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The rise in linear entropy of a subsystem in thk@tom Jaynes-Cummings model is shown to be strongly
influenced by theshapeof the classical orbits of the underlying classical phase space: we find a one-to-one
correspondence between maxitnanima) of the linear entropy and maxiniainima) of the expectation value
of atomic excitation),. Since the expectation value of this operator can be viewed as related to the orbit radius
in the classical phase-space projection associated with the atomic degree of freedom, the proximity of the
guantum wave packet to this atomic phase-space borderline produces a maximum rate of entanglement. The
consequence of this fact for initial conditions centered at periodic orbits in regular regions is a clear periodic
recoherence. For chaotic situations the same phenomenaximity of the atomic phase-space borderlirse
in general, responsible for oscillations in the entanglement properties.
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I. INTRODUCTION classical orbits. There is a clear correlation between the rate
of increase of linear entropy and the increase of the expec-
The importance of studying in detail the decoherence protation value of the atomic excitatidd,)(t) for short enough

cess is twofold. First, it may be viewed as a key to the untimes. In classical terms, this can be visualized as follows:
derstanding of some of the striking differences between thgjz>(t) is a measure of the instantaneous radius of the pro-
guantum and classical descriptions of the world such as "th?ection of the trajectory in the atomic phase space. This
nonexistence at the classical level of the majority of stategtomic phase space is limited, the maximum radius corre-

allowed by quantum mechanic$l]. The decoherence pro- %Oﬂds toy4d= 2N, meaning therefore that the maximum

cess is believed to be the agent that eliminates mterfer_en te of entanglement can be directly associated with the
between two or more macroscopically separated localize

. . ; . roximity of this borderline. If the quantum evolution is such
states[2]. Second, given the impressive technological ad- hat the initial wav ket i ntered at a classically reqular
vances in several experimental arégeantum optics, con- t atthe infal wave packet Is centered at a classically reguia
densed matter, atomic physics, gtdt is nowadays possible region of _the_ atom_lc phase space, in p_artlcular dnom_:lr- ]
to realize a system of two interacting degrees of freedom anSUIaO perlqdlc Ort_)'t' the phenomenon is mps_t conspicuous:
watch the time evolution of the corresponding entanglemen?S a function of time, the wave paqket eXh,'b'tS partial reco-
procesg3]. It is therefore also of importance to understandnerences, well-marked oscillations in the linear entropy su-
the entanglement process in simple Hamiltonian system$€limposed to a steady increase, which can be immediately
Hamiltonian systems with two degrees of freedom ofter@ssociated with smallest and largest distances from the clas-
present a very rich dynamics, which in many cases is not yegical border[largest or smalles{J,)(t)]. If, on the other
completely understood from a general point of view. In par-hand, the initial wave packet is centered on a classically
ticular, if the interaction is nonlinear the system may presenghaotic region of the phase space, the recoherence phenom-
chaotic behavior in the classical limit. The consequences oénon is of course not necessarily periodic in general. How-
this fact to the quantum dynamics is yet an unsettled issue. Aver, we still find a connection between maxima and minima
step in this direction was taken a few years ago, as it wasf the rate of linear entropy and,)(t). As to be expected,
conjectured that “the rate of entropy production can be usedhis simple relation becomes less clear as quantum effects set
as an intrinsically quantum test of the chaotic versus regulain; in particular, for the chaotic region this happens much
nature of the evolution'T4]. The idea has been tested in faster than for the regular one in a mixed phase space. Such
some model$5,6]. More specifically, in the context of the effects are most marked at sufficiently long times, when a
N-atom Jaynes-Cummings model, the reduced-density linegilateau in the linear entropy is reached. We show that at
entropy(or idempotency defechas been used as a measurethese times the spin projection of the wave packet becomes
of the entanglement of the quantum subsystems. For a givewtally delocalized in phase space. This takes place for initial
classical energy, initial conditions for the quantum states areonditions centered at reguland chaotic regions, the regu-
prepared as coherent wave packets centered at regular alad cases taking longer times to achieve this delocalization.
chaotic regions of the classical phase space. For short times, In Sec. Il we present the model and the technical tools to
a fast increase in decoherence for chaotic initial conditions i®e used in the following sections to analyze the entanglement
found when compared to regular ones. Typically the lineaproperty, connecting it to the classical regularity and chaos in
entropy in this model rises from zero to a plateau. a mixed regimen. Section Il is devoted to the presentation of

In the present contribution, we show that this rise isanalysis and results in regular regions, whereas Sec. IV deals
strongly influenced by thehapeof the atomic projection of with chaotic regions. A summary is given in Sec. V.
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Il. THE MODEL e.g., by means of the linear entrofyyr idempotency defegt
associated with the reduced-density matrices of the atomic or

We consider theN-atom Jaynes-Cummings modgY] field subsystemsfrom this point on we shall sgt=1),

whose Hamiltonian is given by

G S(H)=1-Tr[pi(t)?], 2
H=fwia'a+ed,+ —(al,+a'J_
wod'ated,+ \/ﬁ(a +a'J.) where
+ 8 aty, i), @ p(O=Tr[HO) (D] 3

V23
(i andj stand for the atomic and field subsystemsj). The
where the first term corresponds to the energy of the frequantities expressed in Eq®) and (3) are to be calculated
single-mode quantized field with frequeney, described by using quantum states evolving in time under the action of
the creation(annihilation operatorsaa’ (a); the second term Hamiltonian(1). To this end, the initial conditions chosen in
corresponds to the energy of tNe= 2J two-level atoms with  the present study are such that
energy separatiofie, and the operatory,, J.=J,*iJ, are

the usual angular momentum operators corresponding to the |p(0))=|w)®|v)=|wv), (4)
group SU2). These operators satisfy the well-known com-
mutation relations where|w) (Jv)) are atomic(field)-coherent states given by
[a,a']=1,
. — + o —J W, _
[3,,3,]=1hJ |w)=(1+ww) e"+|J,—J), (5)
with the indices {,j,k) forming any cyclic permutation of |v)=e‘””_’ze”bT|0> (6)

(x,y,2). The last two terms in Eq1) represent the interac-
tion energy between the atomic system and the single-modsith

field.
The above Hamiltonian is a generalized version of the p.+ig,
usualN-atom Jaynes-Cummings modgdIiCM) to which we W= ——, (7
have added a counter-rotating wa@RW) term with cou- V4J—(patda)
pling constantG’. The so-called rotating wave approxima-
tion (RWA) has been much in use for the proposals of me- 1
soscopic superpositions of collective atomic st4&8] and v=—=(ps+idy); (8)
in the generation of multiparticle entangled states in cavity- \/E

QED experiment$10].

The N-atom JCM can also be realized in systems wherdJ,—J) being the state with spid andJ,=—J, |0) being
trapped ions interact with laser fields. In that situation thethe harmonic-oscillator ground state, apg,d,.ps,q; de-
bosonic operatora anda’ describe the vibrational motion of scribing the phase space of the system under consideration.
the ions in the trap. Recently, reversible entanglement of ion&eneration of atomic coherent statesNfatom systems has
has been proposddi], and experimental realizations have been proposed if8] and analyzed if9].
been reported in the cases of two and four iph2], with The classical Hamiltonian corresponding to EL.can be
possible extensions to several igis3]. In the trapped-ion obtained by a standard procedure[ 4g]
system there is the possibility of generating both RW and
CRW types of interaction by means of either a bichromatic H(v,v* ,w,w*)=(wv|H|wv). 9
laser excitation — with botls and G’ different from zero
— or appropriate excitation modg¢4d4]. In the latter case, H(v,v*,w,w*) can be rewritten in terms of the phase-space
there would be the possibility to test the effects of R& (  variables, reading
=0) and CRW G=0) terms separately or together.

In our model we also add the supposition that the two wo €
coupling constants can be independently varied. When onéH(da,Pa,0s,Pf) = 7(p%+qf)+§(p§+ q5—2J)
of the coupling constant8 or G’ is set to zero, we have an

integrable system. Fd&'=0 (G=0) there is an additional p2+02

conserved quantity, namely, the total excitati®n=J,/% +\/1- T(GmapﬁGMan),
+a'a (the relative excitatio®’ =J,/4—a'a). The system

is otherwise nonintegrable and known to exhibit chaotic be- (10

havior in the classical limif15]. In both cases, the quantum
dynamics will produce entanglement due to the couplingvhereG.=G=+G'.
terms. This essentially quantum property can be quantified, The corresponding equations of motion are then given by
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FIG. 1. (a) Poincaresection given byg;=0.0 andp;>0.0 for
the spin degree of freedom with=9/2 in the nonintegrableQ
=0.5 andG’'=0.2) and resonants(= wy=1) case — these values
will be the same in all subsequent figures except when otherwise
noted. Here we show the section for the endfgy8.5. The marks
represent the various choices for the center of the coherent states:
circles for regular initial condition$IC) and triangles for chaotic
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FIG. 2. (a) Poincaresection for the energ¥=35. The circle

ones.(b) Spin projection of the two shortest stable periodic orbitsrepresents the center of the coherent state for one regular initial
indicated by circles in@) (the border line is also showninitial condition. (b) Spin projection of the shortest stable periodic orbit,

conditions at the surface of section are as follows,=0.0,p, indicated by the circle in(@). Initial condition at the surface of
=2.261,9;=0.0,p;=3.423 276) for the firstelliptic) orbit with section is as follows: d,=0.0,p,=1.4175,9:=0.0,p;

period 7=4.89; (d,=0.0,p,=—3.577,0;=0.0,p;=5.221656) =7.888904) with period=5.82.
for the second orbit with period=7.45.
. JH
Pa=7
- oH d0a
da= &pa i i
JatPa
oo g5+ Ps =80at G-V 15
- Spa +pf 4]
G G ) Qa (G+papf+G—anf)
+ _ —_ — —
Pa_ (G PaPi G A0 a3 a3-(qZ+pd)
Va3 43— (di+pd)
. oM \/W
. oH R \/1q§+p§
=" gp, ~ ~ @oP1T54Pa 43 It is important to note the restriction in energy to be
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FIG. 4. For the energE=8.5 in the integrable =0.5 and
G’=0.0) and resonants(= wy=1) case, the plot of linear entropy
S(t) for initial condition on a periodic orbit which isircular (see
inseb (q,=0.0,p,=2.476 750:=0.0, p;=3.563 642). Notice that
the curve shows practically no oscillations as compared to Fay. 3

shared in the classical counterpart of the atomic degree of
freedom, i.e.,

p2+qi=<4J. (12)

This represents a fundamental difference between these two
degrees of freedom. From the quantum point of view, the
atomic degree of freedom is associated with a finite-
dimensional Hilbert space whereas the harmonic oscillator is
associated with a Hilbert space of infinite dimension.

Except when otherwise noted, in all cases to be presented
here the parameter values we choselré®/2, G=0.5 and
G’'=0.2, ande=wy=1 (as shown in Ref[18], for these
parameter values the nearest-neighbor distribution of the
energy-level spacings is of a Gaussian orthogonal ensemble
type). For the classical Hamiltonian in EGLO) we chose an
energy valueE=8.5 for which the Poincaresection €
=0) is shown in Fig. {a). Note the presence of two islands,
one of them of considerable relative size. In the center of
such islands are located the two shortest stable periodic or-
bits whose atomic projections are shown in Figh)1 The
symbols in the Poincarsection[Fig. 1(a)] represent the cen-
ter of the initial quantum wave packets whose time evolution

dé(t)/dt (dashed lines and the normalized expectation value We will show in the next section. For the sake of comparison

(J,)(t)/J (dot-dashed linesas functions of time(a) for the first

we also study the classical ener§y=35 whose Poincare

regular initial condition of Fig. (b). Note the correspondence be- section is shown in Fig.(2). The size of the many regular

tween the maxima and minima dfs(t)/dt and(J,)(t)/J. (b) For

islands is comparatively much smaller. Both chosen energies

the second regular initial condition of Fig(k). In this case, only are larger than the limit given by Edq12), therefore the
the minima ofd5(t)/dt and(J,)(t)/J have a clear correspondence entire atomic phase space is energetically available for all

due to the peculiar form of the orisee second figure of Fig(l)].
(c) Regular initial condition as marked in Fig(a& and its spin-
projected orbit shown in Fig.(B); during the interval of time cor-

initial conditions in the Poincarsections. Moreover, the fact
that the energies are large enough, together with the limita-
tion imposed by Eq(12), has dramatic consequences on the

responding to the rise 0f(t) there is an approximate correspon- form of the projections of the periodic orbits onto the atomic

dence between the maxima and minimaddi(t)/dt and those of

(31,

phase space. One can see an example of this in fyg(this
particular point has been explored in Rdft7,19).
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FIG. 5. (a) Linear entropys(t) for the chaotic initial conditionscorresponding to the triangles shown in Figa)ic, (q,=—4.0,p,
=0.0,gq;=0.0, p;=3.162 278) for the continuous line, (q,=1.57,p,= —2.0,9;=0.0, p;=5.680 465) for the dashed line; awrd (g,
=3.0,p,=2.0,0;=0.0, p;=2.942 413) for the dot-dashed lingn) Spin projections of the orbits; andc,. Various times are indicated
along the orbits showing that the initial conditions are such that the trajecidryspin phase space is launched inward as opposite to the
casec,, for instance(c) &(t) (continuous ling d&(t)/dt (dashed ling and{J,)(t)/J (dot-dashed linefor c,. (d) &(t) (continuous ling
dés(t)/dt (dashed ling and(J,)(t)/J (dot-dashed linefor c,. During the interval of time corresponding to the rise&ft) there is an
approximate correspondence between the maxima and miniehé(df/dt and(J,)(t)/J but for shorter time than it happens for the regular
cases shown in Figs(& and 3b).

Ill. ENTANGLEMENT DYNAMICS sical atomic phase-space border. This happens in the cases
IN REGULAR REGIONS shown here and in all cases we analyzed for short enough
times. A natural question arises as to the representation-

density matrix for the atomic subsystem is shown in Fig) 3 dePendence of our explanation. In order to clarify this point
for initial conditions of the type given in Ed4), where the W€ Use a representatlon-lnde_pendent quantity, V\_/h|c_h is inti-
centers of these wave packets are on the periodic orbits iff@t€ly connected to the radius of the orbit projection, the
dicated in Fig. 1a). Note that the linear entropy not only €xpectation value of the operatdy[20]. In Fig. 3a) we also
increases but exhibits a well-marked oscillatory behavior, inshowds/dt and TfJ,p,(t)]. Note that the first four maxima
dicating that the system recovers coherence in a periodic waiff (J2)(t) correspond, to a very good accuracy, to maxima in
for sufficiently short times. Interestingly enough, however,dé/dt, indicating that whenever the “radius” is maximum, a
the period of recoherences observed in the linear entropgnaximum growth in linear entropy is found. It is in this
doesnot correspond to the period of the periodic orbit in  sense that we conclude that the recoherences—purity gains
question. It issmaller, roughly 7/2. This indicates that an- found in the time evolution of quantum coherent wave pack-
other property of these orbits may be playing a role. Thisets initially centered at the regular region—are related to the
property is theshapeof the spin(atomig projection of the proximity of the classical atomic phase-space border. Of
orbit. Note the strong correlation between the maximumcourse when the initial wave packet is centered on a periodic
growth in linear entropy and the closest approach to the clagrbit located in a smaller island, as is the case of the second

The linear entropys(t) corresponding to the reduced-
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marked on the Poincasection of Fig. 1a), and in Fig. %b)

7 the projection of the orbits are shown for the specific cases of
023 2 ’,0 N the initial conditions labeled; andc, (see figure captions
° ~.,..,:,.,f,’,ll,.“§,:. A In these cases the linear entropy does not exhibit periodic
qo - oscillations, albeit oscillations are still present. Although

they are not directly related to a periodic orbit, one can ex-
plain the oscillations very much along the lines followed in
the regular case. If we take a classical trajectory associated
with the center of the wave packet and follow its projection
on the atomic phase space, we notice again that the proxim-
ity of this phase-space border plays a decisive role on the
decoherence process. This is illustrated in Figs) &nd 5d)

for the initial conditionsc, andc,. For the case,, decoher-
ence is retarded due to the fact that the wave packet moves
initially towards the center of the phase space, following the
classical trajectory shown in Fig(l5H. Note that as soon as
the classical trajectory approaches the border, there is a cor-
responding increase in the entanglement théé&dt in Fig.

FIG. 6. Spin Husimi distribution of the quantum coherent state5 d. Th the i ¢ - In t f th
initially centered at conditiort, in Fig. 5. Snapshots are taken at (d). us the flinear entropy Increases. In terms o e

time valuest=0 (upper lefl, t=1 (upper right, t=4 (down left, representati_on-indepenqent qugpt{tyzxt)., .the same .fea-
andt=25. tures prevail. The remaining initial conditiary, for which

4(t) has been evaluated in Fig(a, behaves in a qualita-
orbit in Fig. 1(b), the chaotic vicinities also play an impor- tively analpgogs way as, fqr instance, the trajectory labeled
tant role and the established connection betweéfdt and €1 Shown in Fig. §b) and will not be shown here. As to be
Tr[J,p4(t)] is less pronounced, as shown in Figo)3 Due to e_xpected, in the chaotic region the relation bet\_/veen the mo-
the shape of the orbit, in this case the proximity to the centefion of the quantum wave packet and the classical trajectory
and hence the minima of both functions are more C|ear|)ﬁssomated with its centgr is rap|d_ly overwhelmed by other
seen to be connected. We next consider two more casegffects such as the rapid spreading of the quantum wave
which independently corroborate these findings. Considefunction. In fact, in Fig. 6 we show the time evolution of the
first the Poincareection in Fig. 23) and the initial condition ~ SPIN H.USImI d|§tr|put|on_ associated Wltlh the initial condition
for the quantum evolution centered at the circle marked irf2 in Fig. 5. This figure illustrates the given argument. More-
the section, and the spin projection of the periodic orbitoVerl, we see that for times when the plateaudift) is
shown in Fig. 2b). In this case we note that the amount of reached, the spin Husimi dlstrlbutlon is totally delocallzed_ in
time spent in the vicinities of the phase-space bofger- the correspond!ng phase space. I_:njglly we note that this is
forming the “loop” in Fig. 2(b)] is large compared to the Nhota characteristic of the ch.aqt]c initial .c.ondmon; the wave
period of the orbit. Note that during this time:g/dt is posi- packets cen_tered at regular initial condltlons al_so spread all
tive and the linear entropy grovisee Fig. &)]. Also, for the ~ OVer the spin phase space by the time the linear entropy
subsequent times where the orbit quickly crosses from onkeaches the plateau.

“loop” to the other, it approaches the center of the atomic
phase space and correspondingly/dt becomes negative V. SUMMARY
and the linear entropy decreases. Since the time of growth is
much larger than the time of decreasing, the linear entropy The present work has been devoted to a detailed analysis
reaches the plateau faster. of the dynamics of the process of entanglement in the chaotic
On the other hand, in the integrable c&e=0, the spin  N-atom Jaynes-Cummings model. Previous work on the
(atomig projections of the periodic orbits are circular. In this model [6,21] pointed out general features of the process,
case, if the argument is valid, one should expect no oscillamainly focusing on differences between chaotic and regular
tions in &(t). This is in fact the case, as shown in Fig. 4, regimes(unstable and stableThe entanglement process of
where one sees, moreover, that it takes a longer time for thée model is however very rich and much more can be
linear entropy to reach the plateau due to the considerabléarned from specific features of the linear entropy such as its
(and constantdistance between the orbit and the atomicoscillations(recoherences in time, periodic or notVe have
phase-space border. found an intimate connection between these recoherences
and classical orbits. Specifically, we have pointed out the
IV ENTANGLEMENT DYNAMICS very special ro!e playgd by t.he. m_orphology of thel spin-
IN THE CHAOTIC REGION projected classical orbits. This is in accordance with the
known fact that the decoherence properties are dictated by
As discussed in Ref6] the entanglement in the chaotic the smaller subsystef22].
region is, in general, faster than in the regular region. In Fig. Considering the present state of experimental proposals
5(a) we show the idempotency defdtinear entropy for the  and realizations of atomic coherent states in ta@tom
initial conditions of the form(4) centered at the triangles JCM, it seems that the integrable RW ca&® €0) is more
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likely to be realizable in a practical implementation of the ACKNOWLEDGMENTS

model considered in this work. Although not shown here, the

RW case was checked for regular initial conditions on tori in It is a pleasure to thank Professor H. A. Weideismfor

phase space and showed similar recoherence phenomenafiast calling our attention to the need to explain the oscilla-

described in the previous sections. tions in the linear entropy, and T. H. Seligman for helpful
Despite the fact that these findings are model dependendiscussions and for reading the manuscript. The authors ac-

we believe them to be typical of systems involving two de-knowledge financial support from the Brazilian agencies

grees of freedom, one of them having a Hilbert space witfFundg@ de Amparo aPesquisa do Estado déd®aulo

dimension much greater than the dimension of the other, andFAPESP and Conselho Nacional de Desenvolvimento Ci-

whose classical limit is chaotioft chaos entfico e Tecnolgico (CNPQ.

[1] Letter from Albert Einstein to Max Born in 1954, cited by E. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, Phys.
Joos, inNew Techniques and Ideas in Quantum Measurement  Rev. Lett.81, 3631(1998; C. A. Sackett, D. Kielpinski, B. E.
Theory edited by D. M. GreenbergéNew York Academy of King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Tur-
Science, New York, 1986 chette, W. M. Itano, D. J. Wineland, and C. Monroe, Nature

[2] H. D. Zeh, Found. Phyd, 69(1970; H. Dekker, Phys. Rev. A (London 404, 256 (2000.

16, 2126(1977; W. H. Zurek, Phys. Rev. 24, 1516(1981;  [13] Ch. Roos, Th. Zeiger, H. Rohde, H. C.'¢¢l, J. Eschner, D.
26, 1862(1982; W. G. Unruh and W. H. Zurekbid. 40, 1071 Leibfried, F. Schmidt-Kaler, and R. Blatt, Phys. Rev. L&8,

P. Paz, and Y. .Zhang, Phys. Rev.45, 2843 (1992; W. H. [14] J. 1. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, Adv. At., Mol.,
Zurek, S. Habib, and J. P. Paz, Phys. Rev. L&@. 1187 Opt. Phys37, 237 (1996

(Sltziga;tezlcuG;ur:lc;“I’—l EE') ;Z%S’cgﬁe::iir’aid tﬁgp:Chéalr.arche [15] P. W. Milonni, J. R. Ackerhalt, and H. W. Galbraith, Phys. Rev.
! 0 cEUR bp Lett. 50, 966 (1983; P. W. Milonni, M. L. Shih, and J. R.

of a Classical World in Quantum Theo ringer-Verlag, . . :
Q pring g Ackerhalt, Chaos in Laser-Matter InteractiondVorld Scien-

Berlin, 1996. - . . S .
9 tific Lecture Notes in Physics Vol. 6World Scientific, Sin-

[3] M. Brune, E. Hagley, J. Dreyer, X. Mae, A. Maali, C. Ean .
Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. gapore, 198f R. Graham and M. erbach, Z. Phys. B:

77, 4887(1996; C. Monroe, D. M. Meekhof, B. E. King, and Condens. Mattebs7, 233 (1984); in Quantum Measurement
D. J. Wineland, Scienca72, 1131(1996. and Chaos\ol. 161 of NATO Advanced Studies Institute, Se-
[4] W. H. Zurek and J. P. Paz, Physicad3, 300 (1995; W. H. ries B: Physicsedited by E. R. Pike and S. Sarkdlenum,
Zurek, S. Habib, and J. P. Paz, Phys. Rev. L@@, 1187 New York, 1987, p. 147.
(1993. [16] J. R. Klauder and B.-S. Skagersta@gherent States: Applica-
[5] A. Tameshtit and J. E. Sipe, Phys. RewWA 1697(1993; K. tions in Physics and Mathematical Physid&/orld Scientific,
Shiokawa and B. L. Hu, Phys. Rev.32, 2497(1995. Singapore, 1985
[6] K. Furuya, M. C. Nemes, and G. Q. Pellegrino, Phys. Rev.[17] M. A. M. de Aguiar, K. Furuya, C. H. Lewenkopf, and M. C.
Lett. 80, 5524(1998. Nemes, Ann. PhygN.Y.) 216, 291 (1992.
[7] M. Tavis and F. W. Cummings, Phys. ReW70, 379 (1968; [18] C. H. Lewenkopf, M. C. Nemes, V. Marvulle, M. P. Pato, and
see also R. H. Dickeabid. 93, 99 (1954. W. F. Wreszinski, Phys. Lett. A55 113(1991).
[8] G. S. Agarwal, R. R. Puri, and R. P. Singh, Phys. Re®6A  [19] M. A. M. de Aguiar, K. Furuya, C. H. Lewenkopf, and M. C.
2249(1997; C. C. Gerry and R. Grobdhid. 56, 2390(1997); Nemes, Europhys. Letll5, 125(1991); K. Furuya, M. A. M.
57, 2247(1998; M. G. Benedict and A. Czifjg ibid. 60, 4034 de Aguiar, C. H. Lewenkopf, and M. C. Nemes, Ann. Phys.
(1999. (N.Y.) 216, 313(1992.
[9] J. Recamier, O. Castag, R. Juegui, and A. Frank, Phys. Rev. [20] This connection is easily seen by noting thav|J,|wv)
A 61, 063808(2000. =3(p2+0q2-2J).
[10] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M[21] R. M. Angelo, K. Furuya, M. C. Nemes, and G. Q. Pellegrino,
Brune, J.-M. Raimond, and S. Haroche, Scie288 2024 Phys. Rev. B60, 5407 (1999.
(2000. [22] E. Schrainger, Proc. Cambridge Philos. S&1, 555 (1935;
[11] K. Mdlmer and A. Seensen, Phys. Rev. Le&2, 1835(1999); 32, 446 (1939; M. C. Nemes and A. F. R. de Toledo Piza,
A. Strensen and K. Mimer, Phys. Rev. A2, 022311(2000. Physica A137, 367 (1986; A. Ekert and P. L. Knight, Am. J.
[12] Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Phys.63, 415(1995.

043801-7



