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Amplitude ordering of the trace formula for the two-particle disk billiard
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For the periodic orbit quantization of a system of particles confined in a two-dimensional disk billiard, the
proliferation of multiparticle periodic orbits with length precludes standard length truncation of the trace
formula and alternative truncation schemes are necessary. An amplitude ordering of the single-particle periodic
orbits reveals a quantum-classical correspondence for the angular momentum of a particle in the disk which is
useful for the quantization of all the low energy states of the multiparticle problem. We explicitly show that a
simple amplitude truncation of the trace formula better approximates the semiclassical density of states and in
particular resolves closely spaced levels that are otherwise unresolved using the standard approach.
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Semiclassical trace formulas are Fourier expansions of theystems in Refd.8,9]. The authors of Ref.8] use the mag-
oscillating density of states expressed in terms of classicalitude of the terms in an expansion for their ordering
periodic orbits[1]. The great appeal of using such expan-scheme. Similarly, we will use only orbits whose amplitude
sions is that the gross shell structure of many finite systeméxceeds some prescribed threshold. An immediate benefit is
can be reproduced using only a few of the shortest ofBjts  the possibility of more significant periodic orbit contribu-
Full quantization, on the other hand, is generally difficult andtions at comparatively larger lengths. Since our goal is to
one has to include many orbits before one obtains a gootesolve near degeneracies, this seems to be a more optimal
approximation to the exact result. In such cases, the convegtrategy since it is the longer orbits that are responsible for
gence of these periodic orbit expansions is a central issue ighort-range oscillations in the density of states. We now
semiclassical mechanics. make this prescription more precise.

In integrable systems, there is also the fundamental prob- We first examine the one-particle disk billiard. Recall that
lem of near degeneracies since the level spacing distributiofhe semiclassical single-particle density of states is given by
has a Poisson characf&. To achieve a sufficient resolution [2]
in energy space, one has to include contributions from orbits s _ ~
with very large actions. This problem is most evident in non- p1(K)=p1(K)+P1(K), @
interacting multibody systems where the combination of in-

dependent spectra leads to many near degeneracies eVenwgtere the first term is a smooth function lofarising from

low energies. In a recent papi#], we performed the peri- zero-length orbits and the second term is oscillatorl &nd

odic orbit quantization of the two-particle disk billiard and arises from a sum over topologically distinct families of pe-

found a few closely spaced low-lying levels that could not beriodic orbits. The periodic orbit families of the disk may be

resolved using millions of two-particle periodic orbits. The clas.sn‘led by two mte_ger.(au,w) wherev is the number of

convergence of the trace formula became an important co /ertices ana is the_ winding number ground the c_enter._ The

sideration and this motivated the current study since weSn9th of an orbit is theri,,,=2vR sin(mw/v). Using this

wanted to explicitly resolve these levels. notation, the trace forrgula for the oscillating part of the den-
The periodic orbit quantization of the one-particle disk Sty Of states i45,2] (7/2m=1)

billiard and its convergence have been studied in Reff.

Although an exact trace formula is known for the one- ~ - ki g, .7
ough an ex . | pr(k)=2 > dywA(v,W)cos KLy, —3v - +
particle disk billiard, there remains the question of how to T bw 2 4

truncate the series most effectivg®y]. The standard proce- 2
dure is to specify a length cutoff,,,, and use an ordered .
subsebf the shorter orbit§5,2]. To resolve nearly degener- Where the amplitude
ate levels using this scheme, one has to use a sufficiently B2 19R)¥2
large L a«. For the multibody situation, this is highly im- Alv.wW)= sir(mw/v) _(L,w/2R) _ 3)
practical. The essential difficulty is that the number of multi- ' NG v?
body periodic orbits with length <L ,,, grows rapidly with
additional degrees of freedom. If one is interested in reproThe sum goes froow=1,....c andv=2w,...,% and the de-
ducing a specific set of levels, it becomes crucial to havegeneracy factod,,,, which accounts for negative windings,
more judicious selection criteria for choosing which orbits tois 1 for v =2w and 2 forv >2w. Any numerical evaluation
include in the expansions. of Eq. (2) involves computing the contributions from a finite

In this Brief Report, we explore the convergence of theset of orbits. Since different sets will generate different re-
trace formula for the one- and two-particle disk billiard usingsults, the basic question is how to choose the best set. This
an “amplitude ordering” technique similar to the stability depends on which specific quantum states one is interested in
ordering of cycle expansiori$,7] studied for nonintegrable reproducing. The problem is that knowledge of which set of
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FIG. 1. The positive-winding single-particle orbits,w) used
by the two different truncation proceduréa) The orbits used in a
standard truncation of the sum in E() with W,,,=100, v max
=200. (b) The set of orbits that satisfy A(v,w)>¢

=0.052 987 25. In each casi,. =10

orbits best reproduces these states is usually not available i
advance and so one starts with the simplest truncation pro

cedures.

In the following analysis, there will be three important

parametersN , , the total number of positive-winding orbits
(which indicates the computational effort involyedls, the

total number of periodic orbits used by the standard trunca-

tion (ST) procedure; andN,, the total number of periodic
orbits used by the amplitude truncatiofT) procedure. The

PHYSICAL REVIEW A 64 044102

[1,10

400
400

200
200

32.

400

200

33.48 33. 34.12

400 400

200 200

24.21 24.26 24.31 31.76 31.8 31.84
k k

FIG. 2. The semiclassical single-particle density of states com-
puted using the two different sets of orbits in Fig. 1. The dash-
dotted line uses standard length truncafibiy. 1(a)] and the solid
line uses amplitude truncatidirig. 1(b)]. Peaks correspond to the
quantum stategn,n indicated and circles denote the positions of
single-particle levels obtained from torus quantization. Notice that

away from peaks the two methods are generally out of phase be-

latter two quantities include degeneracies due to negatives,se the set of orbits that are interfering is different in the two

winding orbits.

Suppose we usbl, =10* orbits. The most natural way
[5,2] to truncate the sum in E@2) is to useonly orbits that
havew=w ;=100 anty < v = 2Wma=200[Fig. 1(@)]. In
general, specifyingu(max.Wimax determines the length of the
longest orbit used in the truncated sul,,,=2v R It IS

cases.

evaluating the trace formul®) using these two different sets
of orbits. Before presenting the results, we point out an in-
teresting observation.

Inspection of Fig. 1 reveals a surprising result: amplitude

important to note that one has not used all orbits that have #uncation typically excludes many of the shorter orbits used

lengthL=<L,,,. In fact, there is a countably infinite set of

in standard truncation. A common view, which is stressed in

shorter periodic orbits. Nonetheless, all of the orbits that ar&Ref.[2], is that for a low resolution g, “only those orbits

used (Ns=1.99x10% are shorter tham ,,,=400R. In this
sense, specifyingu(max,Wmay 1S €quivalent to specifying a
length cutoffL .-

with the smallest actionglengths and simultaneouslythe
largest amplitudes in the Fourier decompositionpef are
important.” This statement does not seem to apply to the

Alternatively, an amplitude truncation uses only those or-amplitudes of the disk. While it is true that the shortest few

bits for which A(v,w)>¢, for some prescribed value ef
Specifying ¢ determines the maximum winding number:
Wmax=[1/2¢2]. For each value ofw<w,,,, one sweeps
through the values af =2w until the amplitude falls below
e. If £=0.052987 25, then preciseM, =10* orbits (N5
=1.9822x 10%) satisfy A(v,w)>e¢. These orbits are plotted
in Fig. 1(b). We note that the significance efis that it can

orbits have the largest amplitudes, it is not generally true that
shorter orbits are more important than longer orbits.
Comparing the two methods, we observe that levels with
small azimuthal quantum numbem&5) are more resolved
using amplitude truncation. For states with higher azimuthal
quantum numbersn(=6), the convergence depends on the
radial quantum numben; ST is better forn<2, but AT is

be varied to give the same number of orbits as the standafeetter forn>2. Some generic examples involving closely
set. This allows us to directly compare the convergence o$paced levels are shown in Fig. 2. By “closely spaced,” we
the two methods. One would expect amplitude truncation tanean levels that have a spacinfjk<Ak, where Ak
have better convergence since one is using the most impor=0.2190 is the average level spacing for wave numlsers
tant terms in the sum. We now check this conjecture by<k.=35. For the levels shown in Fig. 2, it is obvious
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which method gives better resolution. In general, any level is
“more resolved” if the peak is a better approximation to the
exact result, which is a-function spike. In particular, the
convergence of the two methods for single levglgswhich
have the propertyk;..; —kj|>2Ak) can be checked numeri-
cally by computing moments for each peak and comparing
with the exact result. =
The semiclassical approximatids,,>#~kL,,>1 im- o
plies that both methods should improve with increasing en-
ergy. Since amplitude truncation also uses longer orbits, the
approximation should be consistently more accurate, but this
is not what is observed. The higher angular momentum state 0
with the lowest energies are poorly reproduced by amplitude
truncation. To understand these results, we first recognize .
that states with large angular momentum and small energ) 7.338 7388 7.438
are ones for which the particle is furthest from the center of
the disk and therefore pushed to the wall of the billiard. To FIG. 3. The semiclassical two-particle density of stites. (4)]
replicate these states, we need to use orbits that mimic thmputed for ke (7.3380,7.4380) usingN, =10 two-particle
quantum behavior. In other words, we need classical orbitgeriodic orbits. The dash-dotted line uses standard length truncation
that graze the wall of the billiard. These are precisely theof Eq. (5) (Ns=3.9601<10°) and the solid line uses amplitude
orbits that have many more vertices than windings. AT exdruncation — A(va,W,,0,,Wp)>£=0.00013974608 N,
cludes such orbits and therefore has trouble reproducing the3-914 883 6% 1¢°). @ symbols indicate the positions of two-
higherm states with smalh. ST does include more of these Particle levels obtained from torus quantization.
types of orbits and thus more accurately reproduces these . . .
s)'igtes. As mentioned above, this deficienc)g/ of?AT for the disieOnsider in Eq(2) andN,, =2.470 0 10" two-particle pe-

is not observed for fixedh asn increasesi.e., as the energy ,['hOd'C orbllts tq coIrES|der 'rl.EIng' In llt?ef.f[4t], ,:Ne Calfﬁla.tid |
increases We summarize this quantum-classical correspon- € semiclassical two-particie density of states on the interva

dence for the disk billiard as followhe high angular mo- 0=K=10 using a standard truncation of H&) (N.. =6.25
mentum states with the smallest energies are reproduce 10°) and found four multiplets that could not be resolved.

semiclassically by the boundary orbits which have the prop- he preceding analys_is clearly inc_iica_tes that fo_r the two-
erty v>w. body problem an amplitude truncation is more suitable since

We now discuss the two-particle disk billiard where most of the two-particle states at lower energies are states for

knowledge of this correspondence is extremely useful. Thg"hICh eachparticle is in a low angular momentum state. We

semiclassical two-particle density of states can be written alow demonstrate Fh'fs EXp"C'tly'. : -
[4] As before, specifying determines the maximum winding

numbers. In this case, the combined winding numbers of
SUKY= (D * D) K)+2(0: x5 ) (K) + (B* D) (K). (4 each single-particle periodic orbit to be used must satisfy the
p2()= o) () + 2pr P00+ (prep0(l0- - (4 conditionw?+wZ<[1/4¢*?]. Then, for given winding num-
The formulas for the first two terms can be found in Réf. bers {(v,,wp) which satisfy this condition, one sweeps
Here, we recall only the last term in the decomposition. Foithrough the allowed values af, and v, until the two-
the disk, particle amplitudg6) becomes less than
As an example, we considé, =10% two-particle orbits
k3R® in Eq. (5) for ke (7.3380,7.4380). In this interval, there
. WEU " A(va,Wa,0p,Wp) should be two multiplets[4], a quartet{|0 1, *1 2),
ata T |=12, 01} atk=7.3831 and an octdf=1 1, +3 1), |=3 1,
T m +1 D} atk=7.3932. As shown in Fig. 3, STw(arW=wkJmaX
dy w, o, 003( Klap=3(vatvn) 5+ 7] (5)  =100p, =v, =200) does not resolve these two multip-
max max
lets, but AT (£=0.00013974608) does partially resolve
where them. We further checked that the two peaks have the correct
degeneracies consistent with a quartet and an octet by nu-
A(va,Wg,0p,Wp) merically computing the area under each peak. We find these
_ ) areas to be 3.91 and 8.6 which have relative errors of 2% and
_ SIMP( W, /04) SIMP(TWy /up) (6) 7%, respectively. This error arises since the two peaks are
[vgsinz(wwa/va) +vﬁ sirt(mwy lvy) ¥4 not fully resolved and decreases as more orbits are included.
The area under the large unresolved peak is 12.25 which also
As an illustration of the proliferation of periodic orbits that has an error of about 2% relative to an unresolved 12-fold
occurs in higher dimensions, we choose a length cutoftiegenerate multiplet. We also performed a similar analysis
Lmax=400R. In this case, a standard length truncation im-for the other set of unresolved pediy and found compa-
plies that there arél, =10* one-particle periodic orbits to rable results.

15001

10001

(P1*p1)(K)=2
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We have not mentioned the cross term in ). Ampli- consistently and the threshold constants for the last two
tude truncation of the cross term is not necessary since thierms must be chosen accordingly.
contribution involves only a summation over single-particle  To summarize, we have shown that amplitude truncation
periodic orbits and hence the computational difficulties assoof the trace formula for the disk billiard is more effective
ciated with the numerical evaluation of the dynamical termthan standard length truncation for the quantization of low
Eq. (5) do not arise. Thus, standard length truncation of thedhgular momentum statem(5). It is inappropriate for the
cross term suffices. Nonetheless, one has to be very carefliigherm states when the radial quantum numbes2, but

to truncate the cross term so that its length cutoff matche§Uickly improves with increasing energy. The reason for this

that of the dynamical term. For example, a standard truncd$ the direct correspondence between the classical and quan-

tion of the dynamical term such thawf =w, =50 tum angular momenta. This correspondence is useful for the
max !

B —100) requires the cr term to b t’paxn_ ted ultiparticle problem where it will be more productive to
Vanax Ubmax ) requ _es € cross term fo be truncated ay,oq this tactic to resolve all the low-energy levels since they
(Wimax=70, v max=141) since will arise from the situation where all the particles have

(cross __ y (dyn)_. . (cross _ .. (dyr) _ _ small azimuthal quantum numbers. An important result of

Lmax = Lmax = Vmac =~ V2Umax —V2(100~141. the analysis is that longer orbits generally possess larger am-

(This point was overlooked in our previous analysis of thepIitudes, unlike many systems where the shortest orbits play
the dominant rolg2].

disk in Ref.[4]. This has been corrected in the current analy- One could also do an analogous study of the three-

sis and does not affect our previous results. We mention it . . X S .

here to emphasize that the two oscillatory terms must béi_lm_en5|or_1al sph_encal b|II|ar§j10,2] which has_the Same pe-
truncated consistentlyThe corresponding amplitude trunca- riodic orbits. Wh|le th_e amplitudes of the orbits are different
tion of the dynamical term requires the cross term to b or t.he sphencal cavity, th_ey do seem to have the same be-
truncated at W, =92, v =184) since the length of the avior as in the disk. In Fig. 4 of Ref11], one can clearly

longest two-particle orbit used by this method is R6The see that for a given winding the a_m_ph_tude de_cays with,

same principle applies to higher dimensions. For examplethe nur_nber of vertlce_s. However, it is interesting to note that

for the three-particle density of states an orbit with an arbitrary large value af becomes more
important as the winding number is increased. We observe

p3(K) = (p1* p1*p1) (K) +3(p1* pr*P1(K) the same nontrivial behavior in the disk.

+3(p*pr*p)(K) + (Pr*Pr*P)(K), 7) The author thanks Niall Whelan and Rajat Bhaduri for
useful discussions. This work was supported by the Natural
one would use AT for the last two terms and ST for theSciences and Engineering Research Council of Canada
second term, but all three oscillatory terms must be truncatetNSERQ.
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