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Effective s- and p-wave contact interactions in trapped degenerate Fermi gases
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The structure and stability of dilute degenerate Fermi gases trapped in an external potential is discussed with
special emphasis on the influence ofs- andp-wave interactions. In a first step an effective contact interaction
for all partial waves is derived, which reproduces the energy spectrum of the full potential within a mean-field
model space. Using thes- andp-wave part the energy density of the multicomponent Fermi gas is calculated
in Thomas-Fermi approximation. On this basis the stability of the one- and two-component Fermi gas against
mean-field induced collapse is investigated. Explicit stability conditions in terms of density and total particle
number are given. For the single-component system attractivep-wave interactions limit the density of the gas.
In the two-component case a subtle competition ofs- andp-wave interactions occurs and gives rise to a rich
variety of phenomena. A repulsivep-wave part, for example, can stabilize a two-component system that would
otherwise collapse due to an attractives-wave interaction. It is concluded that thep-wave interaction may have
important influence on the structure of degenerate Fermi gases and should not be discarded from the outset.
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I. INTRODUCTION

The achievement of Bose-Einstein condensation
trapped dilute gases of bosonic atoms@1# triggered a wide-
spread interest in the field of ultracold atomic gases. Me
while these systems appear as a unique laboratory for
study of all kinds of fundamental quantum phenomena.

After a series of excellent experiments on bosonic s
tems, the question arises whether a dilute gas of fermio
atoms can also be cooled to temperatures where quan
effects dominate. In 1999 DeMarco and Jin managed to c
a sample of typically 106 fermionic 40K atoms to tempera-
tures significantly below the Fermi energy of the system@2#;
in recent experiments they achieved a temperature co
sponding to one-fifth of the Fermi energy@3#. By sympa-
thetic cooling of fermionic6Li with bosonic 7Li Truscott
et al. were able to reach about one-fourth of the Fermi
ergy @4#. In these temperature regimes the system can
described as a degenerate Fermi gas, where the majori
the atoms successively fills the lowest available one-b
states according to the Pauli principle.

One of the goals of the investigations on dilute and ult
cold Fermi gases is the observation of Cooper pairing
the transition to a superfluid state. The transition tempera
depends on the density and on the strength of the attrac
interaction that is necessary for the formation of Coo
pairs@5,6#. In order to increase the transition temperature o
may increase the density or the interaction strength, wh
the latter seems to be more promising. An atomic spe
favored for the experimental observation of a BCS transit
is 6Li due to its larges-wave scattering length ofa0'
22160aB @7#. But also 40K, which shows a rather sma
natural scattering length, is a possible candidate for Coo
pair formation @3#, because a simultaneouss- and p-wave
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Feshbach resonance is predicted@8#, which allows tuning of
the s- andp-wave scattering lengths over a very wide rang

A serious constraint on the way towards a superfl
Fermi gas is the mechanical stability of the progenitor, i
the normal degenerate Fermi gas. As was experiment
demonstrated for the bosonic85Rb system@9#, an attractive
interaction between the atoms leads to a mean-field insta
ity of the trapped gas if the density exceeds a critical val
A similar collapse is expected in fermionic systems with
tractive interactions. In contrast to the bosonic syste
p-wave interactions contribute in a Fermi gas and may h
strong influence on the stability of the system@10#.

In the following we address the question of the stability
degenerate one- and two-component Fermi gases in the
ence ofs- andp-wave interactions within a simple and tran
parent model. In Sec. II we derive an effective contact int
action ~ECI! for all partial waves that is suited for a mea
field treatment of the many-body problem. Using thes- and
p-wave part of this interaction we construct in Sec. III th
energy functional of a trapped multicomponent Fermi gas
the Thomas-Fermi approximation. From that the groun
state density profile can be determined by functional va
tion. In Sec. IV we discuss the structure and stability
single-component Fermi gases, where only thep-wave inter-
action contributes according to the Pauli principle. Section
deals with two-component Fermi gases wheres- andp-wave
interactions are present and lead to a subtle dependenc
the stability on the two scattering lengths.

II. EFFECTIVE CONTACT INTERACTION

A. Concept

The approximate solution of the many-body problem in
restricted subspace of the full Hilbert space, which
spanned by plane waves with momenta smaller than
Fermi momentum, faces a fundamental problem: Many re
istic two-body interactions—like van der Waals–type inte
actions between atoms or the interactions between
nucleons in an atomic nucleus—exhibit a strong repulsion
©2001 The American Physical Society03-1
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FIG. 1. Radial wave functionsrR̄00(r ) of the lowestl 50 positive-energy state for different potential depthsV0 of the square-well
potential. The interaction strengths arelAV050 ~thin solid!, 4.49 ~solid!, 4.85 ~dashed!, and 9.5~dotted!. The radius of the well isl
50.01L and marked by the gray area. The inset shows a magnification of the region around the origin.
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short distances followed by an attractive region. This cau
the wave function of a low-energy scattering state to v
rapidly within the range of the potential~see Fig. 1!. These
high-momentum components, however, cannot be descr
within the low-momentum model space@11#. Therefore a
realistic two-body interaction cannot be used in a na
mean-field model. One way to overcome this problem in
model space is to introduce a suitable effective interac
that has to be deduced from the original potential and
pends on the properties of the actual physical system u
investigation.

Cold and very dilute quantum gases allow an effect
interaction of simple structure. The typical wavelength of t
relative motion of two particles is always large compared
the range of the interaction. Therefore the particles exp
ence only an ‘‘averaged’’ two-body potential and do n
probe the detailed radial dependence. Moreover, the g
are in a metastable not-self-bound state that is kept toge
by the external trapping potential. Thus the bound state
the two-body potential are not populated and have only
direct influence. We make use of these facts and replace
original potential by a contact interaction. The strengths
the contact terms are related to the properties of the orig
potential.

We establish this relation via the energy spectrum of
two-body system. Consider a two-body problem with an a
iliary boundary condition at some large radius such that
spectrum is discrete even for positive energies. For nonin
acting particles this spectrum shows a sequence of leve
positive energiesEnl , which are labeled by an angular mo
mentum quantum numberl and a radial quantum numbern.
A schematic sketch of this spectrum for some fixedl is
shown in Fig. 2. If we switch on an interaction between t
particles two things happen: A numbernl

b of bound two-body
states with relative angular momentuml may appear at nega
tive energies and the levels at positive energiesĒnl are
shifted compared to the noninteracting spectrum. For
purpose this energy shiftDEnl5Ēnl2Enl is defined between
the positive-energy states only. The lowest level of posit
energy is labeled with the quantum numbern50.
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Since we want to construct an effective Hamiltonian th
is used to calculate the energy in a mean-field framewo
the energy shift is the relevant property of the two-body p
tential that the effective interaction should reproduce.
require that the expectation values of the effective interac
calculated with eigenstatesunlm& of the noninteracting two-
body system equal the energy shiftsDEnl induced by the
original potential

^nlmuveffunlm&5Ēnl2Enl5DEnl . ~1!

Due to the angular momentum dependence of the ene
shifts we have to construct the effective contact interact
as a sum of contact terms for each partial wave. The stren
of each contact term is fixed by this condition.

B. Construction of the ECI

The construction of the effective contact interaction~ECI!
is organized in two steps: Firstly, the two-body energy sh
induced by the original potential is evaluated. Secondly,

FIG. 2. Schematic comparison of the free two-body ene

spectrumEnl with the energy spectrumĒnl in the presence of a
two-body interaction for given relative angular momentuml. The
interaction generatesnl

b bound states and shifts the positive-ener
states byDEnl .
3-2
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EFFECTIVEs- AND p-WAVE CONTACT . . . PHYSICAL REVIEW A 64 043603
operator of the effective contact interaction is formulated
each partial wave and the interaction strengths are fixed
condition ~1!.

1. Energy shift

Assume a system of two particles with reduced m
mred5m1m2 /(m11m2). Their wave function can be decom
posed into a center of mass and a relative wave funct
where the latter separates into a radial and an angular c
ponent because of rotational symmetry

^rWunlm&5Rnl~r !Ylm~V!. ~2!

The radial wave functionsRnl(r ) of the noninteracting two-
body system are solutions of the Schro¨dinger equation

F2
1

r

]2

]r 2 r 1
l ~ l 11!

r 2 22mredEnlGRnl~r !50 ~3!

~we use units with\51!. We require the radial wave func
tion to vanish at some arbitrary but large radiusL

Rnl~L!50. ~4!

This auxiliary boundary condition leads to a discrete ene
spectrum, which is needed to enumerate the energy le
and to evaluate the energy shift.

In the noninteracting case the solution of the radial Sch¨-
dinger equation~3! is given by a spherical Bessel functio
j l(x)

Rnl~r !5Anl j l~qnlr !, ~5!

where qnl denotes the relative momentum of the two p
ticles andAnl a normalization constant. The discrete m
mentaqnl are determined by the boundary condition~4! and
thus are related to the zeros of the Bessel function. Since
radiusL can be chosen arbitrary large it is sufficient to u
the asymptotic expansions of the spherical Bessel and N
mann functions

j l~x!5
1

x
sin~x2p l /2!, x@ l ,

nl~x!52
1

x
cos~x2p l /2!, x@ l . ~6!

By evaluating the boundary condition~4! with the
asymptotic form of the Bessel function we obtain for t
possible relative momenta

qnlL5p~n1 l /2!. ~7!

Accordingly the two-body energy spectrum in the nonint
acting case is given by

Enl5
1

2mred
qnl

2 5
p2

2mredL
2 ~n1 l /2!2. ~8!

The normalization constant can be determined explicitly
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L

dr r 2 j l
2~qnlr !5

L3

2
j l 11
2 ~qnlL!. ~9!

Inserting the asymptotic form of the Bessel function we
nally get

Anl
225

L

2qnl
2 , qnlL@ l . ~10!

In the presence of a two-body potentialv(r ) of finite
rangel the solutionR̄nl(r ) of the Schro¨dinger equation

F2
1

r

]2

]r 2 r 1
l ~ l 11!

r 2 12mred@v~r !2Ēnl#GR̄nl~r !50

~11!

outside the range of the potential (r .l) is given by a super-
position of spherical Bessel and Neumann functions

R̄nl~r !5Ānl@ j l~ q̄nlr !2tanh l~ q̄nl!nl~ q̄nlr !#, ~12!

whereh l(q) denotes the phase shift of the potential for t
l th partial wave. The bar distinguishes quantities in the pr
ence of the interaction from those in the noninteracting ca
Imposing the boundary condition~4! we get the following
implicit equation for the momentaq̄nl in the interacting case

j l~ q̄nlL!

nl~ q̄nlL!
5tanh l~ q̄nl!. ~13!

Expressing the Bessel and Neumann functions by th
asymptotic expansion~6! this reduces to

2tan~ q̄nlL2p l /2!5tanh l~ q̄nl!. ~14!

In order to associate the energy levels with the same qu
tum numbern in the interacting and noninteracting case
described above, the lowest positive-energy state shoul
labeled with the quantum numbern50. To achieve this for a
potential with nl

b bound two-body states with angular mo
mentum quantum numberl we add the phasep(n1nl

b) to
the argument on the right-hand side~rhs!, i.e., the bound
states contribute according to Levinson’s theorem. The m
mentaq̄nl in the presence of the interaction are thus det
mined by the equation

q̄nlL52h l~ q̄nl!1p~n1nl
b1 l /2!. ~15!

The momentum shiftDqnl induced by the interaction is
obtained by subtracting the momenta of the noninterac
system~7! from Eq. ~15!

DqnlL5~ q̄nl2qnl!L52@h l~ q̄nl!2pnl
b#52h̃ l~ q̄nl!.

~16!

Hereh̃ l(q)5h l(q)2pnl
b denotes the phase shift reduced

the contribution of the bound states. In a final step we
pand the phase shifts around the momentaqnl of the nonin-
teracting system
3-3
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R. ROTH AND H. FELDMEIER PHYSICAL REVIEW A64 043603
h̃ l~ q̄nl!5h̃ l~qnl!1h̃ l8~qnl!Dqnl1¯ . ~17!

Already the term linear inDqnl can be neglected in goo
approximation because the momentum shift is of the or
1/L according to Eq.~16!. Thus we retain the following
simple expression for the momentum shift:

DqnlL52h̃ l~qnl!. ~18!

The shift of the energy levels of the interacting two-bo
system compared to the noninteracting spectrum is c
nected with the momentum shift by

DEnl

Enl
52

Dqnl

qnl
1S Dqnl

qnl
D 2

. ~19!

The term quadratic in the momentum shift can be neglec
becauseDqnl /qnl is small. The final expression for the en
ergy shift reads

DEnl

Enl
52

2

L

h̃ l~qnl!

qnl
. ~20!

The proportionality between energy shift and phase shift
well known @12# and was used in different applications b
fore.

2. ECI in scattering length approximation

In a second step we construct an operator form of
effective contact interaction that obeys condition~1!. For the
application to ultracold dilute quantum gases the gen
form ~20! of the energy shiftDEnl can be simplified consid
erably. The relative momenta in these systems are extrem
low, i.e., typical relative wavelengths are large compared
the range of the interaction. This allows an expansion of
phase shiftsh̃ l(q) in a power series in relative momentum
In lowest-order approximation (qal!1) the phase shifts o
the l th partial wave can be expressed in terms of the co
sponding scattering lengthal

1,

h̃ l~q!

q2l 11 '
tanh l~q!

q2l 11 '2
~2l 11!

@~2l 11!!! #2 al
2l 11, ~21!

The energy shift in this scattering length approximation
given by

DEnl

Enl
5

2

L

~2l 11!

@~2l 11!!! #2 qnl
2l al

2l 11. ~22!

Based on this form we can construct a simple operator
the ECI. For applications where approximation~21! is not

1Some authors@8# use a different definition of thep-wave scatter-
ing length without thel-dependent prefactors. We use this gene
form ~see@16#! where the scattering length for a hard sphere equ
the sphere radius for alll.
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sufficient higher-order terms of the power series can be
cluded successively. We will come back to this point in t
following section.

According to the dependence of the energy shifts on
angular momentum quantum numberl the operator of the
effective interactionveff is formulated as a sum of indepen
dent operatorsv l

eff for each partial wave

veff5(
l 50

`

P l v l
eff P l , ~23!

where P l denotes the projection operator on the subsp
spanned by states of relative angular momentuml. We want
to use a contact interaction for each partial wave. This
quires nonlocal interaction operators beyondl 50, i.e., de-
rivative couplings. The simplest ansatz for the operator of
effective contact interaction for thel th partial wave is

v l
eff5~qW • r̂ ! lgl d~3!~rW ! ~ r̂ •qW ! l

5E d3r urW&
]
�

l

]r l gl d~3!~rW !
]
�

l

]r l ^rWu. ~24!

HereqW 5 1
2 (pW 12pW 2) denotes the operator of the relative m

mentum of two particles,r̂ 5rW/r denotes the unit vecto
along the relative coordinate, andd (3)(rW)51/(4pr 2)d(r )
denotes the radial component of the three-dimensionad
function. The arrows above the derivatives indicate to wh
side they act.

Notice that this type of effective interaction is construct
to be used within the restricted low-momentum model sp
only. It does not make sense to employ it for the solution
the full Schrödinger equation or for a perturbative treatme
beyond lowest order.

The interaction strengthgl is a constant that contains th
relevant information on the original two-body potential. Th
connection is provided by condition~1! via the shift of the
energy levels with respect to the free spectrum. To evalu
~1! we calculate the expectation value of the contact inter
tion ~24! for the l th partial wave taken with the noninterac
ing two-body statesunlm&,

^nlmuv l
effunlm&5glE d3rd~3!~rW !U ] l

]r l Rnl~r !Ylm~V!U2

5
gl

4p U ] l

]r l Rnl~r !U
r 50

2

5
gl

4p F l !

~2l 11!!! G
2

Anl
2 qnl

2l , ~25!

where we used the expansion of the radial wave funct
around the origin

Rnl~r !5Anl

~qnlr ! l

~2l 11!!! F12
~qnlr !2

2~2l 13!
1¯G . ~26!

l
ls
3-4
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Equating the expectation value~25! with the energy shift
results in the following equation for the interaction strengt

gl54pF ~2l 11!!!

l ! G2

Anl
22 DEnl

qnl
2l . ~27!

Inserting the normalization constant~10! and the energy shif
in scattering length formulation~22! gives the final expres
sion for the interaction strengths

gl5
4p

2mred

~2l 11!

~ l ! !2 al
2l 11. ~28!

Together with Eq.~24! this defines the scattering length fo
mulation of the effective contact interaction. Notice th
these expressions do not depend on the auxiliary boun
condition ~4!, which was introduced to obtain a discrete e
ergy spectrum.

For l 51 sometimes a gradient operator with respect
the relative coordinate is used instead of the radial deriva
~24!. This alternative ansatz reads

v1
eff5qW g̃1d~3!~rW !qW 5E d3r urW&¹

�
g̃1d~3!~rW !¹

�
^rWu. ~29!

It should be noted that thep-wave interaction strengthg̃1 in
the gradient formulation is related to the interaction stren
~28! by

g̃15g1/3. ~30!

3. Beyond scattering length approximation

The operator of the effective contact interaction can
generalized systematically beyond the scattering length
proximation shown in the preceding section. A form
scheme emerges from the expansion of the phase shifts
power series inq

h̃ l~q!

q2l 11 5 (
n50

`
1

n!
cl

~n!q2n. ~31!

The momentum-independent lowest-order term of this
pansion matches the scattering length approximation. F
Eq. ~21! the connection between the coefficientcl

(0) and the
the scattering lengthal becomes obvious

cl
~0!52

~2l 11!

@~2l 11!!! #2 al
2l 11. ~32!

The coefficientcl
(1) of the quadratic term of the expansion

connected to the so-called effective range or effective v
ume of the potential. We will discuss this contribution
more detail later. By inserting the expansion~31! into the
general formula~20! for the energy shifts we obtain

DEnl

Enl
52

2

L (
n50

`
1

n!
cl

~n!qnl
2l 12n . ~33!
04360
:

t
ry

-

o
e

h

e
p-
l

a

-
m

l-

Following the basic concept of the ECI these energy sh
have to be generated by the operator of the ECI accordin
condition ~1!. To include the momentum dependence of t
energy shifts we have to generalize the ansatz for the
operator compared to the simple momentum-independ
scattering-length formulation~24!. The further calculation
will show that

v l
eff5 (

n50

`

1
2 gl

~n!@~qW • r̂ ! ld~3!~rW !~ r̂ •qW ! l 12n

1~qW • r̂ ! l 12nd~3!~rW !~ r̂ •qW ! l # ~34!

is a proper ansatz for the effective interaction operator for
l th partial wave. Besides the more complex nonlocal str
ture a set of interaction strengthsgl

(n)(n50,1, . . . ) foreach
partial wave is included. They are related to the coefficie
cl

(n) and thus correspond to the different powers of the m
mentum in Eq.~33!. To employ condition~1! we calculate
the expectation value ofv l

eff with noninteracting two-body
statesunlm&,

^nlmuv l
effunlm&

5
1

4p (
n50

`

gl
~n!F ] l

]r l Rnl~r !G
r 50

F ] l 12n

]r l 12n Rnl~r !G
r 50

5
Anl

2

4p (
n50

`

gl
~n!

l !

~2l 11!!!

~21!n~ l 12n!!

2nn! ~2l 12n11!!!
qnl

2l 12n ,

~35!

where the full expansion of the noninteracting radial wa
function ~5! aroundr 50 was used@13#

Rnl~r !5Anl (
m50

`
~21!m

2mm! ~2l 12m11!!!
~qnlr ! l 12m. ~36!

By inserting the expansion of the energy shifts~33! and the
expectation value into condition~1! and comparing the coef
ficients for the different powers of the momentumqnl we
obtain

gl
~n!5~21!n11

4p

2mred

2n~2l 11!!! ~2l 12n11!!!

l ! ~ l 12n!!
cl

~n! .

~37!

Thus the interaction strengthsgl
(n) of the general operato

form of the ECI~34! are proportional to the coefficientscl
(n)

of the expansion of the phase shifts~31!. Equations~34! and
~37! define the most general form of the effective conta
interaction.

For the application to dilute degenerate Fermi gases
will use the ECI up to quadratic terms in the momentum, i
we include the scattering length term of thes- and p-wave
part as well as thes-wave effective range correction. At thi
point we have to discuss the connection between the q
3-5
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R. ROTH AND H. FELDMEIER PHYSICAL REVIEW A64 043603
dratic term of the expansion~31! and the usual effective
range theory. For thes-wave phase shifts the effective rang
expansion reads

q coth0~q!'2
1

a0
1

1

2
r 0q2, ~38!

wherer 0 is the effective range of the potential. If we conve
this into an expression forh̃0(q)/q and expand inq we ob-
tain

h̃0~q!

q
52q02b0q21¯ ~39!

with an effective volumeb0 that depends on the scatterin
lengtha0 and the effective ranger 0

b05 1
2 a0

2r 02 1
3 a0

3. ~40!

Rather than using this relation we will adjustb0 in order to
get the best representation of the phase shifth̃0(q)/q with
the truncated expansion~39!.

Finally, insertingc0
(1)52b0 into Eq. ~37! gives an ex-

pression for the interaction strength of thes-wave effective
range term

g0
~1!52

12p

2mred
b0 . ~41!

C. Example: square-well potential

To illustrate the concept of the effective contact intera
tion we use the simple toy problem of two particles intera
ing by an attractive square-well potential of radiusl and
depth2V0 . First we look at typical wave functions to whic
the idea of the ECI applies. The major condition is that
typical wavelength of the relative motion is large compar
to the range of the interaction. This is ensured by choos
the radiusl of the square well much smaller than the rad
L associated with the boundary condition~4!; in the follow-
ing we usel50.01L. Figure 1 shows the radial wave func
tion of the lowestl 50 state with positive energy for differ
ent potential depthsV0 . Outside the potential the structure
the wave functions is very similar for the different intera
tion strengths. Only the wavelength is changed slightly d
to the different matching to the wave function in the inter
~see the inset of Fig. 1!. This change of the relative momen
tum translates immediately into an energy shift. From t
picture the connection between energy shifts and phase s
is evident.

A second point becomes clear from this simple examp
The detailed structure of the radial dependence of the po
tial or the number of bound states is irrelevant for the ene
shift, only the phase shiftsh̃ l(q) matter. The inset in Fig. 1
shows that the wave functions behave very different wit
the rangel due to the different potential depths. Moreov
the potentials have a different number of bound states,
the thick solid curve is associated with a potential with o
bound state but zero phase shift. Hence the behavior ou
the potential is identical to the noninteracting case~thin solid
04360
-
-

e
d
g

e

t
ifts

:
n-
y

n
,
g.,
e
ide

curve! and the energy shift is zero.
Next we investigate the dependence of thel 50 energy

shifts on the strength of the attractive potential. Figure
shows the relative energy shiftDEexact/E versus lAV0,
where the radiusl50.01L of the square-well potential is
kept fixed and the depthV0 is increased. A characteristi
pattern appears: In the vicinity of interaction strengths wh
the potential gains another bound state the relative ene
shift assumes large positive and negative values. Large p
tive energy shifts occur for potentials that have a ve
weakly bound state, negative energy shifts for those t
have an almost bound state. In between these interac
strengths extended plateaus of nearly constant energy
appear. Within the plateaus the energy shift is independen
the radial quantum numbern of the level or the relative mo-
mentum. This is a special property of thes-wave channel; for
higher partial waves the relative energy shift~22! is propor-
tional to q26. Only at the edges of the plateaus a slight no
trivial dependence on the relative momentum shows up~see
Fig. 3!.

This structure is closely related to the behavior of t
s-wave scattering length. Thel 50 energy shift induced by
the ECI in the scattering length approximation~22! is pro-
portional to the scattering lengtha0 . For the square-well
potential we get

DEn0

En0
52

a0

L
with

a0

l
512

tan~lAV0!

lAV0

. ~42!

This ECI energy shift is right on top of the solid curve in Fi
3, i.e., it agrees very well with the exact energy shift for t
lowest positive-energy state. Even for higher momenta
agreement is very good provided that the magnitude of
scattering length is not too large. Significant deviations oc
only if momentumand scattering length are large.

To obtain a quantitative measure for the applicability
the ECI in the scattering length approximation we investig
the relative deviation (Ē2Ēexact)/E of the ECI energy levels

FIG. 3. Relative energy shiftDEn0
exact/En0 obtained from the ex-

act l 50 solutions plotted versus the strengthlAV0 of the square-
well potential. The solid line gives the energy shift for the lowe
(n51), the dashed line for the 10th, and the dotted line for the 2
state of the positive-energy spectrum. The dots mark the interac
strengths used in Fig. 1.
3-6
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compared to the exact ones for the square-well potential.
expect that the agreement gets worse if either the rela
momentum or if the scattering length is large. Therefore, F
4 shows the relative energy deviation forl 50 and l 51
states as a function of the product of momentum and sca
ing length,qal , which was assumed to be small in order
introduce the scattering length~21!. The different curves cor-
respond to different values of the momentumqnl and were
obtained by varying the depth of the square-well poten
and thus the scattering length.

As expected the deviation increases with increasing va
of qal . Nevertheless, the deviation of the energy calcula
with the ECI in the scattering length approximation is belo
1% up to rather large values ofqal&1. If we tolerate a
maximum deviation of 5%, then the scattering length form
lation can be used up to valuesqal&1.5.

It should be noted that the relative deviation of the gene
form ~20! of the ECI in the parameter range discussed ab
is below 1024. Thus all approximations made to obtain equ
tion ~20! are valid on a high level of accuracy. The restr
tions on the validity of the scattering length formulation~22!
originate from the replacement of the phase shifts by
scattering length alone, which is not an inherent part of
ECI concept. If the simple scattering length formulation
not sufficient for a special application one can go beyo
that.

For example, the inclusion of effective volume corre
tions @see Eq.~39!# improves the agreement with the exa
energy shifts. In this way we can reduce the maximum
viation to only 1% up toqa0&1.5.

D. ECI versus pseudopotential

The idea to simulate the effect of a complicated fini
range two-body potential by a simples-wave contact inter-
action dates back to Fermi@14# and was used by severa
authors@15# in various physical contexts. Huang and Ya
@16,17# generalized this idea and constructed the so-ca
pseudopotentialthat acts in all partial waves.

FIG. 4. Relative deviation of the two-body energy calculat
with the ECI in scattering length approximation from the exa
energy as function ofqal for l 50 ~left! andl 51 states~right!. The
curves were obtained for interactions with three bound states
varying the strengthlAV0 and looking at the energy shifts fo
different relative momentaqnlL'20 ~solid!, 40 ~dashed!, and 80
~dotted!.
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The aim of the pseudopotential is~a! to generate the phas
shifts of the original potential by a boundary condition atr
50 and~b! to reformulate this by an additional inhomog
neous term in the Schro¨dinger equation of the two-body sca
tering problem. This additional term is interpreted as t
pseudopotential, which can be phrased in the following
erator form@18#:

v l
pseudo5E d3r urW&

1

r l gl
pseudod~3!~rW !

]
�

2l 11

]r 2l 11 r l 11^rWu ~43!

with an interaction strength

gl
pseudo5

4p

2mred

~ l 11!

~2l 11!!
al

2l 11 ~44!

for the l th partial wave. For this discussion we restrict ou
selves to the scattering length approximation of the ph
shifts. Due to the fact that the radial derivative acts only
the right-hand side the operator of the pseudopotential~43! is
not Hermitian. This is in contradiction to the basic concept
effective interactions.

A more severe weakness shows up when we evaluate
energy shifts induced by the pseudopotential. As discusse
Sec. II A the expectation value of a proper effective intera
tion with eigenstatesunlm& of the noninteracting two-body
system should be equal to the energy shift induced by
original potential. For the pseudopotential~43! we obtain an
energy shift

DEnl
pseudo

Enl
5

1

Enl
^nlmuv l

pseudounlm&

5
2

L

~ l 11!

@~2l 11!!! #2 qnl
2l al

2l 11. ~45!

This has to be compared with the full energy shift in scatt
ing length approximation~22! which by construction is re-
produced by the ECI. Obviously the energy shift induced
the pseudopotential for states withl .0 is by a factor (l
11)/(2l 11) smaller than the energy shift of the origin
potential. Thus the pseudopotential underestimates the e
of the two-body interactions beyonds-wave when used in a
mean-field framework. For the widely useds-wave part the
energy shifts of the pseudopotential agree with the ene
shifts of the original potential. We conclude that the no
Hermitian pseudopotential is not a proper effective inter
tion for a mean-field description of dilute quantum gases t
goes beyonds-wave interactions.

III. ENERGY FUNCTIONAL OF A TRAPPED
MULTICOMPONENT FERMI GAS

A. Fundamentals

In the following we investigate the ground-state prop
ties of a dilute Fermi gas composed ofJ distinguishable
components that are trapped in an external potentialU(xW ) at
temperatureT50 K. In the present experiments@2# one or

t

y
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R. ROTH AND H. FELDMEIER PHYSICAL REVIEW A64 043603
two components are used, which belong to the same ato
species but are distinguished by different projectionsMF of
the total angular momentumF onto the direction of an ex
ternal magnetic field. We distinguish the different comp
nents by a formal quantum numberj51, . . . ,J. For sim-
plicity we use the same massm of the atoms for all
components.

We treat the many-body problem in the framework
density-functional theory and construct an energy functio
of the inhomogeneous multicomponent Fermi gas within
proper approximation. The ground-state density distribut
of the many-body system is then determined by functio
minimization of the energy.

The large particle numbers of the orderN;106 allow the
rather simple Thomas-Fermi approximation for the ene
functional. It is assumed that the energy density of the in
mogeneous system is described locally by the energy den
of the corresponding homogenous system; higher-o
terms, which include gradients of the density, are assume
be small. To check the quality of the Thomas-Fermi appro
mation we calculated the next order gradient corrections
a trapped noninteracting Fermi gas. ForN5100 particles the
relative contribution of the gradient correction to the to
energy is of the order of 1022; for typical particle numbers
of N5106 it drops to 1025 @18#.

As starting point for the Thomas-Fermi approximation w
calculate the energy density of the homogenous interac
multicomponent Fermi gas in a mean-field approximati
The basic restriction of the mean-field picture is that tw
and many-body correlations induced by the interaction
not contained in the many-body state. Nevertheless they
be implemented implicitly by using a proper effective inte
action that is tailored for the model space available. In
preceding section we constructed the effective contact in
action especially for the mean-field description of dilute n
self-bound quantum gases.

A central topic of the following studies is the role of th
interaction on the structure and stability of trapped degen
ate Fermi gases. Our special interest concerns thep-wave
part of the interaction, which contributes even atT50 K—in
contrast to bosonic systems. It will turn out that thep-wave
terms can be of substantial importance for the ground-s
properties of fermionic systems and should not be negle
from the outset.

We write the Hamilton operator of the system as a sum
the external trapping potentialU and an internal partH int ,

H5U1H int . ~46!

The internal part contains the kinetic energy and the effec
contact interaction as discussed in Sec. II. We include
s-wave andp-wave terms of the ECI in scattering leng
formulation as well as thes-wave effective range correction
With Eqs.~24!, ~28!, ~34!, and~41! the internal Hamiltonian
reads
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H int5
1

2m(
i

pW i
21

4p

m
a0 (

i , j . i
d~3!~rW i j !

2
12p

m
b0 (

i , j . i

1
2 @d~3!~rW i j !~ r̂ i j •qW i j !

21H.a.#

1
12p

m
a1

3 (
i , j . i

~qW i j • r̂ i j !d
~3!~rW i j !~ r̂ i j •qW i j !. ~47!

The summations over the particle indicesi and j range from
1 to the total number of particles. The properties of the tw
body interaction are parametrized by thes- andp- wave scat-
tering lengthsa0 and a1 , respectively, and by thes-wave
effective volumeb0 . In general the interaction paramete
depend on the component quantum numbersj of the inter-
acting particles. In order to discuss the basic phenomena
restrict ourselves to equal interaction parameters for all co
ponents. The generalization to scattering length matrices
account for the dependence on the component indices o
two interacting particles is straightforward.

Experimentally each component may experience a dif
ent trapping potentialUj(xW ). For magnetic traps this is du
to the different magnetic momenta of the components, wh
leads to a relative shift of the trapping potentials for t
components. Thus the operator of the external potential
the following form:

U5(
i

(
j

Uj~xW i !Pj,i , ~48!

wherePj is a projection operator onto states with the co
ponent quantum numberj.

Many of the results shown in the next sections do n
depend on the actual shape of the trapping potential. If
shape enters explicitly we assume a deformed harmo
oscillator potential

U~xW !5
mv2

2
~l1

2x1
21l2

2x2
21l3

2x3
2!

5
1

2ml 4 ~l1
2x1

21l2
2x2

21l3
2x3

2!, ~49!

where v5A3 v1v2v3 is the mean oscillator frequency an
l 5(mv)21/2 the corresponding mean oscillator length i.
the mean width of the Gaussian single-particle ground s
of the harmonic-oscillator potential. The deformation is p
rametrized by the ratiosl i5v i /v, which fulfill the condi-
tion l1l2l351.

B. Energy density in the Thomas-Fermi approximation

The calculation of the energy density functional of t
inhomogeneous interacting Fermi gas is performed in t
steps: First we calculate the energy density of the co
sponding homogenous system in the mean-field approxi
tion. In the second step this is translated into an energy d
sity of the inhomogeneous system by means of the Thom
Fermi approximation.
3-8
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The ground state of a many-fermion system in mean-fi
approximation is given by an antisymmetrized product
one-body statesui&. In the case of a homogenous system
one-body states are eigenstates of the momentum ope
with eigenvalueskW i . In addition, they are characterized b
the component quantum numberj,

u i &5ukW i& ^ uj i&. ~50!

Assuming a box of volumeV with periodic boundary condi-
tions the spatial part of the one-body states is given by

^xW ukW i&5
1

AV
exp~ ikW i•xW !. ~51!

The energy density of the homogenous system is given
the expectation value of the internal part of the Hamilt
operator~47!

Ehom5^H int&/V. ~52!

The calculation of the expectation values of the several p
of the Hamiltonian is straightforward@18#. As a function of
the Fermi momentakj of the different components the en
ergy density reads

Ehom~k1 ,...,kJ!5
1

20p2m(
j

kj
51

a0

9p3m (
j,j8.j

kj
3kj8

3

1
a1

3

30p3m(
j

kj
8

1
a1

31b0

60p3m (
j,j8.j

@kj
3kj8

5
1kj

5kj8
3

#. ~53!

The summations run over all componentsj51, . . . ,J. To
avoid fractional exponents we use Fermi momentakj rather
than densitiesrj5kj

3/(6p2).
The basic assumption of the Thomas-Fermi~or local-

density! approximation is that the energy density of the
homogenous Fermi gas is locally given by the energy den
of the corresponding homogenous system. Thus the en
density of the inhomogeneous system is constructed f
Eq. ~53! by replacingkj with local Fermi momentakj(xW ).
In addition the contribution of the external trapping potent
has to be included. This results in the following express
for the energy density of the trapped interacting multico
ponent Fermi gas

E@k1 ,...,kJ#~xW !5
1

6p2 (
j

Uj~xW !kj
3~xW !1

1

20p2m(
j

kj
5~xW !

1
a0

9p3m (
j,j8.j

kj
3~xW !kj8

3
~xW !

1
a1

3

30p3m(
j

kj
8~xW !

1
a1

31b0

60p3m (
j,j8.j

@kj
3~xW !kj8

5
~xW !

1kj
5~xW !kj8

3
~xW !#. ~54!
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The local Fermi momentum is related to the density of p
ticles of the componentj by

rj~xW !5
1

6p2 kj
3~xW !. ~55!

Accordingly the number of particles of componentj is given
by

Nj5E d3xrj~xW !5
1

6p2 E d3xkj
3~xW !. ~56!

As discussed in Sec. II C we can reproduce the two-bo
energy spectrum with an accuracy of about 5% up toalq
'1.5. If we take this as a limit for the root mean square
the relative momentum̂q2&1/250.53k in the many-body
system, we can apply our many-body model up toalk'3.

C. Functional variation and the extremum condition

The ground-state density of a system is found by mi
mizing the energy functional

E@k1 ,...,kJ#5E d3xE@k1 ,...,kj#~xW ! ~57!

for given particle numbersNj . This constraint is imple-
mented with the help of a set of Lagrange multipliersmj ,
which are the chemical potentials of the different comp
nents. The Legendre transformed functional

F@k1 ,...,kJ#5E@k1 ,...,kJ#2(
j

mjNj

5E d3xE@k1 ,...,kJ#~xW !2(
j

mj

6p2 kj
3~xW !

5E d3xF@k1 ,...,kJ#~xW !, ~58!

has to be minimized by functional variation. A necessary
not sufficient condition for a set of local Fermi momen
$k1(xW ),...,kJ(xW )% to minimize the transformed energy func
tional F@k1 ,...,kJ# is stationarity, i.e., that the first variatio
of F@k1 ,...,kJ# with respect to allkj(xW ) vanishes,

d

dkj
F@k1 ,...,kj#50 for all j. ~59!

This extremum condition is fulfilled if the derivative of th
integrandF@k1 ,...,kJ#(xW ) with respect to all local Ferm
momenta vanishes at each point (xW ),

]

]kj~xW !
F @k1 ,...,kJ#~xW !50 for all xW ,j. ~60!

Inserting expression~54! for the energy density and evalua
ing the derivative results in the extremum conditio
3-9



tre
e

itl
nc

ty

tio
e

. I

c
e

n
to

is

th

er

le

he
e

o-

er

am-
atio

ne
h or

ting

ing

ing
n

f

ion
r if

ion
re-
ctive

s.

f
rap
g

R. ROTH AND H. FELDMEIER PHYSICAL REVIEW A64 043603
m@mj2Uj~xW !#5
1

2
kj

2~xW !1
2a0

3p (
j8Þj

kj8
3

~xW !1
8a1

3

15p
kj

5~xW !

1
a1

31b0

30p (
j8Þj

@3kj8
5

~xW !15kj
2~xW !kj8

3
~xW !#

~61!

for all xW and eachj. This is a coupled set ofJ polynomial
equations for the local Fermi momenta$k1(xW ),...,kJ(xW )% at
some given pointxW . Note that the trivial solutionskj(xW )
50 were separated already. Any real solution of the ex
mum condition~61! corresponds to a stationary point of th
energy functional. In general one has to check explic
whether they correspond to a minimum of the energy fu
tional or whether they are maxima or saddle points.

All following investigations on the structure and stabili
of degenerate Fermi gases and on the influence ofs- and
p-wave interactions are based on the extremum condi
~61!. Many physical conclusions can be drawn from its alg
braic structure already. We will discuss these questions
detail for the one- and two-component Fermi gas in Secs
and V, respectively.

IV. SINGLE-COMPONENT FERMI GAS

As a first application of the formalism developed in Se
III we study the properties of a degenerate single-compon
Fermi gas.

A. Effect of the p-wave interaction

The energy density of the interacting multicompone
Fermi gas~54! reduces for the single-component system
the form

E@k#~xW !5
1

6p2 U~xW !k3~xW !1
1

20p2m
k5~xW !1

a1
3

30p3m
k8~xW !,

~62!

wherek(xW ) is the local Fermi momentum. The first term
the contribution of the trapping potentialU(xW ), the second
term is the kinetic energy, and the third term describes
contribution of thep-wave interaction with ap-wave scatter-
ing lengtha1 . As mentioned earlier thes-wave part of the
interaction does not contribute in a system of identical f
mions due to the Pauli principle. Therefore thep-wave part is
the leading interaction term and there is no reason to neg
it from the outset.

A first hint on the effects of thep-wave interaction is
given by the density distributions for different values of t
p-wave scattering length. The density distribution is obtain
by the solution of the extremum condition~61!, which takes
the simple form

m@m2U~xW !#5 f 1@k~xW !#

with
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f 1~k!5
1

2
k21

8a1
3

15p
k5. ~63!

This fifth-order polynomial equation for the local Fermi m
mentumk(xW ) is solved numerically for each pointxW . The
chemical potentialm is adjusted such that particle numb
~56! assumes the desired value.

Figure 5 shows the resulting radial density profilesr(x)
5k3(x)/(6p2) for a single-component gas ofN5106 particles
in a spherical trap with oscillator lengthl for different
p-wave scattering lengthsa1 . The oscillator length defines
the fundamental length scale of the problem and the par
eter that determines the strength of the interaction is the r
of the p-wave scattering length and oscillator length,a1 /l .
To increase the magnitude of this ratio experimentally o
can either increase the magnitude of the scattering lengt
decrease the oscillator length.

For a repulsivep-wave interaction, i.e.,a1 /l .0, of in-
creasing strength~dotted curves! the density distribution flat-
tens and expands radially compared to the noninterac
system~solid line!. For a ratioa1 /l 50.1 the central density
has dropped to one-half of the density of the noninteract
gas. With a typical experimental oscillator length ofl
51 mm this ratio corresponds to a rather large scatter
length of a1'2000aB , which nevertheless may be withi
the range of experimental parameters@8#. For a tightly con-
fining trap with l 50.1mm a moderate scattering length o
a1'200aB is required to obtain the same ratio.

For an attractivep-wave interaction,a1 /l ,0, the central
density increases significantly with increasing interact
strength. If the central density exceeds a certain value o
ua1 /l u exceeds a critical value, then the extremum condit
~63! has no real solution any more. Physically this cor
sponds to a collapse of the dilute gas caused by the attra
mean-field that is generated by thep-wave interaction. We
will discuss this question in detail in the following section
The dependence of the density distribution on thep-wave

FIG. 5. Density profiler(x) of a single-component Fermi gas o
N5106 particles trapped in a spherical symmetric parabolic t
with oscillator lengthl . The solid curve shows the noninteractin
gasa1 /l 50. Dotted curves correspond to repulsivep-wave inter-
actions witha1 /l 50.03, 0.06, and 0.1~from top to bottom!. The
dashed curves show attractivep-wave interactions witha1 /l
50.03,20.04, and20.044~top to bottom!, respectively.
3-10
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scattering length as depicted in Fig. 5 already demonstr
that thep-wave interaction may have strong influence on
properties of degenerate Fermi gases.

B. Mean-field instability: a variational picture

To illustrate the origin and mechanism of the collapse
the metastable state of the trapped Fermi gas we utiliz
simple variational picture. Assume a single-compon
Fermi gas ofN particles in a spherical symmetric oscillat
potential. The local Fermi momentum of the interacting s
tem is parametrized by the analytic expression for the lo
Fermi momentum of the noninteracting system

k~xW !5
2~6N!1/3

Xt
A12S uxW u

Xt
D 2

for uxW u<Xt , ~64!

where the classical turning pointXt is treated as variationa
parameter. By inserting this parametrization into the ene
density ~62! and integrating we obtain a closed express
for the energy as function of the parameterXt

E~Xt!5Cu

NXt
2

l 4 1Ct

N5/3

Xt
2 1C1

N8/3a1
3

Xt
5 , ~65!

with constant coefficients

Cu5
3

16m
, Ct5

3~9/2!1/3

2m
, C15

86~4/3!1/3

1925p2m
. ~66!

Again the first term corresponds to the external potenti
the second to the kinetic energy, and the third term to
p-wave interaction.

Figure 6 shows the dependence of the total energy~65! on
the parameterXt for a system ofN5106 particles with dif-
ferentp-wave scattering lengths. For attractivep-wave inter-
actions, i.e., negative scattering lengtha1 , the contribution
of the interaction in Eq.~65! is negative. Due to itsXt

25

dependence this interaction contribution leads to a rapid d

FIG. 6. Variational energy~65! of a trapped single-componen
Fermi gas withN5106 as a function of the parameterXt . The
curves show the noninteracting gas~thin solid!, a1 /l 520.035
~solid!, a1 /l 520.051~dashed!, anda1 /l 520.065~dotted!. The
energies are given in units of the ground-state energyE0 of the
noninteracting gas.
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of the energy for systems of decreasing spatial extension
thus increasing density. At very high densities~smallXt! one
formally ends up with states of negative energy, i.e., bou
states. One should, however, keep in mind that the assu
tions made for the construction of the effective contact int
action are not valid in this high-density regime anymore.

The not-self-bound metastable state appears as local m
mum at positive energies and low densities provided
p-wave attraction is sufficiently weak; the thick solid curv
in Fig. 6 shows an example. If the strength of the attract
p-wave interaction increases, then the local minimum flatt
and devolves to a saddle point~dashed curve!. From this
particular interaction strength on the metastable low-den
state does not exist anymore, only the true ground stat
the system remains, which is usually a crystal. The sys
collapses if the barrier caused by the positive kinetic and
attractive mean-field energy vanishes. Since the mean-
attraction grows with increasing density the system is
stable and collapses towards a high-density configuration

C. Mean-field instability: stability conditions

Based on the extremum condition~63! we derive a set of
analytic stability conditions that relate the maximum dens
of a metastable system with thep-wave scattering length
Part of this was already discussed in@10#.

The mean-field instability of the system occurs for valu
of the chemical potentialm and the scattering lengtha1 ,
where the extremum condition~63! does not have a real so
lution anymore. This is shown in a pictorial way in Fig.
where the right-hand sidef 1(k) of the extremum condition is
plotted as function ofk for different a1 /l . The solution of
the extremum condition at some specific pointxW is given by
the value ofk at which the respective curve reaches the va
m@m2U(xW )#. In the minimum of the trapping potential@we
assumeU(xW )50 in the minimum# the solution is given by
the point wheref 1(k) reaches the valuemm. By moving
towards the outer regions of the trapm@m2U(xW )# decreases

FIG. 7. Right-hand sidef 1(k) of the extremum condition~63!
as a function of the Fermi momentum for a noninteracting sin
component gas~solid! with repulsivep-wave interactiona1 /l 5
20.04 ~dotted! and with attractivep-wave interactiona1 /l 5
20.04 ~dashed!. The horizontal lines mark the respective values
the chemical potentials forN5106 particles.
3-11
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R. ROTH AND H. FELDMEIER PHYSICAL REVIEW A64 043603
and one scansf 1(k) down along ordinate until one reache
m@m2U(xW )#50, i.e., the classical turning point.

For repulsivep-wave interactions~dotted curve! the rhs of
Eq. ~63! is a monotonic growing function and solutions ex
for arbitrary values ofm@m2U(xW )#. If the scattering length
a1 is negative~dashed curve!, then f 1(k) exhibits a maxi-
mum at a Fermi momentumkmax and chemical potentia
mmax

kmax52
A3 3p

2a1
, mmax5

3~3p!2/3

40ma1
2 . ~67!

For values of the chemical potentialm.mmax no solution of
the extremum condition exists, i.e., there is no metasta
low-density state. Equivalently only solutions with loc
Fermi momenta belowkmax correspond to minima of the
energy functional; those abovekmax ~gray segment of the
dashed curve! correspond to maxima of the energy. Thus w
get a limiting condition for the local Fermi momentum of th
metastable state

2a1k~xW !<
A3 3p

2
~68!

or in terms of the density

2a1
3r~xW !<

1

16p
. ~69!

This is one form of thestability condition for the single-
component Fermi gas. We note that this condition is co
pletely independent of the trap geometry. As soon as
stability condition is violated somewhere in the trap, in ge
eral in the minimum of the trapping potential, the system w
become unstable.

For practical purposes we formulate a stability conditi
in terms of the particle numberN. The maximum particle
numberNmax of the metastable degenerate Fermi gas is
rectly connected to the maximum chemical potentialmmax.
This relation is established numerically by solving the ext
mum condition for the maximum chemical potentialmmax
and integrating over the resulting density distribution to o
tain the corresponding maximum particle number~56!. This
is done for several scattering lengthsa1 assuming a de-
formed oscillator potential~49! with mean oscillator length
l . Finally a parametrized form of the stability condition
fitted to this data. The parametrization is motivated by
noninteracting gas, where the maximum local Fermi mom
tum is proportional toA6 N/l . Inserting this into the stability
condition ~68! leads to the form

CSA6 N
a1

l
D<1, C522.246. ~70!

The parameterC is fitted to the numerical results, which a
reproduced with a deviation far below 1%. Note that th
condition is independent of the deformation of the harmon
oscillator trap@18#.
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For an interaction strength ofa1 /l 520.01 which corre-
sponds to a scattering lengtha1'2200aB for a trap with
l 51 mm the maximum particle number isNmax
57.83109. This seems to be out of the range of prese
experiments. Nevertheless if we increase the strength of
p-wave attraction toa1 /l 520.1, then the maximum par
ticle number drops toNmax57800. Experimentally this could
be achieved by utilizing ap-wave Feshbach resonance
increase thep-wave scattering length toa1'22000aB as
proposed by Bohn@8# for the 40K system.

V. TWO-COMPONENT FERMI GAS

As a second application we consider the degenerate t
component Fermi gas.

A. Interplay between the s- and p-wave interaction

The general energy density of a trapped multicompon
Fermi gas in the Thomas-Fermi approximation~54! takes for
the two-component system the following form:

E @k1 ,k2#~xW !5
1

6p2 @U1~xW !k1
3~xW !1U2~xW !k2

3~xW !#

1
1

20p2m
@k1

5~xW !1k2
5~xW !#

1
a0

9p3m
k1

3~xW !k2
3~xW !

1
a1

3

30p3m
@k1

8~xW !1k2
8~xW !#

1
a1

31b0

60p3m
@k1

3~xW !k2
5~xW !1k1

5~xW !k2
3~xW !#,

~71!

wherek1(xW ) andk2(xW ) denote the local Fermi momenta o
the two components. In contrast to the single-component
tem, boths- andp-wave terms of the effective contact inte
action contribute. Thes-wave interaction acts only betwee
particles of different species and generates a contribu
proportional to the product of the densities of both comp
nents. Thep-wave term acts between particles of differe
components as well as between particles of the same spe
For reasons of simplicity we assume the samep-wave scat-
tering lengtha1 for these different interactions.

Including the constraint of given particle numbersN1 and
N2 of the two components with the help of the chemic
potentialsm1 andm2 ~see Sec. III C! leads to the transformed
energy density

F @k1 ,k2#~xW !5E@k1 ,k2#~xW !2
m1

6p2 k1
3~xW !2

m2

6p2 k2
3~xW !.

~72!
3-12
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Functional variation of the transformed energy function
leads to the extremum condition. For the two-compon
system the general form~61! reduces to a coupled set of tw
polynomial equations

m@m12U1~xW !#5
1

2
k1

2~xW !1
2a0

3p
k2

3~xW !1
8a1

3

15p
k1

5~xW !

1
a1

31b0

30p
@3k2

5~xW !15k1
2~xW !k2

3~xW !#,

~73!

where the second equation is generated by the exch
k1(xW )↔k2(xW ) and@m12U1(xW )#→@m22U2(xW )#. Trivial so-
lutions with k1(xW )50 and k2(xW )50, respectively, are al
ready separated in this expression.

These coupled equations have a great variety of soluti
In order to show the generic phenomena of the tw
component system without too many parameters we res
ourselves to equal numbers of particles in both compon
N5N15N2 as well as trapping potentials that differ only b
an additive constant, thusm2U(xW )5m12U1(xW )5m2
2U2(xW ).

We will concentrate the further studies on the stability
the degenerate two-component Fermi gas against mean
collapse. For this phenomenon solutions with identical lo
Fermi momenta for both components,k(xW )5k1(xW )
5k2(xW ), are relevant. Under this assumption the extrem
condition reduces to a single equation

m@m2U~xW !#5 f 2@k~xW !# ~74!

with

f 2~k!5
1

2
k21

2a0

3p
k31

4ã1
3

5p
k5.

For simplicity we introduce a modifiedp-wave scattering
length2

ã1
35a1

31b0/3, ~75!

which contains thes-wave effective volume parameter. In th
following we will discuss the properties of the two
component Fermi gas as function of thes-wave and the
modifiedp-wave scattering length.

For other phenomena, like the separation of the two co
ponents due to repulsive interactions, different classes of
lutions become important. We will discuss these in a fut
publication.

B. Mean-field instability: stability conditions

The stability of the two-component Fermi gas under
influence ofs- and p-wave interactions can be investigate

2This can be generalized to include differentp-wave scattering
lengths for the different combinations of the two species:ã1

3

5
1
3 (a1@11#

3 1a1@22#
3 1a1@12#

3 1b0).
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with tools similar to the single-component case. Here
solutions with identical Fermi momenta for both compone
are of interest.

Similar to the single-component case the right-hand s
f 2(k) of the extremum condition~74! may exhibit a maxi-
mum if thes-wave or thep-wave scattering length is nega
tive. Thus the density and particle number of the metasta
low-density state may be limited. For a detailed analysis o
has to look at all possible combinations of signs of thes- and
p-wave scattering lengths separately.

a0>0, ã1>0. For a purely repulsive interactionf 2(k) is
a monotonic growing function and no mean-field induc
collapse occurs.

a0,0, ã1<0. For purely attractive interactionsf 2(k)
shows a maximum; thus the density of the metastable l
density state is limited.

a0>0, ã1,0. The negative contribution of thep-wave
interaction dominatesf 2(k) at high densities and generates
maximum, i.e., the mean-field induced collapse can oc
even if thes-wave interaction is repulsive.

a0,0, ã1.0. It depends on the relative strength of thes-
andp-wave interaction whether the rhs of the extremum co
dition has a local maximum or grows monotonically.
Especially the stability in the last case depends on a su
competition betweens- andp-wave interactions. Moreover, i
shows some completely new phenomena, which will be d
cussed in the following section.

For those cases wheref 2(k) has a maximum the value o
the local Fermi momentumkmax at the maximum is given by
the equation

2a0kmax22@ ã1kmax#
35

p

2
. ~76!

Again kmax is an upper limit for the local Fermi momenta
which can occur for a metastable low-density state of
two-component gas. Thus we can formulate the stability c
dition

2a0k~xW !22@ ã1k~xW !#3<
p

2
~77!

or equivalently in terms of the density

2@6p2a0
3r~xW !#1/3212p2ã1

3r~xW !<
p

2
. ~78!

If these stability conditions are violated, then no metasta
low-density state exists for the two-component Fermi g
For a pures-wave interaction (ã150) the stability condition
~77! reduces to the form2a0k(xW )<p/2, which was ob-
tained earlier by Houbierset al. @5#. Compared to this simple
form the inclusion of thep-wave interaction reveals sever
new effects.

Before we discuss the structure of Eq.~77! we formulate
an equivalent stability condition in terms of the number
particlesN5N15N2 of each component. For given value
of the two scattering lengths the maximum local Fermi m
mentum and the maximum chemical potential is calculat
3-13
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R. ROTH AND H. FELDMEIER PHYSICAL REVIEW A64 043603
From the solution of the extremum condition~74! for these
parameters the corresponding maximum particle numbe
determined. These numerical data are fitted by a suita
parametrization of the stability condition in terms of the p
ticle number and the scattering lengthsa0 /l and ã1 /l

C0SA6 N
a0

l
D1C1

3SA6 N
ã1

l
D 3

1C01
n11SA6 N

a0

l
D SA6 N

ã1

l
D n

<1.

~79!

This parametrization is constructed in analogy to the sing
component case~70!; the additional cross-term is necessa
to achieve a similar accuracy with typical deviations bel
1%. The parametersC0 , C1 , andC01 have to be fitted for
each combination of signs of the two scattering lengths se
rately. The value ofn is not included in the fitting procedur
but chosen by hand. The resulting values are summarize
Table I.

Figure 8 illustrates the dependence of the maximum p
ticle number resulting from this stability condition on thes-
and p-wave scattering lengths. The contour plot shows
logarithm of the maximum particle number for each comp
nent as function ofa0 /l andã1 /l . The first gross observa
tion is that attractives- andp-wave interactions with similar
scattering lengths set similar restrictions to the stability
the two-component Fermi gas. For example, a pures-wave
interaction witha0 /l 520.05 leads to a maximum particl
number of Nmax'1.73106. In comparison a purep-wave

FIG. 8. Contour plot of the logarithm of the maximum partic
number, log10 Nmax, as a function of thes-and p-wave scattering
lengths for a two-component Fermi gas in a harmonie-oscilla
potential with mean oscillator lengthl . Selected contours are la
beled with the corresponding value of log10 Nmax. In the white area
at a positivep-wave scattering length no collapse can occur, i.e.,
maximum particle number is infinity.

TABLE I. Parameters of the fitted stability condition~79! for the
two-component Fermi gas for different interaction types.

Interaction type C0 C1 C01 n

a0<0, ã1<0 21.835 22.570 0.656 1
a0>0, ã1,0 21.378 22.570 1.360 1
a0,0, ã1<0 21.835 21.940 2.246 3
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interaction with the same scattering lengthã1 /l 520.05
causes a collapse at even lower particle numbers ofNmax
'2.23105.

If both interaction parts are attractive they cooperate a
cause an instability at lower particle numbers or densities
the interaction is attractive in one partial wave and repuls
in the other, then the repulsive part leads to a stabilizat
i.e., it increases the maximum particle number. Here a
nificant difference betweens- andp-wave interactions arises
The stabilization caused by a repulsives-wave interaction is
rather weak. Compared to a purep-wave interaction with
ã1 /l 520.05 the presence of as-wave repulsion of the
same magnitudea0 /l 50.05 increases the maximum partic
number only from 2.23105 to 8.93105. In the opposite case
of an attractives-wave interaction ap-wave repulsion of the
same magnitude will always lead to an absolute stabilizat
i.e., there is no collapse for an arbitrary large particle num
despite thes-wave attraction. We will study these speci
effects in detail in the following section.

We should like to point out that for strong repulsiv
s-wave interactions the system can gain energy by sepera
the two components spatially. This demixing phenomen
will be discussed in a future paper.

These results clearly demonstrate that it is necessar
include thep-wave interaction if the scattering lengthã1 is
roughly in the same order of magnitude as thes-wave scat-
tering length. Even if the ratio of the scattering length
ã1 /a0 , are approximately 0.3 dramatic effects like th
p-wave stabilization, which is discussed in Sec. V C, c
occur. As can be seen from Fig. 8 thep-wave interaction may
be neglected only if the ratioã1 /a0 is smaller than 0.1.

C. Mean-field instability: p-wave stabilization

Several phenomena occur due to the competition betw
an attractives-wave (a0,0) and a repulsivep-wave interac-
tion (ã1.0). To understand the origin of these phenome
which are a unique property of these type of interactions,

r

e

FIG. 9. Right-hand sidef 2(k) of the extremum condition~74!
as a function of the Fermi momentum for an attractives-wave in-
teraction with a0 /l 520.05 and a repulsivep-wave interaction
with ã1 /l 50.014~dotted curve!, 0.015~solid!, and 0.016~dashed!.
The gray segments of the curves correspond to the maxima o
energy density.
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EFFECTIVEs- AND p-WAVE CONTACT . . . PHYSICAL REVIEW A 64 043603
investigate the right-hand sidef 2(k) of the extremum con-
dition ~74!. Figure 9 depicts the dependence off 2(k) on the
local Fermi momentum for ans-wave scattering length
a0 /l 520.05 and three slightly different positivep-wave
scattering lengths in the rangea0 /l 50.014, . . . ,0.016.

Due to the dominantk5 dependence any repulsivep-wave
interaction causesf 2(k) to grow fast for large Fermi mo
menta. Thus the maximum is only local and does not de
mine necessarily the maximum Fermi momentum or che
cal potential as in the cases with attractive or vanish
p-wave interaction. If thep-wave repulsion is sufficiently
strong the local maximum vanishes completely andf 2(k) is
a monotonically growing function. In this case a solution
the extremum condition exists for any density, chemical
tential, or particle, number. An example is shown by t
dashed curve in Fig. 9. It can be seen from Eq.~74! that the
local maximum disappears if the ratio of the two scatter
lengths fulfills the condition

ã1

ua0u
>

2

3p2/3'0.311. ~80!

If this condition is fulfilled thep-wave repulsion causes a
absolute stabilizationof the system againsts-wave induced

FIG. 10. Upper plot:f 2(k) of the extremum condition~74! as a
function of the Fermi momentum for an interaction witha0 /l 5
20.05 andã1 /l 50.015. Lower plot: Distribution of local Ferm
momentak(x) for a spherical trap of oscillator lengthl for the
three different chemical potentials marked in the upper panel. S
curves show the equilibrium profiles, dotted curves show me
stable configurations.
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collapse. In this case the total mean-field contribution of
interactions is always repulsive and grows monotonica
with density.

Notice that thep-wave scattering length necessary for th
stabilization is only approximately 1/3 of the modulus of t
s-wave scattering length. Obviously thep-wave interaction
may have drastic influence on the stability even if it is s
nificantly weaker than thes-wave interaction in terms o
scattering lengths.

For weakerp-wave repulsionsf 2(k) still shows a local
maximum and in addition a~local! minimum at larger Fermi
momenta. Examples are shown by the solid and do
curves in Fig. 9. In this case the extremum condition has
branches that correspond to local minima of the energy d
sity, which are separated by a branch of local maxima~gray
segments!. The branch at lower Fermi momenta correspon
to the usual family of low-density solutions that were o
tained with other types of interactions too. It ends up at
local maximum withkmax given by Eq. ~76! and mmmax
5f2(kmax). The solution branch at higher Fermi momen
gives rise to a new family of high-density solutions, whic
are unique for this type of interaction. It is bounded fro
below by the local minimum (kmin ,mmin) and raises up to
arbitrary Fermi momenta and chemical potentials.

For values of@m2U(xW )# betweenmmin andmmax the ex-
tremum condition has two solutionsk low and khigh with
f 2(k low)5 f 2(khigh), see Fig. 10. In equilibrium the one wit
lower energy density~72! is realized. We define a chemica
potential m trans at which the energy densities of bot
branches are equal; the value ofm trans can be determined
numerically. Since we expect the solutionk(xW ) to corre-
spond to a minimum of the energy functional at each poinxW ,
for @m2U(xW )#,m trans the low-density branch gives th
equilibrium solution and for@m2U(xW )#.m trans the high-
density branch does. This gives rise to a Maxwell constr
tion for the rhs of the extremum condition~74! as illustrated
in the upper plot of Fig. 10. The dotted parts of the lower a
upper branch in Fig. 10 correspond to local minima and m
occur as metastable states that eventually undergo a tr
tion to the energetically lower equilibrium solution.

The structure of the density distribution depends crucia
on the value of the chemical potentialm, i.e., the particle
number. The upper plot of Fig. 10 shows the rhs of the
tremum condition ~74! for an interaction with a0 /l 5
20.05 andã1 /l 50.015. The dashed horizontal lines ma
three different chemical potentials. The lower plot shows
radial dependencies of the local Fermi momentak(x)
5„6p2r(x)…1/3 for these three chemical potentials assum
a spherical trap with oscillator lengthl . For chemical poten-
tials m,m trans—case~a! in Fig. 10—the equilibrium solution
is completely on the low-density branch and we obtain
usual smooth density profile. Ifm.m trans—cases~b! and~c!
in Fig. 10—then the equilibrium solution in the center of th
trap is given by the high-density branch, while the soluti
for the outer regions of the trap is given by the low-dens
branch. Thus the equilibrium density profile shows a jump
density by typically one order of magnitude as one a
proaches the center of the trap. The location of the disco
nuity is always given by the equation@m2U(xW )#5m trans

id
-
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R. ROTH AND H. FELDMEIER PHYSICAL REVIEW A64 043603
which reflects the mechanical equilibrium between the lo
and the high-density phase, i.e., the equality of the press
p52F@k#(xW ) at the boundary between the two phases.

If the chemical potential is still belowmmax—case~b! in
Fig. 10—then a solution with a smooth low-density profi
all over the trap may exist as a metastable state. Du
density fluctuations this state may undergo a transition to
energetically preferred equilibrium state, which includes
high-density phase.

The physical origin of the high-density phase is quite
tuitive: The usual stability is determined by a competiti
between the kinetic energy, which favors low densities, a
the attractive mean field, which prefers higher densities
the attractive mean field becomes too strong, then the kin
energy is not able to stabilize the system anymore and
mean-field collapse occurs. In case of the high-density ph
the attractive mean field generated by thes-wave interaction
has already overcome the stabilizing effect of the kine
energy. Nevertheless the collapse is prevented by the re
sive p-wave contribution, which grows for higher densitie
faster than thes-wave attraction and inhibits a further in
crease of density. We call this remarkable phenomenon
p-wave stabilized high-density phase—in contrast to the low-
density phase stabilized by the kinetic energy, which is s
present in the peripheral regions of the trap.

The situation discussed so far assumes a repulsivep-wave
interaction that is slightly too weak to cause the absol
stabilization according to Eq.~80!. If the p-wave strength is
decreased further, then the values ofmmin , mmax, andm trans
also decrease. If the ratio of thep-wave ands-wave scatter-
ing lengths drops below the limit

ã1

ua0u
,A3 160

729p2 '0.281, ~81!

then the chemical potential of the minimum is negativ
mmin,0. An example is shown by the dotted curve in Fig.
For even weakerp-wave interactions with

ã1

ua0u
, 0.274, ~82!

m can be negative. That means that the high-density solu
forms a self-bound state independent of the trapping po
tial. Therefore as soon as the maximum chemical poten
mmax is exceeded the gas collapses into a self-bound h
density state which is independent of the trap.

We summarize the variety of structures that appear
interactions with an attractives-wave (a0,0) and repulsive
p-wave part (ã1.0) in the following list.

0.311,ã1 /ua0u. The p-wave repulsion stabilizes the sy
tem for arbitrary densities and particle numbers with
smooth low-density profile. For ratios of the scatteri
lengths near the limit a smooth but significant increase of
central density occurs.

0.274,ã1 /ua0u,0.311. For chemical potentials belo
mmax or particle numbers below the corresponding maxim
particle number~79! the usual low-density solution exists
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Above these values thep-wave stabilized high-density phas
appears, i.e., the density in the central region of the tra
increased by typically one order of magnitude compared
the low-density profile in the outer regions.

ã1 /ua0u,0.274. Belowmmax or Nmax a stable solution
with the regular low-density profile exists. Above the syste
collapses; the high-density phase is not stable anymore.

This subtle dependence on the ratio of the scattering len
is illustrated in Fig. 8. The white region for ‘‘strong’’ repul
sive p-wave interactions shows the domain of absolute s
bilization. The solid line corresponds to the condition~80!
for absolute stabilization, the dashed line to condition~82!
for the stability of the high-density phase. The small ar
between those lines represents the parameter region w
the p-wave stabilized high-density phase exists if the ma
mum particle number is exceeded.

To conclude this section we perform aGedankenexper-
iment: Assume a two-component Fermi gas ofN5N15N2
560 000 particles in each component trapped in a spher
oscillator potential withl 51 mm. May the interaction be
composed of a repulsivep-wave part withã1 /l 50.03 and
an attractives-wave component that can be tuned within
small rangea0 /l 520.095, . . . ,20.102, e.g., by using a
Feshbach resonance. Figure 11 shows the evolution of
density profile of the Fermi gas if the strength of the attra
tive s-wave interaction is increased slowly such that dens
fluctuations are negligible. Fora0 /l 520.095~solid curve!
and 20.1 ~dash-dotted! we observe a smooth low-densit
profile, where the central density increases slightly with
creasings-wave attraction. A dramatic change happens if t
attraction is increased toa0 /l 520.101 ~dashed!. For this
interaction strength the particle number of the system is
ready above the maximum particle number given by Eq.~79!

FIG. 11. Evolution of the density profile of a two-compone
system ofN5N15N2560 000 particles with ap-wave scattering
lengthã1 /l 50.03 according to theGedankenexperimentdescribed
in the text. Thes-wave scattering length is tuned in the ran
a0 /l 520.095 ~solid!, 20.1 ~dash-dotted!, 20.101 ~dashed!, and
20.102~dotted!.
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EFFECTIVEs- AND p-WAVE CONTACT . . . PHYSICAL REVIEW A 64 043603
and the high-density phase appears and occupies a r
large volume. A further increase of thes-wave attraction
~dotted! causes a growth of the high-density phase. If
limit a0 /l 520.11 is reached, then part of the high-dens
component is self-bound and the system is expected to
lapse.

VI. SUMMARY AND CONCLUSIONS

We formulated a simple and transparent model to desc
the structure and stability of degenerate multicompon
Fermi gases trapped in an external potential. In a first step
derived an effective contact interaction~ECI! for all partial
waves that reproduces the exact two-body energy spec
when used in a mean-field model space. Including thes- and
p-wave parts of the ECI we constructed the energy densit
the inhomogeneous Fermi gas in a mean-field calcula
using the Thomas-Fermi approximation. By functional mi
mization of the energy we obtained a set of coupled poly
mial equations for the ground-state density profile of the s
tem. We showed that the combination ofs- and p-wave
interactions leads to a rich variety of phenomena in trap
degenerate Fermi gases.

In the single-component system thep-wave part is the
leading interaction term sinces-wave scatterings are prohib
ited by the Pauli principle. Attractivep-wave interactions
cause a mean-field instability of the one-component gas
certain maximum density is exceeded. We derived exp
stability conditions in terms of the density or particle numb
and thep-wave scattering length.

The interplay betweens- andp-wave interactions leads t
several effects in the two-component Fermi gas. We d
cussed the dependence of the mean-field instability on ths-
andp-wave scattering lengths and derived also for this c
closed stability conditions. It turns out that attractives-wave
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as well as attractivep-wave interactions can cause a mea
field collapse. In addition a repulsive interaction part leads
stabilization, i.e., an increase of the maximum possible d
sity of the Fermi gas.

Interactions with attractives-wave and repulsivep-wave
parts show several special properties. If thep-wave scatter-
ing length exceeds about 1/3 of the modulus of thes-wave
scattering length thes-wave attraction is fully compensate
and no mean-field collapse occurs anymore at high densi
In the transition region towards this absolute stabilization
distinct high-density phase may appear in the center of
trap, which is stabilized by thep-wave repulsion alone.

We conclude that thep-wave interaction may have a
important influence on the structure and stability of dilu
degenerate Fermi gases. Considering the simultaneouss- and
p-wave Feshbach resonances predicted for the40K system
@8# it can be foreseen that large values ofp-wave scattering
length will be available experimentally. In a two-compone
40K gas this Feshbach resonance would allow us to pr
nearly the whole stability map shown in Fig. 8 by modifyin
the magnetic field. Alternatively, tightly confining optica
traps @19# generate large values of the ratio of scatteri
length and oscillator length,al /l , such that instabilities oc-
cur at much lower particle numbers@Nmax}l 6; see Eqs.~70!
and ~79!#.

Concerning the envisioned observation of Cooper pair
in trapped dilute Fermi gases two-component systems w
strong attractives-wave interactions are favored@3,20#. Here
the mean-field instability limits the density of the norm
Fermi gas. With a suitably chosen repulsivep-wave interac-
tion one could use the effect of absolute stabilization, wh
we discussed, to allow higher densities of the normal Fe
gas and thus increase the transition temperature to a su
fluid state@5#.
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