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Skyrmion physics in Bose-Einstein ferromagnets
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We show that a ferromagnetic Bose-Einstein condensate has not only line-like vortex excitations, but in
general, also allows for pointlike topological excitations, i.e., skyrmions. We discuss the thermodynamic
stability and the dynamic properties of these skyrmions for both spin-1/2 and ferromagnetic spin-1 Bose gases.
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[. INTRODUCTION have already reported in previous communicatig, but
here we try to give a much more complete and detailed pic-
An understanding of quantum magnetism is important forture of the skyrmion physics in spinor Bose-Einstein conden-
a large number of phenomena in physics. Three well-knows$ates. _ _
examples are high-temperature superconductivity, quantum Vith this in mind, we would like to mention that we re-
phase transitions, and the quantum Hall effect. Moreover, i entl_y have a_lso conS|der§ad t Hooft—Pquakov monopoles
appears that magnetic properties are also very important i 171 in an antlf_erromagne_tlc Bose-Einstein conden@fﬁ._
another area, namely, Bose-Einstein condensation in trapp ese topol_oglcgl excitations are in fact smgular skyrmions,
. ’ o . t have quite different properties than the nonsingular skyr-
atomic gases. This has come about bec"?‘use of two 'ndepeﬂﬁons, which are the object of study in this paper. In particu-
dent ex.per!mental deve]opments. The first developmenp IfBar, due to the singular nature of the spin texture of the
the realization of an optical trap for atoms, whose operation Hooft—Polyakov monopole, the condensate density van-
no longer requires the gas to be doubly spin polariZed].  ishes in the core and the monopole turns out to be thermo-
The second development is the creation of a two-componerfynamically stable. This is completely analogous to the case
Bose-Einstein condensal8], which by means of rf fields of a vortex in a scalar Bose-Einstein condensate. Both these
may be manipulated so as to make the two components efeatures are not shared by the nonsingular skyrmions, which
sentially equivalen{4]. As a result, the behavior of both complicates the analysis considerably. The most important
spin-1 and spin-1/2 Bose gases can now be experimentalfyroblem in this respect is that for a nonsingular skyrmion,
explored in detail. Indeed, at present, already such diverstne topology allows for a spin texture with an arbitrary in-
phenomena as domain walls], macroscopic quantum tun- trinsic size. As a result, the stability of the skyrmion is now
neling[6], Rabi oscillations, and vorticd§] have been ob- determined by energetic arguments and not by topological

served. arguments, as in the case of the singular 't Hooft-Polyakov
Theoretically, the ground-state structure of these gases h&sonopole. _ _
recently been worked out by a number of auti@s11] and The paper is organized as follows. In Sec. I, we use the

also the first studies of the linelike vortex excitations haveSymmetry properties of the order parameter of a spinor Bose-
appeared 8,12,13. However, an immediate question that Elnstel_n cor_1densate to s_how that, quite generally, skyrmion
comes to mind is whether the spin degrees of freedom alloVgcitations indeed exist in such a condensate. We then turn

for other topological excitations that do not have an analogyt! attention to the ferromagnetic case and discuss some

in the case of a single component or scalar Bose condensaﬁeneral properties of these topological excitations, especially

It is one of the aims of this paper to show that the answertd i file. In Sec. III } taate th ic st
this question is, in general, affirmative. In particular, we ensity profiie. in Sec. [il, we investigate the energetic sta-

show that a ferromagnetic Bose-Einstein condensate has sB'—“.tyt offth_e skt)r/]rmmn anld Show thtatbflr om Zttherdmtodé/namm
called skyrmion excitations, which are nonsingular but nev-fo'n - Of view they are:ways ur;ts a etk?n en 'do ttar?regse
ertheless topologically nontrivial pointlike spin textures. O MICTroscopic Sizeés. AS a result, we then consider the dy-

Roughly speaking, the skyrmion is an excitation that can b@"’.‘m'cfr! Statt"“tytOf ;heh s;l;]yrmlorh and, |\r}vpa¥tl((:jult{;11r,tdet3r-
created out of the ground state, in which all the spins ardnin€ the rate at whic €y coflapse. Ve 1in at under
aligned, by reversing the average spin in a finite region ofertain conditions, this rate is actually much smaller than the

space. Skyrmions are also known from nuclear phyfids decay rate of the condensate itself due to various inelastic
and the quantum Hall effe¢5], but to observe them in an processes. Therefore, the skyrmion may for all practical pur-

atomic gas would be exciting, since in that case, a comPOses, be considered agraetgstable excitation and we are

pletely microscopic understanding of their behavior is posJUSt'f'e? to l??ﬁ mkSec._ ¥ alscr)] at (t)rt]he“r |n_1p”orta(1jn:hdynan’tuc
sible. In nuclear physics and the quantum Hall effect this jProperties of the skyrmion such as the 'spin-and the center-

not true because of the nonperturbative nature of QCD anaf'mass motion. Finally, we end in Sec. V by a summary and
the presence of impurities that obstruct the center-of-mas¥o e conclusions.
motion of the skyrmions, respectively. Having proven their
existence, we then turn to the investigation of the precise
texture, the energetic stability, and finally the dynamical be- In this section, we discuss in detail the main static fea-

havior of skyrmions. Some of the results of this analysis wetures of skyrmions. First of all, we show from the symmetry

e spin texture, the superfluid velocity profile, and also the

II. SKYRMIONS AS TOPOLOGICAL EXCITATIONS
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of the order-parameter space of the spinor condensate, that If the vortex is nonsingular, however, the spirigr) will
from a topological point of view pointlike skyrmion excita- be identical everywhere on the boundary of the two-
tions may indeed exist in both spin-1/2 and spin-1 Bosedimensional plane and it effectively represents a mapping
Einstein condensates. Focusing then on the ferromagnetftom the surface of a three-dimensional sphéfeinto the
case, we introduce a convenient parametrization of the skylerder-parameter space. We then need to consider the second
mion texture, which allows us to incorporate most easily thhomotopy groupm,(G). For this we have thatr,(SU(2))
nontrivial winding number associated with the skyrmion.=m,(SO(3))=0 and m,(U(1)Xx S?)=Z. Hence, nonsingu-
Next, we write down the energy functional for a ferromag-lar or coreless vortices are only possible for a spin-1 conden-
netic spinor condensate and, by substituting the abovesate with antiferromagnetic interactions. It therefore appears
mentioned parametrization, derive the corresponding Euletthat the nonsingular spin texture discussed in R8], is
Lagrange equations for the density profile and the spiriopologically unstable and may be continuously deformed
texture of the skyrmion. Finally, to simplify the actual calcu- into the ground state by “local surgery21].
lation of the skyrmion density profile and the spin texture, We are now in a position to discuss pointlike defects.
we propose a variational approach that automatically takeSince the boundary of a three-dimensional gas is also the
into account the desired overall features of the skyrmion texsurface of a three-dimensional sphere, singular pointlike de-
ture. fects are also determined by the second homotopy group
,(G). Such topological excitations thus only exist in the
case of a spin-1 Bose gas with antiferromagnetic interac-
tions. We call these excitations 't Hooft and Polyakov mono-
poles[17], although it would be justifiable to call them sin-
To find all possible topological excitations of a spinor gular skyrmions. For nonsingular pointlike defects, the
condensate, we need to know the full symmetry of the macspinor {(r) will again be identical on the boundary of the
roscopic wave-functiol’ (r)=\n(r)£(r), wheren(r) is the  three-dimensional gas. As a result, the configuration space is
total density of the gas{(r) is a normalized spinor that compactified to the surface of a four-dimensional splire
determines the average local spin by means(8f(r)  and we need to determine the third homotopy graupG).
= (% (r)Sapdu(r), andS are the usual spin matrices obeying For this we find 3(SU(2))= m5(SO(3)) = 73(U(1).><S?)
the commutation relation§S, ,Sz]=i€,z,S,. Note that =Z. Hence, nonsingular skyrmion excitations exist in all
here, and in the following, summation over repeated indice$hree cases.
is always implicitly implied. From the work of H§8], we
know that in the case of spin-1 bosons we have to consider
two possibilities, since the effective interaction between two B. skyrmion texture
spins can be either antiferromagnetic or ferromagnetic. In the
antiferromagnetic case, the ground-state energy is minimizeﬁe
for (S)(r)=0, which implies that the parameter space for the
spinorZ(r) is only U(1) X S? because we are free to choose

A. Topological considerations

We consider from now on only the case of a homoge-
ous and ferromagnetic spinor condensate. In the ground
state, all spins are aligned along the direction of a uniform
) . L : and sufficiently weak magnetic field, which we take to be
both its overall phase and the Spin quantization axis. In th%long thez axis. The uniform magnetic field is needed only
ferromagnetic case, the energy is minimized f¢8)(r)| {5 girect the spins in the ground state, but it should not pro-
=1 and the parameter space corresponds to the full rotatiof}ye 5 sypstantial energy barrier for spin flips. The fact that
group S@3). Using the same arguments, we find that for e consider a homogeneous gas and not a confined one is
spin-1/2 bosons, the order-parameter space of the groung, for simplicity and turns out not to be crucial for the
state is always equivalent to &) [19]. . practical applicability of our work. This is so because the, for
What do these results tell us about the possible topologig,r b rposes, relevant length scale over which the skyrmion
cal ex0|tat|ons[20,2]]?_ For linelike defects or vqrtlces, we spin deformations take place is always of the order of the
can assumé(r) to be independent of one direction and the oo e 1ation length, which under typical experimental condi-
spinor represents a mapping from a two-dimensional plang,ng is much less than the length scale for density gradients
into the order-parameter space. If the vortex is singular, thig) o to the confining potential. The skyrmion excitation is a
will be visible on the boundary of the two-dimensional pla”espace-dependent spin deformation of the ground state and
and we need to i.nves;[igate the properties of a continuou§an thus be represented by a position-dependent sp{npr
mapping from & circleS™ into the order-parameter spaGe A conyenient way of introducing the position dependence in
i.e., of the first homotopy groupr%(G). Since m1(SU(2))  the spinor is to write it in terms of a position-dependent
=m1(SO(3)=Z, and 7, (U(1) X S)=Z, we conclude that nation that acts on the constant spir@rassociated with

a spin-1/2 and a ferromagnetic spin-1 condensate may hayRe ferromagnetic groundstate. In this manner, we have
only vortices with a winding number equal to one, whereas

an antiferromagnetic spin-1 condensate may have vortices

with winding numbers that are an arbitrary integer. Physi- i

cally, this means that by traversing the boundary of the plane, {(r)= eXD{ - gﬂ(f) : S] - (1)
the spinor may wind around the order parameter at most

once or an arbitrary number of times, respectively. This conHere, the constant spingf minimizes the Zeeman energy
clusion is identical to the one obtained previously by[ld8b  and is given by
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in the usual basis that diagonalizés Furthermoref2(r) is

a real vector function of. It parametrizes the ferromagnetic
order-parameter space, which due to our incorporation of the
factor 15in Eq. (1) is always a sphere of radius We point
out that here and throughout the followingcan only take
the values 1/2 or 1. The significance of Ed) is that at a

. - Z .
point r the spinor{“ is rotated by an angle that equals tion r, the average spin vector is pointing initially in thelirection.

|€(r)|/S around the direction of)(r). There is no restric- ¢ spin rotation operator rotates the spin vector arautg an
tion on the generality of spin textures produced by this e . (ry.

means; it is merely a convenient parametrization of the
order-parameter space in terms®(r). Since we are mostly
interested in the equilibrium properties, we assume here f
simplicity the maximally symmetric shape of the skyrmion
which is expected to have the smallest possible gradien
This means that we take

FIG. 1. Schematic figure representing the action of the spin
rotation operator for a maximally symmetric skyrmion. At a posi-

O%pin initially points up along the axis, but by approaching
'the origin, it will start to rotate around the radial direction
Rintil we approach the origin and the spin points up again. It
is essential that the spins complete an integer number of
cycles equal to B in order to have a nonzero topological

N winding number given by
Q(r)=w(r)rir=w(r)r, (3

where the functionw(r) should obey the boundary condi- sk S 1 f ik N
tions w(0)=27 and lim _.w(r)=0 [22]. Thus, at these N gt Q= 167 dre¥eq, 09,0750,
boundaries, the rotation operator in E@) becomes the (4)
identity and gives rise td(r=0)={(r—o%)={%. Further-

more, w(r) should as a function of radius decrease monoto-

nocally from 2 to 0, since this will correspond to the small- \yhich in this case, is equal to one.

est gradient energy for the spin deformations. With this  symmarizing, we have obtained the desired position de-
ansatz _forﬂ(r) and its bou_ndar)_/ conditions, we see that bypendence of¢(r) in terms of a single functiono(r) that

traversing the whole configuration space, we exactly covefescribes how the average local spin vector is tilted from its
the order-parameter space twice, which is required to avoid gientation in the ground state. This function and the local-
singular behavior of the spinor at=0. Indeed, the boundary densityn(r) represent the two degrees of freedom that de-

conditionw(0)= 7, which in first instance appears to be the gcripe the skyrmion and our next task is to determine their
right one as it leads to a spin texture that covers the ordemyecise spacial dependence.

parameter space only once, is physically unacceptable be-
cause it results in a singular behavior of the spitgr) and
therefore in divergencies in the gradient energy. The reason
for this singular behavior is that, given the maximally sym-
metric shape of the skyrmion, the spindr) is always equal For a ferromagnetic spinor condensate, [[8phas shown

to £ in the origin. Note that apart from topological reasons,that, within the mean-field approach, the energy functional in
the condition lim_..w(r)=0 also ensures that the spin de- the absence of a magnetic field is given by

formations associated with the skyrmion have a finite range,

so that only a finite amount of energy is required to excite the p2 .2

skyrmion from the ground state. Thus, both on frexis and _ —

far away from the center of the skyrmion, the spins are di-E[n’§]=f dr[ﬁ(v n(r)?=pn(r)+ %n(r)|V§(r)|2
rected as in the ground state. From these general features, we

can now draw a qualitative picture of the skyrmion texture. 1

Suppose we approach the origin along a line through the +—T25n2(r)}, (5)
origin, starting from a distance much larger than the range of 2

the spin deformations. Then how does the average local spin

behave as a function of distance? According to the abovetheremis the mass of the atomg, is their chemical poten-
description of the rotation operator depicted in Fig. 1, thetial, andT?2=4a#i?/m is the appropriate coupling constant

C. Energy functional
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that represents the strength of the interatomic interactions in
terms of the positive scattering length. The term
#2n(r)|V£(r)|?/2m represents the energy density associated
with the gradients in the spin texture. It is this term that

S[f,é“]Ef dp[(V,,vf(p))zﬂLf(p)|Vp§(p)|2

enforces the boundary-condition(0)=27, as discussed

previously.

1
+ zfz(p)—f(p)} (6)
with p=r/¢ andn(r)=n..f(p). The gradient termV ,{(p) |2

For sufficiently large distances, the gradient terms vanishy ~5iculated in the Appendix explicitly as a function of

and we infer from Eq(5) that u=n.T?2, wheren,.=n(r

w(p). This is achieved by inserting in the usual basis the

—). Using this, Eq.(5) may be put in a dimensionless gpin-1 and spin-1/2 matrices in the rotation operator, per-

form by scaling the lengths to the correlation length

forming a power expansion and then using some properties

=1/y8man,, the density ton.,, and the total energy to of the powers of the spin matrices to sum the resulting infi-

#2n..&/2m. In this manner, Eq(5) becomes

nite series into the following compact formula

i w 2 10} 2
z(slr{p(p)]> +<dd§)p)) Cse1p
2_
Villol = siw(p)/2]|2 1 do(p)|? "
[5—cog20)] T +Z[3+cos(2¢9)] dp , S=1,

where @ is the azimuthal angle betwegnand thez axis.
Finally, the density profild (p) and the functionw(p) can

D. Ansatz for w(r)

In principle, to calculate the exact skyrmion texture and

be determined from the two coupled differential equationsdensity profile, we should now solve the two-coupled non-

resulting from minimizinge[ f,{] with respect tof(p) and
w(p), namely,

v2Jf(p)
S P v P -1=0,  ®
f(p)
and
1 ) ) d dw(p))?
§<f(p>>1sm(%> —ZSE[/JZU(P))z(Z—pp) }:o,
9

where

1 ~ J—
Ef dpf(p), S=1/2

o=y (10
1= | dits—cos20)11(p), 51

and

1 -
f(p))2=
1 A1
Ef de[3+cos{20)]f(P), S=1.
(11

In the spin-1 case, Eq$7) and (8) show that the density

linear differential equations that result from minimizing the
energy functional with respect t&(p) and {(p), namely,
Egs.(8) and(9). As an alternative, we employ here a rather
simpler, though less rigorous, approach. We simplify the cal-
culations by introducing an ansatz fef p) that takes explic-
itly into account the physical boundary conditions discussed
in the previous section. Our ansatz is

w(p)=4cot Y(p/N)?, (12

where\ is a parameter that determines the radius at which
w(p) crosses over from 2 to 0 and physically corresponds
to the size of the skyrmion. We see that this ansatz automati-
cally satisfies the boundary-conditione®(0)=27 and
lim,_..w(p)=0, as required. It should be noted here that the
detailed functional behavior ab(p) will turn out not to be
crucial for our results on the skyrmion stability as long as it
satisfies the prescribed boundary conditions and falls of
monotonically. To substantiate this remark, we have per-
formed also calculations using a number of different forms
for w(p) that satisfy the desired boundary conditions such as
w(p)=2m/[1+ (p/\)?]. We found, as expected, that the
skyrmion energy only differs slightly from one function to
the other and, in particular, that the energy is minimized for
the function given in Eq(12). Fortunately, this ansatz is also
simpler to handle analytically.

Ill. STATIC AND DYNAMICAL STABILITY

The most important question about the skyrmion excita-

profile is, in principle, anisotropic. However, the anisotropytion is whether it is energetically stable or not. In other
turns out to be rather small as we show explicitly in Sec. lll.words, how does the energy of the skyrmion depends on its
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size? As we show next, the answer to this question is that thimteratomic scattering length. In this section, we express

skyrmion always tends to shrink to microscopic sizes tothe lagrangian of the skyrmion in terms of a time-dependent

minimize its energy. Although this is an unfortunate result, itskyrmion size\ (t). An equation of motion foi(t) is then

does not need to rule out an experimental observation of theéerived. It should be noted here that comparison between our

skyrmion excitation as long as the typical time scale for thiscalculation in this section and experiment is only meaningful

collapse is sufficiently long. Therefore, we also consider thifor skyrmion sizes much less than the condensate size since

problem after we have discussed the thermodynamical stabithis calculation is for a homogeneous system and does not

ity of the skyrmion. take into account the effect of the trap. The two conditions
For sufficiently large skyrmions, the gradients of thethus imply that the spinor condensate is deep in the Thomas-

spinor £(r) are small and density fluctuations are thereforeFermi regime.

also small. The energy of the skyrmion may then be approxi- For large skyrmions, the gradients in the spigér) are

mated by €2n./2m)[dr|V(r)|2. If the size of the skyr- small and therefore the fluctuations in the densdty(r)

mion is of order of\, this energy scales as This indicates =n(r)—n,, are also small compared to the average density

that the skyrmion tends to shrink in order to minimize itsn... The energy of the skyrmion can thus be determined by

energy. However, for smaller sizes, the density fluctuationgan harmonic approximation to the Gross-Pitaevskii energy

and their gradients start to grow and this simple argument néunctional given in Eq.5). To second order in(r) it is

longer applies. For large skyrmions, E®) shows that the given by

density fluctuations scale d$p) —1~|V ,{(p)|?>1/\* and

their energy contribution thus behaves as.pproaching

smaller values of\, the kinetic-energy term in Eq8) in-

creases and the density fluctuations will scale with a power 52

of A that is greater thaPrZ, becausg otherwise, the density +f dr n(r)(—|V§(r)|2— yB-(S)() |,

would become negative at some point. As a result, the energy 2m

will scale with a power of\ that is different from one. (13)

Therefore, there is, in principle, a chance for stability if the

energy associated with the density fluctuations is at some

point increasing when becomes smaller. To investigate this where y(r—r’) is the static density-density response func-

possibility, we need to calculate the energy as a functian of tion, which is defined by

exactly for all values oh. If the energy function possesses a

(local) global minimum for a finitex, then the skyrmion is

energetically(metgstable. We have indeed calculated this ) , ,

energy curve, the details can be found in Sec. Ill B below, 4mnw(_v +16man.)x(r—r’)=o(r=r’) (14

and it turns out that the skyrmion energy actually increases

monotonically with\. This means that a skyrmion of any

finite size is energetically unstable and will tend to decreas®ut explicitly reads

to zero size. Of course, this condition holds within the Gross-

Pitaevskii theory, which describes only the long-wavelength

physics. Corrections to this theory will lead to a finite, but mn, exp— \/§|r—r'|/g)

microscopically small size of the skyrmion. However, as x(r=r')= 5 - : (19

mentioned previously, for observing the skyrmion experi- méh r=r'lrg

mentally, it is important to know the time scale for its col-

Iapse_ since it could pe Ia_rger than the lifetime of the condenB is either a fictitious, caused by resonant rf fields, or a real

sate itself due to various inelastic processes, such as two- an

o ) . mogeneous magnetic field, andis the corresponding
:ir;rr(]ee—body collisions and, in an optical trap, photon absorpFnagnetic moment of the atoms in the trap. Considering first

From our analysis of the skyrmion shrinking rate, it turnsthe ideal case of zero magnetic-fidkland solving for the
out that there are two size regimes with different shrinkingdenSIty fluctuations induced by the spin texture, the lagrang-

mechanisms. The first is for skyrmions with a siz¢hat is lan takes the form [ (]=T[£]~E[{], where
much larger than the correlation length of the gas. The sec-

ond regime is for much smaller skyrmions with sizes of the 52

order of the correlation length or less. In the next two sec- E[{]= drnx2—|V§(r,t)|2

tions we calculate the skyrmion energy and estimate its m
shrinking rate in these two regimes.

E[n,{]=%f drj dr’ on(r)xy r—r")yén(r’)

2

ﬁ4
——f erdr’IVé(r,t)sz(r—r’)lvé(r’,t)lz,
8m?2

A. Large skyrmions (16)
As mentioned earlier, large skyrmions have a sizthat

satisfies\> &= 1/y8man,,, wheref is the correlation length
of a homogeneous gas of average densityand swave and
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9 spin-1 skyrmions. In both cases, one can make the shrinking
T[é]:f drnx{’(r,t)iﬁﬁg(r,t) rate smaller by exciting larger skyrmions. For realistic esti-
mates of these shrinking rates, we restore the units in the
1 P above expression fojage. For ®’Rb spin-1/2 condensate of
+§J drf drZi(r,Dih—4(rt) central density 10'! cm®, the rate then readsyqge
~18.06/\ sec .

J
><x(r—r’)gT(r’,t)iﬁﬁé(r',t)a 17 B. Small skyrmions

as a result of the fact that in Gross-Pitaevskii theory, the The cruicial difference between large skyrmions and

action for the ferromagnetic condensate contains the time3mall skyrmions, apart from the size difference, is that den-

A ; ity fluctuations for small skyrmions are much more impor-
derivative term [fdtfdrn(r,t)Z"(r,t)ifaz(r,t)/dt. The S| 4 . .
equation of motion fon (t) (ma3)/ b((a d()arived(fro)m the above tant than for thellarge s_kyrm|.0ns. The density depletion pro-
lagrangian by substituting our ansatz fdr t) given in Eqs. duced by the spin gradlent§ increases for smaller skyrmlqns,
(1), (3), and(12). In the present limit\> ¢ and the second anq thus, we cannot consider the .densny to be essentially
ter’m ir; the energye[ {] is much smaller than the first one. uniform anymore. 'I.'herefore', the linear-response approach
Therefore, we do not take it into account. Using the explicitfonowecj in the previous section does not apply. To take the

. . density fluctuations properly into account, we need to use the
2 -
expressions fotV{(r)|* from Eq. (7), the energy is calcu full energy functional. As already mentioned, it leads to a

lated to be size dependence of the skyrmion energy, such that the skyr-
72 mion tends to decrease to zero size. The shrinking process,
E[)\]zcﬁnw)\, (18  however, is now fundamentally different and more compli-

cated than that for the large skyrmions. In this case, while the
WhereC (20209 2. For he ime-dependent con 597N = kg, he densty becomes norezsngh e
. . T .
bution T[LZ], we calculat_ef firste(r,)o¢(r,f/at, which of the skyrmion. For sufficiently smaN, the depletion will
turns out to be equal te-iA(dw/dN)cosd for both S=1/2 e gq |arge that the atoms inside the closed shell are essen-
andS=1, where the dot denotes a derivative with respect tqjq)ly isolated from the atoms outside the shell. This will

time. Sincedw/ I\ is an even function im, the first term of considerably slow down the collapse of the skyrmion since

T[£] vanishes. ThusT[A] turns out to be the atoms within the shell need to tunnel over a potential
barrier to escape to the other side of the shell and to enable
_ N the skyrmion to decrease further. It turns out that the size of
TIN]= mA“. (19 ) : . -
J2a the skyrmion at this stage is of the order of the correlation

length and the lifetime of the skyrmion due to the above
So, combining Eqs(18) and(19), we see that the action for tunneling process can be much larger than the lifetime of the
the dynamical variabla(t) is equivalent to that of a particle condensate itself.
with a position-dependent effective masg =2mx/a in
the linear potentiaV/(\)=C#2n,A/2m. Scaling again\ to 1. Density profile and texture

the correlation lengtlt, the numberﬁ)\/a takes the form With our ansatz forw(p) in Eq. (12) the problem is sig-

N \J4mn,a3. Experimentally, the dimensionless parametemificantly simplified since to determine the density profile we
n.a® is typically of order 10°. This leads to an effective only have to solve Eq(8), which is basically a nonlinear
massm* ~10°Am. Thus, a typical adult skyrmion mass, for Schralinger equation with some external potential
sayh =10, is 16 times atomic mass. Finally, the equation of |Vpg(p)|2_ Substituting our ansatz fan(p) in Eq. (7), the

motion for \(t) reads latter takes the form

2\h+A2+¢=0, 20 |Vup)l?

2
where c=(29—-20S)#. In this equation, lengths are again p | “[3+2(p/N)*+3(p/n)®] _
. L 32 — S=1/2
scaled to the correlation lengthand time is scaled to the A2 [1+(p/N)** ’
correlation timer=2mé&?/4. In these units the condition of = )
- . ion i1, L " 1
validity of th|s_ equation |s\. 1. For the initial conditions 4(17+3 cost?) P ’ _
A(0)=Ay andX(0)=0, we find that N2 [1+(pIn)4?
c , (22
A=Xo 1_4_)\§t @) This is an off-centered potential barrier with a maximum

height of 24.3%? at r~0.68\, for S=1/2 and a maximum
is a solution to Eq(20). This formula shows that large skyr- height equal to 33(17+3 cog6)/4\? at r=\/3Y* for S
mions decrease with a ratg,ge~ Jc/2\ o7, which indicates = 1. Using this form fo V £(p)|?, we solve Eq(8) numeri-
that spin-1/2 skyrmions decrease almost twice as fast asally for one particular value of. Then we use the resulting
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FIG. 3. Density profile for a skyrmion in a spin-1 spinor con-
FIG. 2. The density profile for a skyrmion in a spin-1/2 conden- gensate with a size of= &. The solid curve represents the isotropic
sate for different values of. These curves are the numerical solu- part of n(r) and the dashed curve represents the anisotropic part.
tions of Eq.(8) using Eq.(22). These are the numerical solution of E€&4) and (25).

density distributiorf (p) to calculate the energy for that par- whereV2= (1/p?)d/dp[ p?(3/ 3p)]. The result of the numeri-
ticular value of\. Performing the same calculation for dif- cal solutions of these two equations is presented in Fig. 3.
ferent values of, we finally obtain the energy of the skyr- From this figure, it is clear that the anisotropic partf¢p),
mion as a function of, from which we can judge the which is represented by,(p), is considerably smaller than
stability of the skyrmion. the isotropic part. This result will be employed in the follow-
For the spin-1/2 case, the density profile for various val-ing to simplify the energy calculation by neglecting the an-
ues of\ is shown in Fig. 2. In the case &=1, the calcu- gular dependence d¢{p). Note that forS=1/2, this is not an
lation is more complicated due to the angular dependence eipproximation.
|Vp§(p)|2. This complication is handled by noticing that  Having specifiedo(r) enables also a detailed visualiza-
|Vp§(p)|2 can be rewritten in terms ofYy(6,¢) and tion of the skyrmion texture by calculating the average spin
Yoo 6, ¢) only, whereY,,(6,¢) are the usual spherical har- projections, i.e.{S,)=¢(r)S(r), (Sy), and(S,). In Fig.
monics. We thus also expand E@) in the spherical har- 4, we plot these quantities as a functionrafor the spin-1
monics up tol =2 using case using, agai\ = ¢. Similar plots for the spin-1/2 case
can be found in our previous wofk6]. The skyrmion can be
VI(P)=Yo(p) Yool 0,0) +Ya(p)Y20( 6, ). (23)  best visualized from it$S,)( r) component, which is shown
in the Appendix to be equal to
Then, two coupled equations can be obtained by taking the
=0 andl=2 components of Eq.8). Specifically, we sub-
stiwte Eq.(23) into Eq. (8) and multiply by Yoo(6,¢) and This expression is used to produce the two upper false-color

Yoo 0, ), respectively, and then perform an angular integra-_ . ,
tigg(. Tﬁt)a reSlE)Iting e(;/uations takg the form g g figures in Fig. 4. These figures show clearly that the skyr-

mion corresponds to a torodial region. Along the inner radius
of the torus, the direction of the average spin vectors is op-

(S,)=cogf+ cosw Sirfh. (26)

2
—v2y 1_6 (p/\) 4yo+ —y +iy3 posite to that in the ground state. An interesting property
PO N2 1+ (p)* 2\ 70 B7E) 470 shows up when we calculate the associated superfluid veloc-
ity v(r)=—iAZ(r)V(r)/m. This is given by
3 5
+—Yo¥st \[3,Y5=Yo (24) . do .1 2
am Lam V="t rcosea—0r—sin03inw—d)r—sinesinz(w/Z)}
and (27)
6 16 (p/In)? 1 58 From the above two expressions we find that the superfluid
— V2t — Yot — p—<_y0+ —YZ) velocity is such that the atoms are simultaneously rotating
PR p? N2 [1+(p/N)*2\ B 7 around the inner radius of the torus and around zleis.

3 This corresponds to a spiraling motion around the inner ra-
2 2 3 dius of the torus. The speed is maximum in the center of the

+— +31/ + = ; - ;
a7 YOS N g Yo¥at ggr¥a=Yar (29 torus. Furthermore, the maximum depletion of the density
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FIG. 4. (Color) False-color figures representing the average éBhir) for a skyrmion in a spin-1 condensate in different Cartesian
planes. The size of the skyrmion is taken here to be equektd. The(S,) figures can be obtained from tig,) figures by using the axial
symmetry of the texture.

takes place at the maximum 7 £(r)|2, which turns out to  completely flipped along the inner radii of the two torii. The
be in the center of the torus, where the spin vector is als@ensity is mostly depleted along a radius that is slightly
completely flipped, i.e{S,)=—1. In the case of a spin-1/2 smaller than the inner radius of the larger torus. The shift is
condensate, the spin texture consists of two torii. The veloconly approximately three percent of the size of the skyrmion.
ity field in this case is such that atoms spiral around the .

center of one torus clockwise and along the center of the 2. Equilibrium state

other torus counterclockwise, but for both torii, the atoms The outcome of the calculation in the previous subsection
rotate around the axis in the same direction. The spins areis the skyrmion density profile as a function)f Therefore,
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the energy of the skyrmion, determined from E5), is now 400
also a function ofn. The skyrmion will be energetically

stable if this energ¥[ A ] has a local or global minimum and

the equilibrium size of the skyrmion will be equal to the

value of\ at that minimum. It should be noted that what we

call the energy of the skyrmion is actually the grand-
canonical energy. This implies that the density profile is
solved by using a fixed chemical potential for all value.of & 549
Consequently, the number of atoms associated with the skyr™
mion excitation, which equal§fdr[n(r)—n.]|, is also\
dependent(The subtracted term is to cancel the divergent

part coming from the fact that the system is infinite. In a
confined system, there is no need to make this subtragtion.

may therefore not be immediately clear that minimizing the
grand-canonical energy is appropriate. In principle, we must P
minimize the true energy of the skyrmion at a fixed number 05 0 20
of atoms. We now explicitly show though, that these proce- WE

dures are equivalent.

Let us take the number of atoms in the system equhl. to FIG. 5. Energy of a skyrmion as a function of its size. Plotted
This means that in the absence of the Skyrmjm Nn,= N. Wlth the solid (dashed curve is the energy for a Spln-(]Spln-l/a
Suppose we now put in a skyrmion of sizein the conden- ~ SPinor condens_ate._ The dot_ted asy_mpt_otes are the }gﬂgelt of
sate without affecting the asymptotic density, im(f — ) the erlergy, which is Ilngar in and is glven. by the.spln gradient
=n... Due to the depletion of the density near the center Oier_m in the energy fun(Z:tlonazl only. Energy is in units of the corre-
the skyrmion, the total number of atoms associated with thid2ti0" ENergyE,=(4mA%/2me7).
density profile is slightly less thaN by an amountAN(\)

= fdr[n.—n(r,\)]. Physically, this means that to produce we examine this shrinking process for the small skyrmions
- e ’ more closely. In particular, we again look at the time scale

this skyrmion we have to remov&N(\)<N atoms to the . . T ;
edge of the spinor condensate. If we, however, want to pro2V€" which this shrinking occurs and find that for current

duce a skyrmion with the same number of atoms in the conEXperimental situations it is of the order of, or even longer
densate, we have to adjust the asymptotic density. This imt-han.’ the lifetime OT the condensate itself.
Finally, we mention here some remarks about the effect of

lies th I imati h [ file i
géteusat”ya[tNa/(rﬁla_sznl\?)b] s(?p)gr%)g?ﬂ?entﬁ)e; e density profile I?a homogeneous external magnetic field and the slight differ-

ences in the scattering lengths of the different hyperfine spin

N N—AN()N) states. In the presence of a homogeneous magneticEfjeld
mJ’ drn(r,\)=N N=AN(N) =N. (28)  will be energetically unfavorable to flip spins. Therefore, this

will lead to a further reduction in the spin of the skyrmion
heand, thus, not to a stabilization. A slight difference in the
various scattering lengthsa, as appropriate for the spin-1/2
8’Rb condensatf23], leads to an additional term in the en-
ergy expression for the spinor condensate of the form

Using this density profile to calculate the true energy of t
skyrmion and expanding the various terms in it up to first
order in AN(A)/N, we reproduce exactly the grand-

canonical energ¥[N]. Thus, we conclude that minimizing 5 .
the canonical energy with a fixed number of atoms is indee(q47TAaﬁ Im)fdrn(r){(S;(r). vyhu;h has exactly the same
effect as an external magnetic field. It cannot stabilize the

equivalent to minimizing the grand-canonical energy at a . i
fixed chemical potential, and thus, with a changing numbeSKY'mion either.
of atoms. The second method is clearly more convenient
numerically since it is difficult to keep the number of atoms
fixed for each value ok. The goal of this section is to estimate the time scale over
In Fig. 5, we show our final result of this calculation, which the skyrmion decreases to zero size. A key element in
where we have taken(r) to be isotropic, since in the pre- understanding the dynamics of this process is the behavior of
vious section we saw that the angular dependence(of  the potential barrier produced by the spin gradigRts(r)|?
can indeed be neglected. In detail, we have plotted herevhen\ goes to zero. This potential is written down explic-
E[n(r)]—un(r)—(E[Nn,]— mn.,) againsix. Again, we sub- itly in Eq. (22). When\ is decreasing, the location of the
tract the divergent part due to the infiniteness of the systenoff-centered peak of this potential is approaching the origin
Unfortunately, both of the two curves do not have a mini-as\ and its height is increasing as\f/ This potential is
mum for any finite\ and only contain a global minimum at thus an isotropic three-dimensional repulsive shell that is in-
A =0. This means that, according to this figure, the skyrmiorcreasing in strength as it becomes smaller. We denote from
is energetically unstable, i.e., if the skyrmion is created withnow on the atoms inside this shell by the “core” atoms and
a finite size it will ultimately decrease to zero size. Thisthe ones outside by the “external” atoms. We have seen in
process is clearly seen in Fig. 2, where we plot the skyrmiorthe previous section that, in principle, the skyrmion is un-
density profile for different values of. In the next section, stable and that it is energetically favorable for the skyrmion

3. Shrinking rate
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to decrease to zero size irrespective of the initial size. Letus 15
therefore consider a skyrmion of a large initial size, such that

the height of the corresponding potential barrier is less than @)
the chemical potentigk =n,. T8 of the system. The density
distribution will be almost uniform everywhere except in the
region where the barrier has its maximum height. In this 12
region, the density profile will be depleted only slightly.
When the skyrmion starts to decrease, the depletion of the S
density becomes larger, since the height of the barrier in-~
creases. This is achieved physically by transporting the core
atoms over the potential barrier to the external region. So the 09 |
central densityn(0) decreases while the skyrmion is shrink-
ing, as can be seen in Fig. 2. At a certain size, the height of
the barrier becomes equal to the chemical potential of the
atoms at large distances. As the skyrmion decreases eve
further, the barrier height actually exceeds the chemical po- 06 5 4 5 8 10
tential. At this stage, the shrinking process slows down sig- N

nificantly since the core atoms will now have to tunnel
through a potential barrier. The rate of this process will be
characterized by the usual WKB tunneling rate, which we
calculate now.

To calculate this tunneling rate, we assume that the skyr-
mion has decreased to a size for which the barrier is so higr
that the overlap between the wave functions of the core at- o4
oms and the external atoms is exponentially small. The tun- ~
neling rate will then be determined by the chemical potential
of the core atoms, as well as the barrier height. We considel = g4 |
the situation that there amé., core atoms with a chemical
potential u.oe €SS than the height of the barrier. Note that
physically we must always have that,.= u«, since the col- 0.02 |
lapse of the skyrmion will squeeze the atoms inside the core
For smallr/\, we notice from Eq.22) that the potential
(#212m)|V (r)|? may be approximated by a harmonic po- 0.0 : ‘ : ‘ ‘ ‘ ‘ :
tential well with a characteristic frequenay, that equals N
J48%/mA2 for S=1/2 andy/32%/m\2 for S=1. It thus has a

characteristic length= )\/\/% for S=1/2 andl=\/8 for S FIG. 6. Shown arda) the small skyrmions size as a function of

—1. This allows us to use a Thomas-Eermi approximation,the number of core atoms arfid) the shrinking rate of skyrmion as

the validity of which will be discussed below, to calculate a function of the number of core atoms. This calculation was per-
. . ’ . formed for a®’Rb spin-1/2 condensate with a scattering length of
Meore- Moreover, the tunneling rate is calculated using the

following WKB expressior24] a=5.4 nm.

0.10

0.08 |

Y(sec

hundreds of seconds, which is long enough to be observed. It
@o f2 should be noted that the above expression, which is based on
~—expg —2| dry[V{[Z-2 Ih2|. ol P ' 1568
Ysmal™ 3 ex;{ f,l IV L= 2Mpscore a variational approach, somewhat overestimates the lifetime
(290  of the skyrmion. However, this is not crucial for our pur-

poses, since by shrinking slightly, the lifetime of the skyr-
The radial pointsr, and r, are the points where mjon increases considerably.

(h212m)| V £(r)|? and ucore intersect. The use of a Thomas-

Fermi approximation is justified when the mean-field inter- IV. SKYRMION DYNAMICS

action energy of the core atoms is larger than the spacing _ _ _ )
between the lowest energy levels of the harmonic potential A Very important dynamical variable of the skyrmion
well. Specifically, the ratio Ria/l =2./96Na/\ should be arlses_from t.he fact thz_.it 'Fhe E.uler-Lagrange equemons for the
bigger than one. Figure(® shows the equilibrium size of skyrmlon spin texture is invariant under a space-independent
the small skyrmion, which is calculated by minimizing the rotation of the average local spigS)(r) around the
total energy while keeping the number of the core atomgnagnetic-field directiorB [25]. Mathematically, this means
constant, as a function of the number of the core atoménat if the spinor£(r) describes a skyrmion, then exp
Neore- From this figure, we observe that the above ratio{—i9B- S}Z%(r) describes also a skyrmion with the same
equals approximately 1 foN.,=4 and it increases for winding number and energy. The dynamics of the variable
larger Neore. FOr experimental situations, Fig(§ shows  9(t) associated with this symmetry is determined by the full
that the skyrmion can live for a time ranging from seconds toaction for the spin textur&] /= [dt(T[{]—E[]), where
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E[{] and T[] are given by Eqs(16) and (17) with n, Furthermore, the existence of this internal degree of free-
replaced by the density profile(r) of the skyrmion and dom becomes especially important when we deal with more
x(r—r') should now be interpreted as the exact densitythan one skyrmion in the condensate. In that case, every
density correlation function in the presence of the skyrmionskyrmion may have its own orientation and we expect the
Hence, substituting(r,t) =exp{—id(t)B- S}¢¥(r) and mak- intergctiqn between two skyrmions to have a Josephson-like
ing use of the conservation of total particle numidérto  contribution proportional to cosg—1,). As a result, the

introduce the change of the average local spin projection oRhase diagram of a gas of skyrmions may become extremely

the magnetic fiele{ASH>(r):I§-<S>(r)— NSinduced by the rich and contain both quantum as well as classical, i.e., non-

skyrmion, we obtain, apart from an unimportant boundary.zero temperature, phase transiti¢8s]. In this context, it is

. . ; ~“interesting to mention two important differences with the
trﬁirrr:é’dt%?/ttthh: ;C);ir:)anmms of the rotation angi¢t) is deter situation in the quantum Hall effect. First, the fact that the

spin projectionK of the skyrmion is an integer shows that
a9 (1) 1 (a9(1))2 these excitations have an integer spin and are therefore
S[z’?]=f dtrTﬁ<ASi[Ot>+ EI(T> ] (30)  bosons[28]. In the quantum Hall case, the skyrmions are
fermions with half-integer spin, due to the presence of a
topological term in the actiof§ ] for the spin texturg29].
Second, in a spinor Bose-Einstein condensate, the skyrmions
are not pinned by disorder and are, in principle, free to move.
Both differences will clearly have important consequences
for the many-body physics of a skyrmion gas.
I:ﬁZJ drf dr'(AS)(r)x(r,r")(AS)(r"). (3D Focusing again on the single skyrmion dynamics, we can
make the last remark more quantitative by using the ansatz

For a large skyrmion, this integral can be performed by subd(r,1)=Z*Tr—u(t)] for the texture of a moving skyrmion,
stituting (AS ) =(S,)~ NS and using Eq(14) for x(r,r"). which is expgcteq to bg accurate for small vglocmes
The explicit expressions fdiS,) can be found in the Appen- du(t)/at. Considering for illustrative purposes again, only

dix. An even simpler expression fai(r,r') may be obtained the isotropic approximation, we find in a similar way as be-
by neglecting the gradient terms in Ed4). Then fore that the action for the center-of-mass motion of the skyr-

mion becomes

where (ASf) is the change of the total spin along the
magnetic-field direction and the “moment of inertia” of the
skyrmion equals

m

MO a2 2 1 [au(t))?
S[u]:fthM(—) , (35
Using this approximation we find at
53_77 )\—3m, S=1/2 where the mass is now simply given by
4042 @
= (39 )
—1477 N S=1 M m fer’ dr’ x(r,r"){ve(r)-{ve(r’)  (36)
_m, = . = —_— , .
152 2 3 X

The importance of this result is twofold. First, from the . . . .
action in Eq.(30), we see that at the quantum level, the N terms of the .superflu[d veloc_:lty O.f the spinor conden_sat_e
Hamiltonian for the dynamics of the wave functidn(,t) VS(.r)'. Note that in the an|sqtrop|c spin-1 case, this massis, in

' principle, a tensor, but with only very small nondiagonal

becomes
components.
1104 o 2 Similar to the moment of inertia, we can calculate this
H= ﬂ(i_ %—MASH’ ) . (39 mass explicitly for large skyrmions. The result is
Therefore, the ground-state wave function is given by 197 )
Po(9)=eX? 27, with K an integer that is as close as ———m, S=112
possible to{ASP™). In this way, we thus recover the fact that M= 18y2 @ (37)
according to quantum mechanics, the total number of spin 227\

flips associated with the skyrmion texture must be an integer.
More precisely, we have actually shown that the many-body
wave function describing the skyrmion is an eigenstate of the
operatorB- S° with eigenvalueN S—K. Note that physically The skyrmions thus indeed behave in this respect as ordinary
this is equivalent to the way in which “diffusion” of the particles. In contrast to Eq30), there thus appears no term
overall phase of a Bose-Einstein condensate leads to the colinear in du(t)/dt in the action§ u]. This is a result of the
servation of particle numbg£6,27). fact that we have performed all our calculations at zero tem-
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perature. In the presence of a normal component, we anticdiscussion before it. However, our theory for the shrinking
pate the appearance of such a linear term with an imaginamates of skyrmions clearly breaks down on the surface since
coefficient. This will lead to damping of the center-of-massthere the typical length scale for the density gradients due to
motion of the skyrmion. It is interesting to note that if we the trap are of the same order as the correlation length.
perform the same analysis for a vortex in a scalar conden- Although skyrmion-antiskyrmion pairs can be created by
Sate, we find, due to the Singular nature of the Superﬂui(ihe K|bb|e mechanism in a temperature quench or by sufﬁ_
yelocity.field, even at zero temperature an additional terMtiently shaking up the condensate, a more controlled way of
linear in the velocity of the vortex. In a quasi- creating a skyrmion may be achieved by using a magnetic-
two-dimensional situation, it is in fact proportional 10 fie|q configuration in which the fictitious magnetic field is
u(t) xgu(t)/at. This precisely results in the well-known Eu- 5 avs pointing radially outward and its magnitude increases
ler dynamics of vortices. monotonically from zero at the origin to a maximum value
for large distances from the origir81]. Applying this field
V. CONCLUSION configuration for such a long time that the spins at large

One important conclusion of this paper is that Skyrrnionsdlstances have precessed exactly twice around the local mag-

in a ferromagnetic Bose-Einstein condensate are energe{iletIC f|e.Id,'creates a single skyrm|or_1. or course, for a real
cally unstable. However, we have also shown that the timgnagnet!c field, the above conflggrgt!on requires 'the' use ,Of
scale on which the skyrmion decreases may be of the orddp@gnetic monopoles, but for a fictitious magnetic field, it
of, or even larger, than the lifetime of the condensate. It turn&"@Y be achieved by appropriately tailoring the detuning, the
out that there are two very different mechanisms for thePolarization, and the intensity of two pulsed Raman lasers.
shrinking of the skyrmion. The first occurs for skyrmions The required spatial dependence of the detuning may be cre-
with sizes much larger than the correlation length of the gasated experimentally by separating the centers of the magnetic
In this case, the shrinking rate is of the order of seconds fofraps for the two spin species along thexis [4]. Further-
realistic experimental parameters. The second case concerm®re, the desired behavior of the Rabi frequency may be
smaller skyrmions with sizes of the order or less than theachieved by making with the first Raman laser two standing
correlation length of the system. In this case, the shrinkingvaves in thex andy directions that are both polarized per-
rate is determined by the tunneling rate from the core of thgendicular to the axis. For the other Raman laser, we only
skyrmion to the uniform part of the system. The tunnelingneed to require that it produces a traveling wave with a po-
takes place through a potential barrier developed by spifarization that has a nonzero projection on thaxis, since
deformations. The typlcal time scale for such a shrinkingWe want to realize aA\m=0 transition in this case. In the
process is of the order of 10 — 100 s. _ ~ above geometry the skyrmion is created exactly in the plane
Although we have considered a homogeneous discussiogyhere the detuning vanishes and in the nodes of the first
the inclusion of a trap in the system will not change the mainRaman |aser. Note that since the distance between these
conclusions of this paper. The presence of a trap will havg,gqes js generally much bigger than the correlation length,
the effect that the uniform density, will be now a position- e create in this manner a large skyrmion that will start to

dependent quantity. Therefore, for our calculations to bedecrease but ultimately self-stabilizes at a smaller size. Once

valid for a trapped gas, the size of the skyrmion must be : .
much less than the typical length scale for the density gradi(—:reated' the skyrmion may be easily observed by the usual

ents of the confined condensate. Thus, the condiXierR expansion experiments that have recently also been used to

must be met, wher® is the size of a spherical condensate.Observe vortice$32]. Similar as with vortex rings, we then
For typical ’experimental conditions, we may use theobserve an almost complete depletion of the condensate in a

Thomas-Fermi approximation to the size of the condensatiiNd around the position of the skyrmion.

[30], which readsR=\2/m(Na/l)™, whereN is the num-

ber of atoms in the condensate drdJA/Mwy is the char-

acteristic length of a harmonic trap of frequensy. Scaling ACKNOWLEDGMENTS
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o e e o o Satoas 5 ne APPENOIX DETALS OF THE CALGULATON
o . : . OF (S,), {S,), {Sy), {'(r)V&(r), AND |V ¢]?

Bose-Einstein condensate since the density there is lower (S0. (Sy). (S, LNV Vel

and thus their energy will be less. Apparently, this leads to a We start by expanding the exponential operator in(&y.

decrease in the shrinking rate since for both large and smatbking into account the simplification expressed in E).

skyrmions, the shrinking time is proportional tonl/, see Inserting the explicit forms of the spin-1/2 and spin-1 matri-

Eqg. (21) and the discussion afterwards, and E2f) and the ces given by[33]
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and noting that §- r)*equalsS: r for k=odd, and equalsS. r)? for k=even, enables a resuming of the odd and even powers
of the exponent separately. As a result, one can put this exponential operator in the following simple form:

i i . 1cod w(r)]—i(r-S)sinw(r)], s=1
ex;{—gn(r)-sJ=exp{—§w(r)r-s}= 2 (A2)
1-(r-S)[1—codw(r)]—i(r-Ssifw(r)], S=1,

where1l is the identity matrix. It is then straightforward to and
derive the expressions for the important physical quantities
such as the average spin componefs)=¢T(r)S.(r),

(Sy) and (S,), and the superfluid velocity ve= do. S . N
—ikT(r)V(r)/m. For S=1/2 and 1, these quantities take Vs=h| CoSf- - — osindsin(w/S) 0
the form
2S A
(S,)/S=sinsin ¢ sin( w/S) + sin(2 ) cog ¢)sir?(»/2S), - Tsinasinz(w/28)¢ . (AB)
(A3)

1S=—sin cos¢ sin( w/S) + sin(20)sin( ¢)sir( w/2S),
) ¢ SIS+ sin2e)sin A)sirt (e (Azl) We may now derive the expression for the spin gradient en-

ergy A2|V(r)|%/2m as Eq.(22) shows apart from the con-
(S,)/S=cog(6)+ cog w/S)sirth, (A5)  stantz?/2m.
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