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Mixedness in the Bell violation versus entanglement of formation
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Recently, Munro, Nemoto, and White~The Bell Inequality: A Measure of Entanglement?, quant-ph/0102119!
tried to indicate that the reason behind a stater having a higher amount of entanglement~as quantified by the
entanglement of formation! than a stater8, but producing the same amount of Bell violation, is due to the fact
that the amount of mixedness~as quantified by the linearized entropy! in r is higher than that inr8. We counter
their argument with examples. We extend these considerations to the von Neumann entropy. Our results
suggest that the reason as to why equal amount of Bell violation requires different amounts of entanglement
cannot, at least, be explained by mixedness alone.
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Werner @1# ~see also Popescu@2#! first demonstrated the
existence of states that are entangled but do not violate
Bell-type inequality@3,4#. However, there exist classes
states~pure states, mixture of two Bell states!, which violate
Bell inequality whenever they are entangled@5,6#. This im-
plies that to produce an equal amount of Bell violation, so
states require one to have more entanglement~with respect to
some measure! than others. It would be interesting to find o
what property of the first state requires it to have more
tanglement to produce the same Bell violation. Recen
Munro et al. @7# have tried to indicate that this anomalo
property of the first state is due to its being moremixedthan
the second, where they took the linearized entropy@8# as the
measure of mixedness.

As in @7#, we use the entanglement of formation as o
measure of entanglement. For a stater of two qubits, its
entanglement of formationE(r) is given by@9#

E~r!5hS 11A12t

2 D
with

h~x!52x log2x2~12x!log2~12x!.

The tanglet @10# is given by

t~r!5@max$0, l12l22l32l4%#2,

the l i ’s being the square root of eigen values ofrr̃, in de-
creasing order, where

r̃5~sy^ sy!r* ~sy^ sy!,

the complex conjugation being taken in the standard prod
basis u00&, u01&, u10&, u11& of two qubits. Note thatE is
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monotonically increasing, ranging from 0 to 1 ast increases
from 0 to 1 and hence, like Munroet al. @7#, we taket as our
measure of entanglement.

The maximum amount of Bell violation~B! of a stater of
two qubits is given by@6#

B~r!52AM ~r!,

where M (r) is the sum of the two larger eigenvalues
TrTr

† , Tr being the 333 matrix whose (m,n) element is

tmn5tr~rsn^ sm!.

The s ’s are the Pauli matrices.
The linearized entropy@8#

SL~r!5 4
3 @12tr ~r2!#

is taken as the measure of mixedness.
Munro et al. @7# proposed that given two two-qubit state

r andr8 with

B~r!5B~r8!,

but

t~r!.t~r8!,

would imply

SL~r!.SL~r8!.

To support this proposal, it was shown that it holds for a
combination of states from the following three classes
states:

~1! The class of all pure states

rpure5P@au00&1bu11&],

with a, b>0, anda21b251.
~2! The class of all Werner states@1#

rwerner5xP@F1#1
12x

4
I 2^ I 2 ,
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with 0<x<1 andF15(1/A2)(u00&1u11&).
~3! the class of all maximally entangled mixed states@11#

rmems5
1
2 @2g~g!1g#P@F1#1 1

2 @2g~g!2g#P@F2#1@1

22g~g!#P@ u01&^01u,

with g(g)51/3 for 0,g,2/3 andg(g)5g/2 for 2/3<g
<1, andF65(1/A2)(u00&6u11&).

However, consider the class of all mixtures of two B
states

r25wP@F1#1~12w!P@F2#,

with 0,w,1. r2 is entangled wheneverwÞ 1
2 , and for that

entire region,r2 is Bell violating@6#. For this class, it is easy
to show that

B52A11t.

But the corresponding curve for pure statesrpure is also
given by @7#

B52A11t.

We see that for any fixed Bell violation, the correspondingr2
has its tangle equal to that for the corresponding pure s
But the mixedness ofr2 is obviouslylarger than that of the
pure state~as the mixedness is always zero for pure state!.

Next, consider the following class of mixtures ofthree
Bell states

r35w1P@F1#1w2P@F2#1w3P@C1#,

with 1>w1>w2>w3>0, ( iwi51, andC15(1/A2)(u01&
1u10&). We takew1.1/2 so thatr3 is entangled@12#.

For r3, we have~asw1>w2>w3)

B~r3!52A224w2~12w2!24w3~12w3!,

t~r3!5124w1~12w1!,

SL~r3!5 4
3 $w1~12w1!1w2~12w2!1w3~12w3!%.

Let

r385w18P@F1#1w28P@F2#1w38P@C1# ,

with 1>w18>w28>w38>0, ( iwi851, w18.1/2 be such that

B~r3!5B~r38!,

which gives

w2~12w2!1w3~12w3!5w28~12w28!1w38~12w38!.

Now, if

t~r3!.t~r38!,

we have
04430
l

te.

w1~12w1!,w18~12w18!

so that

w1~12w1!1w2~12w2!1w3~12w3!,w18~12w18!1w28~1

2w28!1w38~12w38! ,

that is

SL~r3!,SL~r38!.

Thus, for a fixed Bell violation, the order ofSL for r3 andr38
is alwaysreversed with respect to the order of theirt ’s. That
is, the indication of@7#, referred to earlier, isalwaysviolated
for any two states from the class of mixtures ofthree Bell
states.

One can now feel that if theentanglement of formation o
two states are equal, it could imply some order between th
amount of Bell violation and mixedness of the two states;
even that is not true.

For our first example, if

t~r2!5t~rpure!,

then

B~r2!5B~rpure!,

but

SL~r2!.SL~rpure!.

On the other hand, for our second example, if

t~r3!5t~r38!,

then

B~r3!.B~r38!

implies

SL~r3!,SL~r38!.

In Ref. @7#, the linearized entropy was the only measure
mixedness that was considered. However, the von Neum
entropy@13#

S~r!52tr~r log4r!,

of a stater of two qubits, is a more physical measure
mixedness than the linearized entropy. We have taken
logarithm to the base four to normalize the von Neuma
entropy of the maximally mixed state (1/2)I 2^ (1/2)I 2 to
unity as it is for the linearized entropy. One may now fe
that the conjecture under discussion may turn out to be tru
we change our measure of mixedness from linearized
tropy to von Neumann entropy. Yet both the von Neuma
entropy and the linearized entropy are convex functions,
taining their maximum for the same state (1/2)I 2^ (1/2)I 2
and each of them are symmetric about this maximum. Th
1-2
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SL~r!.SL~r8!

would imply

S~r!.S~r8!

and vice versa. Thus, all our considerations with lineariz
entropy as the measure of mixedness would carry over to
von Neumann entropy as the measure of mixedness.

Our results emphasize that the reason as to why an e
amount of Bell violation requires different amounts of e
s

A

t

04430
d
he

al

tanglement cannot, at least, be explained by mixedn
alone.
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