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Nonclassical effects in photon statistics of atomic optical bistability
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~Received 30 May 2001; published 13 September 2001!

Homodyne statistics of light generated by an atomic system exhibiting optical bistability are analyzed. Using
the dynamical equations of motion for a single atom in a coherently driven cavity in the good cavity limit, we
show that the homodyne field can be described in terms of two independent real Gaussian stochastic processes
and a coherent component. By making a Karhunen-Loe`ve expansion of the field variables we derive the
generating function for the photoelectron statistics. From this generating function photoelectron-counting dis-
tribution, factorial moments, and waiting-time distribution are obtained analytically. These quantities are di-
rectly measurable in photon-counting experiments. We show that the homodyne field exhibits many interesting
nonclassical features including nonclassical effects in higher-order factorial moments.
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I. INTRODUCTION

Interaction of a single two-level atom with a quantu
field inside a coherently driven cavity in the good cav
limit, is known to show optical bistability@1,2#. We will refer
to this system as single atom optical bistability~SAOB!.
Similarly, N two-level atoms placed inside a coheren
driven cavity also exhibit optical bistability that we sha
refer to as multiatom optical bistability~MAOB! @3,4#. These
systems are also known to show antibunching, although
size of antibunching is small. In order to enhance antibun
ing and other nonclassical effects, several schemes base
interference@5#, passive filter cavities@6#, or homodyne de-
tection @7# have been proposed.

Homodyning a field with a coherent local oscillator~LO!
provides one way of enhancing nonclassical effects. The
modyne field can exhibit strong nonclassical features, wh
are not shown by the original field. The homodyne statis
are sensitive to the phase difference between the signal
the LO. An example of this behavior is provided by the lig
from the degenerate parametric oscillator, which is hig
bunched and super-Poissonian. When this field is ho
dyned with a LO, the homodyne field shows a variety
nonclassical effects such as antibunching, sub-Poisso
statistics, and violation of other classical inequalities@8–10#.

In this paper we consider homodyning of the light from
system that exhibits SAOB with the light beam from a LO
a lossless beam splitter as shown in Fig. 1. A detecto
efficiency h placed at one of the output ports of the bea
splitter detects the homodyne field and generates photoe
tric pulses, which are measured by suitable electronics.
study photoelectron statistics measured by the detecto
Sec. II we start from the equations of motion derived
Wang and Vyas for a single two-level atom in the good c
ity limit @2# and show that the field from the SAOB can b
expressed in terms of two Gaussian random variables.
then derive the equations that govern the dynamics of
homodyne field. Using these equations and applying
Karhunen-Loe`ve expansion for the field variables, we calc
late the moment generating function for the photocount d
tribution. We also show that a system exhibiting MAOB c
also be described by similar expressions with an appropr
1050-2947/2001/64~4!/043806~7!/$20.00 64 0438
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change in parameters. In Sec. III we present an analytic
pression for the moment generating function. Photon sta
tics of the homodyne field are then analyzed with the help
the moment generating function. The photocount distrib
tion, its moments, and the waiting-time distribution for th
homodyne field are calculated. Finally, in Sec. VI, a su
mary of the main results of the paper is presented.

II. DYNAMICS OF THE HOMODYNE FIELD AND
THE GENERATING FUNCTION

In this section we derive equations of motion describi
the dynamics of the homodyne field when the signal is fr
the SAOB. We will see that similar equations are obtain
when the signal is from the MAOB.

Consider a single damped two-level atom with transiti
frequencyva , interacting with a single mode of a cavit
with resonance frequencyvc . The cavity is driven by a co-
herent external field of frequencyvo and amplitudee. In the
electric dipole and rotating-wave approximation, the Ham
tonian for this system can be written as

Ĥ5vaŝz1\vcâ
†â1 ig\~ â†ŝ21âŝ1!1 i\e~ â†e2 ivot

2âeivot!1Ĥ loss. ~1!

Hereâ andâ† are the annihilation and creation operators
the cavity mode,ŝ1 , ŝ2 , andŝz are the Pauli spin matrice
describing the two-level atom,g is the atom-field coupling
constant, andĤ loss describes atomic losses due to sponta
ous decay and field losses at the cavity mirrors.

FIG. 1. System for homodyning the SAOB field with the L
field. BS denotes the beam splitter and D denotes a detector.
©2001 The American Physical Society06-1
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Using the Hamiltonian of Eq.~1!, Wang and Vyas derived
a Fokker-Planck equation without using system size exp
sion @11#. This gives a set of Iˆto stochastic differential equa
tions for the atomic and field variables. In the good cav
limit, in which atomic variables decay much faster than t
cavity field variables, it is possible to eliminate atomic va
ables adiabatically. In this approximation the following equ
tions govern the time evolution of the cavity field@2#:

ȧ52g~11 idc!a2
2gC~12 ida!

11da
21aa* /n0

a1e1G~ t !, ~2!

ȧ* 52g~12 idc!a* 2
2gC~11 ida!

11da
21aa* /n0

a* 1e1G* ~ t !,

~3!

wherea anda* are complex field amplitudes correspondi
to â and â† in the positive-P representation@12#, da
52(va2vo)/ga and dc5(vc2vo)/g are the atomic and
cavity detuning parameters, 2g is the cavity field decay rate
ga is the spontaneous emission rate to modes other than
privileged cavity mode,C @5g2/(gag)# is the cooperativity
parameter, andn0 @5ga

2/(8g2)# is the saturation photon
number. In the positive-P representation,a anda* may not
be the complex conjugate of each other.G(t) andG* (t) are
delta correlated Gaussian noise processes with

^G~ t !G~ t8!&5^G* ~ t !G* ~ t8!&*

52
2gC~a2/n0!

~11da
21aa* /n0!3 F ~12 ida!3

1
1

2
~aa* /n0!2Gd~ t2t8!, ~4!

^G~ t !G* ~ t8!&5^G* ~ t !G~ t8!&

5
2gC~aa* /n0!2

~11da
21aa* /n0!3

3F21
1

2
~aa* /n0!Gd~ t2t8!. ~5!

It is interesting to note that the dynamics of the cavity fie
for the MAOB @3,4# for the case of equal radiative and co
lisional damping are also described by Eqs.~2! and ~3!,
which have been derived for the SAOB@2#. For the MAOB,
however, the atomic cooperativity parameter is modified
be C5Ng2/gag, whereN is number of atoms in the cavity
With this redefinition of the cooperativity parameter, the
sults of this paper also apply to the MAOB.

For zero atomic and cavity detunings we expanda and

a* about the steady-state amplitudesAn0n̄ as

a5An0@An̄1da#, a 5An0@An̄1da #, ~6!
* *
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where da and da* are small deviations from the stead
state amplitudes,n̄ is the mean photon number in units of th
saturation photon numbern0, and it is determined by
(e/g)25n0n̄@112C/(11n̄)#2. An analysis of the steady
state solutions of Eqs.~2! and ~3!, as a function of the driv-
ing field amplitude, indicates that for zero atomic and cav
detunings, optical bistability may exist forC.4. In this re-
gion, for a given driving field amplitude and cooperativi
parameter, the system can jump to any one of the two p
sible stable branches. The unstable branch or the curve
the mean photon numbern̄ in the range @C21
2AC(C24)#>n̄>@C211AC(C24)#, is forbidden. The
range of n̄ corresponding to the two stable branches is
,n̄,@C212AC(C24)#, or n̄.@C211AC(C24)#.

Substituting Eq.~6! in Eqs. ~2! and ~3! and linearizing
these equations, we obtain a set of coupled stochastic di
ential equations

ḋa52a1da2a2da* 1c1j1~ t !1c2j2~ t !, ~7!

ḋa* 52a2da2a1da* 1c2j1~ t !1c1j2~ t !, ~8!

where

a15gS 11
2C

~11n̄!2D , a25
22gCn̄

~11n̄!2
, ~9!

c15
i

2An0
FA2gCn̄~122n̄!

~11n̄!3
1A2gCn̄

11n̄
G , ~10!

c25
i

2An0
FA2gCn̄~122n̄!

~11n̄!3
2A2gCn̄

11n̄
G . ~11!

Here j1(t) and j2(t) are statistically independent Gaussi
white-noise processes with zero mean and correlations

^j i~ t !j j~ t8!&5d i j d~ t2t8!. ~12!

Note thatc1 andc2 are pure imaginary forn̄,1/2, and com-
plex for n̄.1/2. Forn̄,1/2 we can introduce the variables

da5 i ~u11u2!, da* 5 i ~u12u2!, ~13!

to decouple Eqs.~7! and ~8!. Using these variables in Eqs
~7! and ~8!, we obtain two uncoupled equations foru1 and
u2,

u̇i52l iui1biqi , i 51,2, ~14!

where

l15gS 11
2C~12n̄!

~11n̄!2 D , l25gS 11
2C

11n̄
D , ~15!

b15AgCn̄~122n̄!

n0~11n̄!3
, b25A gCn̄

n0~11n̄!
. ~16!
6-2



ia
if

e

,
B
r

pu

e-
th

io

er
ic

or

-

t
rela-

e
with

sian
the

This
r

d

NONCLASSICAL EFFECTS IN PHOTON STATISTICS . . . PHYSICAL REVIEW A 64 043806
Here q1 and q2 are independent delta correlated Gauss
white-noise processes with unit strength. By solving the d
ferential equation~14!, we can show thatu1 andu2 are in-
dependent real Gaussian random processes with zero m
and correlations given by

^u1~ t !u1~ t8!&5
gCn̄~122n̄!

2n0~11n̄!3l1

e2l1ut2t8u, ~17!

^u2~ t !u2~ t8!&5
gCn̄

2n0~11n̄!l2

e2l2ut2t8u. ~18!

Gaussian variablesu1 and u2 govern the dynamics of the
field emitted by the cavity.

We now useu1 and u2 to express the homodyne field
which is obtained by superposing the light from the SAO
and the LO at a lossless beam splitter. The beam splitte
characterized by power transmitivityT and reflectivity R
with the conditionT1R51. In the positive-P representation
@12#, the complex field amplitudesb i andb i* , correspond-
ing to the annihilation and creation operators at the out
ports of the beam splitter, can be written as

b15aAT1ua l ueifAR, b1* 5a*
AT1ua l ue2 ifAR,

~19!

b25ua l ueifAT2aAR, b2* 5ua l ue2 ifAT2a*
AR,

~20!

where a and a* are the complex field amplitudes corr
sponding to the annihilation and creation operators for
SAOB field, ua l u is the LO field amplitude, andf is the LO
phase relative to the SAOB. Here we will focus our attent
on theb1 port of the beam splitter. Results for theb2 port
can be obtained by replacingAR by AT andAT by 2AR.
Using Eqs.~6! and ~13! we can expressb1 andb2 as

b15An0@An̄1 i ~u11u2!AT1An̄le
ifAR#, ~21!

b1* 5An0@An̄1 i ~u12u2!AT1An̄le
2 ifAR#, ~22!

whereua l u5An0n̄l . Equations~21! and~22! describe the ho-
modyne field. We use these equations to derive the gen
ing function, which will be used to study the photon statist
of the homodyne field.

In the positive-P representation the time ordered and n
mally ordered generating functionG(s,T) for the photon-
counting distribution can be written as

G~s,T!5K expF2shE
0

T

I ~ t !dtG L , ~23!

where 0<h<1 is the quantum efficiency of detection,T is
the counting time, ands is an auxiliary parameter. The pho
ton number flux variableI (t) for the homodyne field forn̄
,1/2, is given by
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I ~ t !52g~b1b1* !

52gn0$~u2AT1An̄lAR sinf!2

2@u1AT2 i ~An̄AT1An̄lAR cosf!#2%, ~24!

where we have used Eqs.~21! and ~22!. Thus averaging in
Eq. ~23! is with respect to the variablesu1 andu2.

As mentioned earlier,c1 andc2 in Eqs.~10! and~11! are
complex forn̄.1/2. Forn̄.1/2, we introduce the variables

da5~v11 iv2!, da* 5~v12 iv2! ~25!

in Eqs. ~7! and ~8! and find thatv1 andv2 are independen
real Gaussian random processes with zero mean and cor
tions

^v1~ t !v1~ t8!&5
gCn̄~2n̄21!

2n0~11n̄!3l1

e2l1ut2t8u, ~26!

^v2~ t !v2~ t8!&5
gCn̄

2n0~11n̄!l2

e2l2ut2t8u. ~27!

Thus forn̄.1/2, the photon number flux variableI (t) for the
homodyne field is given by

I ~ t !52gn0$@v1AT1~An̄AT1An̄lAR cosf!#21~v2AT

1An̄lAR sinf!2%. ~28!

ThusI (t) for the HSAOB forn̄.1/2 can be expressed as th
sum of the squares of two Gaussian random processes
different variances. Note thatI (t) for thermal light is also
expressible as a sum of the squares of the two Gaus
random processes, which have the same variance. On
other hand,I (t) for n̄,1/2 in Eq. ~24! is expressed as a
difference of the squares of Gaussian random processes.
difference gives rise to interesting nonclassical effects fon̄

,1/2, which we do not see forn̄.1/2 or thermal light.
Substituting the expression forI (t) in Eq. ~23!, and mak-

ing a Karhunen-Loe`ve expansion ofu1 and u2 for n̄,1/2
andv1 andv2 for n̄.1/2, and following the method outlined
in Ref. @8#, we obtain the generating function in a close
form:

G~s,T!5Q1~s,T!e2 f 1(s,T)Q2~s,T!e2 f 2(s,T), ~29!

where

Qi~s,T!5
el iT/2

@cosh~ziT!11/2~l i /zi1zi /l i !sinh~ziT!#1/2
,

~30!
6-3
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f i~s,T!5KiTFl i
2

zi
2 S 11

2

21l iT
D1

2

l iBiT
21~2Bi2l i !T22

2S 2Bil i

zi
2 D C~zi !

BiT21G , ~31!

C~zi !5
cosh~ziT/2!1~l i /zi !~112/l iT!sinh~ziT/2!

cosh~ziT/2!1~zi /l i !sinh~ziT/2!
~32!

for i 51,2 and

z1
25l1

222shTg22C
n̄~122n̄!

~11n̄!3
, ~33!

z2
25l2

212shTg22C
n̄

~11n̄!
, ~34!

B152shTg22C
n̄~122n̄!

l1~11n̄!3
, ~35!

B25shTg22C
n̄

l2~11n̄!
, ~36!

K152gshn0@An̄AT1An̄lAR cosf#2, ~37!

K252gshn0n̄lR sin2f. ~38!

We use this generating function to study photoelectron
tistics of the homodyned field.

III. PHOTOELECTRON-COUNTING STATISTICS

Homodyne light incident on the detectorD generates pho
toelectric pulses. Statistics of these pulses can be desc
in terms of the photoelectron-counting distribution, its fac
rial moments, and the waiting-time distribution. In the fo
lowing section we derive these quantities using the gene
ing function obtained in the previous section.

A. Photoelectron-counting distribution and factorial moments

The photoelectron-counting distributionp(m,T) is the
probability of countingm photoelectric pulses in the tim
interval T. It is obtained by differentiating the generatin
function G(s,T) m times with respect tos,

p~m,T!5
~21!m

m! F dm

dsm
G~s,T!G

s51

. ~39!

Substituting the expression forG(s,T) from Eq. ~29! into
Eq. ~39!, and applying Leibnitz’s rule for differentiation, w
obtain

p~m,T!5 (
n50

m

pm2n
(s) pn

(h) , ~40!
04380
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pm2n
(s) 5

~21!m2n

~m2n!! F dm2n

dsm2n
~Q1Q2!G

s51

, ~41!

pn
(h)5

~21!n

n! F dn

dsn
exp„2@ f 1~s,T!1 f 2~s,T!#…G

s51

~42!

are the functions associated with the SAOB and cohe
component of the homodyne field, respectively. Evaluat
of pm2n

(s) andpn
(h) can be carried out by following a procedu

similar to that outlined in Refs.@8,9# for the homodyne de-
generate parametric oscillator field. For the phasef50 we
find that p(m,T) is super-Poissonian and for a very larg
value of n̄l it approaches a Poissonian distribution. For t
phasef51800, depending on the value ofn̄l , it can show
both sub- or super-Poissonian behavior. We discuss the
havior of p(m,T) further in terms of its moments.

Factorial moments of the photoelectron count distribut
can also provide information about the quantum statist
properties of the electromagnetic field. Thel th (l a positive
integer! order factorial moment of the photoelectro
counting distribution is defined by

^m( l )&5 (
m51

`

m~m21! . . . ~m2 l 11!p~m,T!, ~43!

where, for simplicity, we have suppressed the dependenc
the moments on the counting intervalT. Once p(m,T) is
known, factorial moments can be obtained from Eq.~43!.
They can also be obtained directly from the generating fu
tion as

^m( l )&5~21! lF dl

dsl
G~s,T!G

s50

. ~44!

Substituting the expression forG(s,T) from Eq. ~29! into
Eq. ~44!, and once again applying Leibnitz’s rule for diffe
entiation, we obtain

^m( l )&5(
j 50

l
l !

j ! ~ l 2 j !!
^m( l 2 j )&s^m

( j )&h , ~45!

where

^m( l 2 j )&s5~21! l 2 jF dl 2 j

dsl 2 j
~Q1Q2!G

s50

, ~46!

^m( j )&h5~21! jF dj

dsj
„exp2@ f 1~s,T!1 f 2~s,T!#…G

s50

.

~47!

These factorial moments can be used to characterize the
ture of the field. For a classical field, the factorial mome
of photon counting distribution must satisfy the followin
inequality @10#:
6-4
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Fk~ l , j !5F ^m( l 1k)&^m( l 2k)&

^m( l )&^m( j )&
21G>0, ~48!

wherei, j, andk are positive integers satisfyingl> j >k. For
quantum fields this can become negative. Therefo
Fk( l , j ),0 provides a signature for the nonclassical nat
of the field@10#. Note that the well-known Mandel paramet
Q5@^m2&2^m&2#/^m&5^m&F1(1,1). Sincê m& is positive,
F1(1,1),0 indicates the sub-Poissonian behavior of
photon-counting distribution.

In Fig. 2 we have plottedF1( l ,l ) as a function of the
counting time interval for atomic cooperative parameterC
55, for several values ofl. The curves shown in the grap
are for the case in which the SAOB field and the local os
lator field arep out of phase and superimposed at a 50–
beam splitter. This choice of phase allows partial remova
rather large coherent background in the SAOB by destruc
interference with the LO field at the beam splitter, and the
fore enhances the nonclassical effects. The param
F1(1,1)(5Q/^m&) stays negative for all counting times re
flecting sub-Poissonian statistics of the homodyne field.
l 52 and 4,F1( l ,l ) is positive for short counting interval
but becomes negative for large counting intervals. The
rameterF1(3,3) is nearly21 for short counting times indi-
cating a maximum possible nonclassical effect. With an
crease in counting time it becomes positive and reache
positive maximum before decreasing and becoming nega
for long counting time intervals.

Higher order sub-Poissonian and super-Poissonian be
ior of light can also be characterized by the parameterSl ,
which can be expressed in terms of normalized factorial m
ments as@13#

Sl5
^m( l )&

^m& l
21. ~49!

For higher-order super-Poissonian statisticsSl.0, whereas
for sub-Poissonian statistics,Sl,0. Since for a classical field

FIG. 2. The parameterF( l ,l ) as a function of 2gT for l 51 to 4.

Parameters aren̄50.010 46,n̄l50.01, n05103, C55, f5p, and
T50.5. F( l ,l ),0 shows nonclassical effects.
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Sl>0, negativevalues ofSl are the signature of a nonclas
sical field. Higher-order moments are directly measurable
photon-counting experiments.

In Fig. 3 we have plottedSl for values ofl ranging from
2 to 6 as a function of counting time for the relative pha
f5180°. The parameters chosen for this figure are the s
as those used for Fig. 2. We see that for these parame
S2(5Q/^m&) is negative for all times reflecting the sub
Poissonian behavior of the light beam. The parame
S3–S6, on the other hand, are positive for short counti
times reflecting higher-order super-Poissonian behavior.
the counting intervalT increases, allSl for l 53 –6 become
negative indicating that the homodyne field changes fr
super-Poissonian to sub-Poissonian even to higher ord
Each of these curves reaches a negative minimum and
starts increasing but remains negative for large coun
times. The minimum shifts to longer counting times as t
order l increases. It is worth noting that for large countin
intervals, the higher-order sub-Poissonian character is e
more pronounced than the second-order sub-Poissonian
havior based on theQ parameter. For very large countin
times,Sl approaches zero indicating Poissonian statistics
the HSAOB field in this limit as expected for long countin
times.

B. Waiting-time distribution

Another function to characterize photoelectron statistic
the waiting-time distributionw(T), which is the probability
of recording a time intervalT between two successiv
photodetections. Sincew(T) involves separation betwee
two successive photons, it is suitable for developing a ph
cal picture of photon sequences in time and defining bun
ing and antibunching. Antibunching refers to the tendency
photons to be separated from one another in time and bu
ing refers to the tendency of photons to be bunched toge
in time. For an antibunching sequence the probability of
tecting two photons in coincidence is smaller than that
coherent light@14#. This means that for antibunching,w(0)
,wc(0), wherewc(T) (5h^I &exp@2h^I&T#) is the waiting-

FIG. 3. The parameterSl as a function of 2gT for l 52 to 6.

Parameters aren̄50.010 46,n̄l50.01, n05103, C55, f5p, and
T50.5. Sl,0 shows second- and higher-order sub-Poissonian
tistics.
6-5
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time distribution for coherent light and̂I & is the average
intensity. For coherent light,wc(0)/h^I &51 and the most
probable waiting time is zero. In an antibunched phot
sequence photons are less bunched in time than photo
coherent light. Thus for an antibunched photon sequenc

w~0!/h^I &,1. ~50!

Antibunching is also discussed in terms of the second-o
intensity correlation functiong(2)(T) @15#. The difference
between the waiting-time distributionw(T) and g(2)(T) is
that w(T) refers to the detection of the two successive p
tons, whereasg(2)(T) refers to the detection of any two pho
tons, irrespective of what happens in the interval@0,T#.

The waiting-time distribution for the HSAOB field i
evaluated by differentiating the generating function given
Eq. ~29! with respect to time as@8,9#

w~T!5F 1

h^I &

d2

dT2
G~s,T!G

s51

. ~51!

The average intensitŷI & for the HSAOB field is obtained
from Eq.~24! and the correlations in Eqs.~17! and~18!, and
is

^ Î &52gn0F n̄T1n̄lR12An̄n̄lATR cosf

1
TgCn̄

2n0~11n̄!
S 1

l2
2

~122n̄!

~11n̄!2l1
D G . ~52!

Note that the average intensity depends on phasef. It is
maximum whenf50 due to constructive interference, an
minimum whenf5p due to destructive interference. W
know that for T51 only the light from the SAOB passe
through the beam splitter and hence the waiting-time dis
bution of the superposed field is that of the SAOB, wher
for T50 we have only the light from the LO and the waitin
time distribution of the superposed field is that for a coher
light. For a value ofT between these two extrema, it is po
sible to see bunching and antibunching by varyingn̄, n̄l , and
f.

In Fig. 4 we show the waiting-time distribution as a fun
tion of time for phasef5p, unit efficiency of detection, and
several values ofn̄l . The waiting-time distribution for the
coherent field marked~e! decreases exponentially. For curv
~a!–~d! all the parameters exceptn̄l are kept fixed. A very
small change inn̄l causes a significant change in the waitin
time distribution. For curve~a! the waiting-time distribution
shows a two-peak structure. For this curve,w(0)/h^I & is
greater than unity reflecting bunching. With increase in ti
the waiting-time distribution almost vanishes at a nonz
delay time. It then increases and reaches a maximum v
before decreasing to zero for large delays. Asn̄l increases
@curve ~b!# the ratio w(0)/h^I & decreases and shows an
bunching. For this particular value ofn̄l , we still see a two-
peak structure. For larger values ofn̄l @curve ~c!# the ratio
04380
,
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-

n

i-
s

t

-

e
o
ue

w(0)/h^I & is almost zero, reflecting maximum antibunchin
For this curve,w(T) has a single peak structure leading to
regular photon sequence. With further increase inn̄l @curve
~d!# the ratio w(0)/h^I & is nonzero but still less than on
indicating antibunching. With an increase in the delay tim
the waiting-time distribution increases and shows a sin
peak structure. With further increase inn̄l , the waiting-time
distribution for the HSAOB approaches that for cohere
light.

All the interesting features seen in Fig. 4 can be obser
if n̄l is decreased belown̄50.01. They are also observed ifn̄
or T is varied keeping all other parameters fixed. It is po
sible to achieve a large amount of antibunching for sm
values ofn̄ by choosingn̄l andT so that a coherent compo
nent of the SAOB is partially removed by destructive inte
ference. A maximum amount of antibunching can be o
served forf5p as destructive interference is largest for th
choice of phase. Forn̄.1/2, we find that the photon se
quence for the homodyne field is always bunched.

IV. SUMMARY

In conclusion we have studied the photon statistics of
field generated by superposing the field from a two-le
atomic system that shows optical bistability and a coher
field from a local oscillator at a lossless beam splitter. O
analysis is based on the quantum dynamical equation
motion for the field when a two-level atom is placed inside

FIG. 4. The normalized waiting-time distributionw(T) as a
function of 2gT for h51, n05103, C550, the LO mean photon

number n̄50.01, beam splitter angleT50.5, and phase anglef
5p. These plots show the effect of increasing the LO mean pho

number n̄l5 ~a! 0.010 28, ~b! 0.010 34, ~c! 0.010 46, and~d!
0.010 97. Curve~e! is the waiting-time distribution for coheren
light with the same mean intensity as that for curve~d!.
6-6
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coherently driven cavity in the good cavity limit@2#. The
field from a cavity containingN two-level atoms can also b
described by similar dynamical equations if the atomic
operativity parameterC is appropriately defined. Therefore
our analysis of the photon statistics of the homodyne fi
presented in this paper is valid for both single-atom and m
tiatom systems.

By applying classical inequalities expressed in terms
the factorial moments@10,14#, we have identified new re
gimes for the homodyne field, where the nonclassical na
is reflected in moments higher than the second. Nonclass
features of the field are strongest when the relative ph
difference between SAOB and LO fields is 180° and
mean photon numbers for the LO and the SAOB are com
rable but not exactly equal.

Quantum interference between the SAOB and LO fie
also introduces new features in the waiting-time distributi
which for classical fields must obey the inequal
w(0)/h^I &.1. The homodyne field violates this inequalit
In particular, the homodyne field has a diminished and so
times near-zero probability of detecting two successive p
tons separated by nonzero delay time.

Antibunching and sub-Poissonian behavior for t
HSAOB is due to an interference between the quantum n
and the coherent field. The field from the SAOB has a v
ro

sa

-

04380
-

d
l-

f

re
al

se
e
a-

s
,

e-
-

se
y

large coherent component, which suppresses nonclassica
fects such as antibunching or sub-Poissonian statistics.
modyning the SAOB field with the local oscillator withf
5180° allows us to remove the coherent background of
SAOB by destructive interference at the beam splitter. It
worth mentioning that if the coherent component is co
pletely removed, the SAOB field exhibits bunching a
shows higher-order super-Poissonian statistics. A sm
amount of coherent component is essential for the enha
ment of the nonclassical effects. This occurs when the co
ent component is comparable and out of phase with the n
term of the SAOB. Nonclassical effects discussed here
interference between quantum noise and a coherent fie
wave feature, to the photon-counting process that is un
stood from the particle viewpoint. The results of this pap
therefore, can be considered as a manifestation of the in
twining wave-particle duality of the field.
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