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Nonlinear excitations in arrays of Bose-Einstein condensates
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The dynamics of localized excitations in an array of Bose-Einstein condeB&Es is investigated in the
framework of the nonlinear lattice theory. The existence of temporarily stable ground states displaying an
atomic population distribution localized on very few lattice siii@srinsic localized modes as well as atomic
population distributions involving many lattice sitésnvelope solitons is studied both numerically and
analytically. The origin and properties of these modes are shown to be inherently connected with the interplay
between macroscopic quantum tunneling and nonlinearity-induced self-trapping of atoms in coupled BECs.
The phenomenon of Bloch oscillations of these excitations is studied both for zero and nonzero backgrounds.
We find that in a definite range of parameters, homogeneous distributions can become modulationally unstable.
We also show that bright solitons and excitations of shock-wave type can exist in BEC arrays even in the case
of positive scattering length. Finally, we argue that a BEC array with negative scattering length in the presence
of linear potentials can display collapse.
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I. INTRODUCTION Thus, for example, one can expect that the types of elemen-

tary excitations that can arise in BEC arrays, as well as their

The realization of Bose-Einstein condensa®&Cg and  dynamical behavior, strongly depend on the ratio between

the observation of quantum interference phenomena betweehe coupling of adjacent condensates and the nonlinearity

two coupled condensates have opened a new fascinating fieldduced by the interatomic interactions. Keeping the same

in physics, with the perspective of getting a better underterminology used in nonlinear lattices theory, one can say
standing of the complicated behavior of quantum many-bodyhat for weak coupling and strong nonlinearitytrinsic lo-

systems and with the hope of realizing novel concrete applicalized modegILMs), i.e., matter excitations localized on

cations of quantum mechanics, such as atom interferometeféw lattice sites, should exist. These modes could arise in
and atom lasers. The existence of periodic localized OSCi”aexperiments like the ones reported in REFO], in which

tions in the relative atomic population of one of two coupledmjljions of atoms were trapped in an almost one-dimensional

condensat_es was first predicted in Rdfs-3]. The clpse (1D) geometry(“cigar’-shape geometry, with a small tun-
analogy with the Josephson effect was also emphasized, ﬂ?‘f%ling term between condensates.

common origin of these phenomena being the temporal in-
terference of two macroscopic quantum states, leading [N
current oscillations in Josephson junctidA$ and to oscilla-
tions of the atomic population in coupled BE(.

Although the generalization of these results to the case
three coupled BECs was consideléd, few theoretical in-

On the other hand, when the coupling constant is compa-
ble with the self-trapping interactions, small amplitude ex-
citations of large sizdin comparison with the lattice con-
§tan) should arise. These excitations can be identified as
c1attice envelope solitongES9 and could be observable in

vestigations exist on interference phenomena in arrays dpacroscqpic quantqm int.erferencg experimentﬂs like thenones
coupled BECS[7]. In a recent papef8], the problem of r_eported in Ref[11], in V\_/h_|ch a vertical array of “pancake”-
Bloch oscillations of bright solitons was investigated in like BECS, each containing thousands Rb atoms, was
terms of a tight-binding model for BEC arrays with positive coupled through the gravitational field. In this case, the in-
scattering length. It is a fortunate situation that the equationterference phenomena show up as Bloch oscillations of the
arising in this case formally coincide with those studied inESs describing the atomic population along the ar(@&$
the theory of nonlinear latticgd®]. One can indeed apply the dynamical localization Bloch oscillations of ES type are
knowledge gained in these fields to the field of BEC arraysalso possible in horizontal optical lattices induced by two
counterpropagating laser beams with a frequency detuning
varying linearly in timeg[12] (this produces a linear potential

*Electronic address: fatkh@physic.uzsci.net on the BEC similar to the gravitational field of the vertical
"Electronic address: baizakov@physic.uzsci.net trap9. In the following, we shall call both types of excita-
*Electronic address: sdarmanyan@yahoo.com tions (i.e., ILM or ES discrete matter solitongDMSs)
SElectronic address: konotop@cii.fc.ul.pt whenever it is clear from the context to which type we refer
IElectronic address: salerno@sa.infn.it [13].
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The aim of this paper is twofold. From one side, we wish 5 (r t) %2 )
to make a bridge from the theory of nonlinear lattices to the 17— —=| — ﬁA+V(T)+go|‘I’(f-t)| W(r,t),
field of BEC arrays. This will allow us to get a better under- 1)

standing of the types of excitations that can arise in 1D

coupled BECs as the physical parameters are varied. Fromhere go=4w#%a,/m, m is the atomic massa, is the

the other side, we wish to expand both theoretically and nus-wave scattering length which can be eittmsitive (the

merically on the phenomenon of Bloch oscillations in thecase of®’Rb atoms, with repulsive interactions and with

case of 1D BEC arrays in the presence of uniform back—=5.5 nm) ornegative(the case of Li atoms, with attractive

grounds (with the term “background” here, we mean the interactions andig=—1.45 nm). The trap potential is as-

presence of a uniform distribution of atomic population sumed to be periodic along thedirection,

along the array In particular, we discus@) the existence of

ILMs in 1D BEC arrays with positive scattering lengt(ii;) V(r)=V(r+\k), 2)

the existence of ESs in BEC arrays with positive scattering

lengths; (iii ) Bloch oscillations of solitonlike excitations on where \ is the spatial period of the potential ahdis a

top of uniform backgrounds in periodic BECs with positive unitary vector in thez direction. A typical model potential is

scattering lengths; an@v) the dynamics of BEC arrays with

negative scattering length on zero backgrounds. V(r)=mgz+Vy(x,y)sinf(kz), ()]
As to point (i), we remark that in contrast with the soli-

tons and breathers discussed in R8f, which are extended . ) Lo

on many lattice sitegl4], the bright ILMs discussed here are ~2.14%*/2m, and with an atomic population in each well of

highly discrete, i.e., localized on few lattice sites. SinceNO%lO? atoms[ll].' L .

ILMs have not been observed in real BEC arrays, this is an TO_ make analytical studies it is convenient to look for

implicit call for experimental work to be done in this direc- Selutions of Eq(1) of the form

with experimental parameters.=27/k~850 nm, V,

tion (for experimental evidence of ILM existence in other NI2
physical contexts, sgd.5]). Point(ii) generalizes the results V()= X g (HPa(r), (4)
of [8] to the case of nonzero backgrounds, whilgiin we n=—N2

show that modulational instability can arise as the slope of .

the linear potentialgravitational field for vertical arrayss ~ Where the summation is performed over the numhéof
increased. Moreover, we find that for certain parameter valMinima of the trap potential, which is assumed to be even.
ues, shock-wave excitations can develop. In péint, we  The functions®,(r)=®(r—ry) are assumed to be strongly
discuss Bloch oscillations of bright solitons both analytically!ocalized around the site of the potential and normalized to
and numerically. All these results will have a close analogythe mean number of atoms in theh well No= N/,

with those derived in the theory of nonlinear lattices on in-

trinsic localized modef16—19, envelope soliton§20—-22, f D, (r)®,(r)dr=N,, (5)
shock waves[21,23, and Bloch oscillationd24,25. We

point out that similar lattices appear also in a description of . _ .
light beams in arrays of nonlinear optical waveguid26] whereN is the total number of atoms ad, =N+ 1 is the

: : : total number of potential wellshereafter the overbar will
where discrete optical solitons have been expldgt. : . S .
The paper is organized as follows. In Sec. Il, the model ijenote complex conjugatianThis implies that the hopping

a 1D array of BECs is derived. In Sec. lll, we discuss thelntegral

existence of intrinsic localized BEC solitons, both of even o

and odd symmetry. In Sec. IV, we use a multiscale expansion |Inns1l= f D(r)D,q(r)dr|<N (6)

to discuss the stability and dynamics of small-amplitude ex-

citat_ions of _BEC arrays with po_sitive scattering Iength can be neglected, i.e., we assudne, . ;~0 for all n. This is
against a uniform background and in the presence of a linegfyajogous to the well-known tight-binding approximation of
potential modeling the gravitational field. The linear stability gg)ig-state physick28], valid for weakly overlapped conden-
analysis of the background for BEC arrays is investigatedgaies. Note that from Eqé5) and (6) the following normal-

and the region in parameter space where modulational inst@ stion condition for the functiong,(t) is obtained:
bilities develop is provided. We show that for particular pa-

rameters, shock-wave propagation can also develop. In Sec. N2
V, the main characteristic of Bloch oscillations for arrays > lgn(H))2=1. (7)
with negative scattering length are discussed. Finally, in Sec. n=-AN2

VI the main results of the paper are summarized. —
pap Substituting Eq(4) into Eq. (1), multiplying by ®,(r), and

integrating over, we readily obtain the system of coupled

Il. THE MODEL equations,
As is well known, in the mean-field approximation the ihd=E-t+U 24 —K
wave function of a BEC in a trap potentid(r) satisfies the Un=EntntUnltal"yn =Ko 1001
time-dependent Gross-Pitaevskii equati@PB —Knn+1®n+1T Yoy, 8
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where the overdot means time derivative, ae- mgawith
a=\/2 is the distance between adjacent wells. In @g.we
have denoted with

hZ
e ) LT
the zero-point energy for the well with
R 10

the mean-field self-interaction energy, and with

ﬁZ
Kn,nilz - f (zm(v(bnvcbntl)+(q)nvq)ntl) dr
(11

the sum of the kinetic energy and the off-diagonal matrix

element of the trap potentials between siteendn+ 1 (i.e.,
the coupling constant between neighboring BEGs the

following, we shall consider the case of equal constahts
K n+1=K. Introducing the new variables

—E, U,=U,

2|V

K 1/2_ .
=Rt ¢n_><T) Y@ [(FHO=21L (1)

we can rewrite Eq(8) in dimensionless form as

i';zln+ Unp1t wn—1—2¢n+20| 'r/fn|2'r/fn+ yng,=0, (13

with o= —sgn(@s) and y=y,/K. Equation(13) coincides
with the well-known discrete nonlinear Scklinger equation
[9], largely investigated in the theory of nonlinear lattices. In
the present context, however, because of the normalizati
condition(7), the boundary conditions for E¢L3) cannot be
chosen arbitrarily. In this paper, we consider either the peri-

odic boundary condition

Y(n)=y(n+ N+1) (14
in the case of finite lattices, or zero
lim ¢(n)=0 (15
[n|—
or “finite-density”
lim ¢(n)=pe*? (16)

n—*ow

boundary conditions, in the case of infinite lattidgere p
and ¢ are arbitrary constantsEquation(13) will then have
also another integral of motion of the form

H=§ 7R/ [VA LS (17)

The mean-field tight-binding model in E¢13) will be

used in the following to study the dynamical properties of

both ILM and ES excitations in 1D BEC arrays.

PH®ICAL REVIEW A 64 043606

IIl. EXISTENCE OF INTRINSIC LOCALIZED MODES
IN BEC ARRAYS

As is well known, in the case of continuous 1D BECs,
soliton ground-state solutions can exist. These were theoreti-
cally predicted in[29] and experimentally observed in the
case of positive scattering lengftiark solitong [30]. Bright
solitons can exist in BECs only when the effects of focusing
nonlinearity balance those of effective dispersion, this being
possible for attractive interparticle interactions or negative
scattering lengths only. Since bright solitons are very impor-
tant for developing BEC applicatioi81], it is of interest to
investigate their existence also in BEC arrays. In this case, as
we will see in the following, new possibilities can arise. In
Ref. [8], bright solitons of the ES type were numerically
investigated in 1D BEC arrays with positive scattering
lengths. Here we shall consider the case of bright solitons of
ILM type in BEC arrays with both positive and negative
scattering lengths. We fix=0 ando=1 in Eq.(13), i.e., we
consider BECs in horizontal traps with negative scattering
lengths. ILMs are then expected to exist when the coupling
constant(which is responsible in the linear case for the
spreading of the BEC wave functipis small in comparison
with the nonlinear self-trapping interaction. From the nor-
malization condition(5) and from the definitiong10) and
(11), one can estimatiJ|/K=0O(N), i.e., a stronger nonlin-
earity corresponds to a larger number of particles. For the
sake of analytical developments, is convenient to introduce
the small parameter

K
k=1 —=0O(N"¥)<1

representing the ratio between tunnel coupling and nonlin-

(18

0Qarity, and recast Eq13) in the form

iQ-Dn“’K(‘Pn+1+¢nfl)+|€0n|2§0n:01 (19

with ¢,= Vki,e?" (the overdot here denotes the derivative
with respect tor=t/«).

In the following, we discuss ILM solutions of E¢19)
with different symmetry properties.

A. Symmetric ILMs centered on a site

Symmetric ILM solutions centered on a siayn=0)

e_n(N=en(7), leo(7)]=1, (20)
can be searched in the form
‘PnzeinE (Panjr w=z ijjl (21)
j=n j=0

with the frequency of the local oscillatiom equal for all

sites. Substituting this expansion into E&9) and perform-

ing straightforward algebra, we obtain
w=1+2k?>-2k%+2k8+0(«19), (22)

with the site amplitudep, satisfying the lattice equations,
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¢1=[K—K5+K7+O(K9)]ei‘”, o ' ' ' ' ' ' '
0r=[ k2= Kk*+ KB+ O(k19)Je'", (a)
0.8- ] _
03=[k3—2k5+ k" +0(k%) e, .é
, 2 06- : ]
0,=[k*—3k5+0(k®)]e'*7, g i
e ;
i £ 0.4 ; .
es=[x>+0(x")]e'", §
>
0.2 .
from which we see thdtp,|>| ¢, 1| providedx<1. 0.0 I ; I
It is remarkable that the decay of the amplitudg is 4 3 2 A o2z 3 4
exponential as one moves away from the 0 site, and in
the leading order it can be approximated by
en~ explioT—7n|n|), (23 1.0 (b) ! ]
with # given by exp{ 7)=«<1. Note that in accordance 0.8 .
with our scaling, the limitk— 0 can be viewed as equivalent § ;
to the strongly nonlinear limiN— o of the original physical < 0.64 .
system. Moreover, from Ed23) it follows that a bright on- §
site centered ILM can have for=0.1 about 91% of all the 9 0.4l i i
atoms concentrated on its central site. For negative scattering E i
lengths, this implies that an ILM can be stable onlyNf < 0.0 i |
<N, whereN, is the critical threshold at which collapse ' '
phenomena occuithe effective coupling constant cannot be II|| || || | I“”“ | || || ||II
made smaller than a critical value, this being a feature of 0'0_20 16 12 8 4 0 4 8 12 16 20

BEC arrays with respect to other nonlinear lattices

To check these results, we have performed numerical in-
tegrations of Eq(19) using as initial condition Eq23) with FIG. 1. Distribution of the normalized atomic population ac-
7=0. We used @oPRIgintegration routind32], based on a cording to numerical solution of Eq19) for the case of weak
Runge-Kutta scheme of seventh to eighth order with autocoupling,<=0.1(a), and strong couplings=0.8 (b): this distribu-
matic stepsize control, so as to combine speed with higl’i‘_’” corresponds te=10. The dashed line shows the ILM envelope
precision(the relative errors were from 10 up to 1013, ~ given by Eq.(23).
The integration domain was taken large enough (800)dites

n

avoid the influence of boundary conditions. The results are p3=[x*+ K"+ 2k°+5k%+0(x9) e,
presented in Figs.(d) and Xb) for the case, respectively, of 3. 5. 7 91 i
weak and strong coupling among neighboring BECs in the Pa=[r"+ >+ +0(x7) €7,

array. We see that in the case of weak coupling, the initial
atomic population remains stable for arbitrarily long times
[Fig. 1(a)], while for strong couplings the initial distribution
of atoms spreads out over the whole sys{éig. 1(b)].

es=[k*+ K8+ O(Kg)]ei“”,
(26)

In analogy with the symmetric case, one can ensure that

B. Antisymmetric ILMs centered on a site to leading order the shape of the ILM is well described by
ILMs of antisymmetric type, the function
¢0=0, ¢1=1, ¢ =—¢n, (24) en~explior—n[n—1[), n=1. 27
can be searched in the form¥% 1) Direct numerical simulations of Eq23) with initial condi-

tions given by Eq.(27) showed a behavior of the atomic

s - i1 B - j population distribution as a function of the coupling con-
¢n=€ Zn Pnjks w—zo Wik (25 stant, similar to the one reported in Fig. 1.
. . Other types of bright symmetric and antisymmetric ILMs,
Direct substitution into Eq(19) gives such as the ones which are centered between two sites, can

also be constructed. A more detailed analysis of these exci-

0=1+k?+ k*+ 25+ 6k8+ 0(k9), tations shows that the stability of ILMs depends on their
symmetry property, as well as on their localization extension

©o=[k+ K3+ 25+ 6k"+0(k%) €7, [17,19,33. Thus, symmetric on-site centered ILMs are
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stable, but symmetric ILMs centered between sites are urallows us to rewrite Eq(28) as

stable, while antisymmetric ILMs centered between sites are
stable if k<k~0.12, and unstable &> k..

For positive scattering lengths, different families of ILMs
(as well as discrete frontgepresenting dark ILMgi.e., a ) »
constant atomic population along the array except for a few'ith boundary conditions
sites in which the population is decreagsedn also be found ;

pop g dn—pexdix(t)] at
[17,18,22.
It is important to note that, due to the invariance of Eq.jn sec. IV A, we use this equation to study the stability of

(19) under the transformatioro,—(~1)"¢n, «—=x,  the background of a BEC array in the presence of linear
we have that the above brigtdark ILMs, multiplied by a  potentials ¢+ 0).

factor (—1)", are also solutions of Eq(19) for ag
>0 ( ag<0). This shows that Eq(19) possesses both
bright and dark ILM solutions for any sign af;.

i(jn'i'eiytqn+1+e_i7tqn—1_an+2(P2_ |qn|2)qn:0(,3

n— +oo, (36

A. Linear stability analysis of the background

Let us consider a solution of E¢35) of the form
An=[p+an(t)lexdix(t)], (37)

where[ a,(t)[ <p. Linearizing Eq.(35) aroundpexdix(t)]
and expanding in Fourier modes

IV. BEC ARRAYS WITH POSITIVE SCATTERING
LENGTHS

From the experiment in Refl11] on vertical BEC arrays
and from numerical simulations, it is known that the phe-

nomenon of Bloch oscillations of ESs can occur. In this sec- w

tion, we shall use methods of nonlinear lattice theory Bkt)= > ay(t)ekn
[24,25,36,3Tto investigate Bloch oscillations of ESs in BEC n=—c

arrays with positive scattering lengths. For bright ESs on

zero backgrounds this was done in R], so we concen- 1 (2 —ikn
trate here only on the case of ESs on top of nonzero back- an(t)= 27 Blk,ye "dk,
grounds. To this end, it is convenient to introduce the back-
ground amplitudep directly into Eq. (13) with o=—1, we obtain
giving
d
iont @ni1t en-1— 200+ 2(p*— | onl?) ot 7ncpn=(2,28) gt/ =Tk, (38)
whereT,(t) is a 4X4 matrix whose nonzero elements are

where o= ,exp(—2ip). Let us consider the case of an in-
finite number of lattice sites for which the integrals of mo-
tion in Eq. (28) are written as

TiP=—T{V=2[cog yt—k) — cog 1) — p],

7= —T¥=2[cog yt+k) —cog yt) — p],

No=§ (lenl2=p?) (29)
and

H=;[(Enqonfl—p%—<|<pn|2—p2>2]. (30)

Moreover, since the problem has nonzero boundary condi-

tions, we must have, for consistency with E88) [37], that

op—pexdid,(t)] at n—*o, (31

with the phaseb ,(t) defined as
Oy (t)=nty+x(1), (32
X(t)zzt(smy(tyt) - 1) . 33)

The gauge transformatidi36,37]
Gn=gne "™ (34

14) _ 7(23) _ 7(32) _ 7(41) _ 2
TEO=TEI=TER=T(D =202
and with|k,t) a Bloch-Floquet state written in vector form,

Bl(k!t)

BZ(k!t)
KO gk %9

Ba(—k,1)

[here B(k,t) = B1(k,t) +iB,(k,t) with B;(k,t) reall. Since
T, is periodic, we can use Floquet thed38] to study the
stability. To this end, we introduce the matrg(t) as a
solution of the equation

dS./dt=T,S,, (40

satisfying the initial conditior§,(0)=1 (herel is the 4x4
unit matrix). It then follows that the background is unstable
if [\j(k)|>1, where\;(k) is the eigenvalue of(2/7y)
[note that S(t) is unimodular, de§(t)=1, so that
N1Aohshg=1]. In Fig. 2, the results of Floquet analysis, as
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6
5t i
10
41 4 2.0 :
v q,15
3k . 1.0T
.......... 0.5 ==
..... 1000 100

r T n

1k J FIG. 4. Modulational instability aty=0.5, for an initial modu-
lation with k~0.62.

0 1 1 n L ') n

- -T2 0 /2 b and depending on,t, through the combination— vt (this is

K true also fory=0). On the other hand, one can show that
localized smooth excitations of small amplitude can propa-

FIG. 2. Floquet stability analysis of lemodulated background gate along the array with a relatively weak distortion. To
as a function ofy. Regions of stability are designated with-*" investigate this dynamics, it is convenient to introduce a
small parametep<1 defined as the square root of the ratio
obtained from numerical integrations of E(10), are re- between the deviation from the background and the back-

ported[in the numerical scheme we used@rrigprocedure ~ ground itself, and consider the case of very small.e., we
to integrate Eq(40) and computed the spectrum of the ma-take y=0(x?). This allow us to look for solutions of the
trix S, by reducing it to Hessenberg forf89]]. The stability ~ form
of the background was also investigated by direct numerical
integrations of Eq(35) taking as initial conditions a uniform
background of amplitudp=1 modulated by a sine wave of B 2 4 B 2 4
wave numbek,=2mn/L (we usedL =400 lattice sites where a=ao+u"a;+0(u") and =g+ u ¢ +0(n7)

These results are reported in Figs. 3 and 4 for the casé¥€ eal f“QC“O”S of theslow variables {=pun, T
y=0 andy=0.5, respectively. We see that in the presence of *l: 7= #°L, considered to be continuous and indepen-
the linear potential, a modulational instability can develop, indem' We can then perform a multiple scale expanf2di of

agreement with the Floquet theory analysis of Fig. 2. A goo g.(35), substitutingyt with &7, with 570(1)' A_stralght- .
agreement was found also for other valuesyoéind other orwar'd algel?ra shows that. the expansion eqL'Jatllon atthe first
initial conditions(at y=0 the stability was checked only by order inu is |ldent|cally satisfied 2y the SUbsé'tumml)'
numerical integrations of the original equation, since in this The equations at the orde@(u%) andO(u”) are
caset=2m/y—o and the Floquet theory becomes inappli-

cable. In particular, we checked that the modulational insta- ap=— i[aquoJrz SiN(87) 9] (42)

bility of the background develops at later valueg,cdsy is 4p ¢

increased, and that an initial background wkth = becomes

again stable fory~5.4, in agreement with Fig. 2. and

Un=[p+ pnale'lx+rdl (41)

I o+ 4 SIN(87) drd o+ A{[ Sin( 57) 12— p? cog 87) } o2 o
=0, (43

B. Dynamics of small-amplitude pulses

The fact that Eq(28) possesses an integral of motion of
type (29) implies that it cannot support solitary waviz3|,

i.e., it cannot have solutions moving with constant velogity eSPectively. It is worth noting that E¢43) at times 57o=
+ /2 changes from hyperbolisupporting wave propaga-

tion if cos(57)>0] to elliptic. Let us consider the dynamics of
the small-amplitude excitation during the time in which Eq.
(43) is of the hyperbolic type. We introduce a new running
variable=¢—V(7)T where

201 V(7)=2 sin67) +2p+/cog 67) (44)
gi1.5

n

1.07 can be interpreted as the slowly varying velocity of the wave

packet(for the sake of definiteness, we have chosen only one
branch of the solution, the other branch being characterized
by the “velocity” with opposite sigi. One can then show

FIG. 3. Modulational stability of the background g0, foran  that EQq.(43) is satisfied for an arbitrary pair of functions
initial modulation withk~0.31. ag(L,7), &o(¢,7) linked by

05100 0 100
n
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FIG. 5. Time dependence of coefficients of E46) for 6=0.1, p=1.

1 file of the wave is distorted but its evolution is smodih
ao(¢,7) = 5VCOK 87)d po( L, 7). (45  Fig. 5, 7,~0.5). Att=r1,, the breaking of the wavefront
occurs, after which a train of solitary pulsésach of them
In order to find the dependence of those functions-pone ~ being a KdV soliton is emitted. This is similar to the gen-
has to consider the equations of the fourth and fifth orders igration of shock waves in a fluighonlinear Schrdingerlat-
w (more precisely the condition of their compatibilitpfter  tice shock wavewere first studied in Ref21]). Note that at
tedious but straightforward calculations, one arrives at théhe breaking time the coefficiebb(r,) is exactly zerasee
following Korteweg—de VriegKdV) equation: Fig. 5, and Eq.(46) reduces to a known shock dynamics
equation[40]. An essential difference between the case at
9,89+ by(7)agd a9+ by( r)a§a0+ bo(7)ap=0, (46) hand and the casg=0 treated in Ref[21], however, is that
in the latter, shock waves can appear only for a given carrier
with slowly [if §=0(1)] varying coefficientd;(7) given by  wave background, while here the linear potentigdavita-
3 . tional field of BEC arrays makes them possible for any
3[cog o7) ]~ p sin(o7) wave number. Note that for the observation of shock waves it
cog 67) ' is important thats is small compared with the amplitude of
the background, this ensuring that the time at which the
1 roup velocity dispersion becomes negligible will be lon
bo(7)= E{‘lp sin(87) + p[ cog &7)]+2~ 3[cog 67) ¥ gnou%h for S%/OCk 5vaves to develop. 7 ’
In Figs. 5 and 6, we report respectively the time depen- The sgcgnd important_feature that emerges from Fig. 5 is
dence of the coefficients(i) and evolution of a numerical "€ POssibility to have bright pulses propagating on top of a
solution of Eq.(46) with initial condition nonzero background.e., on top of a constant atomic popu-
lation along the arrgy These pulses actually are ESs, similar
—ur B\ 2 to those predicted ih20] for y=0. For y# 0, these excita-
), Ic:(4_) tions can undergo Bloch oscillations. To show this, we have
performed numerical integrations of E(B5), with a sech

Two important features can be seen from this figure. The firsthitial profile of large amplitude(i.e., comparable with the

is the existence of a breaking timg, below which the pro- background level The results are reported in Fig. (he
numerical scheme used is the same as that of the preceding

section. We note that for the same parameter values, the
bright excitation(i.e., above backgroundreaks down while
the dark one(below backgroundremains stable for long
times.

An important conclusion following from these numerical

b0(7)=%5tar(57), bi(7)=2

ao(¢,7)=3v sechk

c

1.0
la |2 05 studies is that bright and dark solitons of KdV type on top of
o v homogeneous backgrounds can exist in a BEC array with
0.0 g 4 5 positive scattering lengths.

) ) o V. ARRAY OF BEC WITH NEGATIVE SCATTERING
FIG. 6. Evolution of the localized excitation in a BEC array, LENGTHS

governed by Eq(46). The initial wave profile in dimensionless
units corresponds to the pure KdV soliton with parameters A distinctive feature of BECs with attractive interactions
=1 p=1. is the possibility of collapse when the number of atoms in the
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i+ COS Y1) (U 1+ Gn—1— 2Gn) +1i SIN(Yt) (Uns 1~ 1)
+2|qn|ZQn:Ov (48)

whose solution can be searched of the form

an=uQ(&,7), (49

with £&(r)=un—x(7), 7=pu?t, and

2
x=—(1l—cos7). (50)
72

n Note thatx(7) = O(u%) =0(»*?) and thus the substitution is
self-consistenfat u3t<1 the term cosf) can be expanded in
Taylor serie$ After calculations analogous to those of the
preceding section, one arrives at the following nonlinear
Schralinger (NLS) equation with periodically varying dis-
persion:

i9,Q+cog 7)37Q+2|Q|*Q=0. (52)

The dynamics of this equation was numerically investigated
starting with initial conditions of the form

Q(&,00=2nsecti2n(&é—&g)]. (52

For the numerical code, we used a split-step fast Fourier
transform techniqu@42] with a time stepA 7=0.001 and a
FIG. 7. Bloch oscillations of brighta) and dark(b) localized ~ Space step §=0.02(in normalized units corresponding to

excitations. Initial conditions are  g,(0)=p 1024 grid points in the discretization domain taken-as0
+2ysechizgn]lexdié,(0)], p=0.1, 2=0.04, »=0.1, to 10 (absorbing boundary conditions were used to simulate
¢n(0)=—m/2n, an infinite domaii The accuracy of the scheme was checked

by monitoring the conservation of the number of atoms and

condensate exceeds a critical vahig. From GPE, one can ©f the Hamiltonian, which was withir£0.1% for all runs.
predictN,~ 1400 for ’Li atoms, a value that was confirmed 1he results are depicted in Fig. 8. From Figagwe see that
experimentally in Ref[41]. Arrays of optical traps can be whll_e the ES is executing spatial oscillations, its amplitude is
used for manipulation of BECs with negative scattering®Scillating in time. In Fig. &), we report the time depen-
length, if their wells are loaded with fewer atoms than thisdence of the center of the wave on a longer time scale, from
critical value. In this situation it is reasonable to consider theVich we see that the amplitude while oscillating is also
dynamics of ESs on zero background, as described by E(ﬁi_ecaylng(note, however, that this _dynamlcs reproduces the
(13) with o=1. Bloch oscillations of bright ESs were nu- dynamics of a real array only for timessuch that 7<1).
merically investigated in Ref24]. From these simulations, a A More detailed numerical investigation shows that the am-
strong dependence of the dynamics on the amplitude of thlitude can be either decaying or growing in time, depending
initial wave was found(large-amplitude wave packets are On the initial conditiongthe growth can also reach 60% of
quickly reduced to fragments, while small-amplitude excita-th€ initial amplitude of the pulseThis implies that if att
tions keep their integrity over many oscillation perinds =0 the number of atoms in one well is below the critical
From numerical studies it is also known that the amplitude o/@lu€ No(t=0)<N for collapse, the growth in amplitude

a dynamically localized ES can oscillate in time. Using thedue to the 'Ilnear potential can induce collapse after a time
method of the preceding section, we can develop analyticdl™ ter @ WhichNo(te) =Nc.

considerations on Bloch oscillations in BEC arrays with

negative scattering that explain the origin of these oscilla- VI. CONCLUSIONS

tions. We consider the case of small amplitudes and siall
i.e., we assume, as befoge= 'y to be a small parameter of
the problem. Introducing the variable

The dynamical properties of BEC arrays with positive and
negative scattering lengths have been studied in the frame-
work of a discrete nonlinear Schtinger equation derived
from the mean-field GPE with a tight-binding approxima-

Qn= o, exp(—i ynt), (47) tion. The interplay between macroscopic intersite tunneling
and nonlinear self-trapping was shown to be responsible for
the appearance of different types of DMS. In particular, we

Eqg. (13) can be written as showed, both analytically and numerically, that for a small
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ations in which this is obviously true. Thus, for example, if
the potential barrier is wide and tall enough to reduce the
tunneling probability among adjacent BECs, the overlapping
of the wave functions is certainly small and the model accu-
rate. In this case, DMSs of the type discussed above should
appear.

In particular, the possibility to observe ILMs in real ex-
periments should not be overlooked. We remark that from
Egs. (7) and (12), it follows that the peak amplitude, i.e.,
max(¢,(t)), is of orderO(1), sothat the atomic population
can be localized on very few sites of the array. In the experi-
ment in Ref.[11], the peak density was,=10'¥cm® and
the mean-field energy wagnyo~kgx4 nK (kg being the
Boltzmann constapt causing the parameterin Eg. (18) to
be k~1. To observe ILMs one needs to have at least
~0.1. This can be achieved either by increasing the number
of atoms in each welifrom 10° to 10*) or by reducing the
tunneling constanK, which depends exponentially on the
lattice constantdistance between potential well§Vhen the
number of atoms in the wells is increased, however, a loss of
coherence of the condensate can occur, a phenomenon ob-
served in the experiments reported in H&8#]. On the other
hand,« can be reduced also by changing the atomic scatter-
oob— e ing lengthag using the Feshbach resonan¢gs], so that it
) 0 e 20 3 40 50 60 70 should be possible to find experimental settings for which

1 ILMs can be observed.
FIG. 8. (a) Evolution of the localized excitation governed by Eq. ~ As to ESs on finite backgrounds discussed in Sec. IV, we
(51), for =0.5; (b) decay of its amplitudén dimensionless unifs ~ remark that the number of atoms involved in these KdV soli-
tons can be estimated asNg=2up[”.a(Z/l)d¢
ratio between the tunnel coupling constant and the nonlineat 4 ,uqpl .. For the parameters used in the numerical simu-
interatomic interactions, ILM solutions can exist. For BEC |ations of Fig. 7, withé=x3=0.1,u,=8=1, we haveu
arrays with nonzero backgrounds, the modulational stability. g 46, .=3.464, and for an array of Rb atoms with 1000
problem was investigated and the existence of bright and;,ms in each well, we hawd,~ 6370 atoms. These bright
dark ESs was discussed. The problem of Bloch oscillation%dark) solitons on top of a background could be created by
of envelope solitons in arrays with positive scattering Iength§Jsing a laser beam applied for a short time to a uniform BEC

was also analytically and numerically investigated. We .
; Carr to creat local enhan leti f th
showed that at the lower orders of a perturbative expansion ay, S0 as o create a local enhancentdapletion of the

the dynamics of small-amplitude excitation evolves accord_potential. In this case, the dependence of the soliton velocity

ing to a KAV equation with time-dependent coefficients. In°" its amplitude is an interesting parameter to measure since,

this case, the possibility of shock-wave formation, in BecN contrast. with nonlinear Scmmger.solitons, the velocity
arrays with positive scattering lengths, was explicitly dis-Of KdV solitons depends on the amplitude of the wavem-
played. In the case of arrays with negative scattering length&€r of atoms in the condensat&his could provide a way to
the dynamics of small-amplitude excitations was describe@h€ck our results experimentally. We hope that experiments
in terms of a nonlinear Schdinger equation with a periodi- in this direction will soon be performed.
cally varying dispersion. This equation was used to show the
presence of amplitude oscillations during Bloch oscillations,
as well as decay or growth of the excitations, depending on ACKNOWLEDGMENTS
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