A2, on D,
but allowing for an arbitrary manipulation of the proofs
between. We do not know how to tackle the problem in
full generality. We will supposead hoc that the deviceD
takesN probes,A1•••AN , and transforms them according t
U ^ N. This could correspond, in the SU(2) case, to letting
spin of N electrons interact with the constant magnetic fie
BW during some time intervalT.

The first step towards an optimal strategy for estimatingU
is again to find an optimal initial stateuc0

N& for theN d-level
systemsA[A1•••AN and N auxiliary d-level systemsB
[B1•••BN , that Lemma 2 presents. TheU ^ N representation
of SU(d) contains~several copies of! q inequivalent irreduc-
ible representations~irrep’s!, labeled bya51,•••,q. For
eacha there arena equivalent irrep’s, labeled byab, b
51,•••,na , each one having dimensionda . The set
$uabk&%k51

da denotes an orthonormal basis for the irrep’sab,
Pab[(kuabk&^abku and Pa[(b51

naPab . The ab and
ab8 irrep’s being equivalent, there exists a unitaryPbb8

a

such thatU ^ Nuabk&5Pbb8
a U ^ Nuab8k& for anyU andk @6#.

Lemma 2.The optimal state for estimatingU ^ N is

uFN&[ (
a51

q

aauFa
N&, (

a
aa

251, ~11!

where the value ofaa>0 depends on the figure of merit
under consideration, and where

uFa
N&[

1

Anada
(
b51

na

(
k51

da

uabk&Auabk&B ~12!

is a maximally entangled state between the subspace oA
that carries thena irrep’s ab ~i.e., between the support o
2-3
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Pa) and an equivalent subspace ofB. For instance, for the
N5d52 case, the optimal initial state is

uFa
2&[a

1

A3
(
k51

3

utk&Auk&B1A12a2us&Au4&B , ~13!

where utk&P$u00&,(u01&1u10&)/A2,u11&% are the triplet
states andus&[(u01&2u10&)/A2 is the singlet state.

Proof. Being a generalization of that of lemma 1, here w
will only sketch the proof. Notice that any stateuc0

N& of the
probes can be writen asuc0

N&5(a51
q uca

N&, where

uca
N&[ (

b51

na

(
k51

da

uabk&Aufabk&B ~14!

is the projectionPa ^ I Buc0
N& and ufabk& are arbitrary states

of B. Since U ^ N does not mix irrep’s, we can perform
global unitary transformationVAB that commutes withU ^ N

and such that we achievêfabkufa8b8k8&5da,a8db,b8ckk8
ab ,

that is, the supports ofPab ^ I Buc0
N& onB for different irrep’s

ab anda8b8 are orthogonal. For instance, in thed5N52
case, whereuc t

2&5(kutk&Aufk&B and ucs
2&5us&uf&, we can

take, without loss of generality,̂fuf l&50. We will now
show thatuFN& can be transformed into a state as efficient
uc0

N& as far as the fidelity

h̄[(
r

trFGrE dUU^ Nuc0
N&^c0

NuU†^ Nh~UUr
†!G ~15!

is concerned. This is made in two steps. First, the POVM
A defined in each a by $Qi

a[(b
na(aab /aa)
ry

m

05030
s

n

3Pb,b1i
a Pa,b1i%i51

na , where( iQi
a†Qi

a5Pa and the sumb1 i
is modulusna , takes with certainty the stateU ^ NuFN& into
U ^ NuF ’ &, which is still maximally entangled in each irrep
ab, but with different weightsaab /aa in each irrep, where
(b(aab)25aa

2 . And second, a covariant POVM inB, given
by the set of operators $QY[(a(baab(kufabk&
3^abkuY^ N%, where *dYQY

†QY5I B and aab

[((kckk
ab)21/2, will produce, when applied onUA

^ NuF ’ &,
the state (UYT)A

^ Nuc0
N&. This state corresponds to startin

with YA
T^ Nuc0

N&, which leads to the sameh̄ as uc0
N& ~see

Lemma 1!. j

For N5d52, and by using the techniques developed
this paper, we have found that the optimal fidelity isF̄2

5(31A5)/8'0.6545, which corresponds to the initial sta
uFa

2& of Eq. ~13! with a25(51A5)/10 and to a covarian
POVM and guesses given by$W^ 2uFa’

2 &^Fa’
2 uW†^ 2,W%,

a8259/10.
To conclude, in this Rapid Communication we have stu

ied the optimal estimation of an unknown unitary operatio
UPSU(d), when this transformation can be performed a
duced number of times,N. For anyN, the best initial state
has been essentially found for a large class of figures
merits. In the case of the fidelity defined in Eq.~1!, its opti-
mal value and the measurement that attains it are given
any dimension whenN51, and ford52 whenN52.
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