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Nonclassical effects in photon statistics of atomic optical bistability
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Homodyne statistics of light generated by an atomic system exhibiting optical bistability are analyzed. Using
the dynamical equations of motion for a single atom in a coherently driven cavity in the good cavity limit, we
show that the homodyne field can be described in terms of two independent real Gaussian stochastic processes
and a coherent component. By making a Karhunervkoexpansion of the field variables we derive the
generating function for the photoelectron statistics. From this generating function photoelectron-counting dis-
tribution, factorial moments, and waiting-time distribution are obtained analytically. These quantities are di-
rectly measurable in photon-counting experiments. We show that the homodyne field exhibits many interesting
nonclassical features including nonclassical effects in higher-order factorial moments.

DOI: 10.1103/PhysRevA.64.043806 PACS nuntber42.50.Ar, 42.50.Dv, 42.50.Ct

[. INTRODUCTION change in parameters. In Sec. lll we present an analytic ex-
pression for the moment generating function. Photon statis-

Interaction of a single two-level atom with a quantum tics of the homodyne field are then analyzed with the help of
field inside a coherently driven cavity in the good cavity the moment generating function. The photocount distribu-
limit, is known to show optical bistability1,2]. We will refer  tion, its moments, and the waiting-time distribution for the
to this system as single atom optical bistabil($AOB). homodyne field are calculated. Finally, in Sec. VI, a sum-
Similarly, N two-level atoms placed inside a coherently mary of the main results of the paper is presented.
driven cavity also exhibit optical bistability that we shall
refer to as multiatom optical bistabilig§AOB) [3,4]. These II. DYNAMICS OF THE HOMODYNE FIELD AND
systems are also known to show antibunching, although the THE GENERATING FUNCTION
size of antibunching is small. In order to enhance antibunch-
ing and other nonclassical effects, several schemes based
interference 5], passive filter cavitie§6], or homodyne de-
tection[7] have been proposed.

Homodyning a field with a coherent local oscillai&O) ) : _ .
provides one way of enhancing nonclassical effects. The ho- Consider a single damped two-level atom with transition
modyne field can exhibit strong nonclassical features, whicfif€dUeNcy @, , interacting with a single mode of a cavity
are not shown by the original field. The homodyne statisticgVith resonance frequenay. . The cavity is driven by a co-
are sensitive to the phase difference between the signal aftgrent external field of frequenay, and amplitudee. In the
the LO. An example of this behavior is provided by the light electric dipole and rotating-wave approximation, the Hamil-
from the degenerate parametric oscillator, which is highlytonian for this system can be written as
bunched and super-Poissonian. When this field is homo- . R mom o minaa e,
dyned with a LO, the homodyne field shows a variety of H=wa0,+fiwa'atighi(a’o_+ao,)+ihe(a’e ™o
nonclassical effects such as antibunching, sub-Poissonian A et
statistics, and violation of other classical inequalifi@és 10. —ae'”)+ Higss. @

In this paper we consider homodyning of the light from a - ~ o .
system that exhibits SAOB with the light beam from a LO atHerea anda are theAannlhllaAtlon and creation operators for
a lossless beam splitter as shown in Fig. 1. A detector ofhe cavity modeg . , o_, ando, are the Pauli spin matrices
efficiency » placed at one of the output ports of the beamdescribing the two-level atong is the atom-field coupling
splitter detects the homodyne field and generates photoelegonstant, andf,, << describes atomic losses due to spontane-
tric pulses, which are measured by suitable electronics. Weus decay and field losses at the cavity mirrors.
study photoelectron statistics measured by the detector. In
Sec. Il we start from the equations of motion derived by

nln this section we derive equations of motion describing
the dynamics of the homodyne field when the signal is from
the SAOB. We will see that similar equations are obtained
when the signal is from the MAOB.

Wang and Was for a single two-level atom in the good cav- B,

ity limit [2] and show that the field from the SAOB can be / \ B
expressed in terms of two Gaussian random variables. We " \Z/ — ' r|_D>—
then derive the equations that govern the dynamics of the \ Two-level atom / BS |

homodyne field. Using these equations and applying the
Karhunen-Loge expansion for the field variables, we calcu-
late the moment generating function for the photocount dis-
tribution. We also show that a system exhibiting MAOB can  FIG. 1. System for homodyning the SAOB field with the LO
also be described by similar expressions with an appropriatéeld. BS denotes the beam splitter and D denotes a detector.

LO
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Using the Hamiltonian of Eq1), Wang and Was derived where da and d«, are small deviations from the steady-
a Fokker-Planck equation without using system size expanstate amplitudes) is the mean photon number in units of the
sion[11]. This gives a set oftd stochastic differential equa- saturation photon numben,, and it is determined by

tions for the atomic and field variables. In the good cavity( 2_ ¢ 12 ;

. . . . el y)*=ngn[1+2C/(1+n)]*. An analysis of the steady-
“m'F' |n_wh|ch _atomlc _va_lrlables_ decay m“_Ch faster than thestate solutions of Eq$2) and(3), as a function of the driv-
cavity field variables, it is possible to eliminate atomic vari-

. . ) S ) ing field amplitude, indicates that for zero atomic and cavity
ables adiabatically. In this approximation the following equa'detunings, optical bistability may exist f@>4. In this re-
tions govern the time evolution of the cavity fiel: gion, for a given driving field amplitude and cooperativity

parameter, the system can jump to any one of the two pos-
2yC(1—-i6,) sible stable branches. The unstable branch or the curve for

1+ 5§+aa*/n0a+6+r(t)’ @ the mean photon numbem in the range [C—1
—JC(C—4)]=n=[C—1+C(C—4)], is forbidden. The
2yC(1+i8,) range ofn corresponding to_the two stable branches is 0
a,+tet+l, (1), <n<[C—1-C(C—4)], orn>[C—1+C(C—4)].
Substituting Eq.(6) in Egs. (2) and (3) and linearizing
@ these equations, we obtain a set of coupled stochastic differ-

) . ~ential equations
wherea anda, are complex field amplitudes corresponding

a=—y(1+i8)a—

a,=—y(1-id)a,— ———
* 7 o 1+ 82+ aar, Ing

to a and a' in the positiveP representation[12], &, Sa=—a;8a—a,da, +C1&1(1)+Cré(1), 7)
=2(wa— wo)! v, and 6.=(w.— w,)/ vy are the atomic and .
cavity detuning parameters;yds the cavity field decay rate, Sa, =—a,fa—aa, +Cy& (1) +céa(1), (8

va is the spontaneous emission rate to modes other than the
privileged cavity modeC [ =g?%/(y,y)] is the cooperativity ~Where
parameter, ancy [= yi/(8g2)] is the saturation photon

number. In the positivé? representationg and e, may not = 14 2_0_ a :ﬂ 9)
be the complex conjugate of each otHe(t) andT", (t) are ! (1+n)?/)’ 2 (1+n)?’
delta correlated Gaussian noise processes with )
i \/2ycﬁ(1—2ﬁ) \/2ycﬁ 0
I\ — 7V\ % Ci= — + —|,
<F(t)r(t )> <F*(t)r*(t )> 1 2\/n—0_ (1+n)3 1+n |
2yC(a?Ing) ]
=— 1-i6,)°3 - n(1—2n) |
(1+ 8+ aa, Ing)? (1=10) e \/270”(1_ 2n) \/Z'yC_n (11)
2 3 "
2\/n—0 I (1+n) 1+n |

o(t—t'), (4)

1

—_— 2 . B - -
+5(aa, Ing) Here &,(t) and &,(t) are statistically independent Gaussian
white-noise processes with zero mean and correlations

(TOTL ) =T (OT () (E(DE&(T))=8,;8(t—t"). (12
2yC(aa, Iny)?

— . Note tha_tcl andc, are pure imaginary fon<1/2, and com-
(1+ 83+ aa, Ing)® plex for n>1/2. Forn<1/2 we can introduce the variables

X 6(t_t!) (5) 5a:i(U1+U2), 5a*:i(U1_U2), (13)

1
2+ E(aa* /ng)

to decouple Eqs(7) and (8). Using these variables in Egs.

It is interesting to note that the dynamics of the cavity field(?) @nd(8), we obtain two uncoupled equations fey and
for the MAOB [3,4] for the case of equal radiative and col- Y2:

lisional damping are also described by E@8) and (3), . )

which have been derived for the SAQB]. For the MAOB, ui=—Nuitbig, =12, (14
however, the atomic cooperativity parameter is modified toWh ere
be C=Ng?/y,v, whereN is number of atoms in the cavity.

With this redefinition of the cooperativity parameter, the re- 20(1—?) 2C
sults of this paper also apply to the MAOB. A=7yl 1+ —_) . Ap=v| 1+ __) , (15
For zero atomic and cavity detunings we expandénd (1+n)? 1+n

a, about the steady-state amplitudé@ as — — —
vyCn(1—2n) vyCn
b]_: —_3, b2= —_— (16)
az\/n—o[\/ﬁ+5a], a*z\/n—o[\/ﬁ—k&z*], (6) No(1+n) No(1+n)

043806-2



NONCLASSICAL EFFECTS IN PHOTON STATISTIS. .. PHYSICAL REVIEW A 64 043806

Here g, and g, are independent delta correlated Gaussian 1(t)=29(B1B14)

white-noise processes with unit strength. By solving the dif-

ferential equatior(14), we can show thaii; andu, are in- = 290 (U T+ VN VR sin )2

dependent real Gaussian random processes with zero mean

and correlations given by —[ul\/—T—i(\/ﬁﬁ? \/n:“/ﬁ cos$) 1%, (24
yCn(1-2n) . where we have used Eg&€1) and (22). Thus averaging in

A A A O S . ’ .
(Us(Duy(t’) 20g(14 1N, S 17 Eq. (23 is with respect to the variables, andu,.
As mentioned earlieg; andc, in Egs.(10) and(11) are

— complex forn>1/2. Forn>1/2, we introduce the variables
AL

(up(thuy(t'))= (LN,

(18
5a:(l)1+il)2), 5a*=(vl—iv2) (25)

Gaussian variables; and u, govern the dynamics of the . i .
field emitted by the cavity. in Egs.(7) and (8) and find thatv; andv, are independent

We now useu; and u, to express the homodyne field real Gaussian random processes with zero mean and correla-

which is obtained by superposing the light from the SAOBUONS
and the LO at a lossless beam splitter. The beam splitter is

characterized by power transmitivity’ and reflectivity R yCn(2n—1) i
with the condition7+R=1. In the positiveP representation (va(Hva(t'))= ﬁe =t (26)
[12], the complex field amplitudeg; and 83;, , correspond- No(1+n)"A
ing to the annihilation and creation operators at the output
ports of the beam splitter, can be written as yCF ,
. , (Va(tvy(t))= ——e MUl (27)
Br=a\T+|a|e VR, Br,=a, Tt |a|e R, 2No(1H+ M
(19) B
' _ Thus forn>1/2, the photon number flux variablét) for the
Bo=|a)|€\T-a\R, Boy=|a|e T a, VR, homodyne field is given by
(20)
_ 2
where a and «, are the complex field amplitudes corre- '(t)—27no{[vl\ﬁ+(\/ﬁ\/—7+ \/‘n=|\/ﬁcos¢>)] +(u T
sponding to the annihilation and creation operators for the L
SAOB field, || is the LO field amplitude, ané is the LO +ynRsing)?). (28)

phase relative to the SAOB. Here we will focus our attention
on the g, port of the beam splitter. Results for tiy port  Thusl (t) for the HSAOB forn>1/2 can be expressed as the
can be obtained by replacingR by 7 and 7 by —\R.  sum of the squares of two Gaussian random processes with
Using Eqgs.(6) and(13) we can expresg,; and 3, as different variances. Note thd(t) for thermal light is also
expressible as a sum of the squares of the two Gaussian
B1=ng[ \/ﬁ+i(ul+u2) JT+ \/nzleiaﬁ\/ﬁ], (21)  random processes, which have the same variance. On the
other hand,|(t) for n<1/2 in Eq. (24) is expressed as a

By, = \/”—o[ \/ﬁ"'i(ul_uz) JT+ \/ﬁlefi(ﬁ\/ﬁ], 22) d!fference of the sguare; of Gagssmn random processes. This
difference gives rise to interesting nonclassical effectsfor

where| | = \/ﬁ_ Equations21) and(22) describe the ho- <1/2, Whlch we do not see far> 1/2_ or thermal light.

modyrle 1|°ield. We use these equations to derive the generat- Substituting the expression fo(t) in Eq. (23), and mak-

ing function, which will be used to study the photon statisticsing a Karhunen-Loee expansion oii; andu, for n<1/2

of the homodyne field. andv, andv, for n>1/2, and following the method outlined
In the positiveP representation the time ordered and nor-in Ref. [8], we obtain the generating function in a closed

mally ordered generating functio@(s,T) for the photon- form:

counting distribution can be written as

. G(s,T)=Qu(s,T)e 16NQy(s, T)e 28D, (29
G(s,T)=<exr{—577f0 I(t)dtD, (23

where
where O< =<1 is the quantum efficiency of detectioh,is T2
the counting time, and is an auxiliary parameter. The pho- Qu(s.T)= ehi
ton number flux variablé(t) for the homodyne field fon n [cosizT)+1/2(\;/z+z /)\i)sinr(ziT)]”Z'
<1/2, is given by (30
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2
A 2
fi(sT)=KT|—= |1+ +
(s D=k 2\7 2+NT) \BT2+(2B,—\)T—2
2BiNi| C(Z)
2 |BT-1) (31)

B coshzT/2)+ (N /z)(1+2/\;T)sinh(zT/2)

C(z) cosh(zT/2)+ (z;I\;)SinN(zT/2)
(32)
fori=1,2 and
n(1-2n)
2_\2 2
Z2=\2-2spTy?2C———, 33
1 1 nity (1+n)3 (
Z=\3+ 25y T/22C—— 34
(1+n)
B Tyac "2 @9
=—3 —_—,
1 nLy )\1(1_'_”)3
B.,=snT 22C—_, (36)
2y e (1)

Ky=2ysnnol VnyT+VnVR cosg ]2, (37)

K,=2yspngn R sirfe. (38)

We use this generating function to study photoelectron st

tistics of the homodyned field.

IIl. PHOTOELECTRON-COUNTING STATISTICS

Homodyne light incident on the detectorgenerates pho-
toelectric pulses. Statistics of these pulses can be described

PHYSICAL REVIEW /4 043806

where
(_1)m—n dm—n
e { n(Qle)l , (41)
(m=n)! | ds" .
_1n dn
EPE% G OPC LT (42

s=1

are the functions associated with the SAOB and coherent
component of the homodyne field, respectively. Evaluation
of p&® . andp{" can be carried out by following a procedure
similar to that outlined in Refd.8,9] for the homodyne de-
generate parametric oscillator field. For the phase0 we

find that p(m,T) is super-Poissonian and for a very large

value ofﬁ, it approaches a Poissonian distribution. For the

phase¢=187, depending on the value of , it can show
both sub- or super-Poissonian behavior. We discuss the be-
havior of p(m,T) further in terms of its moments.

Factorial moments of the photoelectron count distribution
can also provide information about the quantum statistical
properties of the electromagnetic field. Thb (I a positive
intege) order factorial moment of the photoelectron-
counting distribution is defined by

(my= 21 mm—1) ...(m—1+1)p(mT), (43

where, for simplicity, we have suppressed the dependence of
the moments on the counting interv@l Once p(m,T) is
known, factorial moments can be obtained from E4f3).

aThey can also be obtained directly from the generating func-

tion as

dl
—G(s,T)

My=(—1)!
(MB)=(=1 =5

(44)

s=0

in terms of the photoelectron-counting distribution, its facto-Substituting the expression f@(s,T) from Eq. (29) into
rial moments, and the waiting-time distribution. In the fol- Eq. (44), and once again applying Leibnitz’s rule for differ-
lowing section we derive these quantities using the generagntiation, we obtain

ing function obtained in the previous section.

A. Photoelectron-counting distribution and factorial moments

The photoelectron-counting distributiop(m,T) is the
probability of countingm photoelectric pulses in the time
interval T. It is obtained by differentiating the generating

function G(s,T) mtimes with respect t@,

(="

m!

m

ds™

G(s,T) (39

s=1

Substituting the expression f@s(s,T) from Eg. (29) into

Eq. (39), and applying Leibnitz’s rule for differentiation, we

obtain

m
p(m,T)=n§O P& oM, (40)

|
=S w0y, @

j=0 ]'(I _j)!
where
<m<'—i>>5=(—1)"1{%@&2)1 , (46)
d s=0

) | dl
(MY, = (= 1)) —(exp—[f1(s,T)+fx(s,T)])
dg 0

These factorial moments can be used to characterize the na-
ture of the field. For a classical field, the factorial moments
of photon counting distribution must satisfy the following
inequality[10]:
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0 0.5 1 1.5 2 0 1 2 3 4

2yT 2yT
FIG. 2. The parametd®(l,!) as a function of 3T for |=1 to 4. FIG. 3. The paramete§, as a function of 3T for =2 to 6.
Parameters are=0.010 46,n,=0.01, ny= 1§’ C=5, ¢=, and Parameters are=0.010 46,n,=0.01, ng= 103, C=5, ¢=m, and
7=0.5. F(1,1)<0 shows nonclassical effects. 7=0.5. §<0 shows second- and higher-order sub-Poissonian sta-
tistics.

<m(l+k)><m(lfk)>

=0 (48) S =0, negativevalues ofS, are the signature of a nonclas-
(mOy(m()) '

sical field. Higher-order moments are directly measurable in
photon-counting experiments.

wherei, j, andk are positive integers satisfyigs j=k. For In Fig. 3 we have plotte, for values ofl ranging from
quantum fields this can become negative. Therefore2 t0 6 as a function of counting time for the relative phase
F(1,j)<0 provides a signature for the nonclassical nature=180°. The parameters chosen for this figure are the same
of the field[10]. Note that the well-known Mandel parameter &S those used for Fig. 2. We see that for these parameters
Q=[(m?)— (my2]/(m)=(m)F,(1,1). Since(m) is positive, Sz(_=Q/§m>) is negative for a!l times reflecting the sub-
F1(1,1)<0 indicates the sub-Poissonian behavior of theP0issonian behavior of the light beam. The parameters
photon-counting distribution. S;—Sg, on the other hand, are positive for short counting
In Fig. 2 we have plottedFy(l,) as a function of the times reflecting higher-order super-Poissonian behavior. As
counting time interval for atomic cooperative parameger the counting interval increases, al, for | =3-6 become
—5, for several values df The curves shown in the graph N€gative indicating that the homodyne field changes from
are for the case in which the SAOB field and the local oscil-SUPer-Poissonian to sub-Poissonian even to higher orders.
lator field ares out of phase and superimposed at a 50-50=ach O_f these_ curves reach_es a negative minimum and t.hen
beam splitter. This choice of phase allows partial removal oftarns |n§rea§|ng but Lnga|nsl negative fqr Iar_ge counuhng
rather large coherent background in the SAOB by destructiv@mes'I The minimum shi skt]o ongerhcoufntlnlg times as the
interference with the LO field at the beam splitter, and there—f)rder Increases. It Is wort notm_g t a_t or ‘arge countmg
fore enhances the nonclassical effects. The parameté‘?tervals’ the higher-order sub-Poissonian chara(_:ter IS even
F,(1,1)(=Q/{m)) stays negative for all counting times re- more pronounced than the second-order sub-Poissonian be-
flecting sub-Poissonian statistics of the homodyne field. FofaVior based on th€@ parameter. For very large counting
=2 and 4,F(l,l) is positive for short counting intervals times, 5 appr_oaches Zero |_nd|cat|ng Poissonian statistics of
but becomes negative for large counting intervals. The pat-_he HSAOB field in this limit as expected for long counting
rameterf;(3,3) is nearly—1 for short counting times indi- times.
cating a maximum possible nonclassical effect. With an in-
crease in counting time it becomes positive and reaches a B. Waiting-time distribution
FO?SI'S:]’S Lnoatjxr;?i]nugmtiaegoiﬁedrsglrsea&ng and becoming negative  \noiher function to characterize photoelectron statistics is

: . . : . the waiting-time distributiorw(T), which is the probability
Higher order sub-Poissonian and super-Poissonian behagf recording a time intervalT between two successive
ior of light can also be characterized by the param&er

hich b dint P lized factorial photodetections. Sinca/(T) involves separation between
Vn\:elr?ts%?ls]e expressed in terms ot normalized factorial mog,, gyccessive photons, it is suitable for developing a physi-

cal picture of photon sequences in time and defining bunch-
ing and antibunching. Antibunching refers to the tendency of
(m®) photons to be separated from one another in time and bunch-
S :W -1 (49 ing refers to the tendency of photons to be bunched together
in time. For an antibunching sequence the probability of de-
tecting two photons in coincidence is smaller than that for
For higher-order super-Poissonian statist&s 0, whereas coherent lighf14]. This means that for antibunchingy(0)
for sub-Poissonian statisticS,<0. Since for a classical field <w(0), wherew(T) (= 7(lYexd —%1)T]) is the waiting-

Fillj)=
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time distribution for coherent light andl) is the average 25
intensity. For coherent lightw.(0)/7{I)=1 and the most
probable waiting time is zero. In an antibunched photon,
sequence photons are less bunched in time than photons in
coherent light. Thus for an antibunched photon sequence

W(0)/ n(1)<1. (50) L@

N

)
T
|

Antibunching is also discussed in terms of the second-order
intensity correlation functiorg®(T) [15]. The difference
between the waiting-time distributiow(T) and g (T) is
thatw(T) refers to the detection of the two successive pho-
tons, whereag(®)(T) refers to the detection of any two pho-
tons, irrespective of what happens in the intefV@Ir]. | ) /
The waiting-time distribution for the HSAOB field is ;

w(T)in<l>

—_

evaluated by differentiating the generating function given in 05 ‘(.b_)
Eq. (29) with respect to time ag3,9] Ch
()i}
1 d2 0 C— T | I | A
w(T)= WWG(S’T) i (51 10 102 10° 102 10*
s=1 2yT

The average intensityl) for the HSAOB field is obtained
from Eg.(24) and the correlations in Eqé&l7) and(18), and
is

FIG. 4. The normalized waiting-time distribution(T) as a
function of 2yT for =1, ny=10°, C=50, the LO mean photon
numbern=0.01, beam splitter angl@=0.5, and phase anglé
= . These plots show the effect of increasing the LO mean photon
NT+nR+2\/nn VTR cose number = (a) 0.01028, (b) 0.01034, (c) 0.01046, and(d)
0.01097. Curve(e) is the waiting-time distribution for coherent
light with the same mean intensity as that for cufde

<T>:27no

TyCW

+—
2ng(1+n)

. (52

N2 (1412,

1 (1-2n) )

w(0)/7(l) is almost zero, reflecting maximum antibunching.
For this curvew(T) has a single peak structure leading to a
regular photon sequence. With further increase,ificurve
(d)] the ratiow(0)/7(l) is nonzero but still less than one

Note that the average intensity depends on phAsdt is
maximum wheng=0 due to constructive interference, and

minimum Wheniﬁzw due to _destructive interference. We indicating antibunching. With an increase in the delay time,
know that for7=1 only the light from the SAOB passes g \yaiting-time distribution increases and shows a single

through the beam splitter and hence the waiting-time distri- K struct With further i o th itina-ti
bution of the superposed field is that of the SAOB, wherea%).e"f[l 'bS tr.uc ufre. thl HuSrAglramcreasenr?, ;V\{a]! Ing- |rr:1e ¢
for 7=0 we have only the light from the LO and the waiting- istribution for the approaches that for coheren

; R iy ight.
time distribution of the superposed field is that for a coherenltIg . . N
light. For a value of7 between these two extrema, it is pos- " _AI_I tr;e mteres;r;g Ife_atu(r)egls(?rehn in Fig. |4 car;) be ob;Tefrved
; : . : - — if n, is decreased below=0.01. They are also observedi
sible to see bunching and antibunching by vanng, , and or 7 is varied keeping all other parameters fixed. It is pos-
In Fig. 4 we show the waiting-time distribution as a func- sible to achieve a large amount of antibunching for small

tion of time for phasep =, unit efficiency of detection, and Vvalues ofn by choosingn; and7'so that a coherent compo-
several values of, . The waiting-time distribution for the nent of the SAOB is partially removed by destructive inter-

coherent field marke(k) decreases exponentially. For curvesference' A maximum amo_unt_of antlbunchlng can be O.b'
= , served for¢p= 7 as destructive interference is largest for this
(a)—(d) all the parameters excepi are kept fixed. A very

= o i ~7 choice of phase. Fon>1/2, we find that the photon se-
small change im, causes a significant change in the waiting- qence for the homodyne field is always bunched.
time distribution. For curvéa) the waiting-time distribution
shows a two-peak structure. For this curvg(0)/7{l) is
greater than unity reflecting bunching. With increase in time IV. SUMMARY
the waiting-time distribution almost vanishes at a nonzero _ _ L
delay time. It then increases and reaches a maximum value In conclusion we have studied the photon statistics of the
. — . fileld generated by superposing the field from a two-level
before decreasing to zero for large delays.msncreases

4 . atomic system that shows optical bistability and a coherent
[curve (b)] the ratiow(0)/x(l) decreases and shows anti- |4 trom a local oscillator at a lossless beam splitter. Our

bunching. For this particular value of, we still see a two-  analysis is based on the quantum dynamical equations of
peak structure. For larger values f [curve (c)] the ratio  motion for the field when a two-level atom is placed inside a
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coherently driven cavity in the good cavity limi2]. The large coherent component, which suppresses nonclassical ef-
field from a cavity containingN two-level atoms can also be fects such as antibunching or sub-Poissonian statistics. Ho-
described by similar dynamical equations if the atomic co-modyning the SAOB field with the local oscillator with
operativity paramete€ is appropriately defined. Therefore, =180° allows us to remove the coherent background of the
our analysis of the photon statistics of the homodyne fieldsAOB by destructive interference at the beam splitter. It is
presented in this paper is valid for both single-atom and muly,qrth mentioning that if the coherent component is com-
tiatom systems. o N . letely removed, the SAOB field exhibits bunching and
By applying classical inequalities expressed in terms Okhows higher-order super-Poissonian statistics. A small
the factorial moment$10,14, we have identified new re- amount of coherent component is essential for the enhance-
gimes for the homodyne field, where the nonclassical naturgyent of the nonclassical effects. This occurs when the coher-
is reflected in moments higher than the second. Nonclassicaht component is comparable and out of phase with the noise
features of the field are strongest when the relative phas@rm of the SAOB. Nonclassical effects discussed here tie
difference between SAOB and LO fields is 180° and thejnterference between quantum noise and a coherent field, a
mean photon numbers for the LO and the SAOB are compagaye feature, to the photon-counting process that is under-
rable but not exactly equal. ~ stood from the particle viewpoint. The results of this paper,
Quantum interference between the SAOB and LO fieldgherefore, can be considered as a manifestation of the inter-
also introduces new features in the waiting-time distribution,twining wave-particle duality of the field.
which for classical fields must obey the inequality
w(0)/7(l)>1. The homodyne field violates this inequality.

I!’] particular, the homod_y.ne field has.a diminished anq some- ACKNOWLEDGMENTS
times near-zero probability of detecting two successive pho-
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