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Amplitude ordering of the trace formula for the two-particle disk billiard
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For the periodic orbit quantization of a system of particles confined in a two-dimensional disk billiard, the
proliferation of multiparticle periodic orbits with length precludes standard length truncation of the trace
formula and alternative truncation schemes are necessary. An amplitude ordering of the single-particle periodic
orbits reveals a quantum-classical correspondence for the angular momentum of a particle in the disk which is
useful for the quantization of all the low energy states of the multiparticle problem. We explicitly show that a
simple amplitude truncation of the trace formula better approximates the semiclassical density of states and in
particular resolves closely spaced levels that are otherwise unresolved using the standard approach.
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Semiclassical trace formulas are Fourier expansions of
oscillating density of states expressed in terms of class
periodic orbits@1#. The great appeal of using such expa
sions is that the gross shell structure of many finite syste
can be reproduced using only a few of the shortest orbits@2#.
Full quantization, on the other hand, is generally difficult a
one has to include many orbits before one obtains a g
approximation to the exact result. In such cases, the con
gence of these periodic orbit expansions is a central issu
semiclassical mechanics.

In integrable systems, there is also the fundamental p
lem of near degeneracies since the level spacing distribu
has a Poisson character@3#. To achieve a sufficient resolutio
in energy space, one has to include contributions from or
with very large actions. This problem is most evident in no
interacting multibody systems where the combination of
dependent spectra leads to many near degeneracies ev
low energies. In a recent paper@4#, we performed the peri-
odic orbit quantization of the two-particle disk billiard an
found a few closely spaced low-lying levels that could not
resolved using millions of two-particle periodic orbits. Th
convergence of the trace formula became an important c
sideration and this motivated the current study since
wanted to explicitly resolve these levels.

The periodic orbit quantization of the one-particle di
billiard and its convergence have been studied in Ref.@5#.
Although an exact trace formula is known for the on
particle disk billiard, there remains the question of how
truncate the series most effectively@2#. The standard proce
dure is to specify a length cutoffLmax and use an ordere
subsetof the shorter orbits@5,2#. To resolve nearly degene
ate levels using this scheme, one has to use a sufficie
large Lmax. For the multibody situation, this is highly im
practical. The essential difficulty is that the number of mu
body periodic orbits with lengthL,Lmax grows rapidly with
additional degrees of freedom. If one is interested in rep
ducing a specific set of levels, it becomes crucial to ha
more judicious selection criteria for choosing which orbits
include in the expansions.

In this Brief Report, we explore the convergence of t
trace formula for the one- and two-particle disk billiard usi
an ‘‘amplitude ordering’’ technique similar to the stabilit
ordering of cycle expansions@6,7# studied for nonintegrable
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systems in Refs.@8,9#. The authors of Ref.@8# use the mag-
nitude of the terms in an expansion for their orderi
scheme. Similarly, we will use only orbits whose amplitu
exceeds some prescribed threshold. An immediate bene
the possibility of more significant periodic orbit contribu
tions at comparatively larger lengths. Since our goal is
resolve near degeneracies, this seems to be a more op
strategy since it is the longer orbits that are responsible
short-range oscillations in the density of states. We n
make this prescription more precise.

We first examine the one-particle disk billiard. Recall th
the semiclassical single-particle density of states is given
@2#

r1
sc~k!5 r̄1~k!1 r̃1~k!, ~1!

where the first term is a smooth function ofk arising from
zero-length orbits and the second term is oscillatory ink and
arises from a sum over topologically distinct families of p
riodic orbits. The periodic orbit families of the disk may b
classified by two integers~v,w! wherev is the number of
vertices andw is the winding number around the center. T
length of an orbit is thenLvw52vR sin(pw/v). Using this
notation, the trace formula for the oscillating part of the de
sity of states is@5,2# (\2/2m[1)

r̃1~k!52AkR3

p (
vw

dvwA~v,w!cosS kLvw23v
p

2
1

p

4 D ,

~2!

where the amplitude

A~v,w!5
sin3/2~pw/v !

Av
5

~Lvw/2R!3/2

v2 . ~3!

The sum goes fromw51,...,̀ andv52w,... ,̀ and the de-
generacy factordvw , which accounts for negative windings
is 1 for v52w and 2 forv.2w. Any numerical evaluation
of Eq. ~2! involves computing the contributions from a finit
set of orbits. Since different sets will generate different
sults, the basic question is how to choose the best set.
depends on which specific quantum states one is intereste
reproducing. The problem is that knowledge of which set
©2001 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW A 64 044102
orbits best reproduces these states is usually not availab
advance and so one starts with the simplest truncation
cedures.

In the following analysis, there will be three importa
parameters:N1 , the total number of positive-winding orbit
~which indicates the computational effort involved!; NS , the
total number of periodic orbits used by the standard trun
tion ~ST! procedure; andNA , the total number of periodic
orbits used by the amplitude truncation~AT! procedure. The
latter two quantities include degeneracies due to negat
winding orbits.

Suppose we useN15104 orbits. The most natural way
@5,2# to truncate the sum in Eq.~2! is to useonly orbits that
havew<wmax5100 andv<vmax52wmax5200@Fig. 1~a!#. In
general, specifying (vmax,wmax) determines the length of th
longest orbit used in the truncated sum,Lmax52vmaxR. It is
important to note that one has not used all orbits that hav
length L<Lmax. In fact, there is a countably infinite set o
shorter periodic orbits. Nonetheless, all of the orbits that
used (NS51.993104) are shorter thanLmax5400R. In this
sense, specifying (vmax,wmax) is equivalent to specifying a
length cutoffLmax.

Alternatively, an amplitude truncation uses only those
bits for whichA(v,w).«, for some prescribed value of«.
Specifying « determines the maximum winding numbe
wmax5@1/2«2#. For each value ofw<wmax, one sweeps
through the values ofv>2w until the amplitude falls below
«. If «50.052 987 25, then preciselyN15104 orbits (NA
51.98223104) satisfyA(v,w).«. These orbits are plotted
in Fig. 1~b!. We note that the significance of« is that it can
be varied to give the same number of orbits as the stan
set. This allows us to directly compare the convergence
the two methods. One would expect amplitude truncation
have better convergence since one is using the most im
tant terms in the sum. We now check this conjecture

FIG. 1. The positive-winding single-particle orbits~v,w! used
by the two different truncation procedures.~a! The orbits used in a
standard truncation of the sum in Eq.~2! with wmax5100, vmax

5200. ~b! The set of orbits that satisfy A(v,w).«
50.052 987 25. In each case,N15104.
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evaluating the trace formula~2! using these two different set
of orbits. Before presenting the results, we point out an
teresting observation.

Inspection of Fig. 1 reveals a surprising result: amplitu
truncation typically excludes many of the shorter orbits us
in standard truncation. A common view, which is stressed
Ref. @2#, is that for a low resolution ofr̃1 , ‘‘only those orbits
with the smallest actions~lengths! and simultaneouslythe
largest amplitudes in the Fourier decomposition ofr̃1 are
important.’’ This statement does not seem to apply to
amplitudes of the disk. While it is true that the shortest fe
orbits have the largest amplitudes, it is not generally true t
shorter orbits are more important than longer orbits.

Comparing the two methods, we observe that levels w
small azimuthal quantum number (m<5) are more resolved
using amplitude truncation. For states with higher azimut
quantum numbers (m>6), the convergence depends on t
radial quantum numbern; ST is better forn<2, but AT is
better for n.2. Some generic examples involving close
spaced levels are shown in Fig. 2. By ‘‘closely spaced,’’ w
mean levels that have a spacingDk!Dk, where Dk
50.2190 is the average level spacing for wave numberk
,kmax535. For the levels shown in Fig. 2, it is obviou

FIG. 2. The semiclassical single-particle density of states co
puted using the two different sets of orbits in Fig. 1. The da
dotted line uses standard length truncation@Fig. 1~a!# and the solid
line uses amplitude truncation@Fig. 1~b!#. Peaks correspond to th
quantum statesum,n& indicated and circles denote the positions
single-particle levels obtained from torus quantization. Notice t
away from peaks the two methods are generally out of phase
cause the set of orbits that are interfering is different in the t
cases.
2-2
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BRIEF REPORTS PHYSICAL REVIEW A 64 044102
which method gives better resolution. In general, any leve
‘‘more resolved’’ if the peak is a better approximation to t
exact result, which is ad-function spike. In particular, the
convergence of the two methods for single levelski ~which
have the propertyuki 612ki u.2Dk! can be checked numer
cally by computing moments for each peak and compar
with the exact result.

The semiclassical approximationSvw@\;kLvw@1 im-
plies that both methods should improve with increasing
ergy. Since amplitude truncation also uses longer orbits,
approximation should be consistently more accurate, but
is not what is observed. The higher angular momentum st
with the lowest energies are poorly reproduced by amplit
truncation. To understand these results, we first recog
that states with large angular momentum and small ene
are ones for which the particle is furthest from the center
the disk and therefore pushed to the wall of the billiard.
replicate these states, we need to use orbits that mimic
quantum behavior. In other words, we need classical or
that graze the wall of the billiard. These are precisely
orbits that have many more vertices than windings. AT
cludes such orbits and therefore has trouble reproducing
higher-m states with smalln. ST does include more of thes
types of orbits and thus more accurately reproduces th
states. As mentioned above, this deficiency of AT for the d
is not observed for fixedm asn increases~i.e., as the energy
increases!. We summarize this quantum-classical corresp
dence for the disk billiard as follows:The high angular mo-
mentum states with the smallest energies are reprodu
semiclassically by the boundary orbits which have the pr
erty v@w.

We now discuss the two-particle disk billiard whe
knowledge of this correspondence is extremely useful. T
semiclassical two-particle density of states can be written
@4#

r2
sc~k!5~ r̄1* r̄1!~k!12~ r̄1* r̃1!~k!1~ r̃1* r̃1!~k!. ~4!

The formulas for the first two terms can be found in Ref.@4#.
Here, we recall only the last term in the decomposition. F
the disk,

~ r̃1* r̃1!~k!'2Ak3R5

p (
vawa ,vbwb

A~va ,wa ,vb ,wb!

dvawa
dvbwb

cosS kLab23~va1vb!
p

2
1

p

4 D , ~5!

where

A~va ,wa ,vb ,wb!

5
sin2~pwa /va!sin2~pwb /vb!

@va
2 sin2~pwa /va!1vb

2 sin2~pwb /vb!#3/4. ~6!

As an illustration of the proliferation of periodic orbits th
occurs in higher dimensions, we choose a length cu
Lmax5400R. In this case, a standard length truncation i
plies that there areN15104 one-particle periodic orbits to
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consider in Eq.~2! andN152.470 093107 two-particle pe-
riodic orbits to consider in Eq.~5!. In Ref. @4#, we calculated
the semiclassical two-particle density of states on the inte
0<k<10 using a standard truncation of Eq.~5! (N156.25
3106) and found four multiplets that could not be resolve
The preceding analysis clearly indicates that for the tw
body problem an amplitude truncation is more suitable si
most of the two-particle states at lower energies are state
which eachparticle is in a low angular momentum state. W
now demonstrate this explicitly.

As before, specifying« determines the maximum windin
numbers. In this case, the combined winding numbers
each single-particle periodic orbit to be used must satisfy
conditionwa

21wb
2<@1/4«4/3#. Then, for given winding num-

bers (wa ,wb) which satisfy this condition, one sweep
through the allowed values ofva and vb until the two-
particle amplitude~6! becomes less than«.

As an example, we considerN15108 two-particle orbits
in Eq. ~5! for kP(7.3380,7.4380). In this interval, ther
should be two multiplets@4#, a quartet $u0 1, 61 2&,
u61 2, 0 1&% at k57.3831 and an octet$u61 1, 63 1&, u63 1,
61 1&% at k57.3932. As shown in Fig. 3, ST (wamax

5wbmax

5100,vamax
5vbmax

5200) does not resolve these two multi

lets, but AT («50.000 139 746 08) does partially resolv
them. We further checked that the two peaks have the cor
degeneracies consistent with a quartet and an octet by
merically computing the area under each peak. We find th
areas to be 3.91 and 8.6 which have relative errors of 2%
7%, respectively. This error arises since the two peaks
not fully resolved and decreases as more orbits are inclu
The area under the large unresolved peak is 12.25 which
has an error of about 2% relative to an unresolved 12-f
degenerate multiplet. We also performed a similar analy
for the other set of unresolved peaks@4# and found compa-
rable results.

FIG. 3. The semiclassical two-particle density of states@Eq. ~4!#
computed for kP(7.3380,7.4380) usingN15108 two-particle
periodic orbits. The dash-dotted line uses standard length trunca
of Eq. ~5! (NS53.96013108) and the solid line uses amplitud
truncation A(va ,wa ,vb ,wb).«50.000 139 746 08 (NA

53.914 883 653108). % symbols indicate the positions of two
particle levels obtained from torus quantization.
2-3
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BRIEF REPORTS PHYSICAL REVIEW A 64 044102
We have not mentioned the cross term in Eq.~4!. Ampli-
tude truncation of the cross term is not necessary since
contribution involves only a summation over single-partic
periodic orbits and hence the computational difficulties as
ciated with the numerical evaluation of the dynamical te
Eq. ~5! do not arise. Thus, standard length truncation of
cross term suffices. Nonetheless, one has to be very ca
to truncate the cross term so that its length cutoff matc
that of the dynamical term. For example, a standard trun
tion of the dynamical term such that (wamax

5wbmax
550,

vamax
5vbmax

5100) requires the cross term to be truncated

(wmax570, vmax5141) since

Lmax
~cross!5Lmax

~dyn!⇒vmax
~cross!5&vmax

~dyn!5&~100!'141.

~This point was overlooked in our previous analysis of t
disk in Ref.@4#. This has been corrected in the current ana
sis and does not affect our previous results. We mentio
here to emphasize that the two oscillatory terms must
truncated consistently.! The corresponding amplitude trunc
tion of the dynamical term requires the cross term to
truncated at (wmax592, vmax5184) since the length of the
longest two-particle orbit used by this method is 369R. The
same principle applies to higher dimensions. For exam
for the three-particle density of states

r3
sc~k!5~ r̄1* r̄1* r̄1!~k!13~ r̄1* r̄1* r̃1~k!

13~ r̄1* r̃1* r̃1!~k!1~ r̃1* r̃1* r̃1!~k!, ~7!

one would use AT for the last two terms and ST for t
second term, but all three oscillatory terms must be trunca
cs
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consistently and the threshold constants for the last
terms must be chosen accordingly.

To summarize, we have shown that amplitude truncat
of the trace formula for the disk billiard is more effectiv
than standard length truncation for the quantization of l
angular momentum states (m<5). It is inappropriate for the
higher-m states when the radial quantum numbern<2, but
quickly improves with increasing energy. The reason for t
is the direct correspondence between the classical and q
tum angular momenta. This correspondence is useful for
multiparticle problem where it will be more productive t
use this tactic to resolve all the low-energy levels since th
will arise from the situation where all the particles ha
small azimuthal quantum numbers. An important result
the analysis is that longer orbits generally possess larger
plitudes, unlike many systems where the shortest orbits p
the dominant role@2#.

One could also do an analogous study of the thr
dimensional spherical billiard@10,2# which has the same pe
riodic orbits. While the amplitudes of the orbits are differe
for the spherical cavity, they do seem to have the same
havior as in the disk. In Fig. 4 of Ref.@11#, one can clearly
see that for a given windingw the amplitude decays withv,
the number of vertices. However, it is interesting to note t
an orbit with an arbitrary large value ofv becomes more
important as the winding number is increased. We obse
the same nontrivial behavior in the disk.
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