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Half-collision model for multiple ionization by photon impact
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We present a simple half-collision model that allows the approximate calculation of absolute cross sections
for multiple ionization by breaking this process down into a primary ionization event followed by a half-
scattering event in which additional electrons are ionized. As a critical test for the feasability of this approach,
we consider the double ionization of two-electron systems, which we describe in terms of the single ionization
of the “primary” electron followed by impact ionization of the slow “secondary” electron. For triple ionization
of lithium, the model decomposes the three-electron breakup process into a double ionization of the two inner
electrons followed by electron-electron half-scattering of the receding electrons at the residual “spedator” 2
electron. We find surprisingly good agreement with recent experimental data.
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[. INTRODUCTION high speed. Consequently, the ratio of double to single ion-
ization at high photon energies, which is proportional to the

In recent years, considerable progress has been made d¢onditional probability for ejection of the second electron
the understanding and theoretical description of multiple exupon photon absorption by the first electron, should be pro-
citation and ionization processes induced by single-photoportional to the electron-impact ionization cross section of
absorption. Experimental and theoretical activities have fothe singly charged ion. By allowing for electron-electron
cused primarily on two-electron emission. Accurate measurescattering, electron correlation effects in the double con-
ments of double ionization, in particular the ratio of doubletinuum can be approximately taken into account. There are,
to single ionization, have become availaljle2]. At the  however, important differences to electron-impact ionization;
same time, accurat@b initio methods have been developed as the primary electron absorbing the phottdre projectile
that allow for a quantitative description of two-electron pro-is initially localized inside the atom near the nucleus, the
cesses such as double ionization or ionization and excitatioalectron-electron interaction “on the way out” corresponds
[3-7]. The methods currently employed heavily rely onto a “half-collision.” This process, which can be associated
large-scale numerical calculations that push the limit of exwith certain diagrams within the framework of many-body
isting computing resources. Going beyond two active elecperturbation theorysee, e.g., Ref{14]), is sometimes re-
trons within anab initio calculation, treating correlations be- ferred to as “TS1.” Moreover, while the electron-impact ion-
tween all electrons, still appears to be beyond the preseritation cross section decrease4/E (or InE/E for dipole
computational capabilities. Meanwhile, pioneering experi-allowed transitionswith the energy of the ionizing particle,
ments on the triple photoionization of lithium have been re-the double-ionization cross section should converge to the
ported [8,9]. Theoretical efforts initially focused on the *“shake-off” limit as E=Eg,— rather than to zero as in the
asymptotic limit of high photon energids,,— for which  original model[13].
predictions can be made within the framework of “shake” In this paper we present the application of the HCM to
approximations[10,11]. For finite photon energies, nab  two processes, the double ionization of helium and the triple
initio calculation is, to our knowledge, available. ionization of lithium. Within the HCM for the double ioniza-

In this paper, we present an analysis of multiple ionizationtion, this process is decomposed into the photon absorption
based on a half-collision modéHCM). A preliminary de-  (i.e., single ionizatiopand the subsequent electron-electron
scription of the model and its application to the lithium triple interaction of an electron-impact ionization, where the two
ionization has already been reported previoydlg]. Here, parts can be calculated separately. As we will show below,
we give a detailed account of the model. Moreover, by apfor intermediate to high energies, the HCM vyields good
plication to the double ionization case, which can be treatedgreement with fullyab initio calculations for the double
ab initio, we give a critical analysis of its limitations and ionization of helium. For triple ionization, we decompose
range of applicability. The HCM can be considered as arthis process into double ionization of the two deeply bound,
extension of a simple picture originally suggested by Samsostrongly correlated 4 electrons followed by half-collisions
[13] for double ionization: the ejection of the second electronof the two receding electrons with the third, weakly bound
should resemble electron impact ionization by the primary2s electron. This decomposition exploits the strong non-
electron that absorbs the photon and leaves the atom atejuivalence of the inner and outer electrons on Li-like sys-

tems. The binding energy of the two inner electréig1s?)
accounts for~=~97% of the total binding energy. The inter-
*Present address: MPI for the Physics of Complex Systents-No shell correlation between the inner and outer electron is very
nitzer Strasse 38, D-01187 Dresden, Germany weak and the electronic wave functions are spatially well
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separated due to the large difference in radiiys/(r),s H=h(l)+h(2)+hph+vg1éz)+w(2*ph) 3
<1. The primary photon absorption at high energies will

therefore take place in theslshell, which suggests the wherevgle'z)z 1/r,—r,| describes the electron-electron in-
double ionization of the € pair as the dominant precursor teraction andW=(1/c)p,-A the interaction between the
to triple ionization. With this ansatz, we find remarkably gjectromagnetic field and the atom. For simplicity, we treat
good agreement with recent data considering the simplicity,o o and in the following the primary and secondary elec-
of the model. tron, i.e., the ionizing and ionized electron, in the half-

_The paper is organized as follows: In Sec. Il, we Will goataring process as distinguishable. Clearly, a complete de-
introduce the half-collision model and present appllcatlonsscription requires  proper  antisymmetrization. We

for the case of double ionization. We will show that the COr-furthermore define the channel Hamiltonigd€ andH” as
responding equations can be derived from a Born-type per-

turbation expansion and present numerical benchmark calcu- o (12)

lations for helium. The results are compared with data from H*=h(1)+h(2)+hprt+Vee, 4
highly accurateb initio methods. After establishing the use-

fulness of the HCM in the two-electron case, we will show in HE=h(1)+h(2)+hpp, (5
Sec. lll the generalization to triple ionization. The paper ends

with a brief summary and a short outlo®ec. IV). In order  with channel perturbations

not to divert the reader from the basic ideas of the approach,

a few of the technical details are given in the Appendices. 1

Atomic units are used throughout the paper unless otherwise Veé=H— Ha:Epz.A (6)
stated.

Il. THE HALF-COLLISION MODEL FOR DOUBLE and

PHOTOIONIZATION

In this section we will derive the equations underlying the VA=H-HA=V{LI+ W(z'p“)zveeJr%pz-A. )
HCM from a perturbation expansion and apply the model to
the double photoionization of helium. The resulting expres- _
sions can be evaluated numerically and the results for heliurficcordingly,
are compared with well-known accuraa® initio methods.
Helium serves as a test case for two reasons: For one, the He W)= (E;+e)|¥;)=E°|¥)) (8
two-electron problem can be accurately treated with current
computational capabilities and can therefore serve as a gaugéd| ¥ ;) is one ofH?
for semiempirical models. Furthermore, for the HCM, which
treats the emission of the “primary” and the “scattered” _ 2 _ =tot
electron on an unequal footipng, thé two-electron emission HEW )= (er+ Kif2+eq) [V ) =EPWy). ©
from the symmetric helium (£) ground state is the “worst-
case” scenario and therefore provides a stringent test.

| W) is an eigenstate dfi“

In the above equations,stands for the energy of the photon
field, E; is the energy of the atom in the ground state, and
andk?/2 are the energies associated with electrons 1 and 2,

A. Notation respectively, in the final state. Finally, the energy of the
We denote the initial and final state by singly occupied photon mode is
|1Pi>:|lz[/i(112)>|nw,0':1> (1) wphzei_ef' (10)
and
B. Born series for the transition amplitude
W) =[#:(1) ¢y, (2))In,,-=0), 2 We are interested in the transition amplitude

wheren,, , is the occupation number of mode and polar-
ization o of the photon field, and we assume that the final
state contains at least one electron in the continuum with - .
wave numbekK; . For reasons of technical simplicity, we will where theS matrix is defined ae.g.,[15])

later assume tha¢; is large enough that this electron can be

described by a plane wayé;). The latter assumption is, S= lim e"Tu(T,T)e H T (12)
however, not an essential ingredient to the model. Such an TooT - —o

approximation for the final state is justified only for high

photon energies, but we will show below that it neverthelessStandard multichannel scattering theory leads to a series ex-
leads to surprisingly good results over a wide energy rangegpansion for the transition amplitud@ppendix A), which

We write the model Hamiltonian underlying the HCM as  reads

an=(W¢|SVy), (11
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ag=lm (1) (2)n, ,=0le" Te M T|y(1,2)n, ,=1)

T—ooT' - —w

T _ -
+<¢f<1>¢k,<2>nw,(,=0—i f dt,eH v e i
T/

lr//i(lrz)na),(r: 1>

T T _ _ .
+<¢f(1)¢kf(2)nw,(r:0(_i)zf dtl dt2e|HﬂtzvﬁeleﬂtZelHﬁtlvaef|H ty
T

ty

t//i(l,Z)nw,(,:1> ..

(13
Because of the orthogonality of the Fock states,
(Ny.+=0|n, ,=1)=0, (14
the first nonvanishing contribution t; originates from the second term in Ed.3),
| . T i (E10t7 E_tot)t 1
ag=—I T,dtle £ (i1 i (2)N4,0=0] S p2- AlYi(1,2)0,,,=1). (15
Taking the limitT—oe, T'— —oo, the first-order term for the transition amplitude becomes
| [ i(ELOL Etoty 1
a=—1| dte® "5 bi(1) By, (2)Nn,,,=0] ;P2 Al¢i(1,IN,, .= 1)
. 1
= —12m 8(Bi—Ei~ wpn)(1(1) i, (2)N,,,=0] cP2- Al (1,21, ;= 1). (16)

The physical picture is that of an atom inground state with energye; absorbing a photon with energy, which leads to
ionization of electron 2 and simultaneously to excitation of electron 1(bmand or continuumstated; in a “shake” process.
This results in the well known “shake limit” which provides the corr@ebnrelativistig high photon energy limit for multiple
ionization. The second-order contribution originating from the third term in(E). is

T T L otot, _ tot uB e 1
alfli:_ia,bf_r/dtlft dtpe'E1 127 E D (hi(1) gy (2)N, = 0| Ve ™2 thap) (hap| € t16p2'A|¢i(1!2)nw,0': 1).
1
17

The physical picture underlying E@l7) is that of an atom absorbing a photon, creating an intermediate gigten the
process which, in turn, leads to a final state by electron-electron scattering. Choosing as basjg statesigenstates 7,
we find

. 1
aIfli =—-27 5(Ef_ Ei - wph)ia,bfo dtel(Ef_Eab)t< ¢f(1)¢kf(2)|vee| (pab(lvz))(wab(llz)nw,az 0| EpZ Al lﬂi(lvz)nw,tr: 1>
(18

The final-state electron-electron correlation is taken into account irlByto first order ofV, while the amplitudea}! is,

overall, of second order. From the derivation of the series expaf&jgpendix A), it is easy to see that the higher-order terms

in the expansion correspond to contributions that are to first order in the photon-atom interaction and to subsequently higher
orders inVg.. This is analogous to the so-called strong potential Born theory familiar from charge-exchange calculations in
ion-atom scatteringi16,17). In our case, the “weak” potential, taken to first order, is the photon-atom interaction, while the
Coulomb interaction can be taken into account to arbitrary order. The obvious generalization to infinite bidevauld then

be to replace/,. in EqQ. (18) by the CoulombTl matrix for electron-electron scattering

n_ e i (Er—Eqpt 1 _
ag=—2m o(Es—E; w)ia,bfo dte/t=r=an <¢’f(1)¢kf(2)|Tee| Pan(1,2)){an(1,20,, ,=0 sz'AWi(l,Z)nw,v—l)-
(19

For later reference, we note that in the generalized form,(Eq), the range of the HCM could be extended to lower photon
energies, i.e., to lower kinetic energies of the ejected primary electron. We restrict ourselves in the following to the numerical
evaluation of the lowest-order perturbation theory. Combining Ef®.and (16) yields
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. 1
ai=—2mi 8(E;—Ei~ wpn)Tap(Pan(1,2N,,,=0| Epz'A| $i(1,2n,, =1)| (#1(1) by, (2)[an(1,2))

—i f:dt ei(Ef—Eab)t<¢f(1)¢kf(2)|Vee| wab(l,2)>>. 0

At very high photon energies, the first-order contribution in  a;=—27i §(E;— Ei— wph)
Eq. (20) leads to the asymptotic shake facf@s]

T 3/2 1
1 X T) 422 003(7)(2E )2(<¢f|¢i(1:r2:0)>
(61(1) b (2)N4,6=0] cP2- Al (1,20, ;= 1) f
217|312 —i f mdt<¢f|vee(t>e“ff‘<f>>tlwi(l,r2=0)>)- (23)
— T) 427 0

74 _
X cos(y) ki (br(1)[#i(L1r2=0)). Finally, the probabilities for single and double ionization are

(21 obtained by summing over bound and integrating over con-
tinuum states, respectively, of the secondary electron. Note
Here, y is the angle betweek; and the photon polarization that all prefactors as well as density-of-states for the photon
vector, and the factor (2/L)%? stems from the box quanti- field and for the primary electrofi.e., the photoabsorption
zation of the photon field. We now employ a straight-line probability) drop out when calculating the ratie?*/o ™.

impact-parameter approximatioisee Appendix B for de- At this point, it may be worthwhile to point out a few
tails) for the fast electron taking off near the nuclgtisalf- differences and similarities to the case of double ionization
scattering’). The transition amplitude is then given to secondby charged particlegl9]. The analogous proce$gq. (22)]
order by is in this case referred to as “TS1Where 1 refers to first-
order perturbation in both electron-electron scattering and
32 primary ionization and closely resembles the half-scattering

process. The major differences lie in the primary ionization

2E¢)? event. Charged-particle ionization is not confined to near-

. zero impact parameter but extends over the entire atomic

X <¢f|lﬂi(1,f2=0)>—iiaf At | Vee(t)| ba) charge cloud. The matrix element is not restricted e 0.

0 The ejected primary electron spectrum is broad with a peak

at near-zero energy rather tharshaped for photoelectrons.

X gler—<alt( .| lﬁi(l,rz:O)))- (22)  This has profound consequences for the ratfd /o [20].
Moreover, the final state is a four-body rather than a three-

body Coulomb continuum state. The exit channel perturba-

In Eq. (18), we chose the intermediate statkg, to be eigen- tion due to the receding projectilproton, electropcannot
states ofH”. They are therefore products,(ry)¢y(r,) of ~ be neglected unless asymptotic speeds>10 a.u) are
one-electron hydrogenic states. From the doubly infinite surieéached.
over these intermediate states, one sum is removed by the
impact-parameter approximation, but a summation over a
complete set of single-particle stateyg is still required. In

addition to the impact-parameter approximation described in  Since for two-electron problems accuraie initio calcu-
detail in the appendices, we made the approximaftidrich  |ations are available, the quality of the HCM presented above
is implicit in any impact-parameter treatmgtitat the energy can be tested by comparing it with results obtained from
transfer during the half-collision is small and the secondaryell-established theoretical methods as well as experiments.
electron will be slow so thak$/2~Ef. For a numerical As a critical test of the model, we have performed calcula-
evaluation, expressiof22) is still not well suited because of tions for the double ionization of ground state helium. This
the infinite sum over intermediate states and the highly ostest case might be considered, to some extent, the worst case
cillatory nature of the integrals. However, with one further scenario for this model. In the helium ground state, both
approximation one can greatly reduce the numerical effortelectrons are equivalent and there is a maximum amount of
In our calculations, the energy, of the intermediate state correlation in the initial statée.g., it is well known that a

) 21
ag=—2mi 8(Ef— Ei—wph)<T) 4.2 Z cos(y) (

C. Numerical results for helium

was replaced by an average enefgy independent ofp,, simple product wave function ansatz fails by a wide margin
thereby invoking a closure approximation. In this case, theo provide the correct shake limitThe picture of a primary
transition amplitude is reduced to electron that absorbs the photon and subsequently scatters off
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FIG. 3. The helium double-ionization cross section revisited.
The hyperspherical close-coupling resuligiuares already shown
in Fig. 2 are compared to a half-collision calculation with adiabatic
the second electron appears poorly justified in such a casewitchoff of the shake contributiofEq. (25)], see text for details.
One might expect that for more asymmetric electron con-
figurations with less correlation among the electrons,_ theamplitudes[Eq. (23)] one can further simplify the model by
HCM should perform better. The results of our calculationsiy,oking experimental electron-impact ionization cross sec-
and the comparison withb initio data are summarized in
Figs. 1, 2, and 3.

In Fig. 1, the ratioo?*/o™ as obtained within the HCM
[by a numerical evaluation of Ed23)] is compared to a
hyperspherical close-coupling calculation at lower energies
and a perturbation expansip@] at high energies. The agree-
ment with these more involved calculations is remarkably
good, not only for high energies where, by construction, the
HCM will converge to the correct shake limit, but over a Here,a'*'=0"+¢?" is the total photoabsorption cross sec-
surprisingly wide energy range that extends almost down teion, R., is the asymptotic shake limit, and™ the experi-
the maximum of the ratio. Figure 1 can be considered thenental electron-impact ionization cross section of Hk is
quantitative realization of the picture originally suggested byan energy-independent proportionality factor relating the
Samson[13]. Note, however, that the convergence to thecross section for the half-collision to the cross section for the
shake limit was absent in the original model. full collision. In Fig. 2, this idea is applied to yield a double-

One can carry this simple picture of sequential ionizationjonization cross section®” usings* from a hyperspherical

a few steps further. In a first step, rather than evaIuating{;ﬂose_(x)up"ng calculation and* from an electron-impact

15 : ionization experimentwherek=0.00278 which includes all
relevant prefactors relating the transition-matrix element to
the cross sectignAs can be seen, the agreement is remark-
ably good and extends from the asymptotic limit to the cross
section maximum. This simplified picture provides a qualita-
tive underpinning of the HCM.

A second step can be taken to extrapolate such a simpli-
fied model to even lower energies, specifically to the region
near the cross-section maximum. As one would include the
electron-electron interaction to all orders into thematrix
element ofall [Eq. (19)], the separate shake amplitudg
[Eqg. (16)] should cease to contribute. The shake amplitude
contains effects of the electron-electron interaction to all or-
ders, however only in their impulsive limit. As the system
undergoes a transition from the sudden to the near-adiabatic

FIG. 2. The helium double-ionization cross section. Comparisorl'm't those eﬁe_Cts represented in the_ Sl_Jdden litass the
of the half-collision model using the electron impact diig. (24)] ~ SPeedv of the primary electron goes to infinjtyy a' should
(circles with data from a hyperspherical close-coupling calculationféappear i asv tends tow resnoie The half-collision term
(Square)s The weight of the electron-impact ionization cross sec-then contains the electron-electron interaction to all orders. If
tion relative to the shake has been used as a fit parameter, see t®aw a'' is represented by the electron-impact ionization am-
for details. plitude (or its experimental cross sectip@m' should be adia-

FIG. 1. The ratioo>* /o™ for helium. Comparison of the HCM
results(squareswith accurateab initio data[6].

tions. Froma?*/¢'°'=R,,+ ko ", the ratio can be expressed
as

R, +ko"

oot =—m—.
1-R.— ko™

(24)

10 -

o [kb]

E, [eV]
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batically switched off. For an adiabatic switching function the present case of a half-collision, this phase relation is
we use the functiofir,(v) =exp(—2b A E/v) first introduced  modified and interference terms canagpriori be excluded.
by Rosen and Zener in the context of ion-atom collisionsTheir contribution would be determined by the exact value of
(e.g.,[21], Chap. 4.9. b signifies here an effective “impact the lower limit of the time integral in the half-scattering
parameter” used in the following as a free parameter. Withterm. As this value is poorly defined within our model, we
frz as switching function and the experimental electron-omit here and in the following interference terms. There is an
impact ionization cross section as the “representative” of thegqditional reason why interference terms are not properly
nonperturbative treatment of the half collision, the ratio of yefined in Eq(23) and, hence, should be omitted. After tak-
double to single ionizatiofiEq. (24)] becomes ing the shake limit, the quantum numbers of the final state of
the fast electron have been eliminat@part from the en-
2+ R_e- 20BN |+ ergy; specifically,l,m in a spherical basis or the emission

e . (25) directionk; in a plane-wave basisinclusion of interference
ot 1-R,e PAEv_|Gt terms resulting from Eq(23) would therefore overestimate
coherences as the finghm content of the shake and tiee-e
scattering terms are expected to be different while true co-
As before,o™ refers to the electron-impact single ionization herences would occur only for final states within the same
cross section of He. In Fig. 3, the resulting cross section is angular momentum sector after integration over all angles.
compared to the result of a hyperspherical close-coupling
calculation. In applying Eq(25), an analytical parametriza-

tion of o™ as put forth in Ref[22] has been used,is fixed lll. THE THREE-ELECTRON CASE: LITHIUM
by the requirement to yield the correct slope of the cross
section for high energies as calculated within the HCM

above. The only free parametertiswhich has been set “by case of lithium triple ionization. We will first discuss the
eye” t0 0.1 to give a favorable fit to the correct cross sectiondeneralization of the HCM to this more complex breakup

With this simple extension of the half-collision model we process. We will compare our results with experimental data

reproduce the double ionization from threshold to asymptoti&nd other theoretical work on the triple ionization problem

cally high photon energiegvithin the nonrelativistic dipole (10,11,
approximation. While, in view of the free parameter in-
volved, the quantitative significance should not be over-
stated, this model contains the proper physical input and
leads to at least qualitatively correct results for all energies. In the previous section, we showed that the half-collision
In particular, it leads to the correct shape of the cross sectiomodel proposed in this paper is able to give cross sections in
with a single maximum at approximately the correct energysurprisingly good agreement with experiments over a wide
At this point, a few further comments about the use of Eqrange of energies, given the simplicity of the model. It
(23) within the HCM are in order. First, the relatively crude seems, therefore, worthwhile to use the model for a calcula-
approximation of replacing, by an averag€e) should be tion of triple ionization cross sections. As discussed above,
addressed. Even if one accepts this approximation as necdke ansatz divides the double-ionization process into two se-
sary simplification of the numerical calculation, there is noquential processes, namelprimary) photoionization and a
unique choice for(e) which can be justifieca priori. In  subsequentsecondary half-collision, which are calculated
practice, we tested several values(ef between 24 eV and separately. In the generalization to the three-electron case,
55 eV (first and second ionization potentiaind found the which is presented below, an analogous breakdown is at-
result to be largely insensitive to the actual value used, inempted. Here we decompose the process in sequences of
particular for high photon energies. For the lowest energyiwo-electron processes: as a primary process we consider the
shown in Fig. 1, the values @f>"/¢ " obtained with differ- ~ double photoionization of the two inner electrons{)Lof Li
ent choices of €) differed by about 11%. One should, how- (more precisely, of Li as we ignore the presence of the
ever, note that this approximation cannot be used to calculateuter-shell spectator electron in this first gtépllowed by
the transition amplitudes into bound statg®., excitation pair-wise electron-electron scattering at the “spectatos” 2
rather than ionization of the second elecirsince, depend- electron. The second step corresponds to two subseguent
ing on the value chosen fdk), different bound final states dependenhalf-collisions of the two primary electrons with
will come into resonance and the approximation will breakthe third. This decomposition is both appealing for physical
down. Instead, one has to invoke a completeness relation t@asons as well as technically convenient. Electron-electron
determine the single-ionization cross section as the differcorrelations between the two inner electrons are strong while
ence between the total cross section and the doubldhey are very weak with the outer electron. A perturbative
ionization cross section. treatment of the final-state electron correlation within the
Another critical point is the relative phase between theframework of the HCM seems therefore appropriate. Further-
first-order and second-order term in E3). In an ordinary  more, the inner and outer electrons in Li are well separated in
Born series, terms of different ordbrcarry a relative phase both coordinate space(r(),s/(r),s<1) as well as energy
exdi(N—N")7/2] and add incoherently foN—N’ odd. In  space(the binding energ¥Eg(1s?) accounts for 97% of the

In the following section, we will treat the three-electron

A. Generalization of the half-collision model
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total binding energy From a technical point of view, this Labeling the outer electron by 1 and the inner electrons by 2
decomposition allows the usageatd initio methods of two- and 3, the amplitude for triple ionization within the HCM to
electron systems for double ionization in the first stepfirst order in the electron-electron interactigp, is given by
thereby accounting for electron correlations in both the ini-
tial state and final state as well as the energy sharing between

these electrons_, ac_cur_atel_y while neglgctiqg the spectator aﬂ:_ifoc dtei(Etfm_E}m)t<¢f|E(p2+p3)-A|¢i>
electron. The triple ionization cross section is calculated as —» c
o3 - f dty | dtel & g (v
03+(Li)=?02+(Li+), (26) —e t
o

+ \/gzle's))ﬁri'_hgtzei'_'ﬁtli(pz‘F P3)-Al). (34
wherea?" (Li™) is taken fromab initio methods while the ¢
ratio o>* /0" is determined by the HCM.

An important point to be noted with reference to E26)  As in the double-ionization case treated in Sec. I, in the
is thato?*(Li ") refers to true double ionization in a two- following discussion we consider the outsecondaryelec-
electron system as opposed to two-electron removal in th&on (1) to be distinguishable from the two inngorimary)
neutral three-electron system, i.e.g?*(Li). Unlike electrong2,3) and neglect antisymmetrization. The first term
a?*(Li"), the double ionization of neutral Li includes a sig- represents the shake amplitude, while the second term con-
nificant contribution from indirect processes of inner-shelltains the additional electron-electron scattering between the
single ionization followed by Auger decay. ejected electrons and the spectator electron. In(E8). we

The treatment of triple ionization within the HCM pro- have used the assumption that the spectator electron is
ceeds in close analogy to the two-electron case. In analogy tweakly correlated with the pair of inner-shell electrons in the
Egs. (1) to (7), we denote the initial and final states by final state such that the wave function can be factorized. If
we now employ a similar approximation for the initial state

|\I}i>=|¢i(11213)nw,(r= 1>! (27)
|¢'|(1,2,3)>:|¢)|(1)l//|(2,3)>, (35)

|Wi)=]¢1(1)¥:(2,3n, ,=0). (28
the first term in the transition amplitude factorizes into the
The model Hamiltonian for the HCM for Li-like systems amplitude for double ionization of the inner electrons times

reads an asymptotic one-electron shake factor for the spectator
electron,
H=h(1)+h(2)+h(3)+hp,+ V2
] 1
+VEI+VED+ wE3en, (29 alj=—2mi JE—Ei—wpn)(4(2,3)] c (p2+P3)-Al4i(2,3)
The channel Hamiltonians for the entraneg (@and exit () X{p¢(1)|pi(1)). (36)

channel are

It is important to note that in the present treatment the ion-
H*=h(1)+h(2)+h(3)+hpp+Vi2+ v+ vE? ization dynamics of the (§) is taken into account accu-
(30 rately (save for the presence of the spectator ele¢irdhe
shake approximation is only invoked for the spectator elec-
and tron. The shake factor is given by the overlap between the 2
single-particle orbital of the neutral lithiuma; (1)) with the
hydrogenic (bound or continuum orbitals |#¢(1)) of the

) ) The second term in E¢34) can be written as a product of
The corresponding channel perturbations read the amplitude for photoionization to an intermediate con-
tinuum state k,,,k,,) followed by the electron-impact ioniza-
1 tion of the spectator electrdnp, (r,)=(1/(2m)%?)e'kn 2]
V“=H—H“=W(2’3ph)EE(p2+ p3)-A (32 "
3
and a'f'io«gz i UeIVED (D) i (2) i (3))
B B (1.2) 4 \s(1,3) 1 1
VP=H-HP=Ve™+ Vee™+ c(p2tpa)-A. (33 X i, (2) i (3)| 5 (P2t Pa)-Ali(23). (37)
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The notation in Eq(37) is rather sloppy in that we did not e make the further approximation that the outer secondary
write the integrations and phase factors related;tandt,  €lectron will be slow and electrons 2 and 3 share the total
that appear in Eq(34) for the sake of a simpler notation. €nergy[see also the discussion following E@2)],

They are treated exactly as in the two-electron dd&gs.

(17), (20), and(22)]. In Eqgs.(36) and(37), we use as single-

particle orbital for the initial state of the spectator electron, a

Roothaan Hartree Fock wave function k3+ k3= 2E, (41)

2 6
¢i(ry)= 121 cje*“ir+j2,3 cire " Yo (38  sothat

with the coefficientsc; and «; for the 2s orbital given in

Ref. [23] with binding energye;=—0.1981 a.u. The final 1 _
state ¢ is a hydrogenic bound or continuum orbital in the Pi(ra,ra)= —GJ anj a3k 1s(Kz k)
field of the bare Li nucleus. (2m)
The half-scattering amplitude in E¢37) is evaluated in ek Tagi 2E— ks 15 (42)

the same way as in the two-electron case, namely, in first-
order time-dependent perturbation theory treatifg as a
time-dependent perturbation
Inserting Eq.(42) into the first matrix element of Eq37),
we are then left with expressions of the form

ANty= ——
Vee (M Iri—kit|’ 39
where the outward trajectory of the “projectile” electron (¢f(1)¢k2(2)¢k3(3)|vé§2)| ¢i(1)¢kn(2)¢ko(3)>
starts near the nucleus with zero impact parameter relative to
the nucleus. Details of the evaluation of the matrix elements =(¢(1) $1,(2)| VS (1) i (2)) 8Kz~ ko)
for the half-scattering amplitude can be found in the appen-

dices. (43

We employ a Fourier transform of the final-state wave
function ¢(r,,r3)
and a similar expression involving(ele's). Subsequent inte-
L gration overd3k, eliminates thes distribution. The remain-
3 3, =~ Koo ikaT ing bracket on the right-hand side of E¢J) is thus reduced
(277)6f d k3f dkz, i(ky kg)eTerzelterms to a two-particle matrix element similar to that for the two-
electron problem. The only difference to E48) is that the
5 5 ~ expansion (40) requires an additional integration over
J d°k3 f A kathe(K2,K3) dia(r2) dia(rs).  d3k,dQ,. The half-collision part of Eq(37) is thus written
as a sum of two independent half-collisions of the outer elec-
(400  tron with electron 2 and electron 3, respectively,

bi(ra,rz)=

1
(2m)®

(A G2V Dy (2)) +  (kyoks)

a%“j}ékn,koj d93j d3k2l~ﬂf(k2,k3) .
half coll. with v =k,

x<¢kn(2)¢ko(3)|%(P2+P3)'A|¢i(2,3)>- (44)

Within the impact-parameter approximation employed hereg_ physically, this can be seen from the fact that the initial

the resulting half-collision transition probabilities into a final giate js spherically symmetric, so after the complete process
state with given energy for the secondary electiian, after  has been broken down into independent two-electron colli-
summation ovel,m) do not depend on the directioks and  sions, the only physically preferred axis is the direction of

042720-8



HALF-COLLISION MODEL FOR MULTIPLE . .. PHYSICAL REVIEW A 64 042720
the outgoing “projectile.” Mathematically, it relies on the 5
fact that= Y7 (Q)Ym(Q) = (2| + 1)/(4w) is invariant un- P(e)=%; fdﬂsf szJ d°rg

der rotation. The half-collision integral then selects final 5
statgs that haven=0 Wi.th respecfr to the diregtion of the Xf d3r2¢f(r2,r3)eik2-r2ei\/2Efkglz3-r3 . (45)
“projectile” as the quantization axissee Appendix € It is,

however, important to note that this independerjce of th‘\:whereezkglz is the energy of the slower of the two primary
half-collision transition probabilities of the directioks and  electrons and the summation is over the final states of the

ks (after summation ovem as discussed aboyv&olds only ~ Primary electrons only. The half-collision contribution to the
for the secondary electron, which has to be clearly distinirans'tr']On probab|::ty_ca? )then be obtained by integrating
; ; ; the energy sharing(e).
guished from the photoabsorption process, which does, dfV€' : .
course, not lead to isotropic emission of the primary elec-, , With the amplitudes evaluated according to E@§) and
. o 44), the cross section ratie®" /o™ is then given by sum-
trons. The argument therefore relies on the factorization o

. : ) . _ming over continuum ¢, ;) and bound &, ) final states,
the final state, which allows for an independent Summat'or}espectively. Using the same approximat{]ons, namely, a clo-

over final states for the primary and secondary electronsy;re approximation for the intermediate states and incoherent
respectively. In this case, we can define the energy sharingqdition of shake and half-collision contributions, discussed
distribution of the primary electrons: in detail for the two-electron case, we finally have

f:dt< bx.l
f:dt< Pn

2

ei(kzlz—Ei)t< 1 + 1 ) ‘ ¢i>
[r—\2ete,| |r—2(E-elte,

2

&+2fWW%WWZJM4%%)

2+

ei(Zzl(ZnZ)Ei)t(

. el
% [{bnil &) +;ﬂ fdfp(f) |r_¢ztez|+|r— 2(E— e)te| i’

(46)

The incoherent addition of shake and half-collision contribu-perturbation theory but also to exclude contributions that are
tions has already been discussed in the two-electron casiconsistent with the threshold for impact ionization. Within
The same argument, namely, avoidance of double countinghe HCM, the “projectile”(i.e., the departing electromust
applies to the integration of the half-collision probabilities have an energy in excess of the threshold for ionization of
(rather than amplitude®over the energy sharing distribution the spectator electrom, should be somewhat larger than the
P(e), which already involves a summation over differentinitial binding energy of the & electron in neutral Li because
final states for the primary electrons. The double-ionizatiorthe screening of the nuclear charge due to the tweléc-
cross section for I'i does not explicitly appear in the ratio trons is no longer operative during the half-collision. More-
Eq. (46). However, it enters implicitly through the energy over, the assumption of a projectile moving with(reeay
sharing distributionP(€) of the ejected primary electrons

from Li* in its ground state. Since?" for Li* can be in- 6 ‘ ‘
dependently and accurately calculated, the absolute triple T oo experimental data
ionization cross section can be determined using E4%. i == half collision model
and (26).

B. Results and discussion

G.w [b]

The validity of first-order perturbation theory in the
— e interaction for triple ionization underlying Eg46) is a 2 - -
priori not obvious. Even in the limi€,,—», the energy "
sharing in double ionization is strongly asymmetticU -
shaped)), consisting of a slow and a fast electron, which -
give rise to different half-collision contributions with the 0, 00 'IB‘OO*—"‘* = 500
slow electron providing the dominant term. For the extreme E, [eV]
low-energy tail, the perturbation theory breaks down. We o
have therefore introduced, in the energy integral in @), FIG. 4. The triple ionization cross section of lithium: experi-
a low cutoff e> €., thereby excluding the most asymmetric mental datgcircles and HCM resultgsquares At 301, 540, 780,
energy sharing contributions. This cutoff is not only requiredand 1068 eV photon energy, error bars indicate the effect of differ-
to suppress spurious contributions from the breakdown oént cutoff energies. .
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HCM does not converge to this limit since the final-state
Coulomb correlation represented kY. does not vanish as
Epn—. Van der Hart and Greerjd 0] have calculated the
triple-ionization probability by representing the lithium
ground state and the final states of the residual two-electron
Li* system(bound states, single continuum, double con-
tinuum) by B splines. For the fast electron instant removal,
i.e., the shake limit, is assumed. Transition amplitudes have

0.001 -
F— o
- [10]
0 0.001

then been calculated in terms of overlap integrals between
the ground statéwith r;=0) and the various final states in

Li *. This method features a more accurate representation of
the initial state as well as the final state of the “slow” elec-
tron in the double ejection process. On the other hand, this
method neglects any residual interaction of a “fast” electron
with any of the residual electrons, i.e., half-scattering with
the spectator electron as well as the electron-electron corre-
lation in the final state of the ) two-electron pair. When
Bomparing results fos3* /a2 * | it is important to realize that
Ref. [10] includes indirect processes contributing to
a2 (Li), namely via the excitation of doubly excited states
and subsequent autoionization. It was estimated in [Rél.

that they account for more than 40% of all double-ionization

. . . . events, so that the ratio of triple to double ionization would
constant WeII—def_lneq velocity underly_lng the impact- be roughly a factor of 2 smaller than the one shown as
parameter approximation be(_:omes_ qgestlonable for slow pit‘CMdirect in Fig. 5, which usesr2*(Li*). Applying this
mary electrons due to their intrinsic momentum sprea orrection to the HCM(denoted by HCMyge, in Fig. 5

(Compt.of‘ profile. Near the radius c_)f theszellectron wh(_ere brings our data in the range of the experimentally observed
the collision will take place, the projectile will have a higher ratios at finite energies. However, our high-energy data

kinetic energy balancing the potential.energy at intermediatgvould still differ from the previous estimates, even though
glstar:jces from tt?e nucleu;. A precise valuhe fol; ? IOWerby a smaller amount. A direct comparison of the asymptotic
found eﬁ car;]no'; el glvenl, _owever,kazlwg show below, Vr‘]’eratios is further complicated by the fact that the method of
Ollm t aét e final result Is remarkably insensitive to t eRef.[lO] as well as ours require additional technical approxi-
value used. mations in the evaluatioan approximate “incoherent” pro-

i Fl_gure 4 dlsplays thti resulu?g tnple_ |on|tza}tlgn croTsr? SeC]ection of Li* orbitals onto hydrogenic orbitals and the indi-
ion in comparison with recent experimental da&. The rect determination of triple ionization by subtraction in Ref.

theoretical error bar represents variation for different choice 10], and the closure approximation for intermediate states in
of €. varying between 0.4 and 1 a.u. The uncertainty in the,, present HCM Clearly, more comprehensive numerical

. 3+ - .
final result foro™" does not exceed-10%, which is well g4 gies are required to determine the high-energy limit more
within the overall uncertainty we can expect from the S'mpleaccurately.

HCM. The agreement for energies above the cross section
maximum €,,>300 eV) is again remarkably good consid-
ering the simplicity of the model.

The ratio 03*/0?* is a smoothly decreasing function  In this paper, we have presented the half-collision model
(Fig. 5. This smooth energy dependence suggests the eXer the calculation of multiple ionization by single-photon
trapolation toE,,— o, which allows a comparison with pre- absorption. The model is based on a simple and appealing
vious estimates for the asymptotic “shake-off” linfit0,11  underlying physical picture. It can be derived from a high-
in close analogy to the case of double ionization in two-energy approximation in the framework of a Born-type per-
electron system$24-26. In Fig. 5 we present a smooth turbation series. In a benchmark calculation for helium
1/E,, extrapolation of this ratio to zero which should, how- double ionization, we have shown that the HCM is capable
ever, be taken with caution since a numerically stable evaluef producing cross sections in remarkable agreement with
ation of Eq.(46) is difficult to achieve a&,,—c and there- experiments and other more elaborate numerical calculations
fore could not be directly verified. The indicated limit differs over a surprisingly wide energy range. We furthermore ap-
from the previous estimates. Coopgtl] has calculated plied the model to the triple ionization of lithium, where
asymptotic shake probabilities by assuming that both inneragain the results compared favorably with recent experi-
shell electrons are removed instantaneously, i.e., a doubleaents. Previous calculations have been limited to the high-
shake process. He used for the spectator electron Hartremergy limit, which was assumed to be approached only for
Fock wave functions to describe the initial state and proseveral keV photon energy. In this high-energy limit, our
jected them onto hydrogenic final states. This approachesults differ from those previously obtained, which can only
closely resembles the first terﬂﬂii [Eqg. (36)]. However, the in part be attributed to the neglect of indirect processes lead-

0.002 0.003

1/E,, [1/eV]

0.004

FIG. 5. The ratioo®"/0* for photoionization of lithium as a
function of 1E. The high-energy limits given in Refg8,10,1] are
indicated. Note that the HCM does not include contributionso
from indirect processes, see text for a discussion. Tentatively takin
them into account on the basis of REI0] leads to a reduced ratio,
the high-energy limit of which is denoted by HGl\}, (the “error
bar” here corresponds to the range 40% to 50% indirect contribu
tions stated in Ref[10]).

IV. CONCLUSIONS AND OUTLOOK
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ing to doubly excitg—:-d intermediate states t_hat_eventually auat[eiHﬁTU(T't)e—iHBt]:eiHﬁTU(T't)(iH)e—iHﬁt
toionize and contribute to the double-ionization cross sec-

tion. — MY (T ) (iHA)e Mt
One future direction for application of the HCM is mul- . _
tiple ionization in intense laser fields. Rescattering at core =i e Ty(T,1)vhe HA (A5)

electrons of the field-ionized primary electron has been
shown to be the dominant multiple ionization mechanism o get
Such a process could be treated within an analog to the HCM

presented here. ~ s s
Uty =et"Tu(T,tye M
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APPENDIX A: MULTICHANNEL SCATTERING THEORY 4 2 2 '

For the sake of completeness of the derivation, we give a
summary of the essential steps leading to the series expreRepeatedly using this relation in EGA4), we obtain a Born
sion (13) for the transition amplitude. The content of this series expression f&(T). Note that this series contains only
appendix employs standard multichannel scattering theorfirst-order terms iV (the “weak potential’), but arbitrary
(e.g., Ref[15]) taylored to our specific problem. orders in the electron-electron interaction. To second order,
We start from the general expressi@iP). Let us define Eq. (A4) reads
the operator

T
iHBT ~—i . inB —j
S(T’)IE'H Te |H"‘T_|J dtlelH tiy/ag iH%,
T!

S(t)EeiH'BTU(T’t)efiH“t (Al)
: I o7 T iHB —iHA, iHA
from which we will finally get +(—i)?| dty| dteH t2yBe M gl trye
T ty
S= lim s(T). (A2) xe HM L . (A7)

T—ooT - —w

Thus, with Eq(11) and Eq.(A2) the transition amplitude can

Using the relatiori ¢;U(T,t)=—HU(T,t) for the time evo- be expressed as

lution operator, we obtain

. a : . i as = lim 1 2 nwo':O
as(t)=eM*TU(T,1iH e M e Ty (T ) (—iHme e “1 T,é_gg("ﬁf( )b (2)N,,
=M TU(T Hi(H-H"e ™™ x| Te M T y,(1,2n,, ,= 1)
=i e’ Ty(T,tHvee H ™, (A3)
+{ ¢1(D ey (2)n, ;=0
This leads to

T . e
_If dtlelH tlvaele ty
T!

wi(laz)nw,l)’:l>
T
ST)=s(m)- | dtasity
T )
] +<¢f<1>¢kf<2>nw,(,=0‘<—u)2
:eiHBTe*iH“T_iJ dtleiHBTU(T’tl)Vae*iH“tl
T T T _ _
XJ' dt, dtze|HﬁtzvﬁeﬂHBtZeuHﬂtlva
T ’
:eiHBTe—iHaT_if dt, e TU(T ) e M T t
T!

w e~ iH

XeiHBtlvae*iH“tl. (A4) ¢i(1’2)nw,az 1> te-- (AS)

Similarly, we use which is Eq.(13).
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APPENDIX B: AN IMPACT-PARAMETER
APPROXIMATION FOR THE HALF-COLLISION

PHYSICAL REVIEW A64 042720

where we have inserted the Coulomb interactdn.. In
order to evaluate the matrix element

INTEGRAL

As discussed in Sec. Il, for high photon energies the pri-
mary electron is very fast when leaving the target and its
trajectory will be perturbed only slightly by the Coulomb

1
<¢f(l)¢kf(2) m‘¢a(l)¢k(2)>

interaction with the secondary electron. Since the naive pic- dF(ry) da(ry)

. . . . 3 3 f 1 alll i(k*k )~I'
ture is that of the primary electron first absorbing the photon, = 3 d’r, | d rlwe f)r2
thereby being in a high-energy continuum state, it seems (2m) Loz

reasonable to make the assumption that the matrix element (B4)
(YapNw,o=0[(Llc)p2- Alin, ,=1) peaks at energieg,,

~E; that are high enough that the correspondjng can be |t ys choosek; along thez direction and assume~Kk; .
approximated by a product wavefunction Thenk,.r,=k,z, andk-r,~kz,, so that(see Ref[21] for

(1N(2m)°) ¢a(r1) k(r2). Moreover, we also assume that gn analogous treatment
the electron-electron interaction will only be a small pertur-

bation, so thak~k;. The integral in Eq(18) can then be

written as (k=Kk¢)-ra~kexa+kyyo+(k=ki)z, (BS)

o [k=(K)x,ky=(k)y ,k,=(K).]. Moreover, we have
Ii=Zap fo dt &@ErEadl( (1) i (2)|Ved tran(1,2)
k2 —k#=k?—[k+ (ki— k)12~ 2k(k—ki), (B6)

1
X< lr//ab(l!z)nw,u':o EpzA 'r//i(lrz)nw,a': 1>
_ d3kfwdt ol (k12 e K212 )t
5| ok

X(Bi(1) i (2)|VEP  $a(1) hi(2))

K—ki _K*—kf

After substitutingz,=v 7 in Eq. (B4), insertion of Eq.(B4)

1
X < d’a(l)qsk(z)nw,az 0‘ Ep2 A w'i(l!z)nw,a: 1> .

into Eq. (B3) and the use ok~k; to replace cosf) k * by
cos () k; 4, leads to

(B1)
The second matrix element is evaluated in the high-energy 1 (2432
limit analogous to the first-order term and yields " RTr (T) 4273 (¢4 i (11,=0))
a
1 e
<¢a(1>¢k<2>nw,u=o gpz-A¢i<1,2>nw,a=1> XL del a”fdsrlf dyzf dx2fdrf dk
2 32 *
- Tﬂ') 4.2Zcos(y)k* &7 (1) da(ra)
[(X1=X2) %+ (Y1 = Y2)*+ (23— v 7)?]2
X (palhi(1r,=0)). (B2) X cos( ,yf)kf—4ei(kxx2+kyyz)ei(klez—kZ/Z)(t—T)v_ (B8)
(Here and in the remainder of this appendix, we denote the
angles between the photon polarization vector krahdk; Since
asy and y;, respectively. This leads to
0| 32 vdk,=kdk,~kdk=d(k?/2) (B9)
IHT) 4N2ZEo($ali(Lr,=0))
we have

X fwdt e‘(ff*ea)tf d3k cos( ) K~ 4el (Kfr2—K22)t
0

1
X < ¢1(1) ¢ (2) m‘ ¢a(1)¢k(2)> . (B3

f dk,e 2Ky ~or5t—7).  (BL0)

Subsequent integration overthen leads to
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I 1 (2m|%? —4 P ile—et | 43
Ifi:(zT)g T 4\/2Zcos( y)k; ia<¢a|¢i(1,r2=0)>fo dtelr < jd rlf dY2f dx,

&7 (1) da(ry)
[(X1=X2) 2+ (Y1—Y2) 2+ (z,—v1)?] 2

f dk, f dk.e 2 tkyy2)p 7

1 (2m|3? - _
= (ZW)Z(T> 4\/§ZCOS(yf)k;4iaJ0 dt J dyZJ dxzel(ef*ea)t<¢a| l//i(l,r220)>
X(pr(1)|Ved Lr=(Xp,y2,01)[¢a(1)) | dky | dkee' (22, (B11)
Y
|
In order to perform the integrals over the transverse coordi- . .
natesx, andy,, let us now write f d rif d?pe'rh (B15)

where we use@ 7—o because> 1. Integration oved?7

Ky=v sin(@)coda),  ky=v sin(0)sin(a), then leads tos distributions inx, andy,, and we finally

k,=v cos(®). (B1py Aamveat
Then, sincek;~k, 1>0 and we can replace si®j~0. 2.\ 312 B
Defining = T 427 cod y) ki *
Ny v0 cog @) Xiaf dt( | Vedr1,r2=(0,0p1))| #a)
=\ 5, ) " ve sin(a) (B13 °
n v a )
' XD g | gi(1r,=0), (B16)
and
which can then be inserted in EQO) to give Eq.(22).
Po= X2 (B14) APPENDIX C: CALCULATION OF HALF-COLLISION
L Yo ' INTEGRALS IN MOMENTUM SPACE

) In this appendix, we give an example for the calculation
we can write of the half-collision integrals in momentum space. We have

to deal with integrals of the form
J’ dyZJ deJ dkyJ dke' (xatkyy2)

2w T
%f dyzf dXZJ‘ daf d@
0 0
Using Fourier transformations, this can be written in the
X exfiv®(cos(a)X,+sin(a)y,)]v?0 seemingly more complicated form

1
|=fdtj &r 1 (0 g e (D

=7 )sjd“)mf d3rf d3qf d3x o e 1Al Rfd3QJd3y¢f(y)d>(y)€Qy€ Q
Jar|ae]

qu
~n >6J die™ 4 f — [ @ygr e e e e (€2

=B(q) =f(Q)

dr d3Q

042720-13



THOMAS PATTARD AND JOACHIM BURGDCRFER

Here,B(q) is the Bethe integral

41

Bla)=— (C3

We therefore have

(277)5f dtf d3QJ d3q elwt—f(Q)e'q R(t)

xf d¥r e 1@ Qr

- .
Y [ atf o[ @ & S H(QE5(a+Q)

) 1
= (27T)2J dtf d3q el(w+q3v)t¥f(_q)’ (C4)

where in the second step we ufe{t) =vte,. With the iden-
tity for distributions

© i
f dte**=xw8(a)+P—, (CH
0 o

Eq. (C4) becomes
f(d1,92,93) (w )

:—f d%f dOI2J 5 .90
(Q1+Q2+Q3)U

U
L Pfxd de jwd
PAl Q3] GGz dO
f(d1,92,93)
(95+095+0a5)(0—agv)

(C6)

which, of course, helps only if we can evalud{g) analyti-

cally. To proceed, we make use of the following observa-

tions: (a) the final state is a hydrogenic wave function

i(r)=Cie KU F (1+1—i 9,2+ 2,2kr) Y,
=¢i(1)Yim (C7)

and(b) ¢;= ¢i(r)Yqo. Furthermore, we use the expansion

e I
€¥=4r> 2 i"[QNY QY (X).
I'=0om'=~1'
(&)

This leads to

PHYSICAL REVIEW A64 042720

o0 |’
Q=2 X

I'=0m'=—1'

:drr2¢?(r)¢i(r)mi"iw(Qr)

fdQY (DY (DY (Q)

= \Jami'Y}: (Q)f dr ¢F (r)¢i(nj(QNrz.  (C9)
We now use
) \/; 1 1+1 1 -
Jl(Qr):m(E) aMO,Hl/Z(Z'Qr)
(C10

(whereM is Kummer’s function and

=(—2ikr)"FDe KM ;g0 —2ikr).
(C11)

If we further assume thap;(r) is of the form

bi(r)=2, cjrhe (C12

with normalization constantsc; and integer n; (e.g.,
Roothaan Hartree Fock wave functiof&s]), then even the
remaining r —integral in Eq.(C9 can be evaluated in a
closed form. Using formuldA2) of Ref.[27], we get

L(l+1+in)|e ™
21+ DIT(1+3/2)

f(Q)=\/27Tki'| ¥ (Q)

c;T(21+3+n))
+i(Q—K)](21+3+n))

x(kQ)'> [

XFy| 2143401+ 1) +1+i7,2 +2,2

+2;

2iQ —2ik ) (€13

QK ' a;+i1(Q—K)

for continuum final states and

Z 1+3/2 (n+|)|
H) V(n=I—1)!2n

C]F(ZI +3+ nJ)
(a;+2ZIn+iQ)@+3+m)

f(Q)=i' V2

) 2
I'(+3/2

Yi(QQ'Y

XFy 21+34n;,I+1]+1-n2+22

2iQ 27/n
aj+Z/n+iQ ' aj+Z/n+iQ

+2; (C14
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for bound final states, wheri€, is an Appellfunction[28].
After inserting the final expressiofC13) into (C6), the an-
gular integrationgoverd{);) can be carried out analytically
again. In the first integral of EqC6), we get

1
f d(cos®)d q%—cos)ﬂ(cos)
-1
w w
P|(—) —e(—-1)
= vq/ vq (C1H
0 otherwise,

and in the principal part integral we can insert the explicit
expressions for th@,, e.g., forl=0 we obtain

(C16

Po(cos®) _
wlvq—cos® :

1+ w/(vq)
|1- w/(vq)]

1
PJlld(cos@)

where of course the remaining integral owghas to be un-
derstood as a principal part integral again. Ferl,2,3, we
get
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Pfd ® P,(cos®)
_,4(e0s0) = cos®
® 1+wl(vq))
=—2+ In , C1
o) "\ T=wloq) 17
Pfld " P,(cos0)
1 (cos )w/vq—cosG)
1+ w/(vQ)

g S
~ g 2%\ v N=wl(oq)])’

(C18
Pfld o P5(cos®)
1 (cos )w/vq—cos®
4 D) 1l ow 1+ w/(vQ)

4 sl

|1—wKUQH)
(C19

3 “lvg) " 2vq
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