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Recoherence in the entanglement dynamics and classical orbits in theN-atom
Jaynes-Cummings model
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The rise in linear entropy of a subsystem in theN-atom Jaynes-Cummings model is shown to be strongly
influenced by theshapeof the classical orbits of the underlying classical phase space: we find a one-to-one
correspondence between maxima~minima! of the linear entropy and maxima~minima! of the expectation value
of atomic excitationJz . Since the expectation value of this operator can be viewed as related to the orbit radius
in the classical phase-space projection associated with the atomic degree of freedom, the proximity of the
quantum wave packet to this atomic phase-space borderline produces a maximum rate of entanglement. The
consequence of this fact for initial conditions centered at periodic orbits in regular regions is a clear periodic
recoherence. For chaotic situations the same phenomenon~proximity of the atomic phase-space borderline! is,
in general, responsible for oscillations in the entanglement properties.

DOI: 10.1103/PhysRevA.64.043801 PACS number~s!: 42.50.Ct, 05.45.Mt, 32.80.Qk
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I. INTRODUCTION

The importance of studying in detail the decoherence p
cess is twofold. First, it may be viewed as a key to the
derstanding of some of the striking differences between
quantum and classical descriptions of the world such as ‘
nonexistence at the classical level of the majority of sta
allowed by quantum mechanics’’@1#. The decoherence pro
cess is believed to be the agent that eliminates interfere
between two or more macroscopically separated locali
states@2#. Second, given the impressive technological a
vances in several experimental areas~quantum optics, con-
densed matter, atomic physics, etc.!, it is nowadays possible
to realize a system of two interacting degrees of freedom
watch the time evolution of the corresponding entanglem
process@3#. It is therefore also of importance to understa
the entanglement process in simple Hamiltonian syste
Hamiltonian systems with two degrees of freedom of
present a very rich dynamics, which in many cases is not
completely understood from a general point of view. In p
ticular, if the interaction is nonlinear the system may pres
chaotic behavior in the classical limit. The consequence
this fact to the quantum dynamics is yet an unsettled issu
step in this direction was taken a few years ago, as it w
conjectured that ‘‘the rate of entropy production can be u
as an intrinsically quantum test of the chaotic versus reg
nature of the evolution’’@4#. The idea has been tested
some models@5,6#. More specifically, in the context of th
N-atom Jaynes-Cummings model, the reduced-density lin
entropy~or idempotency defect! has been used as a measu
of the entanglement of the quantum subsystems. For a g
classical energy, initial conditions for the quantum states
prepared as coherent wave packets centered at regula
chaotic regions of the classical phase space. For short ti
a fast increase in decoherence for chaotic initial condition
found when compared to regular ones. Typically the lin
entropy in this model rises from zero to a plateau.

In the present contribution, we show that this rise
strongly influenced by theshapeof the atomic projection of
1050-2947/2001/64~4!/043801~7!/$20.00 64 0438
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classical orbits. There is a clear correlation between the
of increase of linear entropy and the increase of the exp
tation value of the atomic excitation̂Jz&(t) for short enough
times. In classical terms, this can be visualized as follo
^Jz&(t) is a measure of the instantaneous radius of the p
jection of the trajectory in the atomic phase space. T
atomic phase space is limited, the maximum radius co
sponds toA4J5A2N, meaning therefore that the maximu
rate of entanglement can be directly associated with
proximity of this borderline. If the quantum evolution is suc
that the initial wave packet is centered at a classically reg
region of the atomic phase space, in particular on a~noncir-
cular! periodic orbit, the phenomenon is most conspicuo
as a function of time, the wave packet exhibits partial re
herences, well-marked oscillations in the linear entropy
perimposed to a steady increase, which can be immedia
associated with smallest and largest distances from the c
sical border@largest or smallest̂Jz&(t)#. If, on the other
hand, the initial wave packet is centered on a classic
chaotic region of the phase space, the recoherence phe
enon is of course not necessarily periodic in general. Ho
ever, we still find a connection between maxima and mini
of the rate of linear entropy and̂Jz&(t). As to be expected
this simple relation becomes less clear as quantum effect
in; in particular, for the chaotic region this happens mu
faster than for the regular one in a mixed phase space. S
effects are most marked at sufficiently long times, when
plateau in the linear entropy is reached. We show tha
these times the spin projection of the wave packet beco
totally delocalized in phase space. This takes place for in
conditions centered at regularand chaotic regions, the regu
lar cases taking longer times to achieve this delocalizatio

In Sec. II we present the model and the technical tools
be used in the following sections to analyze the entanglem
property, connecting it to the classical regularity and chao
a mixed regimen. Section III is devoted to the presentation
analysis and results in regular regions, whereas Sec. IV d
with chaotic regions. A summary is given in Sec. V.
©2001 The American Physical Society01-1
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II. THE MODEL

We consider theN-atom Jaynes-Cummings model@7#
whose Hamiltonian is given by

H5\v0a†a1«Jz1
G

A2J
~aJ11a†J2!

1
G8

A2J
~a†J11aJ2!, ~1!

where the first term corresponds to the energy of the
single-mode quantized field with frequencyv0, described by
the creation~annihilation! operatorsa† (a); the second term
corresponds to the energy of theN52J two-level atoms with
energy separation\«, and the operatorsJz , J65Jx6 iJy are
the usual angular momentum operators corresponding to
group SU~2!. These operators satisfy the well-known com
mutation relations

@a,a†#51,

@Ji ,Jj #5 i\Jk

with the indices (i , j ,k) forming any cyclic permutation o
(x,y,z). The last two terms in Eq.~1! represent the interac
tion energy between the atomic system and the single-m
field.

The above Hamiltonian is a generalized version of
usualN-atom Jaynes-Cummings model~JCM! to which we
have added a counter-rotating wave~CRW! term with cou-
pling constantG8. The so-called rotating wave approxim
tion ~RWA! has been much in use for the proposals of m
soscopic superpositions of collective atomic states@8,9# and
in the generation of multiparticle entangled states in cav
QED experiments@10#.

The N-atom JCM can also be realized in systems wh
trapped ions interact with laser fields. In that situation
bosonic operatorsa anda† describe the vibrational motion o
the ions in the trap. Recently, reversible entanglement of i
has been proposed@11#, and experimental realizations hav
been reported in the cases of two and four ions@12#, with
possible extensions to several ions@13#. In the trapped-ion
system there is the possibility of generating both RW a
CRW types of interaction by means of either a bichroma
laser excitation — with bothG and G8 different from zero
— or appropriate excitation modes@14#. In the latter case
there would be the possibility to test the effects of RW (G8
50) and CRW (G50) terms separately or together.

In our model we also add the supposition that the t
coupling constants can be independently varied. When
of the coupling constantsG or G8 is set to zero, we have a
integrable system. ForG850 (G50) there is an additiona
conserved quantity, namely, the total excitationP5Jz /\
1a†a ~the relative excitationP85Jz /\2a†a). The system
is otherwise nonintegrable and known to exhibit chaotic
havior in the classical limit@15#. In both cases, the quantum
dynamics will produce entanglement due to the coupl
terms. This essentially quantum property can be quantifi
04380
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e.g., by means of the linear entropy~or idempotency defect!
associated with the reduced-density matrices of the atomi
field subsystems~from this point on we shall set\51),

d~ t !512Tri@r i~ t !2#, ~2!

where

r i~ t !5Trj@ uc~ t !&^c~ t !u# ~3!

( i andj stand for the atomic and field subsystems,iÞ j ). The
quantities expressed in Eqs.~2! and ~3! are to be calculated
using quantum states evolving in time under the action
Hamiltonian~1!. To this end, the initial conditions chosen
the present study are such that

uc~0!&5uw& ^ uv&[uwv&, ~4!

where uw& (uv&) are atomic~field!-coherent states given b
@16#

uw&5~11ww̄!2JewJ1uJ,2J&, ~5!

uv&5e2vv̄/2evb†
u0& ~6!

with

w5
pa1 iqa

A4J2~pa
21qa

2!
, ~7!

v5
1

A2
~pf1 iq f !; ~8!

uJ,2J& being the state with spinJ and Jz52J, u0& being
the harmonic-oscillator ground state, andpa ,qa ,pf ,qf de-
scribing the phase space of the system under considera
Generation of atomic coherent states inN-atom systems has
been proposed in@8# and analyzed in@9#.

The classical Hamiltonian corresponding to Eq.~1! can be
obtained by a standard procedure as@17#

H~v,v* ,w,w* ![^wvuHuwv&. ~9!

H(v,v* ,w,w* ) can be rewritten in terms of the phase-spa
variables, reading

H~qa ,pa ,qf ,pf !5
v0

2
~pf

21qf
2!1

«

2
~pa

21qa
222J!

1A12
pa

21qa
2

4J
~G1papf1G2qaqf !,

~10!

whereG65G6G8.
The corresponding equations of motion are then given
1-2
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q̇a52
]H
]pa

52«pa2G1pfA12
qa

21pa
2

4J

1
pa

A4J

~G1papf1G2qaqf !

A4J2~qa
21pa

2!
,

q̇f52
]H
]pf

52v0pf2G1paA12
qa

21pa
2

4J
,

FIG. 1. ~a! Poincare´ section given byqf50.0 andpf.0.0 for
the spin degree of freedom withJ59/2 in the nonintegrable (G
50.5 andG850.2) and resonant («5v051) case — these value
will be the same in all subsequent figures except when otherw
noted. Here we show the section for the energyE58.5. The marks
represent the various choices for the center of the coherent st
circles for regular initial conditions~IC! and triangles for chaotic
ones.~b! Spin projection of the two shortest stable periodic orb
indicated by circles in~a! ~the border line is also shown!. Initial
conditions at the surface of section are as follows: (qa50.0,pa

52.261,qf50.0,pf53.423 276) for the first~elliptic! orbit with
period t54.89; (qa50.0,pa523.577,qf50.0, pf55.221 656)
for the second orbit with periodt57.45.
04380
ṗa5
]H
]qa

5«qa1G2qfA12
qa

21pa
2

4J

2
qa

A4J

~G1papf1G2qaqf !

A4J2~qa
21pa

2!
,

ṗf5
]H
]qf

5v0qf1G2qaA12
qa

21pa
2

4J
. ~11!

It is important to note the restriction in energy to b

se

es:
FIG. 2. ~a! Poincare´ section for the energyE535. The circle

represents the center of the coherent state for one regular in
condition. ~b! Spin projection of the shortest stable periodic orb
indicated by the circle in~a!. Initial condition at the surface of
section is as follows: (qa50.0,pa51.4175,qf50.0,pf

57.888 904) with periodt55.82.
1-3
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ANGELO, FURUYA, NEMES, AND PELLEGRINO PHYSICAL REVIEW A64 043801
FIG. 3. Linear entropyd(t) ~continuous lines!, its derivative
dd(t)/dt ~dashed lines!, and the normalized expectation valu
^Jz&(t)/J ~dot-dashed lines! as functions of time.~a! for the first
regular initial condition of Fig. 1~b!. Note the correspondence be
tween the maxima and minima ofdd(t)/dt and ^Jz&(t)/J. ~b! For
the second regular initial condition of Fig. 1~b!. In this case, only
the minima ofdd(t)/dt and^Jz&(t)/J have a clear correspondenc
due to the peculiar form of the orbit@see second figure of Fig. 1~b!#.
~c! Regular initial condition as marked in Fig. 2~a! and its spin-
projected orbit shown in Fig. 2~b!; during the interval of time cor-
responding to the rise ofd(t) there is an approximate correspo
dence between the maxima and minima ofdd(t)/dt and those of
^Jz&(t)/J.
04380
shared in the classical counterpart of the atomic degree
freedom, i.e.,

pa
21qa

2<4J. ~12!

This represents a fundamental difference between these
degrees of freedom. From the quantum point of view,
atomic degree of freedom is associated with a fini
dimensional Hilbert space whereas the harmonic oscillato
associated with a Hilbert space of infinite dimension.

Except when otherwise noted, in all cases to be prese
here the parameter values we chose areJ59/2, G50.5 and
G850.2, and«5v051 ~as shown in Ref.@18#, for these
parameter values the nearest-neighbor distribution of
energy-level spacings is of a Gaussian orthogonal ensem
type!. For the classical Hamiltonian in Eq.~10! we chose an
energy valueE58.5 for which the Poincare´ section (qf
50) is shown in Fig. 1~a!. Note the presence of two island
one of them of considerable relative size. In the center
such islands are located the two shortest stable periodic
bits whose atomic projections are shown in Fig. 1~b!. The
symbols in the Poincare´ section@Fig. 1~a!# represent the cen
ter of the initial quantum wave packets whose time evolut
we will show in the next section. For the sake of comparis
we also study the classical energyE535 whose Poincare´
section is shown in Fig. 2~a!. The size of the many regula
islands is comparatively much smaller. Both chosen ener
are larger than the limit given by Eq.~12!, therefore the
entire atomic phase space is energetically available for
initial conditions in the Poincare´ sections. Moreover, the fac
that the energies are large enough, together with the lim
tion imposed by Eq.~12!, has dramatic consequences on t
form of the projections of the periodic orbits onto the atom
phase space. One can see an example of this in Fig. 2~b! ~this
particular point has been explored in Refs.@17,19#!.

FIG. 4. For the energyE58.5 in the integrable (G50.5 and
G850.0) and resonant («5v051) case, the plot of linear entrop
d(t) for initial condition on a periodic orbit which iscircular ~see
inset! (qa50.0,pa52.476 75,qf50.0, pf53.563 642). Notice that
the curve shows practically no oscillations as compared to Fig. 3~a!.
1-4
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FIG. 5. ~a! Linear entropyd(t) for the chaotic initial conditionscorresponding to the triangles shown in Fig. 1~a!: c1 (qa524.0,pa

50.0,qf50.0, pf53.162 278) for the continuous line;c2 (qa51.57,pa522.0, qf50.0, pf55.680 465) for the dashed line; andc3 (qa

53.0,pa52.0, qf50.0, pf52.942 413) for the dot-dashed line.~b! Spin projections of the orbitsc1 and c2. Various times are indicated
along the orbits showing that the initial conditions are such that the trajectoryc2 in spin phase space is launched inward as opposite to
casec1, for instance.~c! d(t) ~continuous line!, dd(t)/dt ~dashed line!, and^Jz&(t)/J ~dot-dashed line! for c1. ~d! d(t) ~continuous line!,
dd(t)/dt ~dashed line!, and ^Jz&(t)/J ~dot-dashed line! for c2. During the interval of time corresponding to the rise ofd(t) there is an
approximate correspondence between the maxima and minima ofdd(t)/dt and^Jz&(t)/J but for shorter time than it happens for the regu
cases shown in Figs. 3~a! and 3~b!.
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III. ENTANGLEMENT DYNAMICS
IN REGULAR REGIONS

The linear entropyd(t) corresponding to the reduced
density matrix for the atomic subsystem is shown in Fig. 3~a!
for initial conditions of the type given in Eq.~4!, where the
centers of these wave packets are on the periodic orbits
dicated in Fig. 1~a!. Note that the linear entropy not onl
increases but exhibits a well-marked oscillatory behavior,
dicating that the system recovers coherence in a periodic
for sufficiently short times. Interestingly enough, howev
the period of recoherences observed in the linear entr
doesnot correspond to the periodt of the periodic orbit in
question. It issmaller, roughly t/2. This indicates that an
other property of these orbits may be playing a role. T
property is theshapeof the spin~atomic! projection of the
orbit. Note the strong correlation between the maxim
growth in linear entropy and the closest approach to the c
04380
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sical atomic phase-space border. This happens in the c
shown here and in all cases we analyzed for short eno
times. A natural question arises as to the representat
dependence of our explanation. In order to clarify this po
we use a representation-independent quantity, which is
mately connected to the radius of the orbit projection,
expectation value of the operatorJz @20#. In Fig. 3~a! we also
showdd/dt and Tr@Jzra(t)#. Note that the first four maxima
in ^Jz&(t) correspond, to a very good accuracy, to maxima
dd/dt, indicating that whenever the ‘‘radius’’ is maximum,
maximum growth in linear entropy is found. It is in thi
sense that we conclude that the recoherences—purity g
found in the time evolution of quantum coherent wave pa
ets initially centered at the regular region—are related to
proximity of the classical atomic phase-space border.
course when the initial wave packet is centered on a perio
orbit located in a smaller island, as is the case of the sec
1-5
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ANGELO, FURUYA, NEMES, AND PELLEGRINO PHYSICAL REVIEW A64 043801
orbit in Fig. 1~b!, the chaotic vicinities also play an impo
tant role and the established connection betweendd/dt and
Tr@Jzra(t)# is less pronounced, as shown in Fig. 3~b!. Due to
the shape of the orbit, in this case the proximity to the cen
and hence the minima of both functions are more clea
seen to be connected. We next consider two more ca
which independently corroborate these findings. Cons
first the Poincare´ section in Fig. 2~a! and the initial condition
for the quantum evolution centered at the circle marked
the section, and the spin projection of the periodic or
shown in Fig. 2~b!. In this case we note that the amount
time spent in the vicinities of the phase-space border@per-
forming the ‘‘loop’’ in Fig. 2~b!# is large compared to the
period of the orbit. Note that during this time,dd/dt is posi-
tive and the linear entropy grows@see Fig. 3~c!#. Also, for the
subsequent times where the orbit quickly crosses from
‘‘loop’’ to the other, it approaches the center of the atom
phase space and correspondinglydd/dt becomes negative
and the linear entropy decreases. Since the time of grow
much larger than the time of decreasing, the linear entr
reaches the plateau faster.

On the other hand, in the integrable caseG850, the spin
~atomic! projections of the periodic orbits are circular. In th
case, if the argument is valid, one should expect no osc
tions in d(t). This is in fact the case, as shown in Fig.
where one sees, moreover, that it takes a longer time for
linear entropy to reach the plateau due to the consider
~and constant! distance between the orbit and the atom
phase-space border.

IV. ENTANGLEMENT DYNAMICS
IN THE CHAOTIC REGION

As discussed in Ref.@6# the entanglement in the chaot
region is, in general, faster than in the regular region. In F
5~a! we show the idempotency defect~linear entropy! for the
initial conditions of the form~4! centered at the triangle

FIG. 6. Spin Husimi distribution of the quantum coherent st
initially centered at conditionc2 in Fig. 5. Snapshots are taken
time valuest50 ~upper left!, t51 ~upper right!, t54 ~down left!,
and t525.
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marked on the Poincare´ section of Fig. 1~a!, and in Fig. 5~b!
the projection of the orbits are shown for the specific case
the initial conditions labeledc1 andc2 ~see figure captions!.
In these cases the linear entropy does not exhibit perio
oscillations, albeit oscillations are still present. Althou
they are not directly related to a periodic orbit, one can
plain the oscillations very much along the lines followed
the regular case. If we take a classical trajectory associ
with the center of the wave packet and follow its projecti
on the atomic phase space, we notice again that the pro
ity of this phase-space border plays a decisive role on
decoherence process. This is illustrated in Figs. 5~c! and 5~d!
for the initial conditionsc1 andc2. For the casec2, decoher-
ence is retarded due to the fact that the wave packet mo
initially towards the center of the phase space, following
classical trajectory shown in Fig. 5~b!. Note that as soon a
the classical trajectory approaches the border, there is a
responding increase in the entanglement ratedd/dt in Fig.
5~d!. Thus the linear entropy increases. In terms of
representation-independent quantity^Jz&(t), the same fea-
tures prevail. The remaining initial conditionc3, for which
d(t) has been evaluated in Fig. 5~a!, behaves in a qualita
tively analogous way as, for instance, the trajectory labe
c1 shown in Fig. 5~b! and will not be shown here. As to b
expected, in the chaotic region the relation between the
tion of the quantum wave packet and the classical trajec
associated with its center is rapidly overwhelmed by ot
effects such as the rapid spreading of the quantum w
function. In fact, in Fig. 6 we show the time evolution of th
spin Husimi distribution associated with the initial conditio
c2 in Fig. 5. This figure illustrates the given argument. Mor
over, we see that for times when the plateau ind(t) is
reached, the spin Husimi distribution is totally delocalized
the corresponding phase space. Finally we note that th
not a characteristic of the chaotic initial condition; the wa
packets centered at regular initial conditions also spread
over the spin phase space by the time the linear entr
reaches the plateau.

V. SUMMARY

The present work has been devoted to a detailed ana
of the dynamics of the process of entanglement in the cha
N-atom Jaynes-Cummings model. Previous work on
model @6,21# pointed out general features of the proce
mainly focusing on differences between chaotic and regu
regimes~unstable and stable!. The entanglement process o
the model is however very rich and much more can
learned from specific features of the linear entropy such a
oscillations~recoherences in time, periodic or not!. We have
found an intimate connection between these recohere
and classical orbits. Specifically, we have pointed out
very special role played by the morphology of the sp
projected classical orbits. This is in accordance with
known fact that the decoherence properties are dictated
the smaller subsystem@22#.

Considering the present state of experimental propo
and realizations of atomic coherent states in theN-atom
JCM, it seems that the integrable RW case (G850) is more

e
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likely to be realizable in a practical implementation of t
model considered in this work. Although not shown here,
RW case was checked for regular initial conditions on tor
phase space and showed similar recoherence phenome
described in the previous sections.

Despite the fact that these findings are model depend
we believe them to be typical of systems involving two d
grees of freedom, one of them having a Hilbert space w
dimension much greater than the dimension of the other,
whose classical limit is chaotic~soft chaos!.
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