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Effective s- and p-wave contact interactions in trapped degenerate Fermi gases
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The structure and stability of dilute degenerate Fermi gases trapped in an external potential is discussed with
special emphasis on the influencesefand p-wave interactions. In a first step an effective contact interaction
for all partial waves is derived, which reproduces the energy spectrum of the full potential within a mean-field
model space. Using the andp-wave part the energy density of the multicomponent Fermi gas is calculated
in Thomas-Fermi approximation. On this basis the stability of the one- and two-component Fermi gas against
mean-field induced collapse is investigated. Explicit stability conditions in terms of density and total particle
number are given. For the single-component system attrgotwave interactions limit the density of the gas.
In the two-component case a subtle competitiors-adind p-wave interactions occurs and gives rise to a rich
variety of phenomena. A repulsiyewave part, for example, can stabilize a two-component system that would
otherwise collapse due to an attractsseave interaction. It is concluded that thevave interaction may have
important influence on the structure of degenerate Fermi gases and should not be discarded from the outset.
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I. INTRODUCTION Feshbach resonance is predicf8¢l which allows tuning of
thes- andp-wave scattering lengths over a very wide range.
The achievement of Bose-Einstein condensation in A serious constraint on the way towards a superfluid
trapped dilute gases of bosonic atofii$ triggered a wide- Fermi gas is the mechanical stability of the progenitor, i.e.,
spread interest in the field of ultracold atomic gases. Meanthe normal degenerate Fermi gas. As was experimentally
while these systems appear as a unique laboratory for th@emonstrated for the bosonfcRb systen(9], an attractive
study of all kinds of fundamental quantum phenomena. interaction between the atoms leads to a mean-field instabil-
After a series of excellent experiments on bosonic sysity of the trapped gas if the density exceeds a critical value.
tems, the question arises whether a dilute gas of fermionié similar collapse is expected in fermionic systems with at-
atoms can also be cooled to temperatures where quantuifactive interactions. In contrast to the bosonic systems
effects dominate. In 1999 DeMarco and Jin managed to cog)-wave interactions contribute in a Fermi gas and may have
a sample of typically 1Dfermionic “°K atoms to tempera- strong influence on the stability of the systéhf].
tures significantly below the Fermi energy of the sys{e In the following we address the question of the stability of
in recent experiments they achieved a temperature corrglegenerate one- and two-component Fermi gases in the pres-
sponding to one-fifth of the Fermi enerdg]. By sympa- ence ofs- andp-wave interactions within a simple and trans-
thetic cooling of fermionic®Li with bosonic ‘Li Truscott  parent model. In Sec. Il we derive an effective contact inter-
et al. were able to reach about one-fourth of the Fermi en-action (ECI) for all partial waves that is suited for a mean-
ergy [4]. In these temperature regimes the system can béeld treatment of the many-body problem. Using theand
described as a degenerate Fermi gas, where the majority pfwave part of this interaction we construct in Sec. Ill the
the atoms successively fills the lowest available one-bodgnergy functional of a trapped multicomponent Fermi gas in
states according to the Pauli principle. the Thomas-Fermi approximation. From that the ground-
One of the goals of the investigations on dilute and ultra-state density profile can be determined by functional varia-
cold Fermi gases is the observation of Cooper pairing an@ion. In Sec. IV we discuss the structure and stability of
the transition to a superfluid state. The transition temperaturgingle-component Fermi gases, where only gheave inter-
depends on the density and on the strength of the attractiv&ction contributes according to the Pauli principle. Section V
interaction that is necessary for the formation of Cooperdeals with two-component Fermi gases wherandp-wave
pairs[5,6]. In order to increase the transition temperature ondnteractions are present and lead to a subtle dependence of
may increase the density or the interaction strength, wherthe stability on the two scattering lengths.
the latter seems to be more promising. An atomic species

favored for the experimental observation of a BCS transition Il. EFFECTIVE CONTACT INTERACTION
is SLi due to its largeswave scattering length ofiy~
— 40, ; A. Concept

216 [7]. But also “K, which shows a rather small

natural scattering length, is a possible candidate for Cooper The approximate solution of the many-body problem in a

pair formation[3], because a simultaneoss and p-wave restricted subspace of the full Hilbert space, which is
spanned by plane waves with momenta smaller than the
Fermi momentum, faces a fundamental problem: Many real-

*Electronic address: r.roth@gsi.de; istic two-body interactions—Ilike van der Waals—type inter-
URL: http://theory.gsi.dékrap/ actions between atoms or the interactions between two
"Electronic address: h.feldmeier@gsi.de nucleons in an atomic nucleus—exhibit a strong repulsion at
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FIG. 1. Radial wave functionsﬁoo(r) of the lowestl =0 positive-energy state for different potential depths of the square-well
potential. The interaction strengths are/Vy,=0 (thin solid), 4.49 (solid), 4.85 (dashed] and 9.5(dotted. The radius of the well is\
=0.01A and marked by the gray area. The inset shows a magnification of the region around the origin.

short distances followed by an attractive region. This causes Since we want to construct an effective Hamiltonian that
the wave function of a low-energy scattering state to varyis used to calculate the energy in a mean-field framework,
rapidly within the range of the potentiééee Fig. 1. These the energy shift is the relevant property of the two-body po-
high-momentum components, however, cannot be describd@ntial that the effective interaction should reproduce. We
within the low-momentum model spadd1]. Therefore a require that the expectation values of the effective interaction
realistic two-body interaction cannot be used in a naivec@lculated with eigenstatgslim) of the noninteracting two-
mean-field model. One way to overcome this problem in thd?0dy system equal the energy shifi€,, induced by the
model space is to introduce a suitable effective interactioff"iginal potential

that has to be deduced from the original potential and de- —

pends on the properties of the actual physical system under (nimfvfnim)=Eqy—Ey=AE, . (@)

Investigation. _ _ Due to the angular momentum dependence of the energy

Cold and very dilute quantum gases allow an effectivegpifts we have to construct the effective contact interaction
interaction of simple structure. The typical wavelength of thezg 5 sum of contact terms for each partial wave. The strength
relative motion of two particles is always large compared topf each contact term is fixed by this condition.
the range of the interaction. Therefore the particles experi-
ence only an “averaged” two-body potential and do not B. Construction of the ECI
probe the detailed radial dependence. Moreover, the gases ) ) )
are in a metastable not-self-bound state that is kept together 1he construction of the effective contact interacti@Cl)
by the external trapping potential. Thus the bound states df ©rganized in two steps: Firstly, the two-body energy shift
the two-body potential are not populated and have only ininduced by the original potential is evaluated. Secondly, the
direct influence. We make use of these facts and replace the
original potential by a contact interaction. The strengths of
the contact terms are related to the properties of the original
potential.

We establish this relation via the energy spectrum of the
two-body system. Consider a two-body problem with an aux-
iliary boundary condition at some large radius such that the
spectrum is discrete even for positive energies. For noninter-
acting particles this spectrum shows a sequence of levels at
positive energiek,,, which are labeled by an angular mo- 1
mentum quantum numbérand a radial quantum number 0 ——— . -
A schematic sketch of this spectrum for some fixeds
shown in Fig. 2. If we switch on an interaction between the ™
particles two things happen: A numtmqbr of bound two-body States
states with relative angular momentumay appear at nega-

tive energies and the levels at positive enerdigs are FIG. 2. Schematic comparison of the free two-body energy
shifted compared to the noninteracting spectrum. For OULhectrumE,, with the energy spectrur,, in the presence of a
purpose this energy shikE, =E, —E,, is defined between two-body interaction for given relative angular momenturThe
the positive-energy states only. The lowest level of positiventeraction generatas® bound states and shifts the positive-energy
energy is labeled with the quantum numiper O. states byAE,, .

non-interacting interacting
En En

A I

energy
Y S S shifts
AE,;

two-body energy —»
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operator of the effective contact interaction is formulated for I S 3 .
each partial wave and the interaction strengths are fixed by Ani :j drrfji(amr) = - i (Anid). 9
condition(1). 0

Inserting the asymptotic form of the Bessel function we fi-

nally get
Assume a system of two particles with reduced mass

M,eq= MMy /(M;+m,). Their wave function can be decom-

posed into a center of mass and a relative wave function,

where the latter separates into a radial and an angular com-

ponent because of rotational symmetry In the presence of a two-body potentia{r) of finite
range\ the solutionR,,(r) of the Schrdinger equation

1. Energy shift

A
AE'ZZR' GriA>1. (10)

n

<F|n|m>: Rni(N)Yim(€). 2
: : : : 142 1(1+1) _ 1=
The radial wave function®(r) of the noninteracting two- ———=r+——+2medv(r)—Ey]|Ra(r)=0
body system are solutions of the Soflirmger equation ror r )
1% 1(1+1) _ , o
- a—rzr+ —z 2MeEn [Ry(r)=0 (3 outside the range of the potential\) is given by a super-

position of spherical Bessel and Neumann functions

(we use units withh=1). We require the radial wave func- — — _ _
tion to vanish at some arbitrary but large radius Rai(N)=Anlji(Anr) —tann (g,)ni(qqr)], (12

Rpi(A)=0. (4)  Where7(q) denotes the phase shift of the potential for the
Ith partial wave. The bar distinguishes quantities in the pres-
This auxiliary boundary condition leads to a discrete energyence of the interaction from those in the noninteracting case.
spectrum, which is needed to enumerate the energy level§posing the boundary conditio@) we get the following
and to evaluate the energy shift. implicit equation for the momentg,,, in the interacting case:
In the noninteracting case the solution of the radial Schro S
dinger equation(3) is given by a spherical Bessel function Ji(dniA) (13

1) @A) anm(Gn)-

Rni(r)=Aniji(dnir), (5)  Expressing the Bessel and Neumann functions by their

_ asymptotic expansiof6) this reduces to
where q,,, denotes the relative momentum of the two par-

ticles andA,, a normalization constant. The discrete mo- —tan(q, A — wl/2)=tann(qn). (14)
mentaq,,; are determined by the boundary conditi@h and

thus are related to the zeros of the Bessel function. Since the order to associate the energy levels with the same quan-
radiusA can be chosen arbitrary large it is sufficient to usetum numbem in the interacting and noninteracting case as
the asymptotic expansions of the spherical Bessel and Newescribed above, the lowest positive-energy state should be
mann functions labeled with the qguantum number 0. To achieve this for a
potential with n,b bound two-body states with angular mo-
mentum quantum numbérwe add the phase(n+ n,b) to

the argument on the right-hand sidehs), i.e., the bound
states contribute according to Levinson’s theorem. The mo-

1
hx)= ;sin(x—wIIZ), x>1,

1 mentaq,, in the presence of the interaction are thus deter-
n(x)=—cosx—ml/2), x>I. )  mined by the equation
By evaluating the boundary conditio4) with the oA = — 7(Gp) + 7(N+1P+1/2). (15
asymptotic form of the Bessel function we obtain for the ) ) ) o
possible relative momenta The momentum shifig,, induced by the interaction is
obtained by subtracting the momenta of the noninteracting
guA=m(n+1/2). (7) system(7) from Eq. (15)
Accordingly the two-body energy spectrum in the noninter- A A = (Gni— Gn)A = —[ 7(0n)) — 70P1= — 7 (Tn1).-
acting case is given by (16
1, w2 ) Here7,(q) = 7,(q) — wnP denotes the phase shift reduced by
E”'_Zmredq“'_ZmredAz(n+|/2) ' ®) the contribution of the bound states. In a final step we ex-

pand the phase shifts around the momemqyaof the nonin-
The normalization constant can be determined explicitly ~ teracting system
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@) =71 () + 71 (A AQ ++ - . (17) sufficient higher-order terms of the power series can be in-
cluded successively. We will come back to this point in the

Already the term linear im\g,, can be neglected in good following section. _
approximation because the momentum shift is of the order According to the dependence of the energy shifts on the

1/A according to Eq.(16). Thus we retain the following @ngular momentum quantum numbethe operator of the
simple expression for the momentum shift: effective interaction ®" is formulated as a sum of indepen-

dent operatorsrfEff for each partial wave
AgnA=—=7(dn). (18)

The shift of the energy levels of the interacting two-body Ueﬁ=|:20 I, of" 11, (23
system compared to the noninteracting spectrum is con-

nected with the momentum shift b o
y whereIl, denotes the projection operator on the subspace

AE,, Adn [Ady )2 spanned by state§ of relgtive angular morr_lentuWe war_lt
=2 (19 to use a contact interaction for each partial wave. This re-
quires nonlocal interaction operators beydno, i.e., de-

o ) rivative couplings. The simplest ansatz for the operator of the
The term quadratic in the momentum shift can be neglectedyective contact interaction for tHeh partial wave is

because\q,, /g, is small. The final expression for the en-

EnI Qni Qni

ergy shift reads vf=(g-%)'g, 8°(F) (F-G)'
AE 2 (A1) - ~
= nl __ K nqunl . (20) ﬂl (9|
Ny o :J & 1) g 59F) 5 (7. (24)

The proportionality between energy shift and phase shifts is
well known [12] and was used in different applications be- Hereq=1(p,— p,) denotes the operator of the relative mo-
fore. mentum of two particlesf =f/r denotes the unit vector
along the relative coordinate, an8f®)(f)=1/(4mr?)5(r)
denotes the radial component of the three-dimensiaghal
In a second step we construct an operator form of thdéunction. The arrows above the derivatives indicate to which
effective contact interaction that obeys conditi@h For the side they act.
application to ultracold dilute quantum gases the general Notice that this type of effective interaction is constructed
form (20) of the energy shifAE,,, can be simplified consid- to be used within the restricted low-momentum model space
erably. The relative momenta in these systems are extremefynly. It does not make sense to employ it for the solution of
low, i.e., typical relative wavelengths are large compared tdhe full Schralinger equation or for a perturbative treatment
the range of the interaction. This allows an expansion of thdeyond lowest order.
phase shiftsy(q) in a power series in relative momentum.  The interaction strengt, is a constant that contains the
In lowest-order approximationg@ <1) the phase shifts of relevant information on the original two-body potential. The
the Ith partial wave can be expressed in terms of the correconnection is provided by conditiofi) via the shift of the

2. ECI in scattering length approximation

sponding scattering length®, energy levels with respect to the free spectrum. To evaluate
(1) we calculate the expectation value of the contact interac-
7(q) tang(q) (20+1) ., tion (24) for thelth partial wave taken with the noninteract-
AR e S T R pTR A (21)  ing two-body statesnim),

2

|
Th hift in thi ttering length imation i N
e energy shift in this scattering length approximation is <n|m|vr;aff|n|m>=glj der 537 WRm(r)Ym(Q)

given by

2

|
AEy 2 (21+1) L o4, _ 9|9 R
_Z =-— | =1 Rn(r)
E, Al2rpupma . @ amlort T
| 2
Based on this form we can construct a simple operator for :ﬂ{l— A2 g, (25)
the ECI. For applications where approximati(21) is not 4| (21+ 1N

where we used the expansion of the radial wave function

) _ around the origin
1Some author§8] use a different definition of the-wave scatter- 9

ing length without thd-dependent prefactors. We use this general | 2
form (see[16]) where the scattering length for a hard sphere equals Ry (r)=A (nil) 1— (niT) e
the sphere radius for all nl ne2r+ 1) 2(21+3)

(26)
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Equating the expectation valu@5) with the energy shift Following the basic concept of the ECI these energy shifts

results in the following equation for the interaction strengths:have to be generated by the operator of the ECI according to
condition (1). To include the momentum dependence of the

2 _LAEy energy shifts we have to generalize the ansatz for the ECI

ni qg'l : (27) operator compared to the simple momentum-independent

scattering-length formulatiori24). The further calculation

Inserting the normalization constai) and the energy shift  will show that

in scattering length formulatiof22) gives the final expres-

sion for the interaction strengths

(21+1)!!
I

gi=4m

off=2 3g1"[(@-))' 69O (F-9)'" >
A (2141 ., ve0
I ome (D7

8 £GP 26 (P - )] (34

Together with Eq(24) this defines the scattering length for- s 53 proper ansatz for the effective interaction operator for the
mulation of the effective contact interaction. Notice that, partial wave. Besides the more complex nonlocal struc-
these_ _expressio_ns do not depend on the c'_;luxilia_ry boundatyre a set of interaction strengtgé”)(vzo,l, ...) foreach
cond|t|on(t4), which was introduced to obtain a discrete en-p, ia| wave is included. They are related to the coefficients
€rgy spectium. . . ¢ and thus correspond to the different powers of the mo-
For I.:l some_tlmes' a grad_lent operator W'th respect .tomentum in Eq.(33). To employ condition(1) we calculate
the relative coordinate is used instead of the radial der|vat|v?he ex ectatioﬁ vallue o with noninteracting two-bod
(24). This alternative ansatz reads state slr?lm} ' g y

vgﬁ:q’glg@(r)qzjd3r|F>V§16(3)(F)V<F|. 29 (nimofnim)

1 * (9' I+2v
It should be noted that the-wave interaction streng@®, in =1 Z g'(V)[ﬁ_rr Rn,(r)} (9—r|+—2VRn|(r)}
the gradient formulation is related to the interaction strength =0 r=0 r=0
(28) by R L e V(o TOLE,
G1=0./3. (30) 47 =9 QD0 270 21+ 20+ 0 Tt
(35

3. Beyond scattering length approximation

The operator of the effective contact interaction can bevhere the full expansion of the noninteracting radial wave
generalized systematically beyond the scattering length agunction (5) aroundr =0 was used13]
proximation shown in the preceding section. A formal

scheme emerges from the expansion of the phase shifts in a -~ (—1)» o

power series irg Rm(f):AmMEZO 2h (21 + 20t D11 (Qnir)" . (36)
l'sz_zz 2 icf”)qzv. (3D By inserting the expansion of the energy shi38) and the
aq =0 V! expectation value into conditiofl) and comparing the coef-

_ ) ficients for the different powers of the momentuyy, we
The momentum-independent lowest-order term of this exgptain

pansion matches the scattering length approximation. From

Eq. (21) the connection between the coefficiaf?t’ and the gyt 4w 22+ DUI+20+ D1
the scattering length, becomes obvious 9"=(-1) 2Miog (I +20)! Ci.
(37)
21+1
c¥=— _2+h sa’ 'l (32
[(21+1)!1]

Thus the interaction strengtrg:f”) of the general operator
form of the ECI(34) are proportional to the coefficients”

Comected 18 the so.called sffecive range o efectve vaiCl 18 EXPaNSIon of the phase ShifED). Equations34) and
. I 9 -0~ L 7(37) define the most general form of the effective contact
ume of the potential. We will discuss this contribution in

more detall later. By inserting the expansi@i) into the interaction.
general formula(20) for the energy shifts we obtain For the application to dilute degenerate Fermi gases we

will use the ECI up to quadratic terms in the momentum, i.e.,

AE 5 = we include the scattering length term of teeand p-wave
n__ % z _C|<v>q2I|+2v_ (33 part as well as the-wave effective range correction. At this
Eni A= v! " point we have to discuss the connection between the qua-
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dratic term of the expansiofB31) and the usual effective a T T =
range theory. For the-wave phase shifts the effective range -
expansion reads 0.1 7
1 1 bj% 0.05 4
g cotro(a)~— —+ 5100? (39 N o1
0 3 0
52 ! \
wherer g is the effective range of the potential. If we convert ﬁ 0.05F \ -
this into an expression fony(q)/q and expand irg we ob- : 1
tain -0.1F -
70(Q) -0.15h1 1 1 1 1 I
=—Qo—boq?+- (39 0 2 4 6 8 10
q WV
with an effective volumeb, that depends on the scattering  FiG. 3. Relative energy shits EZ2Y/E,,, obtained from the ex-
lengtha, and the effective range, act|=0 solutions plotted versus the strengtk'V, of the square-
12 1.3 well potential. The solid line gives the energy shift for the lowest
bo=zaro— 3@ (40) (n=1), the dashed line for the 10th, and the dotted line for the 20th

state of the positive-energy spectrum. The dots mark the interaction

Rather than using this relation we will adjusg in order to strengths used in Fig. 1.

get the best representation of the phase Shiftg)/q with

the truncated expansids9). curve and the energy shift is zero.

Finally, insertingc§”'=—by into Eq. (37) gives an ex- Next we investigate the dependence of the0 energy
pression for the interaction strength of thevave effective  ghifts on the strength of the attractive potential. Figure 3
range term shows the relative energy shiiE®®JE versus AV,

124 where_ the radius\=0.01A of the square-well potentia_l i_s
ggl)=— bo. 41 kept fixed and the deptN, is increased. A characteristic
2Myeq pattern appears: In the vicinity of interaction strengths where
the potential gains another bound state the relative energy
C. Example: square-well potential shift assumes large positive and negative values. Large posi-

. : . tive energy shifts occur for potentials that have a very
To illustrate the concept of the effective contact interac weakly bound state, negative energy shifts for those that

tion we use the 5|_mple toy problem of two partlcle_s InteraCt'have an almost bound state. In between these interaction

ing by an attractive square-well potential of radinsand h ded ol f | hift

depth—V,. First we look at typical wave functions to which strengths extended plateaus of nearly constant energy shi
0 appear. Within the plateaus the energy shift is independent of

the idea of the ECI applies. The major condition is that thethe radial quantum numberof the level or the relative mo-

typical wavelength of the relative motion is large comparedmentum_ This is a special property of ta@vave channel; for

to the range of the interaction. This is ensured by choosing.. . ) _ g
the radius\ of the square well much smaller than the radius%Igher parztéal waves the relative energy Sie) is propor
tional tog°. Only at the edges of the plateaus a slight non-

A associated with the boundary conditigf); in the follow- trivial dependence on the relative momentum shows
ing we use\ =0.01A. Figure 1 shows the radial wave func- Fig. 3 P e

et potental depiv. Outside the potental the structure of _ IS SUucture is closely related t the behavor of the
P PINYo. P s-wave scattering length. THe=0 energy shift induced by

the wave functions is very similar for the different interac- . 4 L )
. . . the ECI in the scattering length approximati2p) is pro-
tion strengths. Only the wavelength is changed slightly duebortional to the scatteri%g Iegngthop.pFor the sq)uarep-well

to the different matching to the wave function in the interior .
(see the inset of Fig.)1This change of the relative momen- potential we get
tum translates immediately into an energy shift. From that
picture the connection between energy shifts and phase shifts AEno =2 it with i =1— M_
is evident. Eno A A YA

A second point becomes clear from this simple example:
The detailed structure of the radial dependence of the poter-his ECI energy shift is right on top of the solid curve in Fig.
tial or the number of bound states is irrelevant for the energy: i-€-, it agrees very well with the exact energy shift for the
shift, only the phase shiffs(q) matter. The inset in Fig. 1 lowest positive-energy state. Even for higher momenta the
shows that the wave functions behave very different withinagreement is very good provided that the magnitude of the
the range\ due to the different potential depths. Moreover, Scattering length is not too large. Significant deviations occur
the potentials have a different number of bound states, e.g@Nly if momentumand scattering length are large.
the thick solid curve is associated with a potential with one TO obtain a quantitative measure for the applicability of
bound state but zero phase shift. Hence the behavior outsidge ECI in the scattering length approximation we investigate
the potential is identical to the noninteracting cétbén solid  the relative deviationE—E®@%/E of the ECI energy levels

(42)
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0.1 The aim of the pseudopotential(® to generate the phase

shifts of the original potential by a boundary conditionrat
=0 and(b) to reformulate this by an additional inhomoge-
neous term in the Schdinger equation of the two-body scat-
tering problem. This additional term is interpreted as the
pseudopotential, which can be phrased in the following op-
erator form[18]:

g
=
o

(E— Eexax:t)/E
o
(=
[~

g $
=
=

o
=)
)

1 21+1
Ulpseudo:f d3r|l:>>rl_glpseud15(3)(f>)er+l<ﬁ| (43

FIG. 4. Relative deviation of the two-body energy crsllculatedw'th an interaction strength
with the ECI in scattering length approximation from the exact 4r (141)
energy as function afja, for I =0 (left) andl =1 stategright). The gpseudO: YA (44)
curves were obtained for interactions with three bound states by ! 2Myeq (21 + 1)1 7
varying the strength\\/v_o and looking at the energy shifts for
different relative momenta,,,A ~20 (solid), 40 (dasheg and 80 for the Ith partial wave. For this discussion we restrict our-
(dotted. selves to the scattering length approximation of the phase

shifts. Due to the fact that the radial derivative acts only to

compared to the exact ones for the square-well potential. Wie right-hand side the operator of the pseudopoteflis
expect that the agreement gets worse if either the relativBOt Hermitian. Thls is in contradiction to the basic concept of
momentum or if the scattering length is large. Therefore, Figeffective interactions.
4 shows the relative energy deviation fb=0 andl=1 A more severe weakness shows up Wh_en we e_valuate the
states as a function of the product of momentum and scattef€rgy shifts induced by the pseudopotential. As discussed in
ing length,qa,, which was assumed to be small in order to Sec. II_A thg expectation value of a proper eﬁectlve interac-
introduce the scattering lengtB1). The different curves cor- tion with eigenstatesnim) of the noninteracting two-body
respond to different values of the momentey and were ~ SyStém should be equal to the energy shift induced by the
obtained by varying the depth of the square-well potentiaPfiginal potential. For the pseudopotentidB) we obtain an
and thus the scattering length. energy shift

As expected the deviation increases with increasing value pseudo
of qa,. Nevertheless, the deviation of the energy calculated AEy _ =
with the ECI in the scattering length approximation is below En En
1% up to rather large values afa<1. If we tolerate a

(nlm|vPse"%nim)

; . ; 2 (I+1)
maximum deviation of 5%, then the scattering length formu- - 2l j21+1 (45)
lation can be used up to valugsy<1.5. A [+ n @

It should be noted that the relative deviation of the general ) o
form (20) of the ECI in the parameter range discussed abovd Nis has to be compared with the full energy shift in scatter-
is below 10°4. Thus all approximations made to obtain equa-INd !ength approximatior{22) which by construction is re-
tion (20) are valid on a high level of accuracy. The restric- Produced by the ECI. Obviously the energy shift induced by
tions on the validity of the scattering length formulati@®) ~ the pseudopotential for states with-0 is by a factor (
originate from the replacement of the phase shifts by thet1)/(2l+1) smaller than the energy shift of the original
scattering length alone, which is not an inherent part of théPotential. Thus the pseudopotential underestimates the effect
ECI concept. If the simple scattering length formulation isOf the two-body interactions beyorswave when used in a
not sufficient for a special application one can go beyondnean-field framework. For the widely usedvave part the
that. energy shifts of the pseudopotential agree with the energy

For example, the inclusion of effective volume correc-Shifts of the original potential. We conclude that the non-
tions [see Eq.(39)] improves the agreement with the exact Hermitian pseudopotential is not a proper effective interac-
energy shifts. In this way we can reduce the maximum deIlon for a mean-fleld.descrlpltlon of dilute quantum gases that
viation to only 1% up toqa,=1.5. goes beyond-wave interactions.

. Ill. ENERGY FUNCTIONAL OF A TRAPPED
D. ECI versus pseudopotential MULTICOMPONENT FERMI GAS
The idea to simulate the effect of a complicated finite-
range two-body potential by a simptewave contact inter-
action dates back to Ferniil4] and was used by several In the following we investigate the ground-state proper-
authors[15] in various physical contexts. Huang and Yangties of a dilute Fermi gas composed &f distinguishable
[16,17) generalized this idea and constructed the so-calledomponents that are trapped in an external potebt{&)) at

pseudopotentiathat acts in all partial waves. temperaturelT=0 K. In the present experimenf&] one or

A. Fundamentals

043603-7



R. ROTH AND H. FELDMEIER PHYSICAL REVIEW A64 043603

two components are used, which belong to the same atomic 1 , 4w
species but are distinguished by different projectiths of Hint:% >, Pi F%_Z_ 5(3)(Fij)
the total angular momenturi@ onto the direction of an ex- ' e
ternal magnetic field. We distinguish the different compo- 127 10 SO (F G2
nents by a formal quantum numbée1, ... ,=. For sim- - Wboi%i z[6(Fy) (P~ Gip)“+ H.a]
plicity we use the same mass of the atoms for all
components. 127 . Lo
We treat the many-body problem in the framework of +Wa§i%i (qi,-~rij)5<3>(ri,-)(rij'qﬂ')' (47)

density-functional theory and construct an energy functional
of the inhomogeneous multicomponent Fermi gas within alrhe summations over the particle indidesndj range from
proper approximation. The ground-state density distributioril to the total number of particles. The properties of the two-
of the many-body system is then determined by functionabody interaction are parametrized by tiendp- wave scat-
minimization of the energy. tering lengthsay and a;, respectively, and by the-wave

The large particle numbers of the ordér- 1¢° allow the ~ effective volumeb,. In general the interaction parameters
rather simple Thomas-Fermi approximation for the energyePend on the component quantum numigeds the inter-
functional. It is assumed that the energy density of the inho@cting particles. In order to discuss the basic phenomena we
mogeneous system is described locally by the energy densilt strict ourselves to equal interaction parameters for all com-

of the corresponding homogenous system; higher-ord onents. The generalization to scattering length matrices that

terms, which include gradients of the density, are assumed geeount for 'the dep'ende'nce on the component indices of the
' ' two interacting particles is straightforward.

be small. To check the quality of the Thomas-Fermi approxi- . . .
. . ; Experimentally each component may experience a differ-
mation we calculated the next order gradient corrections for.

. . . . ent trapping potential ((X). For magnetic traps this is due
a tra.pped nomntqactmg Fermi gas. 100. particles the to the different magnetic momenta of the components, which
relative contribution of the gradient correction to the total

. 16 . ) leads to a relative shift of the trapping potentials for the
energy is of the order of 10; for typical particle numbers  .,mponents. Thus the operator of the external potential has

of N::I.d3 it dI’OpS to 105 [18] the fo“owing form:
As starting point for the Thomas-Fermi approximation we
calculate the energy density of the homogenous interacting _ .
multicomponent Fermi gas in a mean-field approximation. U_Ei Eg UelXg,, (48)

The basic restriction of the mean-field picture is that two-
and many-body correlations induced by the interaction aravherell, is a projection operator onto states with the com-
not contained in the many-body state. Nevertheless they cgponent quantum numbet
be implemented implicitly by using a proper effective inter- Many of the results shown in the next sections do not
action that is tailored for the model space available. In thedepend on the actual shape of the trapping potential. If the
preceding section we constructed the effective contact inte§hape enters explicitly we assume a deformed harmonic-
action especially for the mean-field description of dilute not-0Scillator potential
self-bound quantum gases. M2

A central topic of the following studies is the role of the U(X) = —— (A3X3+ \3x5+ \3x3)
interaction on the structure and stability of trapped degener- 2
ate Fermi gases. Our special interest concernspthave 1
part of the interaction, which contributes everTat0 K—in = W()\fxﬁ' ASX5+N3X3), (49
contrast to bosonic systems. It will turn out that {revave
terms can be of substantial importance for the ground-stat@here w=73/w,w,w5 is the mean oscillator frequency and
properties of fermionic systems and should not be neglecteg'= (mw) =2 the corresponding mean oscillator length i.e.,

from the outset. the mean width of the Gaussian single-particle ground state
We write the Hamilton operator of the system as a sum obf the harmonic-oscillator potential. The deformation is pa-
the external trapping potential and an internal part,,;, rametrized by the ratios; = w;/w, which fulfill the condi-

tion A A N5=1.
H=U+Hjy. (46)

B. Energy density in the Thomas-Fermi approximation

The calculation of the energy density functional of the
The internal part contains the kinetic energy and the effectivehhomogeneous interacting Fermi gas is performed in two
contact interaction as discussed in Sec. Il. We include theteps: First we calculate the energy density of the corre-
swave andp-wave terms of the ECI in scattering length sponding homogenous system in the mean-field approxima-
formulation as well as the-wave effective range correction. tion. In the second step this is translated into an energy den-
With Eqgs.(24), (28), (34), and(41) the internal Hamiltonian sity of the inhomogeneous system by means of the Thomas-
reads Fermi approximation.
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The ground state of a many-fermion system in mean-fieldrhe local Fermi momentum is related to the density of par-
approximation is given by an antisymmetrized product ofticles of the componeng by
one-body state§). In the case of a homogenous system the 1
one-body states are eigenstates of the momentum operator peX)= WK?()?). (55)

with eigenvalue; . In addition, they are characterized by

the component quantum numbgr Accordingly the number of particles of componéris given

liy=|k)y®|&). (500 by
Assuming a box of volum& with periodic boundary condi- 1
tions the spatial part of the one-body states is given by N§=f d3Xp§(>Z)= Wf d3x:<§(>?). (56)
.1 o
(Xlkiy= \/—vexmki~x). (51) As discussed in Sec. 1l C we can reproduce the two-body

energy spectrum with an accuracy of about 5% upatp
The energy density of the homogenous system is given by=1.5. If we take this as a limit for the root mean square of
the expectation value of the internal part of the Hamiltonthe relative momentun{q?)?=0.53 in the many-body
operator(47) system, we can apply our many-body model umte~ 3.

Shom:<H int>/V' (52
. . C. Functional variation and the extremum condition
The calculation of the expectation values of the several parts

of the Hamiltonian is straightforwarfl8]. As a function of ~_The ground-state density of a system is found by mini-
the Fermi momenta, of the different components the en- MiZINg the energy functional
ergy density reads

1 a E[Kl""’KE]:f dsxg[Kl,...,Kg]()_()) (57)
— 5 0 33
Enonl1---2) = 552 2 WP F s 2 Kk
&é'>¢
3 for given particle numberdN,. This constraint is imple-
a;

" E 8 mented with the help of a set of Lagrange multipligrs,
30mm<E ¢ which are the chemical potentials of the different compo-
3 nents. The Legendre transformed functional
ar+Dbo 35 5 3
+—32 [Kin + K2k ]. (B3
60m°m, &L, e T
’ F[Kl,...,KE]:E[KJ_,...,KE]_E MmN
The summations run over all componeidts1,... 2. To ¢
avoid fractional exponents we use Fermi momextaather
e 3 2 _ | 43 = He o3
than densitiep = «3/(672). = | &> kq,...k=1(X)— >, 62 Ke(X)
The basic assumption of the Thomas-Feror local- ¢ om

density approximation is that the energy density of the in-

homogenous Fermi gas is locally given by the energy density :f A3XFA k1,...k2](X), (58)

of the corresponding homogenous system. Thus the energy

density of the inhomogeneous system is constructed from o _ o

Eq. (53) by replacingx; with local Fermi momentac(X). has to be minimized by functional variation. A necessary but
In addition the contribution of the external trapping potentialnot sufficient condition for a set of local Fermi momenta
has to be included. This results in the following expression{ «(X),...,x=(X)} to minimize the transformed energy func-
for the energy density of the trapped interacting multicom-tional F[ x4,...,x=] is stationarity, i.e., that the first variation

ponent Fermi gas of F[«y,...,kz] with respect to allk,(X) vanishes,
1 1
E[Kyy.. k=](X)= U (X) k(X)) + 5(% 8
Lreas ez ](X) W% (X)) 2ow?m2§ K(X) S FlKik] =0 for all & (59)
3
0 3,0y 3 /o
*93m > KeRKp(R) This extremum condition is fulfilled if the derivative of the

£¢'>¢
3

a; 8/ o
* 50mim > <e %)

integrand F{ k4, ...,k=](X) with respect to all local Fermi
momenta vanishes at each poir) (

1%
——F[kq,...,k5](X)=0 for all X,¢&. 60
a?'i‘bo .5 aKg(X) [Kl K,_,]( ) é: ( )
+m E[ [Kg(X)Kg;(X)
;‘g ¢ Inserting expressiofb4) for the energy density and evaluat-
+K§(>?)K§,(>?)]. (54) ing the derivative results in the extremum condition
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1, 2a, - 8aj .
M pe=U(R)]= 5 kX + 53— 2 k() + 75— E(X)

¢ e .
aj+b L
+ 2> [3k5,(R) + 52K k3, (F)] o
307 ¢ £0e e
£7e £ 100
=
(61 2
5
for all X and each¢. This is a coupled set GE polynomial X 90

equations for the local Fermi momerta,(X),...,k=(X)} at
some given pointX. Note that the trivial solutionsc(X)
=0 were separated already. Any real solution of the extre-
mum condition(61) corresponds to a stationary point of the
energy functional. In general one has to check explicitly _ _ _ )
whether they correspond to a minimum of the energy func- F!G- 5. Density profilex(x) of a single-component Fermi gas of
tional or whether they are maxima or saddle points. N.= 10° partlcles trapp/)ed in a §pher|cal symmetric parabollc .trap
Al following investigations on the structure and stability With oscillator length. The solid curve shows the noninteracting
of degenerate Fermi gases and on the influence- @nd gas_all/:_o. Dc:/t,tfd curves correspond o repulspevave inter-
puave inferactions are based on the extemum condiiofCor "%/ SO0, 05, and 0 rom o o bt The
(61). Many physical conclusions can be drawn from its alge-:0 03.-0.04. and—0 044(t0p\f: bottory, respectively e
braic structure already. We will discuss these questions in ' " ' ' '
detail for the one- and two-component Fermi gas in Secs. IV

and V, respectively. fi(k)= : K2+ 8_a§ K® (63
1 2 157
IV. SINGLE-COMPONENT FERMI GAS This fifth-order polynomial equation for the local Fermi mo-

mentum «(X) is solved numerically for each point The
hemical potentiale is adjusted such that particle number
6) assumes the desired value.
Figure 5 shows the resulting radial density profitgs)
=«k3(x)/(672) for a single-component gas bf=10° particles
A. Effect of the p-wave interaction in a spherical trap with oscillator length for different
The energy density of the interacting multicomponentP-Wave scattering lengtha, . The oscillator length defines

Fermi gas(54) reduces for the single-component system tothe fundamental length scale of the problem and the param-
the form eter that determines the strength of the interaction is the ratio

of the p-wave scattering length and oscillator lengdh// .
af 8 To increase the magnitude of this ratio experimentally one
3073m (X), can either increase the magnitude of the scattering length or
(62 decrease the oscillator length.

For a repulsivep-wave interaction, i.e.a,//>0, of in-
creasing strengtfdotted curvesthe density distribution flat-
tens and expands radially compared to the noninteracting
system(solid line). For a ratioa; //'=0.1 the central density
fas dropped to one-half of the density of the noninteracting

As a first application of the formalism developed in Sec.
[Il we study the properties of a degenerate single-compone
Fermi gas.

1
ELKI(0) = 5z UK + 357 k(0 +

where k(X) is the local Fermi momentum. The first term is
the contribution of the trapping potentibl(X), the second
term is the kinetic energy, and the third term describes th
pontrlbutlon of thep-waye Interaction with g-wave scatter- gas. With a typical experimental oscillator length g&f
ing lengtha;. As mentioned earlier the-wave part of the < . ! .

) / . : . . =1 um this ratio corresponds to a rather large scattering
interaction does not contribute in a system of identical fer-Ien th of a.~200C.  which nevertheless mav be within
mions due to the Pauli principle. Therefore fhevave part is g 1 B y

the leading interaction term and there is no reason to negle t[1e range of experimental parametgi% For a tightly con-

it from the outset ining trap with/'=0.1um a moderate scattering length of
A first hint on the effects of the-wave interaction is a1~F20(hB '; re?.uwed o o_btfun trt'.e sarr/]iiagot.h ral

given by the density distributions for different values of the or an atlractivg-wave interactiona, /7 , (e central

p-wave scattering length. The density distribution is obtaineodenSIty increases significantly with increasing interaction

by the solution of the extremum conditigfl), which takes strength. If the Ce”t@' density exceeds a certain value.qr if
the simple form ' |a; /7| exceeds a critical value, then the extremum condition

(63) has no real solution any more. Physically this corre-
- . sponds to a collapse of the dilute gas caused by the attractive
mp—UX)]=f1[«(X)] mean-field that is generated by tpewave interaction. We
will discuss this question in detail in the following sections.
with The dependence of the density distribution on fherave
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FIG. 7. Right-hand sidé,(«) of the extremum conditiori63)
FIG. 6. Variational energy65) of a trapped single-component as a function of the Fermi momentum for a noninteracting singe-
Fermi gas withN=10° as a function of the parametét,. The =~ component gagsolid) with repulsive p-wave interactiona, // =
curves show the noninteracting géhin solid, a;//=-0.035 —0.04 (dotted and with attractivep-wave interactiona, // =
(solid), a; /= —0.051(dashed} anda,//'=—0.065(dotted. The ~ —0.04(dashed The horizontal lines mark the respective values of
energies are given in units of the ground-state endigyof the  the chemical potentials fdi=10° particles.
noninteracting gas.

of the energy for systems of decreasing spatial extension and

scattering length as depicted in Fig. 5 already demonstrat ; ; : ) i
that thep-wave interaction may have strong influence on th:iﬁus increasing density. At very high densitiemall X,) one

properties of degenerate Fermi gases. formally ends up with states of neggtive. energy, i.e., bound
states. One should, however, keep in mind that the assump-

tions made for the construction of the effective contact inter-

action are not valid in this high-density regime anymore.

To illustrate the origin and mechanism of the collapse of  The not-self-bound metastable state appears as local mini-
the metastable state of the trapped Fermi gas we utilize gum at positive energies and low densities provided the
simple variational picture. Assume a single-componeniy wave attraction is sufficiently weak; the thick solid curve
Fermi gas ofN particles in a spherical symmetric oscillator j, Fig. 6 shows an example. If the strength of the attractive

potential. The local Fermi momentum of the interacting sys+, \yave interaction increases, then the local minimum flattens

tem is parametrized by the analytic expression for the local g devolves to a saddle poitdashed curve From this
Fermi momentum of the noninteracting system particular interaction strength on the metastable low-density

2(6N)H i state does not e>_<ist anymore, only the true ground state of
K(X) = ——— /1_(_) for |x|<X,, (64) the system remains, which is usually a crystal. The system
X4 Xy collapses if the barrier caused by the positive kinetic and the
attractive mean-field energy vanishes. Since the mean-field

attraction grows with increasing density the system is un-

density (62) and integrating we obtain a closed expression%table and collapses towards a high-density configuration.

for the energy as function of the paramexgr

B. Mean-field instability: a variational picture

th N5/3 N8/3af C. Mean-field instability: stability conditions
EX)=Cv—a +Ciyz +Cr—5— (65) Based on the extremum conditi®63) we derive a set of
’ ! ! analytic stability conditions that relate the maximum density
with constant coefficients of a metastable system with thewave scattering length.
Part of this was already discussed[ir0].
3 3(9/2)13 85(4/3)13 The mean-field instability of the system occurs for values
Co=Tam ™ om ST Too52m: (66 of the chemical potentiak and the scattering length, ,

where the extremum conditioi®3) does not have a real so-

Again the first term corresponds to the external potentialsiution anymore. This is shown in a pictorial way in Fig. 7
the second to the kinetic energy, and the third term to thavhere the right-hand sidig («) of the extremum condition is
p-wave interaction. plotted as function of for differenta,//. The solution of

Figure 6 shows the dependence of the total enédgyon  the extremum condition at some specific poiris given by
the parametek; for a system oN=10° particles with dif-  the value of« at which the respective curve reaches the value
ferentp-wave scattering lengths. For attractipavave inter-  m[x—U(X)]. In the minimum of the trapping potentiplve
actions, i.e., negative scattering length, the contribution assumeU(X)=0 in the minimunj the solution is given by
of the interaction in Eq(65) is negative. Due to it9((5 the point wheref (k) reaches the valuemx. By moving
dependence this interaction contribution leads to a rapid drofpwards the outer regions of the tragp u — U (X) ] decreases
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and one scans;(«) down along ordinate until one reaches For an interaction strength af, /= —0.01 which corre-
m[u—U(X)]=0, i.e., the classical turning point. sponds to a scattering length ~ —200ag for a trap with

For repulsivep-wave interactiongdotted curvethe rhsof /=1um the maximum particle number SNy
Eq. (63) is a monotonic growing function and solutions exist =7.8x 10°. This seems to be out of the range of present
for arbitrary values om[ x—U(X)]. If the scattering length experiments. Nevertheless if we increase the strength of the
a; is negative(dashed curve then f,(«) exhibits a maxi- p-wave attraction taa,//'=—0.1, then the maximum par-
mum at a Fermi momentunk,,, and chemical potential ticle number drops t®N,,,,=7800. Experimentally this could

Mmax be achieved by utilizing g-wave Feshbach resonance to
5 o3 increase thep-wave scattering length ta;~—200(g as
o V3 _3Bm) 67 proposed by Bohfig] for the *°K system.
max 2a, ' Mmax W
For values of the chemical potentiat> w ., N0 solution of V. TWO-COMPONENT FERMI GAS

the extremum condition exists, i.e., there is no metastable
low-density state. Equivalently only solutions with local
Fermi momenta belows,,, correspond to minima of the

energy functional; those abowe,., (gray segment of the

dashed curvecorrespond to maxima of the energy. Thus we A. Interplay between the s- and p-wave interaction
get a limiting condition for the local Fermi momentum of the
metastable state

As a second application we consider the degenerate two-
component Fermi gas.

The general energy density of a trapped multicomponent
Fermi gas in the Thomas-Fermi approximatiéd) takes for
337 the two-component system the following form:

(68)

- alK()—())g

1
E[k1.k2)(%) = 7 [U1(R) k1K) + Ua(X) 5(X)]
or in terms of the density

+ —12—[K5(>?)+K5(>?)]
20m°m*-"1 2

—ad (%)= ——
ajp(X)< 16m (69)
3o 3/ 3/c
+ —3— k1 (X) k5(X
This is one form of thestability conditionfor the single- 973m <L ) rea(X)
component Fermi gas. We note that this condition is com- 3
pletely independent of the trap geometry. As soon as the T a1 [k8(%) + k&(%)]
stability condition is violated somewhere in the trap, in gen- 303 m- "t 2
eral in the minimum of the trapping potential, the system will B4b
become unstable. 1770 3.5\ 5/ 5.2\ 30
+ ——=—[ k(X)) k3(X) + k7(X) k5(X) ],
For practical purposes we formulate a stability condition 5073 K1(X) k2(X) + k1(X) k3(X) ]
in terms of the particle numbeX. The maximum particle (71)

numberN,,,, of the metastable degenerate Fermi gas is di-
rectly connected to the maximum chemical potentigl,y.

This relation is established numerically by solving the extrewhere k;(X) and x,(X) denote the local Fermi momenta of
mum condition for the maximum chemical potentjahax  the two components. In contrast to the single-component sys-
and integrating over the resulting density distribution to ob-tem, boths- and p-wave terms of the effective contact inter-
tain the corresponding maximum particle numk&8). This  action contribute. The-wave interaction acts only between

is done for several scattering lengtag assuming a de- particles of different species and generates a contribution
formed oscillator potentia{49) with mean oscillator length proportional to the product of the densities of both compo-
/. Finally a parametrized form of the stability condition is nents. Thep-wave term acts between particles of different
fitted to this data. The parametrization is motivated by thecomponents as well as between particles of the same species.
noninteracting gas, where the maximum local Fermi momengopr reasons of S|mp||c|ty we assume the sgmeave scat-
tum is proportional t(ﬁ/ﬁ//. Inserting this into the stability tering lengtha, for these different interactions.

condition (68) leads to the form Including the constraint of given particle numbéts and

N, of the two components with the help of the chemical
potentialsu; andu, (see Sec. Il Cleads to the transformed

c energy density

a
‘i/ﬁ71)s1 C=—2.246. (70)

The parameteC is fitted to the numerical results, which are

reproduced with a deviation far below 1%. Note that this i 10=¢ 1(%)— M 3(%)— M2 3(%)
condition is independent of the deformation of the harmonic- ~ 1*1'%2 K1.k2 6m2 1 62 2\
oscillator trap[18]. (72
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Functional variation of the transformed energy functionalwith tools similar to the single-component case. Here the
leads to the extremum condition. For the two-componensolutions with identical Fermi momenta for both components
system the general fori®1) reduces to a coupled set of two are of interest.

polynomial equations Similar to the single-component case the right-hand side
fo(k) of the extremum conditioi74) may exhibit a maxi-
mum if the swave or thep-wave scattering length is nega-
tive. Thus the density and particle number of the metastable
low-density state may be limited. For a detailed analysis one
has to look at all possible combinations of signs of¢hand
p-wave scattering lengths separately.

1,  2a , _ 8a .
m[M—Ul(X)]:§K1(X)+§K2(X)+EK1(X)

al+b,

T 30m |

3Kk5(X) +5k3(X) k3(X)],
(73 a,=0,%,=0. For a purely repulsive interactid3(«) is

monotonic growing function and no mean-field induced

llapse occurs.

87<0, a;=0. For purely attractive interactionf,(«)

where the second equation is generated by the exchang%
K1(X) = ko(X) and[ w1 —U(X) ] —[ o= U,(X)]. Trivial so-

lutions with «,(X)=0 and «5(X) =0, respectively, are al- g,y 3" maximum; thus the density of the metastable low-
ready separated in this expression. density state is limited

These coupled equations have a great variety of solutions. s : I
In order to show the generic phenomena of the two- aOBQ’ a1<0_. The negatlvg contrlb_u.tlon of the-wave
\ . interaction dominatet,(«) at high densities and generates a
component system without too many parameters we restri aximum, i.e., the mean-field induced collapse can occur
ourselves to equal numbers of particles in both componentg C

N=N;=N, as well as trapping potentials that differ only by ven if theswave interaction is repuisive.
2 a - <0,%,>0. i
an additive constant, thusu—U(R)= u;—U4(%) = a7<0,3,>0. It depends on the relative strength of the

U andp-wave interaction whether the rhs of the extremum con-
2(%). dition has a local maximum or grows monotonically.

th V\ée will cor:ce:{ntrate the furtk][eli stu<_j|es on th_e sttablhty ?f pecially the stability in the last case depends on a subtle
€ degenérate two-component Fermi gas against mean-lie mpetition betwees andp-wave interactions. Moreover, it

lc;ollapse. For th{s pr;eno%etr;]on solutions vtwth Ldintlcal locakhows some completely new phenomena, which will be dis-
ermi momenta for both componentsk(X)=«x1(X)  cssed in the following section.

N KZ(X.)’ are relevant. Under this agsumption the extremum For those cases whefg(x) has a maximum the value of
condition reduces to a single equation the local Fermi momentum,,, at the maximum is given by

mlu—U(X)]=f,[«(X)] (74y ~ the equation
. o
. —3oKmax— 2[§1Kmax]3: PR (76)
1, 2a, , 4&
fali)= 5 kot gt g Again k. i an upper limit for the local Fermi momenta,

which can occur for a metastable low-density state of the

For simplicity we introduce a modifieg-wave scattering two-component gas. Thus we can formulate the stability con-
|engﬂ? dition

=3_ .3
Bimaithe, (9 ~ agk(0)—~ 2[Ak(X) =< 5 7

which contains the-wave effective volume parameter. In the
following we will discuss the properties of the two- or equivalently in terms of the density
component Fermi gas as function of tsewvave and the
modified p-wave scattering length.

For other phenomena, like the separation of the two com-
ponents due to repulsive interactions, different classes of so-
lutions become important. We will discuss these in a futurdf these stability conditions are violated, then no metastable

—[6m2aip(X)]V3— 127%&3p(X) <

NIE!

(78)

publication. low-density state exists for the two-component Fermi gas.
For a pures-wave interaction@,;=0) the stability condition
B. Mean-field instability: stability conditions (77) reduces to the form-ag«(X)<m/2, which was ob-

tained earlier by Houbierst al.[5]. Compared to this simple

. The stability of the two-component Fermi gas “”‘?'ef theform the inclusion of thep-wave interaction reveals several
influence ofs- and p-wave interactions can be investigated new effects.

Before we discuss the structure of E@7) we formulate
an equivalent stability condition in terms of the number of
2This can be generalized to include differqntvave scattering particlesN=N;=N, of each component. For given values
lengths for the different combinations of the two speci&§: of the two scattering lengths the maximum local Fermi mo-
=3(af[1y+ 8300+ a3[15 T bo)- mentum and the maximum chemical potential is calculated.
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TABLE I. Parameters of the fitted stability conditién9) for the
two-component Fermi gas for different interaction types.

Interaction type Co C, Co1 n
a,<0,3,;<0 —1.835 —2.570 0.656 1
a,=0,3,<0 -1.378 —2.570 1.360 1
a0<0,3;<0 —1.835 —1.940 2.246 3

From the solution of the extremum conditi¢n4) for these
parameters the corresponding maximum particle number is
determined. These numerical data are fitted by a suitable
parametrization of the stability condition in terms of the par-
ticle number and the scattering lengtig// and@a, //

<1.

(79

rvhal 36%113 n+1i( 6 aoséln
Co \/N7 +C3 \/N7 +Cn \/N7 \/N7

This parametrization is constructed in analogy to the single
component casé€r0); the additional cross-term is necessary
to achieve a similar accuracy with typical deviations below
1%. The parameter€,, C;, andCy; have to be fitted for

each combination of signs of the two scattering lengths sepas,
the interaction is attractive in one partial wave and repulsive

i} the other, then the repulsive part leads to a stabilization,
i.e., it increases the maximum particle number. Here a sig-

rately. The value of is not included in the fitting procedure
but chosen by hand. The resulting values are summarized

Table I.

Figure 8 illustrates the dependence of the maximum parg,
ticle number resulting from this stability condition on tke T
and p-wave scattering lengths. The contour plot shows ther
a,//=-0.05 the presence of awave repulsion of the
same magnituda,// = 0.05 increases the maximum particle

logarithm of the maximum particle number for each compo
nent as function o&,// anda,//. The first gross observa-
tion is that attractives- and p-wave interactions with similar

PHYSICAL REVIEW A64 043603

| 1
— 300} Po-
I (Kmax, Mptmax) '," 1
Y ]
© - !
2 200f % P
g ;
= : .
(Kmin, Mfmin) §
2 100} f .
i ! 1
0 v
L 1
0 20 40 60 80 100
¥4

FIG. 9. Right-hand sidé,(«) of the extremum conditioii74)

as a function of the Fermi momentum for an attracttwsave in-
teraction witha,//'=—0.05 and a repulsive-wave interaction
with @, //'=0.014(dotted curvg 0.015(solid), and 0.016dashed

The gray segments of the curves correspond to the maxima of the

energy density.

interaction with the same scattering lendgih//'=—0.05
causes a collapse at even lower particle numberslgf,

~2.2X 10°.

If both interaction parts are attractive they cooperate and
use an instability at lower particle numbers or densities. If

ificant difference betwees andp-wave interactions arises:
he stabilization caused by a repulsis#vave interaction is
ather weak. Compared to a pupewave interaction with

umber only from 2. 10° to 8.9 10°. In the opposite case

scattering lengths set similar restrictions to the stability ofg]c an attractives-wave interaction @-wave repulsion of the

the two-component Fermi gas. For example, a mveave
interaction withay//=—0.05 leads to a maximum particle
number of Nj,e~1.7x1CP. In comparison a pur@-wave

0.04
0.02

0

-0.02

X

& -0.04

-0.06

log; g Nmax

-0.08 '\ -
2] P — \
-0.12 -0.08 -0.04 0 0.04 0.08

ao/l

FIG. 8. Contour plot of the logarithm of the maximum particle

number, loggNnax, @s a function of thes-and p-wave scattering

lengths for a two-component Fermi gas in a harmonie-oscillator

potential with mean oscillator lengtii. Selected contours are la-
beled with the corresponding value of lgd\,.x. In the white area

same magnitude will always lead to an absolute stabilization,
i.e., there is no collapse for an arbitrary large particle number
despite thes-wave attraction. We will study these special
effects in detail in the following section.

We should like to point out that for strong repulsive
s-wave interactions the system can gain energy by seperating
the two components spatially. This demixing phenomenon
will be discussed in a future paper.

These results clearly demonstrate that it is necessary to
include thep-wave interaction if the scattering leng# is
roughly in the same order of magnitude as theave scat-
tering length. Even if the ratio of the scattering lengths,
a,/ay, are approximately 0.3 dramatic effects like the
p-wave stabilization, which is discussed in Sec. VC, can
occur. As can be seen from Fig. 8 thavave interaction may
be neglected only if the rati@, /a, is smaller than 0.1.

C. Mean-field instability: p-wave stabilization

Several phenomena occur due to the competition between
an attractiveswave (ay<0) and a repulsiv@-wave interac-

at a positivep-wave scattering length no collapse can occur, i.e., thelion (&,>0). To understand the origin of these phenomena,

maximum particle number is infinity.

which are a unique property of these type of interactions, we
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u T T 0 collapse. In this case the total mean-field contribution of the
- interactions is always repulsive and grows monotonically
~ 240 . with density.
s  _ 1 Notice that thep-wave scattering length necessary for this
g 2201~ ) s ) ] stabilization is only approximately 1/3 of the modulus of the
.55 200k == ———— —— __’ _____ i swave scattering length. Obviously theewave interaction
ST B ; ] may have drastic influence on the stability even if it is sig-
—~ 180 TSt 3 - nificantly weaker than theswave interaction in terms of
:i,; C Ty T (Rmin, Mphmin) - scattering lengths.
160 . For weakerp-wave repulsions,(«) still shows a local
i l maximum and in addition docal) minimum at larger Fermi
1400 7 AU WS WU . momenta. Examples are shown by the solid and dotted
g 20 :% 50 50 curves in Fig. 9. In this case the extremum condition has two

branches that correspond to local minima of the energy den-
1 T T T T T T sity, which are separated by a branch of local maxigray
segments The branch at lower Fermi momenta corresponds
to the usual family of low-density solutions that were ob-
tained with other types of interactions too. It ends up at the
local maximum with k2 given by Eq.(76) and Mg max
=fy(kmay- The solution branch at higher Fermi momenta
gives rise to a new family of high-density solutions, which
are unique for this type of interaction. It is bounded from
below by the local minimum A, umin) @nd raises up to
arbitrary Fermi momenta and chemical potentials.
For values of u—U(X)] betweenumi, and pmay the ex-
—t 1'0 L 1'5 o tremum condition has two solutiong,, and pig, With
</t folkiow) = fZ(Khigh),.see Fig. 10.. In equnibrium the one Wlth
lower energy density72) is realized. We define a chemical
FIG. 10. Upper plotf,(«) of the extremum conditiofi74) as a  potential uyans @t which the energy densities of both
function of the Fermi momentum for an interaction wil// = branches are equal; the value pf,,s can be determined
—0.05 anda, //'=0.015. Lower plot: Distribution of local Fermi numerically. Since we expect the solutia(X) to corre-
momentax(x) for a spherical trap of oscillator length for the  spond to a minimum of the energy functional at each pejnt
three different chemical potentials marked in the upper panel. Solidor [ x—U(X)]< uyans the low-density branch gives the
curves show the equilibrium profiles, dotted curves show metagquilibrium solution and forf u—U(X)]> iyans the high-
stable configurations. density branch does. This gives rise to a Maxwell construc-

investigate the right-hand side(x) of the extremum con- tion for the rhs of the extremum conditidid4) as illustrated
dition (74). Figure 9 depicts the dependencefgfx) on the in the upper pl_ot o_f Fig. 10. The dotted parts of_ the lower and
local Fermi momentum for arswave scattering length upper branch in Fig. 10 correspond to local minima and may
a,//=—0.05 and three slightly different positiewave OCCur as metastable states that eventually undergo a transi-

scattering lengths in the rangg//=0.014 ... ,0.016. tior_ini]o thte etrierge:icl?sllydlowir quitiligritl_im Zolutiog. iall
Due to the dominank® dependence any repulsipevave € structure of the density distribution depends crucially

interaction causes,(x) to grow fast for large Fermi mo- on the value of the chemical potential i.e., the particle

menta. Thus the maximum is only local and does not deteil—]umber' The upper plot of Fig. 10 shows the rhs of the ex-

mine necessarily the maximum Fermi momentum or chemilieomsjsm c;vndlit/i/p_noﬂo?sfc_)rrh ar(ij mrt]e:ja(r:]tio_n thtT ?0//: K

cal potential as in the cases with attractive or vanishing[h ' d'?fn alt/ h_ > I' te t'als ?I'h (ljrizonal tmis matrh

p-wave interaction. If thep-wave repulsion is sufficiently ree difterent chemical potentials. The fower piot shows the
radial dependencies of the local Fermi momemntéx)

strong the local maximum vanishes completely &pdk) is . ) .
9 pletely &n(ck) = (672p(x))¥® for these three chemical potentials assuming

a monotonically growing function. In this case a solution of ; . . : ;
the extremum condition exists for any density, chemical po-"’_l spherical trap with os_cnlaitor length. For (_:i_ier_nical poten-
tential, or particle, number. An example is shown by thelials 4 < tiyans—Case(a) in Fig. 10—the equilibrium solution

dashed curve in Fig. 9. It can be seen from B that the is completely on the low-density branch and we obtain the
local maximum disappears if the ratio of the two scattering!Su@! smooth density profile. }i> uyans—casesb) and(c)

k(z) (units of £71)

lengths fulfills the condition in Fig. lQ—then the equilibrium solution in th_e center of t_he
trap is given by the high-density branch, while the solution

A, 2 for the outer regions of the trap is given by the low-density

@2 3,23~0311. (80 branch. Thus the equilibrium density profile shows a jump in

density by typically one order of magnitude as one ap-
If this condition is fulfilled thep-wave repulsion causes an proaches the center of the trap. The location of the disconti-
absolute stabilizatiorof the system againswave induced nuity is always given by the equatidnu—U(X)]= tiyrans
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which reflects the mechanical equilibrium between the low- (V] =S L L B B
and the high-density phase, i.e., the equality of the pressures S I 4
p=—F «](X) at the boundary between the two phases. 600 ‘|E 4

If the chemical potential is still beloyw,,—case(b) in | :
Fig. 10—then a solution with a smooth low-density profile 500l I |
all over the trap may exist as a metastable state. Due to I It
density fluctuations this state may undergo a transition to the i
energetically preferred equilibrium state, which includes the
high-density phase.

The physical origin of the high-density phase is quite in-

units of £~%)
S
[
o
T
|

(
w
[=
o

)

1

tuitive: The usual stability is determined by a competition & |i

between the kinetic energy, which favors low densities, and S 200 ! .
the attractive mean field, which prefers higher densities. If s i 1
the attractive mean field becomes too strong, then the kinetic 100F—=-~— ; -

energy is not able to stabilize the system anymore and the
mean-field collapse occurs. In case of the high-density phase
the attractive mean field generated by shwave interaction
has already overcome the stabilizing effect of the kinetic
energy. Nevertheless the collapse is prevented by the repul-
sive p-wave contribution, which grows for higher densities
faster than theswave attraction and inhibits a further in-
crease of density. We call this remarkable phenomenon th
p-wave stabilized high-density phasén contrast to the low-
density phase stabilized by the kinetic energy, which is stil
present in the peripheral regions of the trap.
. The situation @scgssed S0 far assumes a repusivave Above these values thewave stabilized high-density phase
interaction that is slightly too weak to cause the absolute . o ; .
e - .~ appears, i.e., the density in the central region of the trap is
stabilization according to Eq480). If the p-wave strength is increased by tvically one order of maanitude compared to
decreased further, then the valuesiQfin, tmax: @Nd Lians y typicaty 9 P

also decrease. If the ratio of tlpewave ands-wave scatter- theﬁé\lo/v|va;d|e<n(s)|t2y72rogzlg\1/vthe ouct)?rl\Ieglogsétable solution
ing lengths drops below the limit e = s Fmax max

with the regular low-density profile exists. Above the system

% 3\/W collapses; the high-density phase is not stable anymore.
1
Tgﬂ'z ~(0.281,

(8D This subtle dependence on the ratio of the scattering lengths
is illustrated in Fig. 8. The white region for “strong” repul-

then the chemical potential of the minimum is negative,sive p-wave interactions shows the domain of absolute sta-

1min<0. An example is shown by the dotted curve in Fig. 9.bilization. The solid line corresponds to the conditi(B0)

FIG. 11. Evolution of the density profile of a two-component
system ofN=N;=N,=60 000 particles with g@-wave scattering
Igngthél //=0.03 according to th&edankenexperimedescribed
in the text. Theswave scattering length is tuned in the range
|a0//=—0.095(solid), —0.1 (dash-dottey —0.101 (dasheg, and
—0.102 (dotted.

<
|ao|

For even weakep-wave interactions with for absolute stabilization, the dashed line to conditiBg)
for the stability of the high-density phase. The small area
a, between those lines represents the parameter region where
Tag] = 0.274, (82 the p-wave stabilized high-density phase exists if the maxi-

mum particle number is exceeded.

« can be negative. That means that the high-density solution 1° .conclude this section we perform Gedankenexper-
forms a self-bound state independent of the trapping poterfMeNt: ASsume a two-component Fermi gashE=N; =N,
tial. Therefore as soon as the maximum chemical potentiaf 60 000 particles in each component trapped in a spherical

Umax IS €xceeded the gas collapses into a self-bound highQsciIIator potential with/’=1 um. May the interaction be

density state which is independent of the trap. composed of a repulsive-wave part witha, /~°=0.03 and

We summarize the variety of structures that appear foAn attractiveswave component that can be tuned within a
interactions with an attractivewave @,<0) and repulsive Small rangea,//'=-0.095...,-0.102, e.g., by using a
p-wave part &,>0) in the following list. Feshbach resonance. Figure 11 shows the evolution of the

density profile of the Fermi gas if the strength of the attrac-
0.311<3,/|ag|. The p-wave repulsion stabilizes the sys- tive swave interaction is increased slowly such that density
tem for arbitrary densities and particle numbers with afluctuations are negligible. Fax,//'= —0.095(solid curve
smooth low-density profile. For ratios of the scatteringand —0.1 (dash-dottel we observe a smooth low-density
lengths near the limit a smooth but significant increase of therofile, where the central density increases slightly with in-
central density occurs. creasings-wave attraction. A dramatic change happens if the
0.274<3,/|ag|<0.311. For chemical potentials below attraction is increased ta,//'= —0.101 (dashed For this
Mmax OF particle numbers below the corresponding maximuminteraction strength the particle number of the system is al-
particle numben79) the usual low-density solution exists. ready above the maximum particle number given by (Z§)
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and the high-density phase appears and occupies a rathes well as attractiv@p-wave interactions can cause a mean-

large volume. A further increase of trewave attraction field collapse. In addition a repulsive interaction part leads to

(dotted causes a growth of the high-density phase. If thestabilization, i.e., an increase of the maximum possible den-

limit ag//'=—0.11 is reached, then part of the high-densitysity of the Fermi gas.

component is self-bound and the system is expected to col- |nteractions with attractive-wave and repulsivg-wave

lapse. parts show several special properties. If fhevave scatter-
ing length exceeds about 1/3 of the modulus of sheave

VI. SUMMARY AND CONCLUSIONS scattering length the-wave attraction is fully compensated

We formulated a simple and transparent model to describ@nd N0 mean-field collapse occurs anymore at high densities.
the structure and stability of degenerate multicomponenm the tra_nsmon region towards this absqlute stabilization a
Fermi gases trapped in an external potential. In a first step wdiStinct high-density phase may appear in the center of the
derived an effective contact interacti¢BCl) for all partial ~ trap, which is stabilized by thp-wave repulsion alone.
waves that reproduces the exact two-body energy spectrum We conclude that the-wave interaction may have an
when used in a mean-field model space. Includingsttend ~ important influence on the structure and stability of dilute
p-wave parts of the ECI we constructed the energy density oflegenerate Fermi gases. Considering the simultarseaursl
the inhomogeneous Fermi gas in a mean-field calculatiop-wave Feshbach resonances predicted for “fike system
using the Thomas-Fermi approximation. By functional mini-[8] it can be foreseen that large valuespaifvave scattering
mization of the energy we obtained a set of coupled polynolength will be available experimentally. In a two-component
mial equations for the ground-state density profile of the sys?K gas this Feshbach resonance would allow us to probe
tem. We showed that the combination sf and p-wave nearly the whole stability map shown in Fig. 8 by modifying
interactions leads to a rich variety of phenomena in trappethe magnetic field. Alternatively, tightly confining optical
degenerate Fermi gases. traps [19] generate large values of the ratio of scattering

In the single-component system tipewave part is the length and oscillator lengtha, //, such that instabilities oc-
leading interaction term sincewave scatterings are prohib- cur at much lower particle numbei,.,</%; see Eqs(70)
ited by the Pauli principle. Attractivep-wave interactions and(79)].
cause a mean-field instability of the one-component gas if a Concerning the envisioned observation of Cooper pairing
certain maximum density is exceeded. We derived expliciin trapped dilute Fermi gases two-component systems with
stability conditions in terms of the density or particle numberstrong attractiveswave interactions are favor¢d,20]. Here
and thep-wave scattering length. the mean-field instability limits the density of the normal

The interplay betwees andp-wave interactions leads to Fermi gas. With a suitably chosen repulspyavave interac-
several effects in the two-component Fermi gas. We distion one could use the effect of absolute stabilization, which
cussed the dependence of the mean-field instability ois-the we discussed, to allow higher densities of the normal Fermi
and p-wave scattering lengths and derived also for this casgas and thus increase the transition temperature to a super-
closed stability conditions. It turns out that attractsrerave  fluid state[5].
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