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Vortex energy and vortex bending for a rotating Bose-Einstein condensate
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For a Bose-Einstein condensate placed in a rotating trap, we give a simplified expression of the Gross-
Pitaevskii energy in the Thomas Fermi regime, which only depends on the number and shape of the vortex
lines. Then we check numerically, that when there is one vortex line, our simplified expression leads to
solutions with a bent vortex for a range of rotational velocities and trap parameters that are consistent with the
experiments.
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I. INTRODUCTION

Since the experimental achievement of Bose-Eins
condensates in confined alkali-metal gases in 1995, there
been a huge experimental and theoretical interest in th
systems@1–10#. The study of vortices is one of the key is
sues. Two different groups have obtained vortices exp
mentally, the JILA group@4# and the ENS group@7,8#. In the
ENS experiment, a laser beam is imposed on the magn
trap holding the atoms to create a harmonic anisotropic
tating potential. For sufficiently large angular velocities, vo
tices are detected in the system. Experimentally, the E
group@8# has observed that when the vortex is nucleated,
contrast is not 100%, which means that the vortex line is
straight, but bending. Numerical computations solving
Gross-Pitaevskii equation@11,12# have shown that there is
range of velocities for which the vortex line is indeed ben
ing. The aim of this paper is to justify these observatio
theoretically in the Thomas-Fermi regime. We define
asymptotic parameter that is small in the Thomas-Fermi
gime and approximate the Gross-Pitaevskii energy to ob
a simpler form of the energy that only depends on the sh
of the vortex lines. Then we check numerically that our ch
acterization leads to a solution with a bent vortex for a ran
of values of the rotational velocity that are consistent w
the ones obtained numerically@11#. Let us point out that
Svidzinsky and Fetter@13# have studied the dynamics of
vortex line depending on its curvature. For a vortex veloc
equal to zero, the equation obtained in@13# is the same as the
equation corresponding to the minimum of our approxim
energy, though the formulation in@13# was not derived from
energy considerations. Moreover, their analysis is only va
for a single vortex line.

The Gross-Pitaevskii energy provides a very good
scription of Bose-Einstein condensates: it is assumed tha
N particles of the gas are condensed in the same state
which the wave functionf minimizes the Gross-Pitaevsk
energy. In the ENS experiment, a laser is applied to the
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that makes it rotate. By introducing a rotating frame at t
angular velocityṼ5Ṽez , the trapping potential become
time independent, and the wave functionf minimizes the
energy

E3D~f!5E \2

2m
u“fu21\Ṽ•~ if,“f3x!

1
m

2(
a

va
2r a

2 ufu21
N

2
g3Dufu4, ~1.1!

under the constraint* ufu251. Here, for any complex quan
tities u andv and their complex conjugatesū and v̄, (u,v)
5(uv̄1ūv)/2.

We want to nondimensionalize the energy in order to ge
parameter that is small in the Thomas-Fermi regime. T
framework of study has been developed by one of the
thors in @14#, except that@14# was a two-dimensional stud
for a condensate confined in thez axis. We define the char
acteristic lengthd5(\/mvx)

1/2 and assumevy5avx , vz
5bvx . We set

«2A«5
\2d

2Ngm
5

d

4pNa
,

whereg3D54p\2a/m. For numerical applications, we ar
going to use the experimental values of the ENS gro
@8,11#, m51.445310226 kg, a55.8310211 m, N51.4
3105 andvx51094 s21 with a51.06, b50.067. We find
that «50.0174, thus, « is small, which will be our
asymptotic regime. We rescale the distance byR5d/A« and
define u(r )5R3/2f(x) where x5Rr and we set V

5Ṽ/«vx . The velocityV is chosen such thatV,1/«, that
is the trapping potential is stronger than the inertial potent
The energy can be rewritten as

E3D~u!5E 1

2
u“uu21V•~ iu,“u3r !

1
1

2«2 ~x21a2y21b2z2!uuu21
1

4«2 uuu4.

~1.2!
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Due to the constraint* uuu251, we can add toE3D any mul-
tiple of * uuu2 so that it is equivalent to minimize

E 1

2
u“uu21V•~ iu,“u3r !1

1

4«2 uuu42
1

2«2 rTF~r !uuu2,

whererTF(r )5r02(x21a2y21b2z2) for some constantr0
to be determined. LetD be the ellipse$rTF.0%5$x2

1a2y21b2z2,r0%. We impose the following constraint o
rTF :

E
D

rTF~r !51. ~1.3!

Indeed,rTF is the Thomas-Fermi approximation ofu, that is,
for small«, the minimizer satisfies thatuuu2 is close torTF so
that the constraint is satisfied automatically byu if we im-
pose Eq.~1.3!. Equation~1.3! leads to

r0
5/2515ab/8p. ~1.4!

To study the problem analytically, it is reasonable to mi
mize the energy over the domainD with zero boundary data
for u. Indeed, whenrTF<0, the energy is convex so that th
minimizer u goes to zero exponentially at infinity~see the
numerical observation in@6# and the analysis on the behavi
near the boundary ofD as well as the decay at infinity of th
order parameter in@15,16#!. We consider the problem

minE«~u! subject toE
D

uuu251 and u50 on ]D ~P!

where

E«~u!5E
D

1

2
u“uu21V•~ iu,“u3r !1

1

4«2 @rTF~r !2uuu2#2.

~1.5!

Note that a critical pointu of E« is a solution of

2Du12i ~V3r !•“u5
1

«2 u~rTF2uuu2!1m«u in D,

~1.6!

with u50 on ]D and m« is the Lagrange multiplier. The
specific choice ofr0 in Eq. ~1.4! will imply that the term
m«u is negligible in front ofrTFu/«2.

We have set the framework of the study of our energy
Sec. II, we will make an asymptotic expansion of the ene
taking into account that« is small ~but u log«u is not big!.
Then, in Sec. III, we will check that our approximate ener
yields a solution that is consistent with the numerical a
experimental observations.

II. ASYMPTOTIC EXPANSION OF THE ENERGY

Our aim is to decouple the energy into three terms: a p
coming from the profile of the solution without vortices,
vortex contribution, and a term due to rotation.
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A. The solution without vortices

First, we are interested in the profile of solutions so th
we will study solutions without vortices. Thus, we consid
functions of the formh5 f eiS, f is real and does not vanis
in the interior ofD. We consider first minimizingE« over
such functions without imposing the constraint that the no
is one, that is,f andS minimize

E«~ f ,S!5E
D

1

2
u“ f u21

1

4«2 ~rTF2 f 2!2

1
1

2E f 2u“S2V3r u22 f 2V2r 2, ~2.1!

wherer5xex1yey . We havef «50 on ]D and

2D f «1 f «“S«~“S«22V3r !5
1

«2 f «~rTF2 f «
2! in D,

~2.2!

div @ f «
2~“S«2V3r !#50. ~2.3!

The continuity Eq.~2.3! implies that there existsJ« such
that

f «
2~“S«2V3r !5V curlJ« . ~2.4!

One can think ofJ« as the equivalent of a stream function
the case of fluid vortices. So,J« is the unique solution of

curlS 1

f «
2

curlJ«D 522 in D, J«50 on ]D.

~2.5!

In the special case where the cross section ofD is a disc, the
minimum of Eq.~2.1! is reached for“S50, but this is not
the case if the cross section is an ellipse and there is a
trivial solution of Eq.~2.3!. When« is small, since the ellip-
ticity of the cross section is small, the zero-order approxim
tion of f «

2 is rTF and the functionJ« given by Eqs.~2.4! or
~2.5! is approximated by the unique solutionJ of

curlS 1

rTF
curlJD522 in D, J50 on ]D. ~2.6!

One can easily get that

J~x,y!52rTF
2 ~x,y!/~212a2!ez . ~2.7!

Using Eq.~2.4!, we can defineS0, the limit of S« , to be the
solution of rTF(“S02V3r )5V curlJ with zero value at
the origin. We haveS05CVxy with C5(a221)/(a211).
We see thatS0 vanishes whena51 that is when the cross
section is a disc. This computation is consistent with the o
in @9#, though it is derived in a different way.

B. Decoupling the energy

Let h«5 f «eiS« be the vortex free minimizer ofE« dis-
cussed previously without imposing the constraint on
1-2
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norm of u. Let u« be a configuration that will minimizeE«

and letv«5u« /h« . Sinceh« satisfies the Gross Pitaevsk
Eqs.~2.2!–~2.3!, we have,

E
D

~ uv«u221!S 2
1

2
D f «

22
1

«2 f «
2~rTF2 f «

2!1u“ f «eiS«u2

22 f «
2@¹S«•V3r # D50.

This trick was introduced in@17# and leads to the following
decoupling of the energyE«(u«):

E«~u«!5E«~h«!1Gh«
~v«!1I h«

~v«!, ~2.8!

where

Gh«
~v«!5E

D

1

2
uh«u2u“v«u21

uh«u4

4«2 ~12uv«u2!2,

is the energy of vortices and

I h«
~v«!5E

D
uh«u2~¹S«2V3r !3~ iv« ,“v«!,

is the angular momentum of vortices. The first term in t
energy is independent of the solutionu« , so we have to
compute the next two, and find for which configurationu«

the minimum is achieved. We assume that the solutionu« has
a vortex line alongg, that is u« vanishes alongg with a
winding number equal to one. Then we expect that the vo
core is of sizel«, that is, away from a tube of sizel«, uv«u
is very close to one and only the phase ofv« is of influence.
In the vortex core, the profile ofv« is given by the cubic
NLS equation. We have to determinel, which is a matching
parameter.

Our aim is to estimate the energy ofu« depending ong.
We use that at zero orderuh«u2 is approximated byrTF when
« is small so that we can approximateGh«

by GArTF
5G« and

I h«
by I ArTF

5I « .

C. Estimate of G«„v«…

We want to estimate

G«~v«!5E
D

1

2
urTFuu“v«u21

ur
TF

u2

4«2
~12uv«u2!2.

The mathematical techniques to approximateG« have been
introduced in@18# in dimension two and in@19# in dimension
three, when« is very small. The problem here is that«
50.0174, so thatu log«u is not large and there will be add
tional terms in the asymptotic expansion.

We define

Tl«5$xPD such that d ~x,g!<l«%, ~2.9!

where d is the distance, and assume thatl« is small, l
being our matching parameter to be fixed later on. Then
04361
e
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split G« into two integrals: one inTl« , the energy of the
vortex core and the other inD\Tl« , the energy away from
the vortex core.

1. Estimate near the vortex core

We are going to estimateG« in Tl« . At each pointg(t) of
g, we defineP21

„g(t)… to be the plane orthogonal tog at
g(t). Sincel« is small, we assume thatrTF is constant in
P21

„g(t)…ùTl« and we call the valuer t5rTF„g(t)…. We
want to compute

E
Tl«

1

2
rTFu“v«u21

rTF
2

4«2 ~12uv«u2!2

.E
g

r t

2 EP21
„g(t)…ùTl«

u“v«u21
r t

2«2 ~12uv«u2!2.

This computation is valid as long askl« is small, wherek is
the curvature ofg. The zero-order approximation ofv« is
given by u1(rAr t/«), whereu1(r ,u)5 f 1(r )eiu is the solu-
tion with a single zero at the origin of the cubic NLS equ
tion

Du1u~12uuu2!50 in R2.

Thus,

E
P21

„g(t)…ùTl«

u“v«u21
r t

2«2 ~12uv«u2!2

.E
Bl«

U“X f 1S rArTF

«2 D eiuCU2

1
r t

2«2 X12 f 1
2S rArTF

«2 D C2

5E
BlAr t

u“u1u21
1

2
~12uu1u2!2

.c* 12p ln~lAr t!, ~2.10!

where

c* 5E
R2

f 18
21

1

2
~12 f 1

2!21E
R2\B1

f 1
221

r 2
1E

B1

f 1
2

r 2
.

The last line of Eq.~2.10! would be an equality if the first
two integrals in the expression ofc* were taken inBlAr t

instead ofR2. This approximation is correct iflAr t is large
~in fact, bigger than three is enough!.

The final estimate of this section is

G«~v«! uTl«
.E

g
rTFS c*

2
1p log~lArTF! Ddl. ~2.11!
1-3
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2. Estimate away from the vortex core

We are going to estimateG« in D\Tl« . In this region
uv«u.1, and we have seen thatlAr t is large, so that only the
kinetic energy of the phase has a contribution.

E
D\Tl«

1

2
rTFu“v«u21

rTF
2

4«2
~12uv«u2!2

.E
D\Tl«

1

2
rTFu“f«u2,

wheref« is the phase ofv« . Of course,f« is not defined
everywhere, but we use the analogy with fluid vortices fo
line vortex in an otherwise in-viscid incompressible fluid. W
let C be a stream function that is divC50 and

curlC5rTF“f.

Then,C is the unique solution of

curlS 1

rTF
curlCD52pdg , C50 on ]D, ~2.12!

wheredg is the vectorial Dirac measure alongg, that is for a
vectorial test functionw,

^dg ,w&5E
g
w3dl,

while dg is the Dirac measure alongg. Thus,

E
D\Tl«

1

2
rTFu“f«u25E

D\Tl«

1

2rTF
ucurlCu2

52
1

2E]Tl«

C•“f«3n,

wheren is the outward unit normal to the tubeTl« . We will
see thatC is almost constant at a distancel« from g and we
call this valueCl«(g). Since the vortex line has a windin
number 2p,

E
D\Tl«

1

2
rTFu“f«u2.pE

g
Cl«~g!3dl.

We have to computeC on ]Tl« . The computation is in-
spired by the paper of Svidzinsky and Fetter@13#. It follows
from Eq. ~2.12! that C satisfies

2DC2
“rTF

rTF
3curlC52prTFdg .

Let x0Pg. We denote bye35ġ(x0) and (e1 ,e2 ,e3) an or-
thogonal base in local coordinates. Then,C has coordinates
c i in ei and the variations ofc3 are the only ones of influ-
ence in the equation forC, since we want to compute
C3dl. In the equation forC, we neglect the terms in“c1
and“c2 in front of “c3 and we get
04361
a

2Dc31
“ r̄TF

r̄TF

3“c352prTFdg , ~2.13!

wherer̄TF(x
1,x2)5rTF(x

1,x2,x0
3). Let j5c3 /Ar̄TF. Then it

follows from Eq.~2.13! that j satisfies

2Dj1mj52pArTFdg , ~2.14!

where

m5Ar̄TFD
1

Ar̄TF

5ArTFD'

1

ArTF

. ~2.15!

Here, D' is the Laplacian in the plane perpendicular toe3

5ġ(x0). If the cross section of the condensateD is a disc,
one can computem. We denote byu the angle ofe3 that is
e35er cosu1ez sinu and (r ,z) are the coordinates ofx0 in
the original frame. Then,

m5
~11sin2 u!1b2 cos2 u

rTF
1

3~r sinu2b2z cosu!2

rTF
2

.

~2.16!

Note thatm.0. In fact, our numerical computations eve
yield m.7. Our aim is now to give an approximate expre
sion forj. We locally approximate the curveg near the point
x0 by the parabolax5kz2/2, wherek is the curvature ofg at
x0. This is where we use the same ideas as in@13#. Note that
in our approximations, we are only taking into account t
shape ofg close tox0. The justification for this relies on the
fact thatm.7 as our numerics show. Indeed, if we solve

2DX1mX5 f ,

where f is supported at a distanced of x0. Then using the
Green function, we find that

uXu<
e2Amd

4pm3d
.

In particular, ford50.1, this gives an error less than 1023.
This is to be compared to the Euler constant and our appr
mation is reasonable. We rewrite Eq.~2.14! in local coordi-
nates to get

2D'j1k]x1
j1mj52pArTF~x0!de3

,

wherede3
is the Dirac mass supported along the linee3 and

e1 is the normal to the vortex lineg. Thus,

2D~e2kx1/2j!1F S k

2D 2

1mG~e2kx1/2j!52pArTF~x0!de3
.

~2.17!

The solution of this equation is

ArTF~x0!K0SAm1
k2

4
d ~x,g! D ,
1-4
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where K0 is a modified Bessel function. In particula
K0(x).2 ln(eC0x/2) for smallx whereC0.0.577 is the Eu-
ler constant. Hence, we deduce

C~x!.2rTF lnS eC0

2
Am1

k2

4
d ~x,g! D ġ. ~2.18!

Thus, we conclude by the estimate forG«(v«) in D\Tl«

G«~v«! uD\Tl«
.2pE

g
rTF lnS eC0

2
Am1

k2

4
l« D dl.

~2.19!

Here, we have used thatl« is sufficiently small. In the
previous section, we neededlAr t large. The existence ofl
is justified by the fact thatArTF/« is much bigger than one
except very close to the boundary. But in this region,
contribution of the energy is negligible.

D. Estimate of I «„v«…

We want to estimate

I «~v«!5E
D

rTF~¹S«2V3r !3~ iv« ,“v«!. ~2.20!

Recall that the unique solution of Eq.~2.5! satisfies
rTF(“S«2V3r )5V curlJ« . Hence we integrate by part i
Eq. ~2.20! to get

I «~v«!5VE
D

J«3curl~ iv« ,“v«!.

Let f« be the phase ofv« . Sincev« is tending to one ev-
erywhere except on the vortex line, then (iv« ,“v«)
;“f« , hence, we can approximate curl(iv« ,“v«) by
2pdg . We use the value ofJ given by Eq.~2.7! and the fact
that ġ(t)3ez5dz to get

I «~v«!.2
Vp

~11a2!
E

g
rTF

2 dz. ~2.21!

E. Final estimate for the energy

We use Eqs.~2.8!–~2.11!–~2.21! to derive the energy of a
solution with a vortex line. Indeed, the energy of any so
tion minus the energy of a solution without vortex is rough
the vortex contribution in the sense

E«~u«!2E«~h«!.Eg . ~2.22!

We find that the vortex contributionEg is

Eg5E
g
rTFXc*

2
1p lnS 2

«eC0A rTF

m1
k2

4
D Cdl

2
Vp

~11a2!
E

g
rTF

2 dz. ~2.23!
04361
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Hence, if the right-hand-side of Eq.~2.23! is negative, it
means that it is energetically favorable to have vortices. N
that in the first integral ofEg , we have dl5uġ(z)udz,
whereas in the second one, we havedz.

Our approximations rely on the fact that the ellipticity
the cross section is weak and on the fact that« is sufficiently
small. The first hypothesis was used to get that the first-or
approximation ofuu«u is rTF , and to computem in Eq.
~2.15!, whereas corrections are needed if the ellipticity
strong. The second hypothesis was used to get the de
pling of the energy, the existence of the matching param
l and the fact thatkl« is small. In the case where« is of
order 1022, to get an error on the energy of 1022 and the
existence ofl, we needrTF.1023, that is we are computing
the energy away from a small distance of the boundary,
the amount we miss is negligible.

If the vortex line is straight, our computation yields

r0
3/2

b F2

3 Xc*
2

1p lnSA 2

«eC0D C1 2p

3
ln r0

1pS 210

9
1

4

3
log 2D2V

8pr0

15~11a2!
G . ~2.24!

This gives a critical angular velocityV1 for which a straight
vortex has a lower energy than a vortex-free solution. W
our experimental data, it yieldsV1;22.45, that isṼ1 /vx
;0.39. We are going to see in the numerical section t
there is a range of value ofV less thanO1 for which a bent
vortex has a negative energy, in particular, a less energy
a straight vortex.

F. Case of several vortices

Let us assume that the solutionu« hasn vortices along the
lines g i , 1< i<n. We want to estimate the energy in th
case. For eachg i , we defineTi ,l« as in Eq.~2.9!.

One can check that the estimates~2.21! and ~2.11!, re-
spectively, forI «(v«) and for G«(v«) close to each vortex
core, are unchanged if the integral alongg is replaced by the
sum of the integrals alongg i . The only difference is for the
estimate away from the vortex cores where we have to t
into account the interaction between the vortex lines. Let
denoteDn5D\ø jTj ,l« . We still have

G«~v«! uDn
.E

Dn

1

2rTF
ucurlCu2, ~2.25!

whereC5( iCi andCi solves Eq.~2.12! with g i instead of
g. Thus, we need to estimate

(
i
E

Dn

1

2rTF
ucurlCi u21(

iÞk
E

Dn

1

2rTF
curlCk3curlCi .

~2.26!

The first integral is estimated as in Sec. II C 2 by

(
i

2pE
g i

rTF lnS eC0

2
Am1

k2

4
l« D dl. ~2.27!
1-5
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As for the second integral in Eq.~2.26!, we integrate it by
part to get

p(
iÞk

E
g i

Ck3dl. ~2.28!

The computation ofCk(x) from Sec. C 2 is still valid and we
have Ck(x).2rTF K0@Am1 k2/4d (x,gk)#ġ. This yields
the contribution ofn vortex lines@to be compared with Eq
~2.23! for 1 vortex#

En5(
i
E

g i

rTFF c*
2

1p lnS 2

«eC0A rTF

m1
k2

4
D Gdl

2
Vp

~11a2!
E

g i

rTF
2 dz

2p(
iÞk

E
g i

rTF K0FAm1
k2

4
d ~x,gk!Gdl, ~2.29!

whereK0 is a modified Bessel function. The extra term in t
energy models the interaction between vortex lines. Note
the curves are going to interact only in the region where t
are close to one another.

III. COMPARISON WITH THE NUMERICS

We are interested in the shape of the vortex line that m
mizes Eq.~2.23! according to the value ofV. We write
g(t)5„r (t),z(t)… and we assume that the vortex line is in t
plane (y,z). We will denoterTF(t)5r02a2r 2(t)2b2z2(t)
and we define

C~ t !5
c*
2

1p lnS 2

«eC0
Ar02a2r 2~ t !2b2z2~ t !

m1k2/4 D .

Since Eq.~2.23! does not depend on the parametrizati
g(t), we choose a special parametrization on the curve s
that

C2~ t !rTF
2 ~ t !@ ṙ 2~ t !1 ż2~ t !#51. ~3.1!

Then, it is equivalent to minimize

E
g
C2~ t !rTF

2 ~ t !@ ṙ 2~ t !1 ż2~ t !#dt2
Vp

~11a2!
E

g
rTF

2 ~ t !ż~ t !dt,

~3.2!

under the constraint~3.1!. In our computations below, we
will proceed to a minimization of Eq.~3.2! releasing the
constraint Eq.~3.1!. Indeed, computations show that E
~3.1! is true fromt50 to t* where the shape of the vortex
determined. Under the assumption thatm and the curvature
do not vary too much along the curve, we derive an equa
for the minimumg

d

dt
~C2rTF

2 ṙ !52
2a2r ~ t !

rTF~ t !
1

2a2V

~11a2!
rTFr ~ t !ż~ t !,
04361
at
y

i-

ch

n

d

dt
~C2rTF

2 ż!52
2b2z~ t !

rTF~ t !
2

2a2V

~11a2!
rTFr ~ t ! ṙ ~ t !.

Thus, we solve this system with initial conditionsr (0)
5r 0 , ṙ 050, z(0)50, C(0)rTF(0)ż(0)51.

We let r 0 vary in order to find the minimizing solution
We have drawn the vortex line for the minimizing solutio
for some values ofV in Fig. 1. We find that indeed the
vortex line is bending for a range ofV. The bent vortex
starts to exist near the boundary of the ellipse, that isy

5Ar0 /a, z50 for V0521.2, that isṼ0 /vx50.368. AsV
increases, the value ofr 0 decreases:r 050.03 for V521.8,
r 052.931024 for V525.8, r 051026 for V533.1. AsV
increases,r 0 becomes smaller, the bent vortex gets ve
close to the straight vortex. The shape of the vortex lines
similar to those obtained in@12# using the full Gross Pitaev
skii energy.

We plot the energy of the straight vortex line and the b
vortex vsV in Fig. 2. One can observe that forVc521.8,
that is Ṽc /vx50.38 in the initial units, the energy of th
bent vortex starts to be negative~that is below the energy o
a solution without vortex!, while the energy of a straigh
vortex line is positive. ForV533.1, the energy of the ben
vortex and of a straight vortex line become equal. The
results are consistent with the ones in@11#. They obtain the
same value ofVc for which the bent vortex has a negativ
energy.

Let us point out that the bent vortex is a minimizer even
the cross section is a disc. Nevertheless, when« is fixed, if b
gets too big, the straight vortex becomes the minimiz
which is the case forb51. Our analysis could give the criti
cal value ofb above which the vortex line should be straigh

We believe that our analysis justifies why in the con
tions of the ENS experiment, when a vortex is nucleated,
contrast is not 100%: indeed, a bent vortex has a lower
ergy than a straight vortex. Nevertheless, the velocity
nucleation in the experiment is higher than our critical ang
lar velocity Vc : we compute the thermodynamical critic
velocity whereas the velocity of nucleation is likely to b
closer to the velocity where the vortex-free solution los

FIG. 1. The vortex line for various values ofV in thez-y plane:
V521.8 ~straight line!, V525.8 ~dotted line!, V533.1 ~dashed
line!.
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local stability. Once the first vortex is obtained experime
tally, if V is decreased, the bent vortex is likely to ex
down toV0.

When there are several vortices, it would be interesting
find numerically the shape of the vortex lines which min

FIG. 2. The energy vsV curves for the solution with a straigh
vortex ~solid line! and a bent vortex~dotted line!.
v.

ett

ev

d

04361
-
t

o

mize Eq.~2.29! but we believe that our simplified energy is
good description of the experiments@8# and the numerics
@12# and we hope that it can be easier to handle than the
Gross Pitaevskii energy.

IV. CONCLUSION

We have obtained a simplified expression~2.23! of the
energy of a minimizing solution of the Gross Pitaevskii e
ergy with a vortex lineg and Eq.~2.29! for n vortex linesgi .
This expression depends on the shape of the vortex line
has a term coming from the energy of vortices and anot
one due to the angular momentum of vortices. This has
lowed us to draw the vortex line for the minimizing solutio
and compute its energy. We have seen that there is a rang
rotational velocities for which a bent vortex line has a low
energy than a straight vortex and a vortex-free soluti
These computations on the simplified expression of the
ergy are in agreement with the computations on the full
ergy @11,12#.
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