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Skyrmion physics in Bose-Einstein ferromagnets
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We show that a ferromagnetic Bose-Einstein condensate has not only line-like vortex excitations, but in
general, also allows for pointlike topological excitations, i.e., skyrmions. We discuss the thermodynamic
stability and the dynamic properties of these skyrmions for both spin-1/2 and ferromagnetic spin-1 Bose gases.
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I. INTRODUCTION

An understanding of quantum magnetism is important
a large number of phenomena in physics. Three well-kno
examples are high-temperature superconductivity, quan
phase transitions, and the quantum Hall effect. Moreove
appears that magnetic properties are also very importan
another area, namely, Bose-Einstein condensation in trap
atomic gases. This has come about because of two inde
dent experimental developments. The first developmen
the realization of an optical trap for atoms, whose operat
no longer requires the gas to be doubly spin polarized@1,2#.
The second development is the creation of a two-compon
Bose-Einstein condensate@3#, which by means of rf fields
may be manipulated so as to make the two components
sentially equivalent@4#. As a result, the behavior of bot
spin-1 and spin-1/2 Bose gases can now be experimen
explored in detail. Indeed, at present, already such dive
phenomena as domain walls@5#, macroscopic quantum tun
neling @6#, Rabi oscillations, and vortices@7# have been ob-
served.

Theoretically, the ground-state structure of these gases
recently been worked out by a number of authors@8–11# and
also the first studies of the linelike vortex excitations ha
appeared@8,12,13#. However, an immediate question th
comes to mind is whether the spin degrees of freedom a
for other topological excitations that do not have an analo
in the case of a single component or scalar Bose conden
It is one of the aims of this paper to show that the answe
this question is, in general, affirmative. In particular, w
show that a ferromagnetic Bose-Einstein condensate ha
called skyrmion excitations, which are nonsingular but n
ertheless topologically nontrivial pointlike spin texture
Roughly speaking, the skyrmion is an excitation that can
created out of the ground state, in which all the spins
aligned, by reversing the average spin in a finite region
space. Skyrmions are also known from nuclear physics@14#
and the quantum Hall effect@15#, but to observe them in an
atomic gas would be exciting, since in that case, a co
pletely microscopic understanding of their behavior is p
sible. In nuclear physics and the quantum Hall effect this
not true because of the nonperturbative nature of QCD
the presence of impurities that obstruct the center-of-m
motion of the skyrmions, respectively. Having proven th
existence, we then turn to the investigation of the prec
texture, the energetic stability, and finally the dynamical
havior of skyrmions. Some of the results of this analysis
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have already reported in previous communications@16#, but
here we try to give a much more complete and detailed p
ture of the skyrmion physics in spinor Bose-Einstein cond
sates.

With this in mind, we would like to mention that we re
cently have also considered ’t Hooft–Polyakov monopo
@17# in an antiferromagnetic Bose-Einstein condensate@18#.
These topological excitations are in fact singular skyrmio
but have quite different properties than the nonsingular sk
mions, which are the object of study in this paper. In partic
lar, due to the singular nature of the spin texture of t
’t Hooft–Polyakov monopole, the condensate density v
ishes in the core and the monopole turns out to be ther
dynamically stable. This is completely analogous to the c
of a vortex in a scalar Bose-Einstein condensate. Both th
features are not shared by the nonsingular skyrmions, wh
complicates the analysis considerably. The most impor
problem in this respect is that for a nonsingular skyrmio
the topology allows for a spin texture with an arbitrary i
trinsic size. As a result, the stability of the skyrmion is no
determined by energetic arguments and not by topolog
arguments, as in the case of the singular ’t Hooft-Polyak
monopole.

The paper is organized as follows. In Sec. II, we use
symmetry properties of the order parameter of a spinor Bo
Einstein condensate to show that, quite generally, skyrm
excitations indeed exist in such a condensate. We then
our attention to the ferromagnetic case and discuss s
general properties of these topological excitations, espec
the spin texture, the superfluid velocity profile, and also
density profile. In Sec. III, we investigate the energetic s
bility of the skyrmion and show that from a thermodynam
point of view they are always unstable and tend to decre
to microscopic sizes. As a result, we then consider the
namical stability of the skyrmion and, in particular, dete
mine the rate at which they collapse. We find that und
certain conditions, this rate is actually much smaller than
decay rate of the condensate itself due to various inela
processes. Therefore, the skyrmion may for all practical p
poses, be considered as a~meta!stable excitation and we ar
justified to look in Sec. IV also at other important dynam
properties of the skyrmion such as the ‘‘spin’’ and the cent
of-mass motion. Finally, we end in Sec. V by a summary a
some conclusions.

II. SKYRMIONS AS TOPOLOGICAL EXCITATIONS

In this section, we discuss in detail the main static fe
tures of skyrmions. First of all, we show from the symme
©2001 The American Physical Society12-1
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U. AL KHAWAJA AND H. T. C. STOOF PHYSICAL REVIEW A64 043612
of the order-parameter space of the spinor condensate,
from a topological point of view pointlike skyrmion excita
tions may indeed exist in both spin-1/2 and spin-1 Bo
Einstein condensates. Focusing then on the ferromagn
case, we introduce a convenient parametrization of the s
mion texture, which allows us to incorporate most easily
nontrivial winding number associated with the skyrmio
Next, we write down the energy functional for a ferroma
netic spinor condensate and, by substituting the abo
mentioned parametrization, derive the corresponding Eu
Lagrange equations for the density profile and the s
texture of the skyrmion. Finally, to simplify the actual calc
lation of the skyrmion density profile and the spin textu
we propose a variational approach that automatically ta
into account the desired overall features of the skyrmion t
ture.

A. Topological considerations

To find all possible topological excitations of a spin
condensate, we need to know the full symmetry of the m
roscopic wave-functionC(r )[An(r )z(r ), wheren(r ) is the
total density of the gas,z(r ) is a normalized spinor tha
determines the average local spin by means of^S&(r )
5za* (r )Sabzb(r ), andS are the usual spin matrices obeyin
the commutation relations@Sa ,Sb#5 i eabgSg . Note that
here, and in the following, summation over repeated indi
is always implicitly implied. From the work of Ho@8#, we
know that in the case of spin-1 bosons we have to cons
two possibilities, since the effective interaction between t
spins can be either antiferromagnetic or ferromagnetic. In
antiferromagnetic case, the ground-state energy is minim
for ^S&(r )50, which implies that the parameter space for t
spinorz(r ) is only U(1)3S2 because we are free to choo
both its overall phase and the spin quantization axis. In
ferromagnetic case, the energy is minimized foru^S&(r )u
51 and the parameter space corresponds to the full rota
group SO~3!. Using the same arguments, we find that
spin-1/2 bosons, the order-parameter space of the gro
state is always equivalent to SU~2! @19#.

What do these results tell us about the possible topol
cal excitations@20,21#? For linelike defects or vortices, w
can assumez(r ) to be independent of one direction and t
spinor represents a mapping from a two-dimensional pl
into the order-parameter space. If the vortex is singular,
will be visible on the boundary of the two-dimensional pla
and we need to investigate the properties of a continu
mapping from a circleS1 into the order-parameter spaceG,
i.e., of the first homotopy groupp1(G). Sincep1„SU(2)…
5p1„SO(3)…5Z2 andp1„U(1)3S2

…5Z, we conclude that
a spin-1/2 and a ferromagnetic spin-1 condensate may h
only vortices with a winding number equal to one, where
an antiferromagnetic spin-1 condensate may have vort
with winding numbers that are an arbitrary integer. Phy
cally, this means that by traversing the boundary of the pla
the spinor may wind around the order parameter at m
once or an arbitrary number of times, respectively. This c
clusion is identical to the one obtained previously by Ho@8#.
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If the vortex is nonsingular, however, the spinorz(r ) will
be identical everywhere on the boundary of the tw
dimensional plane and it effectively represents a mapp
from the surface of a three-dimensional sphereS2 into the
order-parameter space. We then need to consider the se
homotopy groupp2(G). For this we have thatp2„SU(2)…
5p2„SO(3)…50 andp2„U(1)3S2

…5Z. Hence, nonsingu-
lar or coreless vortices are only possible for a spin-1 cond
sate with antiferromagnetic interactions. It therefore appe
that the nonsingular spin texture discussed in Ref.@8#, is
topologically unstable and may be continuously deform
into the ground state by ‘‘local surgery’’@21#.

We are now in a position to discuss pointlike defec
Since the boundary of a three-dimensional gas is also
surface of a three-dimensional sphere, singular pointlike
fects are also determined by the second homotopy gr
p2(G). Such topological excitations thus only exist in th
case of a spin-1 Bose gas with antiferromagnetic inter
tions. We call these excitations ’t Hooft and Polyakov mon
poles@17#, although it would be justifiable to call them sin
gular skyrmions. For nonsingular pointlike defects, t
spinor z(r ) will again be identical on the boundary of th
three-dimensional gas. As a result, the configuration spac
compactified to the surface of a four-dimensional sphereS3

and we need to determine the third homotopy groupp3(G).
For this we findp3„SU(2)…5p3„SO(3)…5p3„U(1)3S2

…

5Z. Hence, nonsingular skyrmion excitations exist in
three cases.

B. skyrmion texture

We consider from now on only the case of a homog
neous and ferromagnetic spinor condensate. In the gro
state, all spins are aligned along the direction of a unifo
and sufficiently weak magnetic field, which we take to
along thez axis. The uniform magnetic field is needed on
to direct the spins in the ground state, but it should not p
vide a substantial energy barrier for spin flips. The fact t
we consider a homogeneous gas and not a confined on
only for simplicity and turns out not to be crucial for th
practical applicability of our work. This is so because the,
our purposes, relevant length scale over which the skyrm
spin deformations take place is always of the order of
correlation length, which under typical experimental con
tions is much less than the length scale for density gradie
due to the confining potential. The skyrmion excitation is
space-dependent spin deformation of the ground state
can thus be represented by a position-dependent spinorz(r ).
A convenient way of introducing the position dependence
the spinor is to write it in terms of a position-depende
rotation that acts on the constant spinorzZ associated with
the ferromagnetic groundstate. In this manner, we have

z~r !5expH 2
i

S
V~r !•SJ zZ. ~1!

Here, the constant spinorzZ minimizes the Zeeman energ
and is given by
2-2
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zZ55 S 1
0D , S5

1

2

S 1
0
0
D , S51,

~2!

in the usual basis that diagonalizesSz . Furthermore,V(r ) is
a real vector function ofr . It parametrizes the ferromagnet
order-parameter space, which due to our incorporation of
factor 1/S in Eq. ~1! is always a sphere of radiusp. We point
out that here and throughout the following,S can only take
the values 1/2 or 1. The significance of Eq.~1! is that at a
point r the spinor zZ is rotated by an angle that equa
uV(r )u/S around the direction ofV(r ). There is no restric-
tion on the generality of spin textures produced by t
means; it is merely a convenient parametrization of
order-parameter space in terms ofV(r ). Since we are mostly
interested in the equilibrium properties, we assume here
simplicity the maximally symmetric shape of the skyrmio
which is expected to have the smallest possible gradie
This means that we take

V~r !5v~r !r /r[v~r ! r̂ , ~3!

where the functionv(r ) should obey the boundary cond
tions v(0)52p and limr→`v(r )50 @22#. Thus, at these
boundaries, the rotation operator in Eq.~1! becomes the
identity and gives rise toz(r50)5z(r→`)5zZ. Further-
more,v(r ) should as a function of radius decrease mono
nocally from 2p to 0, since this will correspond to the sma
est gradient energy for the spin deformations. With t
ansatz forV(r ) and its boundary conditions, we see that
traversing the whole configuration space, we exactly co
the order-parameter space twice, which is required to avo
singular behavior of the spinor atr50. Indeed, the boundary
conditionv(0)5p, which in first instance appears to be th
right one as it leads to a spin texture that covers the or
parameter space only once, is physically unacceptable
cause it results in a singular behavior of the spinorz(r ) and
therefore in divergencies in the gradient energy. The rea
for this singular behavior is that, given the maximally sym
metric shape of the skyrmion, the spinorz(r ) is always equal
to zZ in the origin. Note that apart from topological reason
the condition limr→`v(r )50 also ensures that the spin d
formations associated with the skyrmion have a finite ran
so that only a finite amount of energy is required to excite
skyrmion from the ground state. Thus, both on thez axis and
far away from the center of the skyrmion, the spins are
rected as in the ground state. From these general feature
can now draw a qualitative picture of the skyrmion textu
Suppose we approach the origin along a line through
origin, starting from a distance much larger than the range
the spin deformations. Then how does the average local
behave as a function of distance? According to the ab
description of the rotation operator depicted in Fig. 1,
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spin initially points up along thez axis, but by approaching
the origin, it will start to rotate around the radial directio
until we approach the origin and the spin points up again
is essential that the spins complete an integer numbe
cycles equal to 1/S in order to have a nonzero topologic
winding number given by

Nsk5
3

8p4E dV5
1

16p4E dre i jkeabg] iV
a] jV

b]kV
g,

~4!

which in this case, is equal to one.
Summarizing, we have obtained the desired position

pendence ofz(r ) in terms of a single functionv(r ) that
describes how the average local spin vector is tilted from
orientation in the ground state. This function and the loc
densityn(r ) represent the two degrees of freedom that
scribe the skyrmion and our next task is to determine th
precise spacial dependence.

C. Energy functional

For a ferromagnetic spinor condensate, Ho@8# has shown
that, within the mean-field approach, the energy functiona
the absence of a magnetic field is given by

E@n,z#[E dr F \2

2m
~“An~r !!22mn~r !1

\2

2m
n~r !u“z~r !u2

1
1

2
T2Bn2~r !G , ~5!

wherem is the mass of the atoms,m is their chemical poten-
tial, andT2B54pa\2/m is the appropriate coupling consta

FIG. 1. Schematic figure representing the action of the s
rotation operator for a maximally symmetric skyrmion. At a po
tion r , the average spin vector is pointing initially in thez direction.
The spin rotation operator rotates the spin vector aroundr by an
anglev(r ).
2-3
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that represents the strength of the interatomic interaction
terms of the positive scattering lengtha. The term
\2n(r )u“z(r )u2/2m represents the energy density associa
with the gradients in the spin texture. It is this term th
enforces the boundary-conditionv(0)52p, as discussed
previously.

For sufficiently large distances, the gradient terms van
and we infer from Eq.~5! that m5n`T2B, wheren`5n(r
→`). Using this, Eq.~5! may be put in a dimensionles
form by scaling the lengths to the correlation lengthj
51/A8pan`, the density ton` , and the total energy to
\2n`j/2m. In this manner, Eq.~5! becomes
n

py
III

04361
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«@ f ,z#[E drF ~“rAf ~r!!21 f ~r!u“rz~r!u2

1
1

2
f 2~r!2 f ~r!G , ~6!

with r5r /j andn(r )5n` f (r). The gradient termu“rz(r)u2

is calculated in the Appendix explicitly as a function
v(r). This is achieved by inserting in the usual basis t
spin-1 and spin-1/2 matrices in the rotation operator, p
forming a power expansion and then using some proper
of the powers of the spin matrices to sum the resulting in
nite series into the following compact formula
u“rz~r!u25H 2S sin@v~r!#

r D 2

1S dv~r!

dr D 2

, S51/2

@52cos~2u!#S sin@v~r!/2#

r D 2

1
1

4
@31cos~2u!#S dv~r!

dr D 2

, S51,

~7!
nd
n-
e

er
al-

ed

ich
s
ati-

the

it
of

er-
ms
as
e
o
for
o

ita-
er

its
whereu is the azimuthal angle betweenr and thez axis.
Finally, the density profilef (r) and the functionv(r) can

be determined from the two coupled differential equatio
resulting from minimizing«@ f ,z# with respect tof (r) and
v(r), namely,

2
“r

2Af ~r!

Af ~r!
1u“rz~r!u21 f ~r!2150, ~8!

and

1

S
^ f ~r!&1sinS v~r!

S D22S
d

drFr2^ f ~r!&2S dv~r!

dr D 2G50,

~9!

where

^ f ~r!&15H 1

4pE dr̂f ~r!, S51/2

1

4pE dr̂@52cos~2u!# f ~r!, S51

~10!

and

^ f ~r!&25H 1

4pE dr̂f ~r!, S51/2

1

4pE dr̂
1

4
@31cos~2u!# f ~r!, S51.

~11!

In the spin-1 case, Eqs.~7! and ~8! show that the density
profile is, in principle, anisotropic. However, the anisotro
turns out to be rather small as we show explicitly in Sec.
s

.

D. Ansatz for v„r …

In principle, to calculate the exact skyrmion texture a
density profile, we should now solve the two-coupled no
linear differential equations that result from minimizing th
energy functional with respect tof (r) and z(r), namely,
Eqs.~8! and ~9!. As an alternative, we employ here a rath
simpler, though less rigorous, approach. We simplify the c
culations by introducing an ansatz forv(r) that takes explic-
itly into account the physical boundary conditions discuss
in the previous section. Our ansatz is

v~r!54 cot21~r/l!2, ~12!

wherel is a parameter that determines the radius at wh
v(r) crosses over from 2p to 0 and physically correspond
to the size of the skyrmion. We see that this ansatz autom
cally satisfies the boundary-conditionsv(0)52p and
limr→`v(r)50, as required. It should be noted here that
detailed functional behavior ofv(r) will turn out not to be
crucial for our results on the skyrmion stability as long as
satisfies the prescribed boundary conditions and falls
monotonically. To substantiate this remark, we have p
formed also calculations using a number of different for
for v(r) that satisfy the desired boundary conditions such
v(r)52p/@11(r/l)2#. We found, as expected, that th
skyrmion energy only differs slightly from one function t
the other and, in particular, that the energy is minimized
the function given in Eq.~12!. Fortunately, this ansatz is als
simpler to handle analytically.

III. STATIC AND DYNAMICAL STABILITY

The most important question about the skyrmion exc
tion is whether it is energetically stable or not. In oth
words, how does the energy of the skyrmion depends on
2-4
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size? As we show next, the answer to this question is that
skyrmion always tends to shrink to microscopic sizes
minimize its energy. Although this is an unfortunate result
does not need to rule out an experimental observation of
skyrmion excitation as long as the typical time scale for t
collapse is sufficiently long. Therefore, we also consider t
problem after we have discussed the thermodynamical st
ity of the skyrmion.

For sufficiently large skyrmions, the gradients of t
spinor z(r ) are small and density fluctuations are therefo
also small. The energy of the skyrmion may then be appro
mated by (\2n`/2m)*dr u“z(r )u2. If the size of the skyr-
mion is of order ofl, this energy scales asl. This indicates
that the skyrmion tends to shrink in order to minimize
energy. However, for smaller sizes, the density fluctuati
and their gradients start to grow and this simple argumen
longer applies. For large skyrmions, Eq.~8! shows that the
density fluctuations scale asf (r)21'u“rz(r)u2}1/l2 and
their energy contribution thus behaves as 1/l. Approaching
smaller values ofl, the kinetic-energy term in Eq.~8! in-
creases and the density fluctuations will scale with a po
of l that is greater than22, because otherwise, the dens
would become negative at some point. As a result, the en
will scale with a power ofl that is different from one.
Therefore, there is, in principle, a chance for stability if t
energy associated with the density fluctuations is at so
point increasing whenl becomes smaller. To investigate th
possibility, we need to calculate the energy as a function ol
exactly for all values ofl. If the energy function possesses
~local! global minimum for a finitel, then the skyrmion is
energetically~meta!stable. We have indeed calculated th
energy curve, the details can be found in Sec. III B belo
and it turns out that the skyrmion energy actually increa
monotonically withl. This means that a skyrmion of an
finite size is energetically unstable and will tend to decre
to zero size. Of course, this condition holds within the Gro
Pitaevskii theory, which describes only the long-wavelen
physics. Corrections to this theory will lead to a finite, b
microscopically small size of the skyrmion. However,
mentioned previously, for observing the skyrmion expe
mentally, it is important to know the time scale for its co
lapse since it could be larger than the lifetime of the cond
sate itself due to various inelastic processes, such as two
three-body collisions and, in an optical trap, photon abso
tion.

From our analysis of the skyrmion shrinking rate, it tur
out that there are two size regimes with different shrink
mechanisms. The first is for skyrmions with a sizel that is
much larger than the correlation length of the gas. The s
ond regime is for much smaller skyrmions with sizes of t
order of the correlation length or less. In the next two s
tions we calculate the skyrmion energy and estimate
shrinking rate in these two regimes.

A. Large skyrmions

As mentioned earlier, large skyrmions have a sizel that
satisfiesl@j51/A8pan`, wherej is the correlation length
of a homogeneous gas of average densityn` and s-wave
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interatomic scattering lengtha. In this section, we expres
the lagrangian of the skyrmion in terms of a time-depend
skyrmion sizel(t). An equation of motion forl(t) is then
derived. It should be noted here that comparison between
calculation in this section and experiment is only meaning
for skyrmion sizes much less than the condensate size s
this calculation is for a homogeneous system and does
take into account the effect of the trap. The two conditio
thus imply that the spinor condensate is deep in the Thom
Fermi regime.

For large skyrmions, the gradients in the spinorz(r ) are
small and therefore the fluctuations in the densitydn(r )
5n(r )2n` are also small compared to the average den
n` . The energy of the skyrmion can thus be determined
an harmonic approximation to the Gross-Pitaevskii ene
functional given in Eq.~5!. To second order indn(r ) it is
given by

E@n,z#5
1

2E drE dr 8 dn~r !x21~r2r 8!dn~r 8!

1E dr n~r !S \2

2m
u“z~r !u22gB•^S&~r ! D ,

~13!

wherex(r2r 8) is the static density-density response fun
tion, which is defined by

\2

4mǹ
~2¹2116pan`!x~r2r 8!5d~r2r 8! ~14!

but explicitly reads

x~r2r 8!5
mǹ

pj\2

exp~2A2ur2r 8u/j!

ur2r 8u/j
. ~15!

B is either a fictitious, caused by resonant rf fields, or a r
homogeneous magnetic field, andg is the corresponding
magnetic moment of the atoms in the trap. Considering fi
the ideal case of zero magnetic-fieldB and solving for the
density fluctuations induced by the spin texture, the lagra
ian takes the formL@z#5T@z#2E@z#, where

E@z#5E drn`

\2

2m
u“z~r ,t !u2

2
\4

8m2E drE dr 8u“z~r ,t !u2x~r2r 8!u“z~r 8,t !u2,

~16!

and
2-5
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T@z#5E drn`z†~r ,t !i\
]

]t
z~r ,t !

1
1

2E drE dr 8z†~r ,t !i\
]

]t
z~r ,t !

3x~r2r 8!z†~r 8,t !i\
]

]t
z~r 8,t !, ~17!

as a result of the fact that in Gross-Pitaevskii theory,
action for the ferromagnetic condensate contains the ti
derivative term *dt*drn(r ,t)z†(r ,t) i\]z(r ,t)/]t. The
equation of motion forl(t) may be derived from the abov
lagrangian by substituting our ansatz forz(r ,t) given in Eqs.
~1!, ~3!, and~12!. In the present limit,l@j and the second
term in the energyE@z# is much smaller than the first one
Therefore, we do not take it into account. Using the expl
expressions foru“z(r )u2 from Eq. ~7!, the energy is calcu-
lated to be

E@l#5C
\2

2m
n`l, ~18!

whereC5(29220S)A2p2. For the time-dependent contr
bution T@z#, we calculate firstz†(r ,t)]z(r ,t)/]t, which
turns out to be equal to2 i l̇(]v/]l)cosu for both S51/2
andS51, where the dot denotes a derivative with respec
time. Since]v/]l is an even function inr, the first term of
T@z# vanishes. Thus,T@l# turns out to be

T@l#5
l

A2a
ml̇2. ~19!

So, combining Eqs.~18! and~19!, we see that the action fo
the dynamical variablel(t) is equivalent to that of a particle
with a position-dependent effective massm* 5A2ml/a in
the linear potentialV(l)5C\2n`l/2m. Scaling againl to
the correlation lengthj, the numberA2l/a takes the form
l/A4pn`a3. Experimentally, the dimensionless parame
n`a3 is typically of order 1025. This leads to an effective
massm* '102lm. Thus, a typical adult skyrmion mass, fo
sayl510, is 103 times atomic mass. Finally, the equation
motion for l(t) reads

2ll̈1l̇21c50, ~20!

where c5(29220S)p. In this equation, lengths are aga
scaled to the correlation lengthj and time is scaled to the
correlation timet52mj2/\. In these units the condition o
validity of this equation isl@1. For the initial conditions
l(0)5l0 and l̇(0)50, we find that

l5l0S 12
c

4l0
2

t2D ~21!

is a solution to Eq.~20!. This formula shows that large sky
mions decrease with a rateg large'Ac/2l0t, which indicates
that spin-1/2 skyrmions decrease almost twice as fas
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spin-1 skyrmions. In both cases, one can make the shrin
rate smaller by exciting larger skyrmions. For realistic es
mates of these shrinking rates, we restore the units in
above expression forg large. For 87Rb spin-1/2 condensate o
central density 10211 cm23, the rate then readsg large
'18.06j/l sec21.

B. Small skyrmions

The cruicial difference between large skyrmions a
small skyrmions, apart from the size difference, is that d
sity fluctuations for small skyrmions are much more impo
tant than for the large skyrmions. The density depletion p
duced by the spin gradients increases for smaller skyrmio
and thus, we cannot consider the density to be essent
uniform anymore. Therefore, the linear-response appro
followed in the previous section does not apply. To take
density fluctuations properly into account, we need to use
full energy functional. As already mentioned, it leads to
size dependence of the skyrmion energy, such that the s
mion tends to decrease to zero size. The shrinking proc
however, is now fundamentally different and more comp
cated than that for the large skyrmions. In this case, while
skyrmion is shrinking, the density becomes increasingly
pleted in a region that forms a closed shell around the ce
of the skyrmion. For sufficiently smalll, the depletion will
be so large that the atoms inside the closed shell are es
tially isolated from the atoms outside the shell. This w
considerably slow down the collapse of the skyrmion sin
the atoms within the shell need to tunnel over a poten
barrier to escape to the other side of the shell and to en
the skyrmion to decrease further. It turns out that the size
the skyrmion at this stage is of the order of the correlat
length and the lifetime of the skyrmion due to the abo
tunneling process can be much larger than the lifetime of
condensate itself.

1. Density profile and texture

With our ansatz forv(r) in Eq. ~12! the problem is sig-
nificantly simplified since to determine the density profile w
only have to solve Eq.~8!, which is basically a nonlinea
Schrödinger equation with some external potent
u“rz(r)u2. Substituting our ansatz forv(r) in Eq. ~7!, the
latter takes the form

u“rz~r!u2

55 32S r

l2D 2
@312~r/l!413~r/l!8#

@11~r/l!4#4 , S51/2

4~1713 cosu2!S r

l2D 2
1

@11~r/l!4#2
, S51.

~22!

This is an off-centered potential barrier with a maximu
height of 24.3/l2 at r'0.68l, for S51/2 and a maximum
height equal to 3A3(1713 cos2u)/4l2 at r 5l/31/4 for S
51. Using this form foru“z(r)u2, we solve Eq.~8! numeri-
cally for one particular value ofl. Then we use the resulting
2-6
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SKYRMION PHYSICS IN BOSE-EINSTEIN FERROMAGNETS PHYSICAL REVIEW A64 043612
density distributionf (r) to calculate the energy for that pa
ticular value ofl. Performing the same calculation for di
ferent values ofl, we finally obtain the energy of the sky
mion as a function ofl, from which we can judge the
stability of the skyrmion.

For the spin-1/2 case, the density profile for various v
ues ofl is shown in Fig. 2. In the case ofS51, the calcu-
lation is more complicated due to the angular dependenc
u“rz(r)u2. This complication is handled by noticing tha
u“rz(r)u2 can be rewritten in terms ofY00(u,f) and
Y20(u,f) only, whereYlm(u,f) are the usual spherical ha
monics. We thus also expand Eq.~8! in the spherical har-
monics up tol 52 using

Af ~r!5y0~r!Y00~u,f!1y2~r!Y20~u,f!. ~23!

Then, two coupled equations can be obtained by taking
l 50 and l 52 components of Eq.~8!. Specifically, we sub-
stitute Eq.~23! into Eq. ~8! and multiply byY00(u,f) and
Y20(u,f), respectively, and then perform an angular integ
tion. The resulting equations take the form

2¹r
2y01

16

l2

~r/l!2

@11~r/l!4#2 S 4y01
1

A5
y2D 1

1

4p
y0

3

1
3

4p
y0y2

21A 5

14p
y2

35y0 ~24!

and

2¹r
2y21

6

r2
y21

16

l2

~r/l!2

@11~r/l!4#2 S 1

A5
y01

58

7
y2D

1
3

4p
y2y0

213A 5

14p
y0y2

21
15

28p
y2

35y2 , ~25!

FIG. 2. The density profile for a skyrmion in a spin-1/2 conde
sate for different values ofl. These curves are the numerical sol
tions of Eq.~8! using Eq.~22!.
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where¹r
25(1/r2)]/]r@r2(]/]r)#. The result of the numeri-

cal solutions of these two equations is presented in Fig
From this figure, it is clear that the anisotropic part off (r),
which is represented byy2(r), is considerably smaller than
the isotropic part. This result will be employed in the follow
ing to simplify the energy calculation by neglecting the a
gular dependence off (r). Note that forS51/2, this is not an
approximation.

Having specifiedv(r ) enables also a detailed visualiz
tion of the skyrmion texture by calculating the average s
projections, i.e.,̂ Sx&5z†(r )Sxz(r ), ^Sy&, and ^Sz&. In Fig.
4, we plot these quantities as a function ofr for the spin-1
case using, again,l5j. Similar plots for the spin-1/2 cas
can be found in our previous work@16#. The skyrmion can be
best visualized from itŝSz&~ r ! component, which is shown
in the Appendix to be equal to

^Sz&5cos2u1cosv sin2u. ~26!

This expression is used to produce the two upper false-c
figures in Fig. 4. These figures show clearly that the sk
mion corresponds to a torodial region. Along the inner rad
of the torus, the direction of the average spin vectors is
posite to that in the ground state. An interesting prope
shows up when we calculate the associated superfluid ve
ity vs(r )52 i\z†(r )“z(r )/m. This is given by

vs5\F r̂ cosu
dv

dr
2û

1

r
sinu sinv2f̂

2

r
sinu sin2~v/2!G .

~27!

From the above two expressions we find that the superfl
velocity is such that the atoms are simultaneously rotat
around the inner radius of the torus and around thez axis.
This corresponds to a spiraling motion around the inner
dius of the torus. The speed is maximum in the center of
torus. Furthermore, the maximum depletion of the dens

-
FIG. 3. Density profile for a skyrmion in a spin-1 spinor co

densate with a size ofl5j. The solid curve represents the isotrop
part of n(r ) and the dashed curve represents the anisotropic p
These are the numerical solution of Eqs.~24! and ~25!.
2-7
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FIG. 4. ~Color! False-color figures representing the average spin^S&(r ) for a skyrmion in a spin-1 condensate in different Cartes
planes. The size of the skyrmion is taken here to be equal tol5j. The^Sy& figures can be obtained from the^Sx& figures by using the axia
symmetry of the texture.
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takes place at the maximum ofu“z(r )u2, which turns out to
be in the center of the torus, where the spin vector is a
completely flipped, i.e.,̂Sz&521. In the case of a spin-1/2
condensate, the spin texture consists of two torii. The ve
ity field in this case is such that atoms spiral around
center of one torus clockwise and along the center of
other torus counterclockwise, but for both torii, the ato
rotate around thez axis in the same direction. The spins a
04361
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completely flipped along the inner radii of the two torii. Th
density is mostly depleted along a radius that is sligh
smaller than the inner radius of the larger torus. The shif
only approximately three percent of the size of the skyrmi

2. Equilibrium state

The outcome of the calculation in the previous subsect
is the skyrmion density profile as a function ofl. Therefore,
2-8
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SKYRMION PHYSICS IN BOSE-EINSTEIN FERROMAGNETS PHYSICAL REVIEW A64 043612
the energy of the skyrmion, determined from Eq.~5!, is now
also a function ofl. The skyrmion will be energetically
stable if this energyE@l# has a local or global minimum an
the equilibrium size of the skyrmion will be equal to th
value ofl at that minimum. It should be noted that what w
call the energy of the skyrmion is actually the gran
canonical energy. This implies that the density profile
solved by using a fixed chemical potential for all values ofl.
Consequently, the number of atoms associated with the s
mion excitation, which equalsu*dr @n(r )2n`#u, is also l
dependent.~The subtracted term is to cancel the diverge
part coming from the fact that the system is infinite. In
confined system, there is no need to make this subtraction! It
may therefore not be immediately clear that minimizing t
grand-canonical energy is appropriate. In principle, we m
minimize the true energy of the skyrmion at a fixed numb
of atoms. We now explicitly show though, that these pro
dures are equivalent.

Let us take the number of atoms in the system equal toN.
This means that in the absence of the skyrmion*drn`5N.
Suppose we now put in a skyrmion of sizel in the conden-
sate without affecting the asymptotic density, i.e.,n(r→`)
5n` . Due to the depletion of the density near the cente
the skyrmion, the total number of atoms associated with
density profile is slightly less thanN by an amountDN(l)
5*dr @n`2n(r ,l)#. Physically, this means that to produc
this skyrmion we have to removeDN(l)!N atoms to the
edge of the spinor condensate. If we, however, want to p
duce a skyrmion with the same number of atoms in the c
densate, we have to adjust the asymptotic density. This
plies that a reasonable approximation to the density profil
actually @N/(N2DN)#n(r ,l) because then

N

N2DNE drn~r ,l!5N
N2DN~l!

N2DN~l!
5N. ~28!

Using this density profile to calculate the true energy of
skyrmion and expanding the various terms in it up to fi
order in DN(l)/N, we reproduce exactly the grand
canonical energyE@l#. Thus, we conclude that minimizin
the canonical energy with a fixed number of atoms is ind
equivalent to minimizing the grand-canonical energy a
fixed chemical potential, and thus, with a changing num
of atoms. The second method is clearly more conven
numerically since it is difficult to keep the number of atom
fixed for each value ofl.

In Fig. 5, we show our final result of this calculatio
where we have takenn(r ) to be isotropic, since in the pre
vious section we saw that the angular dependence ofn(r )
can indeed be neglected. In detail, we have plotted h
E@n(r )#2mn(r )2(E@n`#2mn`) againstl. Again, we sub-
tract the divergent part due to the infiniteness of the syst
Unfortunately, both of the two curves do not have a mi
mum for any finitel and only contain a global minimum a
l50. This means that, according to this figure, the skyrm
is energetically unstable, i.e., if the skyrmion is created w
a finite size it will ultimately decrease to zero size. Th
process is clearly seen in Fig. 2, where we plot the skyrm
density profile for different values ofl. In the next section,
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we examine this shrinking process for the small skyrmio
more closely. In particular, we again look at the time sc
over which this shrinking occurs and find that for curre
experimental situations it is of the order of, or even long
than, the lifetime of the condensate itself.

Finally, we mention here some remarks about the effec
a homogeneous external magnetic field and the slight dif
ences in the scattering lengths of the different hyperfine s
states. In the presence of a homogeneous magnetic-fieldB, it
will be energetically unfavorable to flip spins. Therefore, th
will lead to a further reduction in the spin of the skyrmio
and, thus, not to a stabilization. A slight difference in t
various scattering lengthsDa, as appropriate for the spin-1/
87Rb condensate@23#, leads to an additional term in the en
ergy expression for the spinor condensate of the fo
(4pDa\2/m)*drn(r )^Sz&(r ), which has exactly the sam
effect as an external magnetic field. It cannot stabilize
skyrmion either.

3. Shrinking rate

The goal of this section is to estimate the time scale o
which the skyrmion decreases to zero size. A key elemen
understanding the dynamics of this process is the behavio
the potential barrier produced by the spin gradientsu“z(r )u2

whenl goes to zero. This potential is written down expli
itly in Eq. ~22!. When l is decreasing, the location of th
off-centered peak of this potential is approaching the ori
as l and its height is increasing as 1/l2. This potential is
thus an isotropic three-dimensional repulsive shell that is
creasing in strength as it becomes smaller. We denote f
now on the atoms inside this shell by the ‘‘core’’ atoms a
the ones outside by the ‘‘external’’ atoms. We have seen
the previous section that, in principle, the skyrmion is u
stable and that it is energetically favorable for the skyrm

FIG. 5. Energy of a skyrmion as a function of its size. Plott
with the solid~dashed! curve is the energy for a spin-1~spin-1/2!
spinor condensate. The dotted asymptotes are the largel limit of
the energy, which is linear inl and is given by the spin gradien
term in the energy functional only. Energy is in units of the cor
lation energyEj5(4p\2/2mj2).
2-9



t u
ha
ha
y
he
hi
y.
th
in
o
th

k-
t
th
ev
p
ig
e
b
w

ky
ig
a

u
tia
id
l
a

or

o-

on
te
th

s-
er
cin
ti

f
e
m
m
tio

r

t

d. It
d on
ime
r-
r-

n
the
ent

p
e

ble
ull

f

er-
of

U. AL KHAWAJA AND H. T. C. STOOF PHYSICAL REVIEW A64 043612
to decrease to zero size irrespective of the initial size. Le
therefore consider a skyrmion of a large initial size, such t
the height of the corresponding potential barrier is less t
the chemical potentialm5n`T2B of the system. The densit
distribution will be almost uniform everywhere except in t
region where the barrier has its maximum height. In t
region, the density profile will be depleted only slightl
When the skyrmion starts to decrease, the depletion of
density becomes larger, since the height of the barrier
creases. This is achieved physically by transporting the c
atoms over the potential barrier to the external region. So
central densityn(0) decreases while the skyrmion is shrin
ing, as can be seen in Fig. 2. At a certain size, the heigh
the barrier becomes equal to the chemical potential of
atoms at large distances. As the skyrmion decreases
further, the barrier height actually exceeds the chemical
tential. At this stage, the shrinking process slows down s
nificantly since the core atoms will now have to tunn
through a potential barrier. The rate of this process will
characterized by the usual WKB tunneling rate, which
calculate now.

To calculate this tunneling rate, we assume that the s
mion has decreased to a size for which the barrier is so h
that the overlap between the wave functions of the core
oms and the external atoms is exponentially small. The t
neling rate will then be determined by the chemical poten
of the core atoms, as well as the barrier height. We cons
the situation that there areNcore core atoms with a chemica
potentialmcore less than the height of the barrier. Note th
physically we must always have thatmcore>m, since the col-
lapse of the skyrmion will squeeze the atoms inside the c
For small r /l, we notice from Eq.~22! that the potential
(\2/2m)u“z(r )u2 may be approximated by a harmonic p
tential well with a characteristic frequencyv0 that equals
A48\/ml2 for S51/2 andA32\/ml2 for S51. It thus has a
characteristic lengthl 5l/A96 for S51/2 andl 5l/8 for S
51. This allows us to use a Thomas-Fermi approximati
the validity of which will be discussed below, to calcula
mcore. Moreover, the tunneling rate is calculated using
following WKB expression@24#

gsmall'
v0

2p
expF22E

r 1

r 2
drAu“zu222mmcore/\

2G .
~29!

The radial points r 1 and r 2 are the points where
(\2/2m)u“z(r )u2 andmcore intersect. The use of a Thoma
Fermi approximation is justified when the mean-field int
action energy of the core atoms is larger than the spa
between the lowest energy levels of the harmonic poten
well. Specifically, the ratio 2Na/ l 52A96Na/l should be
bigger than one. Figure 6~a! shows the equilibrium size o
the small skyrmion, which is calculated by minimizing th
total energy while keeping the number of the core ato
constant, as a function of the number of the core ato
Ncore. From this figure, we observe that the above ra
equals approximately 1 forNcore54 and it increases fo
larger Ncore. For experimental situations, Fig. 6~b! shows
that the skyrmion can live for a time ranging from seconds
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hundreds of seconds, which is long enough to be observe
should be noted that the above expression, which is base
a variational approach, somewhat overestimates the lifet
of the skyrmion. However, this is not crucial for our pu
poses, since by shrinking slightly, the lifetime of the sky
mion increases considerably.

IV. SKYRMION DYNAMICS

A very important dynamical variable of the skyrmio
arises from the fact that the Euler-Lagrange equations for
skyrmion spin texture is invariant under a space-independ
rotation of the average local spin̂S&(r ) around the
magnetic-field directionB̂ @25#. Mathematically, this means
that if the spinorzsk(r ) describes a skyrmion, then ex

$2iqB̂•S%zsk(r ) describes also a skyrmion with the sam
winding number and energy. The dynamics of the varia
q(t) associated with this symmetry is determined by the f
action for the spin textureS@z#5*dt(T@z#2E@z#), where

FIG. 6. Shown are~a! the small skyrmions size as a function o
the number of core atoms and~b! the shrinking rate of skyrmion as
a function of the number of core atoms. This calculation was p
formed for a 87Rb spin-1/2 condensate with a scattering length
a55.4 nm.
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SKYRMION PHYSICS IN BOSE-EINSTEIN FERROMAGNETS PHYSICAL REVIEW A64 043612
E@z# and T@z# are given by Eqs.~16! and ~17! with n`

replaced by the density profilen(r ) of the skyrmion and
x(r2r 8) should now be interpreted as the exact dens
density correlation function in the presence of the skyrmi
Hence, substitutingz(r ,t)5exp$2iq(t)B̂•S%zsk(r ) and mak-
ing use of the conservation of total particle numberN to
introduce the change of the average local spin projection
the magnetic field̂DSuu&(r )5B̂•^S&(r )2NS induced by the
skyrmion, we obtain, apart from an unimportant bound
term, that the dynamics of the rotation angleq(t) is deter-
mined by the action

S@q#5E dt H ]q~ t !

]t
\^DSuu

tot&1
1

2
I S ]q~ t !

]t D 2J , ~30!

where ^DSuu
tot& is the change of the total spin along th

magnetic-field direction and the ‘‘moment of inertia’’ of th
skyrmion equals

I 5\2E drE dr 8^DSuu&~r !x~r ,r 8!^DSuu&~r 8!. ~31!

For a large skyrmion, this integral can be performed by s
stituting ^DSuu&5^Sz&2NS and using Eq.~14! for x(r ,r 8).
The explicit expressions for̂Sz& can be found in the Appen
dix. An even simpler expression forx(r ,r 8) may be obtained
by neglecting the gradient terms in Eq.~14!. Then

x~r ,r 8!5
m

4p\2a
d~r2r 8!. ~32!

Using this approximation we find

I 55
53p

40A2

l3

a
m, S51/2

14p

15A2

l3

a
m, S51.

~33!

The importance of this result is twofold. First, from th
action in Eq. ~30!, we see that at the quantum level, t
Hamiltonian for the dynamics of the wave functionC(q,t)
becomes

H5
1

2I S \

i

]

]q
2\^DSuu

tot& D 2

. ~34!

Therefore, the ground-state wave function is given
C0(q)5eiKq/A2p, with K an integer that is as close a
possible tô DSuu

tot&. In this way, we thus recover the fact th
according to quantum mechanics, the total number of s
flips associated with the skyrmion texture must be an inte
More precisely, we have actually shown that the many-bo
wave function describing the skyrmion is an eigenstate of
operatorB̂•Stot with eigenvalueNS2K. Note that physically
this is equivalent to the way in which ‘‘diffusion’’ of the
overall phase of a Bose-Einstein condensate leads to the
servation of particle number@26,27#.
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Furthermore, the existence of this internal degree of fr
dom becomes especially important when we deal with m
than one skyrmion in the condensate. In that case, ev
skyrmion may have its own orientation and we expect
interaction between two skyrmions to have a Josephson-
contribution proportional to cos(q12q2). As a result, the
phase diagram of a gas of skyrmions may become extrem
rich and contain both quantum as well as classical, i.e., n
zero temperature, phase transitions@25#. In this context, it is
interesting to mention two important differences with t
situation in the quantum Hall effect. First, the fact that t
spin projectionK of the skyrmion is an integer shows th
these excitations have an integer spin and are there
bosons@28#. In the quantum Hall case, the skyrmions a
fermions with half-integer spin, due to the presence o
topological term in the actionS@z# for the spin texture@29#.
Second, in a spinor Bose-Einstein condensate, the skyrm
are not pinned by disorder and are, in principle, free to mo
Both differences will clearly have important consequenc
for the many-body physics of a skyrmion gas.

Focusing again on the single skyrmion dynamics, we c
make the last remark more quantitative by using the an
z(r ,t)5zsk@r2u(t)# for the texture of a moving skyrmion
which is expected to be accurate for small velocit
]u(t)/]t. Considering for illustrative purposes again, on
the isotropic approximation, we find in a similar way as b
fore that the action for the center-of-mass motion of the sk
mion becomes

S@u#5E dt
1

2
M S ]u~ t !

]t D 2

, ~35!

where the mass is now simply given by

M5
m2

3 E drE dr 8x~r ,r 8!^vs&~r !•^vs&~r 8! ~36!

in terms of the superfluid velocity of the spinor condens
vs(r ). Note that in the anisotropic spin-1 case, this mass is
principle, a tensor, but with only very small nondiagon
components.

Similar to the moment of inertia, we can calculate th
mass explicitly for large skyrmions. The result is

M55
19p

18A2

l

a
m, S51/2

2A2p

3

l

a
m, S51.

~37!

The skyrmions thus indeed behave in this respect as ordi
particles. In contrast to Eq.~30!, there thus appears no term
linear in ]u(t)/]t in the actionS@u#. This is a result of the
fact that we have performed all our calculations at zero te
2-11
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perature. In the presence of a normal component, we an
pate the appearance of such a linear term with an imagin
coefficient. This will lead to damping of the center-of-ma
motion of the skyrmion. It is interesting to note that if w
perform the same analysis for a vortex in a scalar cond
sate, we find, due to the singular nature of the superfl
velocity field, even at zero temperature an additional te
linear in the velocity of the vortex. In a quas
two-dimensional situation, it is in fact proportional t
u(t)3]u(t)/]t. This precisely results in the well-known Eu
ler dynamics of vortices.

V. CONCLUSION

One important conclusion of this paper is that skyrmio
in a ferromagnetic Bose-Einstein condensate are ener
cally unstable. However, we have also shown that the t
scale on which the skyrmion decreases may be of the o
of, or even larger, than the lifetime of the condensate. It tu
out that there are two very different mechanisms for
shrinking of the skyrmion. The first occurs for skyrmion
with sizes much larger than the correlation length of the g
In this case, the shrinking rate is of the order of seconds
realistic experimental parameters. The second case conc
smaller skyrmions with sizes of the order or less than
correlation length of the system. In this case, the shrink
rate is determined by the tunneling rate from the core of
skyrmion to the uniform part of the system. The tunneli
takes place through a potential barrier developed by s
deformations. The typical time scale for such a shrink
process is of the order of 10 – 100 s.

Although we have considered a homogeneous discuss
the inclusion of a trap in the system will not change the m
conclusions of this paper. The presence of a trap will h
the effect that the uniform densityn` will be now a position-
dependent quantity. Therefore, for our calculations to
valid for a trapped gas, the size of the skyrmion must
much less than the typical length scale for the density gr
ents of the confined condensate. Thus, the conditionl!R
must be met, whereR is the size of a spherical condensa
For typical experimental conditions, we may use t
Thomas-Fermi approximation to the size of the condens
@30#, which readsR5A2/p(Na/ l )1/5l , whereN is the num-
ber of atoms in the condensate andl 5A\/mv0 is the char-
acteristic length of a harmonic trap of frequencyv0. Scaling
R to the correlation lengthj, the former takes the formR
54N1/5( l /a)4/5. For a 87Rb condensate withN5106 atoms
and a trap frequency of the order of 2p3100 rad/s this gives
R'500. This gives an estimate for the maximum size o
skyrmion such that the above condition remains valid. F
example, our theory for large skyrmions is applicable for
size range ofl510j up to say 50j.

Another important remark about a confined gas is t
skyrmions will tend to move towards the surface of t
Bose-Einstein condensate since the density there is lo
and thus their energy will be less. Apparently, this leads t
decrease in the shrinking rate since for both large and s
skyrmions, the shrinking time is proportional to 1/n` , see
Eq. ~21! and the discussion afterwards, and Eq.~29! and the
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discussion before it. However, our theory for the shrinki
rates of skyrmions clearly breaks down on the surface si
there the typical length scale for the density gradients du
the trap are of the same order as the correlation length.

Although skyrmion-antiskyrmion pairs can be created
the Kibble mechanism in a temperature quench or by su
ciently shaking up the condensate, a more controlled wa
creating a skyrmion may be achieved by using a magne
field configuration in which the fictitious magnetic field
always pointing radially outward and its magnitude increa
monotonically from zero at the origin to a maximum valu
for large distances from the origin@31#. Applying this field
configuration for such a long time that the spins at lar
distances have precessed exactly twice around the local m
netic field, creates a single skyrmion. Of course, for a r
magnetic field, the above configuration requires the use
magnetic monopoles, but for a fictitious magnetic field,
may be achieved by appropriately tailoring the detuning,
polarization, and the intensity of two pulsed Raman lase
The required spatial dependence of the detuning may be
ated experimentally by separating the centers of the magn
traps for the two spin species along thez axis @4#. Further-
more, the desired behavior of the Rabi frequency may
achieved by making with the first Raman laser two stand
waves in thex and y directions that are both polarized pe
pendicular to thez axis. For the other Raman laser, we on
need to require that it produces a traveling wave with a
larization that has a nonzero projection on thez axis, since
we want to realize aDm50 transition in this case. In the
above geometry the skyrmion is created exactly in the pl
where the detuning vanishes and in the nodes of the
Raman laser. Note that since the distance between t
nodes is generally much bigger than the correlation leng
we create in this manner a large skyrmion that will start
decrease but ultimately self-stabilizes at a smaller size. O
created, the skyrmion may be easily observed by the u
expansion experiments that have recently also been use
observe vortices@32#. Similar as with vortex rings, we then
observe an almost complete depletion of the condensate
ring around the position of the skyrmion.
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APPENDIX: DETAILS OF THE CALCULATION
OF ŠSx‹, ŠSy‹, ŠSz‹, z†

„r …“z„r …, AND z“zz2
„r …

We start by expanding the exponential operator in Eq.~1!,
taking into account the simplification expressed in Eq.~3!.
Inserting the explicit forms of the spin-1/2 and spin-1 mat
ces given by@33#
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S55
1

2S 0 1

1 0D x̂1
i

2S 0 21

1 0 D ŷ1
1

2S 1 0

0 21D ẑ, S5
1

2

1

A2 S 0 1 0

1 0 1

0 1 0
D x̂1

i

A2 S 0 21 0

1 0 21

0 1 0
D ŷ1S 1 0 0

0 0 0

0 0 21
D ẑ, S51

~A1!

and noting that (Ŝ• r̂ )kequalsS•r for k5odd, and equals (S• r̂ )2 for k5even, enables a resuming of the odd and even pow
of the exponent separately. As a result, one can put this exponential operator in the following simple form:

expH 2
i

S
V~r !•SJ 5expH 2

i

S
v~r ! r̂•SJ 5H 1cos@v~r !#2 i ~ r̂•S!sin@v~r !#, S5

1

2

12~ r̂•S!2@12cos„v~r !…#2 i ~ r̂•S!sin@v~r !#, S51,

~A2!
o
tie

e

en-
-

where1 is the identity matrix. It is then straightforward t
derive the expressions for the important physical quanti
such as the average spin components^Sx&5z†(r )Sxz(r ),
^Sy& and ^Sz&, and the superfluid velocity vs5
2 i\z†(r )“z(r )/m. For S51/2 and 1, these quantities tak
the form

^Sx&/S5sinu sinf sin~v/S!1sin~2u!cos~f!sin2~v/2S!,
~A3!

^Sy&/S52sinu cosf sin~v/S!1sin~2u!sin~f!sin2~v/2S!,
~A4!

^Sz&/S5cos2~u!1cos~v/S!sin2u, ~A5!
.
e

. P

S.

.

E

. P

S.

.
ll,

04361
s
and

vs5\Fcosu
dv

dr
r̂2

S

r
sinu sin~v/S!û

2
2S

r
sinu sin2~v/2S!f̂G . ~A6!

We may now derive the expression for the spin gradient
ergy \2u“z(r )u2/2m as Eq.~22! shows apart from the con
stant\2/2m.
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