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Vortex energy and vortex bending for a rotating Bose-Einstein condensate
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For a Bose-Einstein condensate placed in a rotating trap, we give a simplified expression of the Gross-
Pitaevskii energy in the Thomas Fermi regime, which only depends on the number and shape of the vortex
lines. Then we check numerically, that when there is one vortex line, our simplified expression leads to
solutions with a bent vortex for a range of rotational velocities and trap parameters that are consistent with the
experiments.
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I. INTRODUCTION that makes it rotate. By introducing a rotating frame at the
angular velocityQy=Qe,, the trapping potential becomes
Since the experimental achievement of Bose-Einsteinime independent, and the wave functignminimizes the
condensates in confined alkali-metal gases in 1995, there hasergy

been a huge experimental and theoretical interest in these 52
systemg1-10]. The study of vortices is one of the key is- Eap(P)= f —— |VS2+1D- (i, VX X)
sues. Two different groups have obtained vortices experi- 2m

mentally, the JILA group4] and the ENS grouf7,8]. In the

. o . m N
ENS experiment, a laser beam is imposed on the magnetic + _2 wiri|¢|2+ —0ap|B|* (1.1
trap holding the atoms to create a harmonic anisotropic ro- 273 2
tating potential. For sufficiently large angular velocities, vor-
tices are detected in the system. Experimentally, the ENS ) . L
group[8] has observed that when the vortex is nucleated, th&ties U andv and their complex conjugatesandv, (u,v)
contrast is not 100%), which means that the vortex line is not (uv +uv)/2.
straight, but bending. Numerical computations solving the We want to nondimensionalize the energy in order to get a
Gross-Pitaevskii equatidril,12 have shown that there is a parameter that is small in the Thomas-Fermi regime. This
range of velocities for which the vortex line is indeed bend-framework of study has been developed by one of the au-
ing. The aim of this paper is to justify these observationsthors in[14], except tha{14] was a two-dimensional study
theoretically in the Thomas-Fermi regime. We define anfor a condensate confined in tlzeaxis. We define the char-
asymptotic parameter that is small in the Thomas-Fermi reacteristic lengthd= (/mw,)"? and assumen,= awy,, o,
gime and approximate the Gross-Pitaevskii energy to obtairr Swy. We set
a simpler form of the energy that only depends on the shape %24 d
of the vortex lines. Then we check numerically that our char- g2\e= — ,
acterization leads to a solution with a bent vortex for a range 2Ngm 4mNa
of values of the rotational velocity that are consistent with
the ones obtained numericalfjL1]. Let us point out that
Svidzinsky and Fettef13] have studied the dynamics of a
vortex line depending on its cur_vature. For a vortex Veloc'ty><105 and w,=1094 s with a=1.06, B=0.067. We find
equal to zero, the equation obtained 113] is the same as the hat e=0.0174. th . I which will b
equation corresponding to the minimum of our approximatet at e="u. p thus,e 15 smafl, which Wil be our
energy, though the formulation {i3] was not derived from asymptotic regime. We rescale the distanceRyd/ = and

; — P32 —
energy considerations. Moreover, their analysis is only valiodeiIne u(n=~R ¢().() vvhere x=Rr and we set{)
for a single vortex line. =0/ew,. The velocityQ) is chosen such thdd<1/e, that
The Gross-Pitaevskii energy provides a very good dels the trapping potential is stronger than the inertial potential.
scription of Bose-Einstein condensates: it is assumed that thEn€ energy can be rewritten as
N particles of the gas are condensed in the same state for 1
which the wave functionp minimizes the Gross-Pitaevskii Esp(u)= f EIVu|2+Q~(iu,Vu><r)
energy. In the ENS experiment, a laser is applied to the trap

gnder the constrainf|#|>=1. Here, for any_complex quan-

where g;p=4mA2a/m. For numerical applications, we are
going to use the experimental values of the ENS group
[8,11], m=1.445<10 %% kg, a=5.8x10 ' m, N=1.4

1
+ g(x2+ a?y?+ B27%)|u|?+ E|u|4.
*Electronic address: aftalion@ann.jussieu.fr

"Electronic address: riviere@math.polytechnique.fr (1.2

1050-2947/2001/64)/0436117)/$20.00 64 043611-1 ©2001 The American Physical Society



AMANDINE AFTALION AND TRISTAN RIVIERE PHYSICAL REVIEW A 64 043611

Due to the constrainf|u|?=1, we can add t&p, any mul- A. The solution without vortices

. 2 . . . . . .
tiple of f|u|* so that it is equivalent to minimize First, we are interested in the profile of solutions so that

we will study solutions without vortices. Thus, we consider
! ; ! ! functions of the formy=fe'S, f is real and d ish
Z|Vu2+ Q- (iu, Vuxr) + ——|u|*— == pre(r)|ul?, functions of the form,=fe™, fis real and does not vanis
2 4e 2e in the interior of D. We consider first minimizinde, over

5 oo oo such functions without imposing the constraint that the norm
wherep1e(r) = po— (X*+ a®y“+ B°z°) for some constant, is one, that isf and S minimize
to be determined. LetD be the ellipse{pr=>0}={x?

+ a?y?+ B22°< po}. We impose the following constraint on 1., 1 -
oo 61,9 [ SIVI+ 7oa(ore—17)
1
pre(r)=1. 1.3 + | fVS—Qxr|?—f20%r2, (2.1
D 2

Indeed,pr¢ is the Thomas-Fermi approximation efthat is, ~ wherer =xe+ye,. We havef,=0 on 4D and
for smalle, the minimizer satisfies théu|? is close topt SO 1
that the constraint is satisfied automatically ibyf we im- B . _ YN
pose Eq(1.3). Equation(1.3) leads to AT+ 1L VS,(VS,—20x1)= 5 1(pre=12) In D,
(2.2)
pa?=15ap/87. (1.4

div[f4(VS,—QXr)]=0. (2.3
To study the problem analytically, it is reasonable to mini-
mize the energy over the domalhwith zero boundary data The continuity Eq.(2.3) implies that there exist&, such
for u. Indeed, whemp =<0, the energy is convex so that the that
minimizer u goes to zero exponentially at infiniisee the
numerical observation if6] and the analysis on the behavior
near the boundary d as well as the decay at infinity of the
order parameter ifl15,16)). We consider the problem

f2(VS,—QXr)=QcurlE,. (2.9

One can think off, as the equivalent of a stream function in
the case of fluid vortices. S&, is the unique solution of

minE,(u) subjectto] |u|?’=1 andu=0 on D (P) 1 _ _ _
D curl —curlZ,|=-2 in D, E,=0 on JdD.

&

where (2.9

1 1 In the special case where the cross sectio?® @ a disc, the
Es(u)zf = |Vul?+ Q- (iu,Vuxr)+ —[ pre(r) — u|?]?. minimum of Eq.(2.1) is reached foiV S=0, but this is not
p2 4s the case if the cross section is an ellipse and there is a non-
(1.9 trivial solution of Eq.(2.3). Whene is small, since the ellip-
ticity of the cross section is small, the zero-order approxima-
tion of f§ is ptr and the functiorE, given by Eqs.(2.4) or
(2.5) is approximated by the unique soluti@h of

Note that a critical poinu of E, is a solution of

1
—Au+2i(Q><r)~Vu=;zu(pT,:—|u|2)+,usu in D,
1
(1.6 curl(p—curIE)=—2 in D, E=0 on dD. (2.6
TF
with u=0 on dD and w, is the Lagrange multiplier. The .
specific choice ofpg in Eq. (1.4) will imply that the term One can easily get that
.U is negligible in front ofpreu/e?. 2 V) = — 02 (X V) /(24 202 >
We have set the framework of the study of our energy. In E00Y)= = prexy)l (2420008, @7

Sec. I, we will make an asymptotic expansion of the energysing Eq.(2.4), we can define,, the limit of S, , to be the
taking into account that is small (but [loge| is not big.  solution of pre(V Sy— QX 1) =0 curl E with zero value at
Then, in Sec. lll, we will check that our approximate energythe origin. We haveS,= CQxy with C=(a?—1)/(a?+1).
yields a solution that is consistent with the numerical andye see thas, vanishes wherr=1 that is when the cross
experimental observations. section is a disc. This computation is consistent with the one
in [9], though it is derived in a different way.
II. ASYMPTOTIC EXPANSION OF THE ENERGY

Our aim is to decouple the energy into three terms: a part B. Decoupling the energy

coming from the profile of the solution without vortices, a  Let 5,=f_e'S: be the vortex free minimizer of, dis-
vortex contribution, and a term due to rotation. cussed previously without imposing the constraint on the

043611-2
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norm ofu. Let u, be a configuration that will minimiz&,
and letv,=u_./7n,. Since 5, satisfies the Gross Pitaevskii
Egs.(2.2—(2.3), we have,

1 1 .
[ o= - 5862 Zi2tore 12+ w852

=0.

—2fq VS, - Qxr]

This trick was introduced ifi17] and leads to the following
decoupling of the energk.(u,):

E(U)=E.(7)+G, (v)+, (v,), (28
where
1 | 7.]*
- | = 2 2 e _ 212
Gr]g(vs) JDZ |7]£| |Vv£| + 482 (1 |U£| ) ’

is the energy of vortices and

1,00 [ nl2Ts - 0xnx (v, Vu,),

is the angular momentum of vortices. The first term in the

energy is independent of the solutien, so we have to
compute the next two, and find for which configuratiopn
the minimum is achieved. We assume that the solutiohas
a vortex line alongy, that isu, vanishes alongy with a

winding number equal to one. Then we expect that the vortex

core is of size\ ¢, that is, away from a tube of sizes, |v,|
is very close to one and only the phasevgfis of influence.
In the vortex core, the profile af, is given by the cubic
NLS equation. We have to determike which is a matching
parameter.

Our aim is to estimate the energy of depending ony.
We use that at zero orden,|? is approximated by when

e is small so that we can approximzﬁeu byG\;;TFz G, and

I, by | o= le-
C. Estimate of G,.(v,)

We want to estimate
2
1 pTF|
G,(v, :f_ Vo, |2+ 1-]v.|?)>
(0= | Slorell Vo, 4= (1[0,

The mathematical techniques to approxim@te have been
introduced i 18] in dimension two and if19] in dimension
three, whene is very small. The problem here is that
=0.0174, so thatlog | is not large and there will be addi-
tional terms in the asymptotic expansion.
We define
T\.={Xe D suchthat~(x,y)<\e}, (2.9

where ~/ is the distance, and assume that is small, A

being our matching parameter to be fixed later on. Then we

PHYSICAL REVIEW 464 043611

split G, into two integrals: one ifT,,, the energy of the
vortex core and the other iP\T,,, the energy away from
the vortex core.

1. Estimate near the vortex core

We are going to estima®®, in T, .. At each pointy(t) of
v, we definell "1(y(t)) to be the plane orthogonal tp at
v(t). Since\e is small, we assume thak e is constant in
I 1(y(1))NT,, and we call the valug,=pre(¥(t)). We
want to compute

1 PTe
— 2 _ 2\2
fTAEZPTF|V08| +482(1 |vs| )

ptf 2 Pt 202
=| = Vo |+ s=(1—|v .
LZ H‘lw(t»rms| [ g1 o)

This computation is valid as long &3 ¢ is small, wherek is
the curvature ofy. The zero-order approximation of; is
given byul(r\/E/s), whereu,(r,0)=f,(r)e'’ is the solu-
tion with a single zero at the origin of the cubic NLS equa-
tion

Au+u(1-|ul?>)=0 in R2

Thus,

Pt
|Vvs|2+ ?(1_|Ua|2)2

PTF| g

r —|€
2

PTF

1-f3 r\/—

1
|Vuy |2+ 5(1_|Ul|2)2

f ()T,

fB)\(s

L
2e2

:Lx

2

v|f,

&

~c, +27In(\py), (2.10
where
1 f2—1 f2
c,=| fi2+=(1-f2 2+f —=.
* JRZ ! 2( ) R2B; 2 Byr?

The last line of Eq(2.10 would be an equality if the first
two integrals in the expression af, were taken inBM@
instead ofR2. This approximation is correct i \/p, is large

(in fact, bigger than three is enough
The final estimate of this section is

C
Gs(va)\T)\g:J PTF 7*+7T|09()\VPTF) dl. (2.1
y
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2. Estimate away from the vortex core

We are going to estimat&, in D\T,.. In this region

lv.|=1, and we have seen that/p, is large, so that only the

kinetic energy of the phase has a contribution.

1 P
5 Vo |?+—(1-1|v.]??
J'D\TMZPTF| | 482( [vel?)

1 2
ZJ EPTF|V¢8| )
D\T),

where ¢, is the phase of,. Of course,¢, is not defined

everywhere, but we use the analogy with fluid vortices for a

PHYSICAL REVIEW A 64 043611

Vorr
—-A $3+__X Vl,b3= 27TpTF5‘}/’
PTF

(2.13

wherepre(x!,x%) = pre(xt,x2,x3). Let é= i3/ pre. Then it
follows from Eq.(2.13 that ¢ satisfies

—A&+ué=2m\pred,, (2.14
where
1 1
u=NpreA ——=Vpred | —. (219

line vortex in an otherwise in-viscid incompressible fluid. We Here, A | is the Laplacian in the plane perpendiculareto

let W be a stream function that is di# =0 and

Then, W is the unique solution of

=2md,, W¥=0 ondD, (212

1
curl( —curlw
PTF

whered, is the vectorial Dirac measure alongthat is for a
vectorial test functiorw,

<5y,w)=fyw><dl,

while &, is the Dirac measure along Thus,

[ Solvol=[ o feunw?
- o 2= ——|cur
DT, 2 prF DT, 2PTE

TV Xv,

2 ),

wherev is the outward unit normal to the tullg .. We will
see thatV is almost constant at a distance from y and we

call this valueW, (). Since the vortex line has a winding

number 2,

1
f EPTF|V¢5|2:WJ W, (y)Xdl.
DTy, y

We have to computal on JT,.. The computation is in-
spired by the paper of Svidzinsky and Feft&8]. It follows
from Eq.(2.12 that ¥ satisfies

Vore

PTF

Let xoe y. We denote b)e3='y(x0) and (e;,e,,e3) an or-
thogonal base in local coordinates. Than has coordinates
¢i in g and the variations of/; are the only ones of influ-

ence in the equation fodr, since we want to compute

Wxdl. In the equation folr, we neglect the terms iN ¢,
and V¢, in front of V ¢ and we get

=y(Xo). If the cross section of the condensares a disc,
one can computg.. We denote by the angle ofe; that is
e;=g cosf+e,sind and (r,z) are the coordinates of; in
the original frame. Then,

(1+sir? 6)+ B?cos 6 . 3(r sin#— B?z cosh)?

# PTF P

(2.19
Note thatu>0. In fact, our numerical computations even
yield x>7. Our aim is now to give an approximate expres-
sion for £. We locally approximate the curvgnear the point
Xo by the parabola=kz?/2, wherek is the curvature ofy at
Xg- This is where we use the same ideas gd.8]. Note that
in our approximations, we are only taking into account the
shape ofy close tox,. The justification for this relies on the
fact thatu>7 as our numerics show. Indeed, if we solve

—AX+ uX=f,

wheref is supported at a distanakof x,. Then using the
Green function, we find that

—Vud

= .

In particular, ford=0.1, this gives an error less than 10
This is to be compared to the Euler constant and our approxi-
mation is reasonable. We rewrite EQ.14) in local coordi-
nates to get

—A &+ k(9X1§+ w&=2m\pre(Xo) 5%’

whereé% is the Dirac mass supported along the leyeand
e, is the normal to the vortex ling. Thus,

2
+u

_A(eka:L/Zé_—) +

(e7%92¢) =2mpre(Xo) Oe,-
(2.17

2

The solution of this equation is

k
VpTE(X0)Ko| \/ m+ Z”’/(X’V))'

043611-4
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where K, is a modified Bessel function. In particular, Hence, if the right-hand-side of E@2.23 is negative, it
Ko(x)=—In(e“ox/2) for smallx whereC,=0.577 is the Eu- means that it is energetically favorable to have vortices. Note

ler constant. Hence, we deduce that in the first integral of€,, we havedl=|y(2)|dz,
Co 2 whereas in the second one, we halz
e/ ; Our approximations rely on the fact that the ellipticity of
W(X)=—preln| — + —(X, . (21 C 9 . o
(0==pre n( 7 N rt g7 7)) v (218 the cross section is weak and on the fact thi sufficiently
] _ small. The first hypothesis was used to get that the first-order
Thus, we conclude by the estimate B (v,) in D\T), approximation of|u,| is pre, and to computew in Eq.
Co " (2.15, whereas corrections are needed if the ellipticity is
e .
G — Inl — / +—eldl. strong. The second hypot_he5|s was used to get the decou-
()i, nypTF n( 2 VAT 8) pling of the energy, the existence of the matching parameter

(2.19 N\ and the fact thak\e is small. In the case where is of
order 102, to get an error on the energy of 19 and the
Hel’e, we haVe Used thaTE iS SufﬁCiently Sma”. In the existence of\ we neechF> 107 that is we are Computing
previous section, we needad/p, large. The existence of  the energy away from a small distance of the boundary, but
is justified by the fact that/pr</& is much bigger than one, the amount we miss is negligible.
except very close to the boundary. But in this region, the If the vortex line is straight, our computation yields

contribution of the energy is negligible.
2[c, [ 2 N 277|
ceCo 3 NPo
—10 8mpg

3\ 2
10 g2l -0
g *300 151+ ad) |

312
Po

— +aln
D. Estimate of | .(v,) B i

We want to estimate

(2.29

100~ [ pre(VS,~@xDX(i0, Vo). (220
D This gives a critical angular velocit§ ; for which a straight
vortex has a lower energy than a vortex-free solution. With
our experimental data, it yield®,~22.45, that isQ);/w,
~0.39. We are going to see in the numerical section that
there is a range of value @@ less thanO, for which a bent

Recall that the unique solution of Eq2.5 satisfies
p1e(VS,—QXxr)=Q curl E, . Hence we integrate by part in
Eqg. (2.20 to get

. vortex has a negative energy, in particular, a less energy than
ls(va):QfDEsX curl(iv,,Vu,). a straight vortex.
Let ¢, be the phase of,. Sincev, is tending to one ev- F. Case of several vortices
erywhere except on the vortex line, thenv(,Vv,) Let us assume that the solutiap hasn vortices along the

~V¢,, hence, we can approximate cud(,Vv,) by lines y;, 1<i<n. We want to estimate the energy in this
2mé,. We use the value ¢E given by Eq.(2.7) and the fact case. For eacly;, we defineT, ,, as in Eq.(2.9.
that y(t) X e,=dz to get One can check that the estimatgs21) and (2.11), re-
spectively, forl (v,) and forG,(v,) close to each vortex
™ 2 core, are unchanged if the integral alopgs replaced by the
le(ve) == mjypTFdz' 22D sym of the integrals along; . The only difference is for the
estimate away from the vortex cores where we have to take
into account the interaction between the vortex lines. Let us

E. Final estimate for the energy denoteD,=D\U; Tine. We still have
We use EQs(2.8—(2.11)—(2.21) to derive the energy of a
solution with a vortex line. Indeed, the energy of any solu- W) ZJ’ 1 curlw)? (2.29
tion minus the energy of a solution without vortex is roughly 2/ID ' ’

the vortex contribution in the sense
whereW = 3;¥; andW; solves Eq(2.12 with v, instead of

E.(u,)—E.(7.)=¢,. (222 y. Thus, we need to estimate
We find that the vortex contributiof, is
f —|curlllf |2+E f —curI\IkacurI\If
c 2 P 2 PTF Dy 2ptF
_ % TF 2.2
£,= LpTF minl — 2| | (2.26
mt 2 The first integral is estimated as in Sec. Il C2 by

Q eCo [ K2
_(ITZZ_)LP%:dZ' (2.23 Z _7TLiPTF|n(7 ut Z)\s)dl. (2.27
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As for the second integral in Eq2.26), we integrate it by o6
part to get
04 | -
7>, | wxdl. (2.28 o2 /%
1#k Jy; if" \,\
The computation offr,(x) from Sec. C 2 is still valid and we ~ ° 'i\_
have W, (x)=— p1r Kol Vu + kKZ4/(x, ) ]y. This yields PN /_,-"
the contribution ofn vortex lines[to be compared with Eq. \\\ -
(2.23 for 1 vortex| 04 ~ ,,//
£-3 Sl 2 [P g B I T S e —
nT < yipTF 2 ™ £eCo B K2 ;
H 4 FIG. 1. The vortex line for various values £f in the z-y plane:
) =21.8 (straight ling, () =25.8 (dotted ling, (=33.1 (dashed
line).
(1+a2)f pTedz
28%z(t)  2a2Q .
[ K C?p22)=— - r(tyr(t
_Tr;k preKo w+ Z‘/(X!yk) d (2.29 ( PTF ) p1e(t) (1+a,2) prer (D ().
Yi

wherekK, is a modified Bessel function. The extra term in the Thus, we solve this system with initial conditiong0)
energy models the interaction between vortex lines. Note thatr, r,=0, z(0)=0, C(0)p1£(0)z(0)=1.

the curves are going to interact only in the region where they We letr, vary in order to find the minimizing solution.
are close to one another. We have drawn the vortex line for the minimizing solution
for some values of) in Fig. 1. We find that indeed the
vortex line is bending for a range d&b. The bent vortex

We are interested in the sh ¢ the vortex line th tmlnlstarts to exist near the boundary of the ellipse, thay is
caremeresied In e shape ot the vortexane that Mink-_ 1> ) . 2=0 for Qy=21.2, that ist/w,=0.368. As)

mizes Eq.(2.23 according to the value of). We write
_ L increases, the value of, decreases:;=0.03 for (1 =21.8,
y(t) =(r(t),z(t)) and we assume that the vortex line is in ther0=2.9>< 10~ for =258, ro—10-5 for 0 =33.1. As)

lane /,z). We will denotepg(t) = po— a?r?(t) — B2Z3(t )
P b.2) Pre(t)=po (=521 increasesr, becomes smaller, the bent vortex gets very

IIl. COMPARISON WITH THE NUMERICS

and we define

C*
C(t)=— +mln

2 \/Po—azfz(t)—ﬁzzz(t)
geto w+k?4 '

Since Eq.(2.23 does not depend on the parametrization

close to the straight vortex. The shape of the vortex lines are
similar to those obtained ifl2] using the full Gross Pitaev-
skii energy.

We plot the energy of the straight vortex line and the bent
vortex vs() in Fig. 2. One can observe that fér.=21.8,

A1), we choose a special parametrization on the curve suchat is Q./w,=0.38 in the initial units, the energy of the

that

bent vortex starts to be negatithat is below the energy of

a solution without vortex while the energy of a straight
(3.2 vortex line is positive. Fof)=33.1, the energy of the bent
vortex and of a straight vortex line become equal. These
results are consistent with the oned[ii]. They obtain the
same value of); for which the bent vortex has a negative
fcz(t)p2 (O[F2(t) +Z2(t)]dt— if 2 ()z(tydt, eI N .
y TF (1+ a?) ypTF ’ Let us point out that the bent vortex is a minimizer even if
(3.20  the cross section is a disc. Nevertheless, whéenfixed, if
gets too big, the straight vortex becomes the minimizer,
under the constraing3.1). In our computations below, we which is the case fo8=1. Our analysis could give the criti-
will proceed to a minimization of Eq(3.2) releasing the cal value ofg above which the vortex line should be straight.
constraint Eq.(3.1). Indeed, computations show that Eq. We believe that our analysis justifies why in the condi-
(3.1) is true fromt=0 tot* where the shape of the vortex is tions of the ENS experiment, when a vortex is nucleated, the
determined. Under the assumption thatind the curvature contrast is not 100%: indeed, a bent vortex has a lower en-
do not vary too much along the curve, we derive an equatiorrgy than a straight vortex. Nevertheless, the velocity of
for the minimumy nucleation in the experiment is higher than our critical angu-
lar velocity Q).: we compute the thermodynamical critical
velocity whereas the velocity of nucleation is likely to be
closer to the velocity where the vortex-free solution loses

CHt)pZp(D[rA(t) +2%(1)]=1

Then, it is equivalent to minimize

5 2 2a°r(t)  2a%Q .
m(c PTer)=— o) + 1t ad prer ()z(t),
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05 T T T T T T mize Eq.(2.29 but we believe that our simplified energy is a
good description of the experimeni8] and the numerics
[12] and we hope that it can be easier to handle than the full
Gross Pitaevskii energy.

IV. CONCLUSION

We have obtained a simplified expressith23 of the
energy of a minimizing solution of the Gross Pitaevskii en-
ergy with a vortex liney and Eq.(2.29 for n vortex linesy; .

This expression depends on the shape of the vortex line. It
has a term coming from the energy of vortices and another
one due to the angular momentum of vortices. This has al-
lowed us to draw the vortex line for the minimizing solution
and compute its energy. We have seen that there is a range of
rotational velocities for which a bent vortex line has a lower
energy than a straight vortex and a vortex-free solution.
These computations on the simplified expression of the en-
) . . . . . . ergy are in agreement with the computations on the full en-

20 20 24 % 28 30 a9 34 ergy[11,12.
Q
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