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Nonlinear excitations in arrays of Bose-Einstein condensates
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The dynamics of localized excitations in an array of Bose-Einstein condensates~BECs! is investigated in the
framework of the nonlinear lattice theory. The existence of temporarily stable ground states displaying an
atomic population distribution localized on very few lattice sites~intrinsic localized modes!, as well as atomic
population distributions involving many lattice sites~envelope solitons!, is studied both numerically and
analytically. The origin and properties of these modes are shown to be inherently connected with the interplay
between macroscopic quantum tunneling and nonlinearity-induced self-trapping of atoms in coupled BECs.
The phenomenon of Bloch oscillations of these excitations is studied both for zero and nonzero backgrounds.
We find that in a definite range of parameters, homogeneous distributions can become modulationally unstable.
We also show that bright solitons and excitations of shock-wave type can exist in BEC arrays even in the case
of positive scattering length. Finally, we argue that a BEC array with negative scattering length in the presence
of linear potentials can display collapse.
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I. INTRODUCTION

The realization of Bose-Einstein condensates~BECs! and
the observation of quantum interference phenomena betw
two coupled condensates have opened a new fascinating
in physics, with the perspective of getting a better und
standing of the complicated behavior of quantum many-b
systems and with the hope of realizing novel concrete ap
cations of quantum mechanics, such as atom interferome
and atom lasers. The existence of periodic localized osc
tions in the relative atomic population of one of two coupl
condensates was first predicted in Refs.@1–3#. The close
analogy with the Josephson effect was also emphasized
common origin of these phenomena being the temporal
terference of two macroscopic quantum states, leading
current oscillations in Josephson junctions@4# and to oscilla-
tions of the atomic population in coupled BECs@5#.

Although the generalization of these results to the cas
three coupled BECs was considered@6#, few theoretical in-
vestigations exist on interference phenomena in arrays
coupled BECs@7#. In a recent paper@8#, the problem of
Bloch oscillations of bright solitons was investigated
terms of a tight-binding model for BEC arrays with positiv
scattering length. It is a fortunate situation that the equati
arising in this case formally coincide with those studied
the theory of nonlinear lattices@9#. One can indeed apply th
knowledge gained in these fields to the field of BEC arra
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Thus, for example, one can expect that the types of elem
tary excitations that can arise in BEC arrays, as well as th
dynamical behavior, strongly depend on the ratio betwe
the coupling of adjacent condensates and the nonlinea
induced by the interatomic interactions. Keeping the sa
terminology used in nonlinear lattices theory, one can
that for weak coupling and strong nonlinearity,intrinsic lo-
calized modes~ILMs!, i.e., matter excitations localized o
few lattice sites, should exist. These modes could arise
experiments like the ones reported in Ref.@10#, in which
millions of atoms were trapped in an almost one-dimensio
~1D! geometry~‘‘cigar’’-shape geometry!, with a small tun-
neling term between condensates.

On the other hand, when the coupling constant is com
rable with the self-trapping interactions, small amplitude e
citations of large size~in comparison with the lattice con
stant! should arise. These excitations can be identified
lattice envelope solitons~ESs! and could be observable i
macroscopic quantum interference experiments like the o
reported in Ref.@11#, in which a vertical array of ‘‘pancake’’-
like BECs, each containing thousands of87Rb atoms, was
coupled through the gravitational field. In this case, the
terference phenomena show up as Bloch oscillations of
ESs describing the atomic population along the array~ES
dynamical localization!. Bloch oscillations of ES type are
also possible in horizontal optical lattices induced by tw
counterpropagating laser beams with a frequency detun
varying linearly in time@12# ~this produces a linear potentia
on the BEC similar to the gravitational field of the vertic
traps!. In the following, we shall call both types of excita
tions ~i.e., ILM or ES! discrete matter solitons~DMSs!
whenever it is clear from the context to which type we re
@13#.
©2001 The American Physical Society06-1
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F. KH. ABDULLAEV et al. PHYSICAL REVIEW A 64 043606
The aim of this paper is twofold. From one side, we wi
to make a bridge from the theory of nonlinear lattices to
field of BEC arrays. This will allow us to get a better unde
standing of the types of excitations that can arise in
coupled BECs as the physical parameters are varied. F
the other side, we wish to expand both theoretically and
merically on the phenomenon of Bloch oscillations in t
case of 1D BEC arrays in the presence of uniform ba
grounds~with the term ‘‘background’’ here, we mean th
presence of a uniform distribution of atomic populati
along the array!. In particular, we discuss~i! the existence of
ILMs in 1D BEC arrays with positive scattering length;~ii !
the existence of ESs in BEC arrays with positive scatter
lengths;~iii ! Bloch oscillations of solitonlike excitations o
top of uniform backgrounds in periodic BECs with positiv
scattering lengths; and~iv! the dynamics of BEC arrays with
negative scattering length on zero backgrounds.

As to point ~i!, we remark that in contrast with the sol
tons and breathers discussed in Ref.@8#, which are extended
on many lattice sites@14#, the bright ILMs discussed here ar
highly discrete, i.e., localized on few lattice sites. Sin
ILMs have not been observed in real BEC arrays, this is
implicit call for experimental work to be done in this dire
tion ~for experimental evidence of ILM existence in oth
physical contexts, see@15#!. Point ~ii ! generalizes the result
of @8# to the case of nonzero backgrounds, while in~iii ! we
show that modulational instability can arise as the slope
the linear potential~gravitational field for vertical arrays! is
increased. Moreover, we find that for certain parameter
ues, shock-wave excitations can develop. In point~iv!, we
discuss Bloch oscillations of bright solitons both analytica
and numerically. All these results will have a close analo
with those derived in the theory of nonlinear lattices on
trinsic localized modes@16–19#, envelope solitons@20–22#,
shock waves@21,23#, and Bloch oscillations@24,25#. We
point out that similar lattices appear also in a description
light beams in arrays of nonlinear optical waveguides@26#
where discrete optical solitons have been explored@27#.

The paper is organized as follows. In Sec. II, the mode
a 1D array of BECs is derived. In Sec. III, we discuss t
existence of intrinsic localized BEC solitons, both of ev
and odd symmetry. In Sec. IV, we use a multiscale expans
to discuss the stability and dynamics of small-amplitude
citations of BEC arrays with positive scattering leng
against a uniform background and in the presence of a lin
potential modeling the gravitational field. The linear stabil
analysis of the background for BEC arrays is investigat
and the region in parameter space where modulational in
bilities develop is provided. We show that for particular p
rameters, shock-wave propagation can also develop. In
V, the main characteristic of Bloch oscillations for arra
with negative scattering length are discussed. Finally, in S
VI the main results of the paper are summarized.

II. THE MODEL

As is well known, in the mean-field approximation th
wave function of a BEC in a trap potentialV(r ) satisfies the
time-dependent Gross-Pitaevskii equation~GPE!
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]C~r ,t !

]t
5S 2

\2

2m
D1V~r !1g0uC~r ,t !u2DC~r ,t !,

~1!

where g054p\2as /m, m is the atomic mass,as is the
s-wave scattering length which can be eitherpositive ~the
case of87Rb atoms, with repulsive interactions and withas
55.5 nm) ornegative~the case of7Li atoms, with attractive
interactions andas521.45 nm). The trap potential is as
sumed to be periodic along thez direction,

V~r !5V~r1l k̂!, ~2!

where l is the spatial period of the potential andk̂ is a
unitary vector in thez direction. A typical model potential is

V~r !5mgz1V0~x,y!sin2~kz!, ~3!

with experimental parametersl52p/k;850 nm, V0
;2.1\2k2/2m, and with an atomic population in each well o
N0'103 atoms@11#.

To make analytical studies it is convenient to look f
solutions of Eq.~1! of the form

C~r ,t !5 (
n52N/2

N/2

cn~ t !Fn~r !, ~4!

where the summation is performed over the numberN of
minima of the trap potential, which is assumed to be ev
The functionsFn(r )[F(r2rn) are assumed to be strong
localized around the siten of the potential and normalized t
the mean number of atoms in thenth well N05N/Nw ,

E F̄n~r !Fn~r !dr5N0 , ~5!

whereN is the total number of atoms andNw5N11 is the
total number of potential wells~hereafter the overbar wil
denote complex conjugation!. This implies that the hopping
integral

uJn,n11u5U E F̄n~r !Fn11~r !drU!N ~6!

can be neglected, i.e., we assumeJn,n11'0 for all n. This is
analogous to the well-known tight-binding approximation
solid-state physics@28#, valid for weakly overlapped conden
sates. Note that from Eqs.~5! and~6! the following normal-
ization condition for the functionscn(t) is obtained:

(
n52N/2

N/2

ucn~ t !u251. ~7!

Substituting Eq.~4! into Eq. ~1!, multiplying by F̄n(r ), and
integrating overr , we readily obtain the system of couple
equations,

i\ċn5Encn1Unucnu2cn2Kn,n21cn21

2Kn,n11cn111g0ncn , ~8!
6-2
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NONLINEAR EXCITATIONS IN ARRAYS OF BOSE- . . . PHYSICAL REVIEW A 64 043606
where the overdot means time derivative, andg05mgawith
a5l/2 is the distance between adjacent wells. In Eq.~8!, we
have denoted with

En5E S \2

2m
u¹Fnu21uFnu2V~r ! Ddr ~9!

the zero-point energy for the welln, with

Un5
g0

N E uFnu4dr ~10!

the mean-field self-interaction energy, and with

Kn,n6152E S \2

2m
~“Fn“Fn61!1~FnVFn61! Ddr

~11!

the sum of the kinetic energy and the off-diagonal mat
element of the trap potentials between sitesn andn11 ~i.e.,
the coupling constant between neighboring BECs!. In the
following, we shall consider the case of equal constantsEn
5E, Un5U, Kn,n615K. Introducing the new variable

t→ K

\
t, cn→S 2uUu

K D 1/2

c̄nei [(E/\K)22]t, ~12!

we can rewrite Eq.~8! in dimensionless form as

i ċn1cn111cn2122cn12sucnu2cn1gncn50, ~13!

with s52sgn(as) and g5g0 /K. Equation~13! coincides
with the well-known discrete nonlinear Schro¨dinger equation
@9#, largely investigated in the theory of nonlinear lattices.
the present context, however, because of the normaliza
condition~7!, the boundary conditions for Eq.~13! cannot be
chosen arbitrarily. In this paper, we consider either the p
odic boundary condition

c~n!5c~n1N11! ~14!

in the case of finite lattices, or zero

lim
unu→`

c~n!50 ~15!

or ‘‘finite-density’’

lim
n→6`

c~n!5re6q ~16!

boundary conditions, in the case of infinite lattices~herer
andq are arbitrary constants!. Equation~13! will then have
also another integral of motion of the form

H5(
n

c̄ncn212ucnu4. ~17!

The mean-field tight-binding model in Eq.~13! will be
used in the following to study the dynamical properties
both ILM and ES excitations in 1D BEC arrays.
04360
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III. EXISTENCE OF INTRINSIC LOCALIZED MODES
IN BEC ARRAYS

As is well known, in the case of continuous 1D BEC
soliton ground-state solutions can exist. These were theo
cally predicted in@29# and experimentally observed in th
case of positive scattering length~dark solitons! @30#. Bright
solitons can exist in BECs only when the effects of focus
nonlinearity balance those of effective dispersion, this be
possible for attractive interparticle interactions or negat
scattering lengths only. Since bright solitons are very imp
tant for developing BEC applications@31#, it is of interest to
investigate their existence also in BEC arrays. In this case
we will see in the following, new possibilities can arise.
Ref. @8#, bright solitons of the ES type were numerical
investigated in 1D BEC arrays with positive scatteri
lengths. Here we shall consider the case of bright soliton
ILM type in BEC arrays with both positive and negativ
scattering lengths. We fixg50 ands51 in Eq.~13!, i.e., we
consider BECs in horizontal traps with negative scatter
lengths. ILMs are then expected to exist when the coupl
constant~which is responsible in the linear case for th
spreading of the BEC wave function! is small in comparison
with the nonlinear self-trapping interaction. From the no
malization condition~5! and from the definitions~10! and
~11!, one can estimateuUu/K5O(N), i.e., a stronger nonlin-
earity corresponds to a larger number of particles. For
sake of analytical developments, is convenient to introd
the small parameter

k5A K

uUu
5O~N21/2!!1 ~18!

representing the ratio between tunnel coupling and non
earity, and recast Eq.~13! in the form

i ẇn1k~wn111wn21!1uwnu2wn50, ~19!

with wn5Akcne2i t ~the overdot here denotes the derivati
with respect tot5t/k).

In the following, we discuss ILM solutions of Eq.~19!
with different symmetry properties.

A. Symmetric ILMs centered on a site

Symmetric ILM solutions centered on a site~sayn50)

w2n~t!5wn~t!, uw0~t!u51, ~20!

can be searched in the form

wn5eivt(
j 5n

`

wn jk
j , v5(

j 50

`

v jk
j , ~21!

with the frequency of the local oscillationv equal for all
sites. Substituting this expansion into Eq.~19! and perform-
ing straightforward algebra, we obtain

v5112k222k612k81O~k10!, ~22!

with the site amplitudewn satisfying the lattice equations,
6-3
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F. KH. ABDULLAEV et al. PHYSICAL REVIEW A 64 043606
w15@k2k51k71O~k9!#eivt,

w25@k22k41k81O~k10!#eivt,

w35@k322k51k71O~k9!#eivt,

w45@k423k61O~k8!#eivt,

w55@k51O~k7!#eivt,

A

from which we see thatuwnu@uwn11u providedk!1.
It is remarkable that the decay of the amplitudewn is

exponential as one moves away from then50 site, and in
the leading order it can be approximated by

wn' exp~ ivt2hunu!, ~23!

with h given by exp(2h)5k!1. Note that in accordanc
with our scaling, the limitk→0 can be viewed as equivalen
to the strongly nonlinear limitN→` of the original physical
system. Moreover, from Eq.~23! it follows that a bright on-
site centered ILM can have fork50.1 about 91% of all the
atoms concentrated on its central site. For negative scatte
lengths, this implies that an ILM can be stable only ifN
,Ncr , whereNcr is the critical threshold at which collaps
phenomena occur~the effective coupling constant cannot b
made smaller than a critical value, this being a feature
BEC arrays with respect to other nonlinear lattices!.

To check these results, we have performed numerica
tegrations of Eq.~19! using as initial condition Eq.~23! with
t50. We used aDOPRI8 integration routine@32#, based on a
Runge-Kutta scheme of seventh to eighth order with au
matic stepsize control, so as to combine speed with h
precision~the relative errors were from 1027 up to 10213).
The integration domain was taken large enough (800 sites! to
avoid the influence of boundary conditions. The results
presented in Figs. 1~a! and 1~b! for the case, respectively, o
weak and strong coupling among neighboring BECs in
array. We see that in the case of weak coupling, the in
atomic population remains stable for arbitrarily long tim
@Fig. 1~a!#, while for strong couplings the initial distribution
of atoms spreads out over the whole system@Fig. 1~b!#.

B. Antisymmetric ILMs centered on a site

ILMs of antisymmetric type,

w050, w151, w2n52wn , ~24!

can be searched in the form (n.1)

wn5eivt(
j 5n

`

wn jk
j 21, v5(

j 50

`

v jk
j . ~25!

Direct substitution into Eq.~19! gives

v511k21k412k616k81O~k9!,

w25@k1k312k516k71O~k9!#eivt,
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w35@k21k412k615k81O~k10!#eivt,

w45@k31k51k71O~k9!#eivt,

w55@k41k61O~k8!#eivt,

A ~26!

In analogy with the symmetric case, one can ensure
to leading order the shape of the ILM is well described
the function

wn'exp~ ivt2hun21u!, n>1. ~27!

Direct numerical simulations of Eq.~23! with initial condi-
tions given by Eq.~27! showed a behavior of the atomi
population distribution as a function of the coupling co
stant, similar to the one reported in Fig. 1.

Other types of bright symmetric and antisymmetric ILM
such as the ones which are centered between two sites
also be constructed. A more detailed analysis of these e
tations shows that the stability of ILMs depends on th
symmetry property, as well as on their localization extens
@17,19,33#. Thus, symmetric on-site centered ILMs a

FIG. 1. Distribution of the normalized atomic population a
cording to numerical solution of Eq.~19! for the case of weak
coupling,k50.1 ~a!, and strong coupling,k50.8 ~b!: this distribu-
tion corresponds tot510. The dashed line shows the ILM envelop
given by Eq.~23!.
6-4
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NONLINEAR EXCITATIONS IN ARRAYS OF BOSE- . . . PHYSICAL REVIEW A 64 043606
stable, but symmetric ILMs centered between sites are
stable, while antisymmetric ILMs centered between sites
stable ifk,kcr'0.12, and unstable ifk.kcr .

For positive scattering lengths, different families of ILM
~as well as discrete fronts! representing dark ILMs~i.e., a
constant atomic population along the array except for a
sites in which the population is decreased! can also be found
@17,18,22#.

It is important to note that, due to the invariance of E
~19! under the transformationwn→(21)nwn , k→2k,
we have that the above bright~dark! ILMs, multiplied by a
factor (21)n, are also solutions of Eq.~19! for as
.0 ( as,0). This shows that Eq.~19! possesses bot
bright and dark ILM solutions for any sign ofas .

IV. BEC ARRAYS WITH POSITIVE SCATTERING
LENGTHS

From the experiment in Ref.@11# on vertical BEC arrays
and from numerical simulations, it is known that the ph
nomenon of Bloch oscillations of ESs can occur. In this s
tion, we shall use methods of nonlinear lattice theo
@24,25,36,37# to investigate Bloch oscillations of ESs in BE
arrays with positive scattering lengths. For bright ESs
zero backgrounds this was done in Ref.@8#, so we concen-
trate here only on the case of ESs on top of nonzero ba
grounds. To this end, it is convenient to introduce the ba
ground amplituder directly into Eq. ~13! with s521,
giving

i ẇn1wn111wn2122wn12~r22uwnu2!wn1gnwn50,
~28!

wherew5cnexp(22ir2t). Let us consider the case of an in
finite number of lattice sites for which the integrals of m
tion in Eq. ~28! are written as

N05(
n

~ uwnu22r2! ~29!

and

H5(
n

@~ w̄nwn212r2!2~ uwnu22r2!2#. ~30!

Moreover, since the problem has nonzero boundary co
tions, we must have, for consistency with Eq.~28! @37#, that

wn→r exp@ iFn~ t !# at n→6`, ~31!

with the phaseFn(t) defined as

Fn~ t !5ntg1x~ t !, ~32!

x~ t !52tS sin~gt !

gt
21D . ~33!

The gauge transformation@36,37#

qn5wne2 ignt ~34!
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i q̇n1eigtqn111e2 igtqn2122qn12~r22uqnu2!qn50,
~35!

with boundary conditions

qn→rexp@ ix~ t !# at n→6`. ~36!

In Sec. IV A, we use this equation to study the stability
the background of a BEC array in the presence of lin
potentials (g5” 0).

A. Linear stability analysis of the background

Let us consider a solution of Eq.~35! of the form

qn5@r1an~ t !#exp@ ix~ t !#, ~37!

where @an(t)@!r. Linearizing Eq.~35! aroundrexp@ix(t)#
and expanding in Fourier modes

b~k,t !5 (
n52`

`

an~ t !eikn,

an~ t !5
1

2pE0

2p

b~k,t !e2 ikndk,

we obtain

d

dt
uk,t&5Tk~ t !uk,t&, ~38!

whereTk(t) is a 434 matrix whose nonzero elements are

Tk
(12)52Tk

(21)52@cos~gt2k!2cos~gt !2r2#,

Tk
(34)52Tk

(43)52@cos~gt1k!2cos~gt !2r2#,

Tk
(14)5Tk

(23)5Tk
(32)5Tk

(41)52r2,

and with uk,t& a Bloch-Floquet state written in vector form

uk,t&5S b1~k,t !

b2~k,t !

b1~2k,t !

b2~2k,t !

D ~39!

@here b(k,t)5b1(k,t)1 ib2(k,t) with b j (k,t) real#. Since
Tk is periodic, we can use Floquet theory@38# to study the
stability. To this end, we introduce the matrixSk(t) as a
solution of the equation

dSk /dt5TkSk , ~40!

satisfying the initial conditionSk(0)5I ~here I is the 434
unit matrix!. It then follows that the background is unstab
if ul j (k)u.1, wherel j (k) is the eigenvalue ofSk(2p/g)
@note that Sk(t) is unimodular, detSk(t)[1, so that
l1l2l3l451#. In Fig. 2, the results of Floquet analysis,
6-5
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F. KH. ABDULLAEV et al. PHYSICAL REVIEW A 64 043606
obtained from numerical integrations of Eq.~40!, are re-
ported@in the numerical scheme we used aDOPRI8procedure
to integrate Eq.~40! and computed the spectrum of the m
trix Sk by reducing it to Hessenberg form@39##. The stability
of the background was also investigated by direct numer
integrations of Eq.~35! taking as initial conditions a uniform
background of amplituder51 modulated by a sine wave o
wave numberkn52pn/L ~we usedL5400 lattice sites!.

These results are reported in Figs. 3 and 4 for the ca
g50 andg50.5, respectively. We see that in the presence
the linear potential, a modulational instability can develop
agreement with the Floquet theory analysis of Fig. 2. A go
agreement was found also for other values ofg and other
initial conditions~at g50 the stability was checked only b
numerical integrations of the original equation, since in t
caset52p/g→` and the Floquet theory becomes inapp
cable!. In particular, we checked that the modulational ins
bility of the background develops at later values oft, asg is
increased, and that an initial background withk5p becomes
again stable forg;5.4, in agreement with Fig. 2.

B. Dynamics of small-amplitude pulses

The fact that Eq.~28! possesses an integral of motion
type ~29! implies that it cannot support solitary waves@23#,
i.e., it cannot have solutions moving with constant velocityv

FIG. 2. Floquet stability analysis of ak-modulated background
as a function ofg. Regions of stability are designated with ‘‘1.’’

FIG. 3. Modulational stability of the background atg50, for an
initial modulation withk;0.31.
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and depending onn,t, through the combinationn2vt ~this is
true also forg50). On the other hand, one can show th
localized smooth excitations of small amplitude can pro
gate along the array with a relatively weak distortion.
investigate this dynamics, it is convenient to introduce
small parameterm!1 defined as the square root of the ra
between the deviation from the background and the ba
ground itself, and consider the case of very smallg, i.e., we
take g5o(m3). This allow us to look for solutions of the
form

qn5@r1m2a#ei [x1mf] , ~41!

where a5a01m2a11O(m4) and f5f01m2f11O(m4)
are real functions of theslow variables j5mn, T
5mt, t5m3t, considered to be continuous and indepe
dent. We can then perform a multiple scale expansion@21# of
Eq. ~35!, substitutinggt with dt, with d;o(1). A straight-
forward algebra shows that the expansion equation at the
order inm is identically satisfied by the substitution~41!.

The equations at the ordersO(m2) andO(m3) are

a052
1

4r
@]Tf012 sin~dt!]jf0# ~42!

and

]T
2f014 sin~dt!]T]jf014$@sin~dt!#22r2 cos~dt!%]j

2f0

50, ~43!

respectively. It is worth noting that Eq.~43! at timesdt05
6p/2 changes from hyperbolic@supporting wave propaga
tion if cos(dt).0# to elliptic. Let us consider the dynamics o
the small-amplitude excitation during the time in which E
~43! is of the hyperbolic type. We introduce a new runnin
variablez5j2V(t)T where

V~t!52 sin~dt!12rAcos~dt! ~44!

can be interpreted as the slowly varying velocity of the wa
packet~for the sake of definiteness, we have chosen only
branch of the solution, the other branch being characteri
by the ‘‘velocity’’ with opposite sign!. One can then show
that Eq. ~43! is satisfied for an arbitrary pair of function
a0(z,t), f0(z,t) linked by

FIG. 4. Modulational instability atg50.5, for an initial modu-
lation with k;0.62.
6-6
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FIG. 5. Time dependence of coefficients of Eq.~46! for d50.1, r51.
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a0~z,t!5
1

2
Acos~dt!]zf0~z,t!. ~45!

In order to find the dependence of those functions ont, one
has to consider the equations of the fourth and fifth order
m ~more precisely the condition of their compatibility!. After
tedious but straightforward calculations, one arrives at
following Korteweg–de Vries~KdV! equation:

]ta01b1~t!a0]za01b2~t!]z
3a01b0~t!a050, ~46!

with slowly @if d5o(1)# varying coefficientsbj (t) given by

b0~t!5
1

4
d tan~dt!, b1~t!52

3@cos~dt!#3/22r sin~dt!

cos~dt!
,

b2~t!5
1

12r
$4r sin~dt!1r2@cos~dt!#1/223@cos~dt!#3/2%.

In Figs. 5 and 6, we report respectively the time dep
dence of the coefficientsb( i ) and evolution of a numerica
solution of Eq.~46! with initial condition

a0~z,t!53v sech2S z2vt

l c
D , l c5S 4

b

v D 1/2

.

Two important features can be seen from this figure. The
is the existence of a breaking timetbr below which the pro-

FIG. 6. Evolution of the localized excitation in a BEC arra
governed by Eq.~46!. The initial wave profile in dimensionles
units corresponds to the pure KdV soliton with parametersv
5

1
3 , b51.
04360
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file of the wave is distorted but its evolution is smooth~in
Fig. 5, tbr;0.5). At t5tbr , the breaking of the wavefron
occurs, after which a train of solitary pulses~each of them
being a KdV soliton! is emitted. This is similar to the gen
eration of shock waves in a fluid~nonlinear Schro¨dinger lat-
tice shock waveswere first studied in Ref.@21#!. Note that at
the breaking time the coefficientb2(tbr) is exactly zero~see
Fig. 5!, and Eq.~46! reduces to a known shock dynamic
equation@40#. An essential difference between the case
hand and the caseg50 treated in Ref.@21#, however, is that
in the latter, shock waves can appear only for a given car
wave background, while here the linear potential~gravita-
tional field of BEC arrays! makes them possible for an
wave number. Note that for the observation of shock wave
is important thatd is small compared with the amplitude o
the background, this ensuring that the time at which
group velocity dispersion becomes negligible will be lo
enough for shock waves to develop.

The second important feature that emerges from Fig.
the possibility to have bright pulses propagating on top o
nonzero background~i.e., on top of a constant atomic popu
lation along the array!. These pulses actually are ESs, simi
to those predicted in@20# for g50. For g5” 0, these excita-
tions can undergo Bloch oscillations. To show this, we ha
performed numerical integrations of Eq.~35!, with a sech
initial profile of large amplitude~i.e., comparable with the
background level!. The results are reported in Fig. 7~the
numerical scheme used is the same as that of the prece
section!. We note that for the same parameter values,
bright excitation~i.e., above background! breaks down while
the dark one~below background! remains stable for long
times.

An important conclusion following from these numeric
studies is that bright and dark solitons of KdV type on top
homogeneous backgrounds can exist in a BEC array w
positive scattering lengths.

V. ARRAY OF BEC WITH NEGATIVE SCATTERING
LENGTHS

A distinctive feature of BECs with attractive interaction
is the possibility of collapse when the number of atoms in
6-7
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condensate exceeds a critical valueNc . From GPE, one can
predictNc;1400 for 7Li atoms, a value that was confirme
experimentally in Ref.@41#. Arrays of optical traps can be
used for manipulation of BECs with negative scatteri
length, if their wells are loaded with fewer atoms than th
critical value. In this situation it is reasonable to consider
dynamics of ESs on zero background, as described by
~13! with s51. Bloch oscillations of bright ESs were nu
merically investigated in Ref.@24#. From these simulations,
strong dependence of the dynamics on the amplitude of
initial wave was found~large-amplitude wave packets a
quickly reduced to fragments, while small-amplitude exci
tions keep their integrity over many oscillation period!.
From numerical studies it is also known that the amplitude
a dynamically localized ES can oscillate in time. Using t
method of the preceding section, we can develop analyt
considerations on Bloch oscillations in BEC arrays w
negative scattering that explain the origin of these osci
tions. We consider the case of small amplitudes and smag,
i.e., we assume, as before,m5Ag to be a small parameter o
the problem. Introducing the variable

qn5cn exp~2 ignt!, ~47!

Eq. ~13! can be written as

FIG. 7. Bloch oscillations of bright~a! and dark~b! localized
excitations. Initial conditions are qn(0)5r
62h sech@2hn#exp@ifn(0)#, r50.1, h50.04, g50.1,
fn(0)52p/2n.
04360
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i q̇n1cos~gt !~qn111qn2122qn!1 i sin~gt !~qn112qn21!

12uqnu2qn50, ~48!

whose solution can be searched of the form

qn5mQ~j,t!, ~49!

with j(t)5mn2x(t), t5m2t, and

x5
2

m
~12cost!. ~50!

Note thatx(t)5O(m3)5O(g3/2) and thus the substitution i
self-consistent@at m3t!1 the term cos(t) can be expanded in
Taylor series#. After calculations analogous to those of th
preceding section, one arrives at the following nonline
Schrödinger ~NLS! equation with periodically varying dis
persion:

i ]tQ1cos~t!]j
2Q12uQu2Q50. ~51!

The dynamics of this equation was numerically investiga
starting with initial conditions of the form

Q~j,0!52h sech@2h~j2j0!#. ~52!

For the numerical code, we used a split-step fast Fou
transform technique@42# with a time stepDt50.001 and a
space stepDj50.02 ~in normalized units!, corresponding to
1024 grid points in the discretization domain taken as210
to 10 ~absorbing boundary conditions were used to simul
an infinite domain!. The accuracy of the scheme was check
by monitoring the conservation of the number of atoms a
of the Hamiltonian, which was within60.1% for all runs.
The results are depicted in Fig. 8. From Fig. 8~a!, we see that
while the ES is executing spatial oscillations, its amplitude
oscillating in time. In Fig. 8~b!, we report the time depen
dence of the center of the wave on a longer time scale, fr
which we see that the amplitude while oscillating is al
decaying~note, however, that this dynamics reproduces
dynamics of a real array only for timest such thatDt,1).
A more detailed numerical investigation shows that the a
plitude can be either decaying or growing in time, depend
on the initial conditions~the growth can also reach 60% o
the initial amplitude of the pulse!. This implies that if att
50 the number of atoms in one well is below the critic
value N0(t50),Ncr for collapse, the growth in amplitude
due to the linear potential can induce collapse after a t
t5tcr at whichN0(tcr)5Nc .

VI. CONCLUSIONS

The dynamical properties of BEC arrays with positive a
negative scattering lengths have been studied in the fra
work of a discrete nonlinear Schro¨dinger equation derived
from the mean-field GPE with a tight-binding approxim
tion. The interplay between macroscopic intersite tunnel
and nonlinear self-trapping was shown to be responsible
the appearance of different types of DMS. In particular,
showed, both analytically and numerically, that for a sm
6-8
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ratio between the tunnel coupling constant and the nonlin
interatomic interactions, ILM solutions can exist. For BE
arrays with nonzero backgrounds, the modulational stab
problem was investigated and the existence of bright
dark ESs was discussed. The problem of Bloch oscillati
of envelope solitons in arrays with positive scattering leng
was also analytically and numerically investigated. W
showed that at the lower orders of a perturbative expans
the dynamics of small-amplitude excitation evolves acco
ing to a KdV equation with time-dependent coefficients.
this case, the possibility of shock-wave formation, in BE
arrays with positive scattering lengths, was explicitly d
played. In the case of arrays with negative scattering leng
the dynamics of small-amplitude excitations was descri
in terms of a nonlinear Schro¨dinger equation with a periodi
cally varying dispersion. This equation was used to show
presence of amplitude oscillations during Bloch oscillatio
as well as decay or growth of the excitations, depending
the initial conditions. The results of this paper clearly sh
the complexity and the wide range of behaviors that can a
in the system.

In closing this paper, we feel compelled to discuss
which extend the phenomena presented in this paper c
be observable in real BEC arrays. Our model is based o
tight-binding approximation, which puts restrictions on t
shape of the wave functions, as well as on the potential p
file to be used. Although a detailed analysis of the exp
mental settings for which the tight-binding approximation
accurate has not yet been done, there are experimental

FIG. 8. ~a! Evolution of the localized excitation governed by E
~51!, for h50.5; ~b! decay of its amplitude~in dimensionless units!.
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ations in which this is obviously true. Thus, for example,
the potential barrier is wide and tall enough to reduce
tunneling probability among adjacent BECs, the overlapp
of the wave functions is certainly small and the model ac
rate. In this case, DMSs of the type discussed above sh
appear.

In particular, the possibility to observe ILMs in real ex
periments should not be overlooked. We remark that fr
Eqs. ~7! and ~12!, it follows that the peak amplitude, i.e
max„fn(t)…, is of orderO(1), sothat the atomic population
can be localized on very few sites of the array. In the exp
ment in Ref.@11#, the peak density wasn051013/cm3 and
the mean-field energy wasg0n0'kB34 nK (kB being the
Boltzmann constant!, causing the parameterk in Eq. ~18! to
be k'1. To observe ILMs one needs to have at leastk
;0.1. This can be achieved either by increasing the num
of atoms in each well~from 103 to 104) or by reducing the
tunneling constantK, which depends exponentially on th
lattice constant~distance between potential wells!. When the
number of atoms in the wells is increased, however, a los
coherence of the condensate can occur, a phenomenon
served in the experiments reported in Ref.@34#. On the other
hand,k can be reduced also by changing the atomic scat
ing lengthas using the Feshbach resonances@35#, so that it
should be possible to find experimental settings for wh
ILMs can be observed.

As to ESs on finite backgrounds discussed in Sec. IV,
remark that the number of atoms involved in these KdV so
tons can be estimated asNs52mr*2`

` a(z/ l c)dz
54mu0r l c . For the parameters used in the numerical sim
lations of Fig. 7, withd5m350.1, u05b51, we havem
'0.46, l c53.464, and for an array of Rb atoms with 100
atoms in each well, we haveNs;6370 atoms. These brigh
~dark! solitons on top of a background could be created
using a laser beam applied for a short time to a uniform B
array, so as to create a local enhancement~depletion! of the
potential. In this case, the dependence of the soliton velo
on its amplitude is an interesting parameter to measure si
in contrast with nonlinear Schro¨dinger solitons, the velocity
of KdV solitons depends on the amplitude of the wave~num-
ber of atoms in the condensate!. This could provide a way to
check our results experimentally. We hope that experime
in this direction will soon be performed.
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