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Half-collision model for multiple ionization by photon impact
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We present a simple half-collision model that allows the approximate calculation of absolute cross sections
for multiple ionization by breaking this process down into a primary ionization event followed by a half-
scattering event in which additional electrons are ionized. As a critical test for the feasability of this approach,
we consider the double ionization of two-electron systems, which we describe in terms of the single ionization
of the ‘‘primary’’ electron followed by impact ionization of the slow ‘‘secondary’’ electron. For triple ionization
of lithium, the model decomposes the three-electron breakup process into a double ionization of the two inner
electrons followed by electron-electron half-scattering of the receding electrons at the residual ‘‘spectator’’ 2s
electron. We find surprisingly good agreement with recent experimental data.
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I. INTRODUCTION

In recent years, considerable progress has been mad
the understanding and theoretical description of multiple
citation and ionization processes induced by single-pho
absorption. Experimental and theoretical activities have
cused primarily on two-electron emission. Accurate measu
ments of double ionization, in particular the ratio of doub
to single ionization, have become available@1,2#. At the
same time, accurateab initio methods have been develope
that allow for a quantitative description of two-electron pr
cesses such as double ionization or ionization and excita
@3–7#. The methods currently employed heavily rely o
large-scale numerical calculations that push the limit of
isting computing resources. Going beyond two active el
trons within anab initio calculation, treating correlations be
tween all electrons, still appears to be beyond the pre
computational capabilities. Meanwhile, pioneering expe
ments on the triple photoionization of lithium have been
ported @8,9#. Theoretical efforts initially focused on th
asymptotic limit of high photon energiesEph→` for which
predictions can be made within the framework of ‘‘shak
approximations@10,11#. For finite photon energies, noab
initio calculation is, to our knowledge, available.

In this paper, we present an analysis of multiple ionizat
based on a half-collision model~HCM!. A preliminary de-
scription of the model and its application to the lithium trip
ionization has already been reported previously@12#. Here,
we give a detailed account of the model. Moreover, by
plication to the double ionization case, which can be trea
ab initio, we give a critical analysis of its limitations an
range of applicability. The HCM can be considered as
extension of a simple picture originally suggested by Sam
@13# for double ionization: the ejection of the second electr
should resemble electron impact ionization by the prim
electron that absorbs the photon and leaves the atom

*Present address: MPI for the Physics of Complex Systems, N¨th-
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high speed. Consequently, the ratio of double to single i
ization at high photon energies, which is proportional to t
conditional probability for ejection of the second electr
upon photon absorption by the first electron, should be p
portional to the electron-impact ionization cross section
the singly charged ion. By allowing for electron-electro
scattering, electron correlation effects in the double c
tinuum can be approximately taken into account. There
however, important differences to electron-impact ionizatio
as the primary electron absorbing the photon~the projectile!
is initially localized inside the atom near the nucleus, t
electron-electron interaction ‘‘on the way out’’ correspon
to a ‘‘half-collision.’’ This process, which can be associat
with certain diagrams within the framework of many-bod
perturbation theory~see, e.g., Ref.@14#!, is sometimes re-
ferred to as ‘‘TS1.’’ Moreover, while the electron-impact ion
ization cross section decreases}1/E ~or lnE/E for dipole
allowed transitions! with the energy of the ionizing particle
the double-ionization cross section should converge to
‘‘shake-off’’ limit as E5Eph→` rather than to zero as in th
original model@13#.

In this paper we present the application of the HCM
two processes, the double ionization of helium and the tri
ionization of lithium. Within the HCM for the double ioniza
tion, this process is decomposed into the photon absorp
~i.e., single ionization! and the subsequent electron-electr
interaction of an electron-impact ionization, where the tw
parts can be calculated separately. As we will show bel
for intermediate to high energies, the HCM yields go
agreement with fullyab initio calculations for the double
ionization of helium. For triple ionization, we decompo
this process into double ionization of the two deeply bou
strongly correlated 1s electrons followed by half-collisions
of the two receding electrons with the third, weakly bou
2s electron. This decomposition exploits the strong no
equivalence of the inner and outer electrons on Li-like s
tems. The binding energy of the two inner electronsEB(1s2)
accounts for'97% of the total binding energy. The inte
shell correlation between the inner and outer electron is v
weak and the electronic wave functions are spatially w
©2001 The American Physical Society20-1
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separated due to the large difference in radii,^r &1s /^r &2s
!1. The primary photon absorption at high energies w
therefore take place in the 1s shell, which suggests th
double ionization of the 1s2 pair as the dominant precurso
to triple ionization. With this ansatz, we find remarkab
good agreement with recent data considering the simpli
of the model.

The paper is organized as follows: In Sec. II, we w
introduce the half-collision model and present applicatio
for the case of double ionization. We will show that the c
responding equations can be derived from a Born-type
turbation expansion and present numerical benchmark ca
lations for helium. The results are compared with data fr
highly accurateab initio methods. After establishing the us
fulness of the HCM in the two-electron case, we will show
Sec. III the generalization to triple ionization. The paper en
with a brief summary and a short outlook~Sec. IV!. In order
not to divert the reader from the basic ideas of the approa
a few of the technical details are given in the Appendic
Atomic units are used throughout the paper unless otherw
stated.

II. THE HALF-COLLISION MODEL FOR DOUBLE
PHOTOIONIZATION

In this section we will derive the equations underlying t
HCM from a perturbation expansion and apply the mode
the double photoionization of helium. The resulting expr
sions can be evaluated numerically and the results for he
are compared with well-known accurateab initio methods.
Helium serves as a test case for two reasons: For one
two-electron problem can be accurately treated with curr
computational capabilities and can therefore serve as a g
for semiempirical models. Furthermore, for the HCM, whi
treats the emission of the ‘‘primary’’ and the ‘‘scattered
electron on an unequal footing, the two-electron emiss
from the symmetric helium (1s2) ground state is the ‘‘worst-
case’’ scenario and therefore provides a stringent test.

A. Notation

We denote the initial and final state by

uC i&5uc i~1,2!&unv,s51& ~1!

and

uC f&5uf f~1!fk f
~2!&unv,s50&, ~2!

wherenv,s is the occupation number of modev and polar-
ization s of the photon field, and we assume that the fin
state contains at least one electron in the continuum w
wave numberk f . For reasons of technical simplicity, we wi
later assume thatkf is large enough that this electron can
described by a plane waveuk f&. The latter assumption is
however, not an essential ingredient to the model. Such
approximation for the final state is justified only for hig
photon energies, but we will show below that it neverthel
leads to surprisingly good results over a wide energy ran
We write the model Hamiltonian underlying the HCM as
04272
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H5h~1!1h~2!1hph1Vee
(1,2)1W(2,ph) ~3!

where Vee
(1,2)51/ur12r2u describes the electron-electron in

teraction andW5(1/c)p2•A the interaction between th
electromagnetic field and the atom. For simplicity, we tre
here and in the following the primary and secondary el
tron, i.e., the ionizing and ionized electron, in the ha
scattering process as distinguishable. Clearly, a complete
scription requires proper antisymmetrization. W
furthermore define the channel HamiltoniansHa andHb as

Ha5h~1!1h~2!1hph1Vee
(1,2) , ~4!

Hb5h~1!1h~2!1hph , ~5!

with channel perturbations

Va5H2Ha5
1

c
p2•A ~6!

and

Vb5H2Hb5Vee
(1,2)1W(2,ph)[Vee1

1

c
p2•A. ~7!

Accordingly, uC i& is an eigenstate ofHa

HauC i&5~Ei1ei !uC i&5Ei
totuC i& ~8!

and uC f& is one ofHb

HbuC f&5~e f1kf
2/21ef !uC f&5Ef

totuC f&. ~9!

In the above equations,e stands for the energy of the photo
field, Ei is the energy of the atom in the ground state, ane
andk2/2 are the energies associated with electrons 1 an
respectively, in the final state. Finally, the energy of t
singly occupied photon mode is

vph5ei2ef . ~10!

B. Born series for the transition amplitude

We are interested in the transition amplitude

af i5^C f uSuC i&, ~11!

where theS matrix is defined as~e.g.,@15#!

S5 lim
T→`T8→2`

eiH bTU~T,T8!e2 iH aT8. ~12!

Standard multichannel scattering theory leads to a series
pansion for the transition amplitude~Appendix A!, which
reads
0-2
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af i5 lim
T→`T8→2`

^f f~1!fk f
~2!nv,s50ueiH bTe2 iH aTuc i~1,2!nv,s51&

1K f f~1!fk f
~2!nv,s50U2 i E

T8

T

dt1eiH bt1Vae2 iH at1Uc i~1,2!nv,s51L
1K f f~1!fk f

~2!nv,s50U~2 i !2E
T8

T

dt1E
t1

T

dt2eiH bt2Vbe2 iH bt2eiH bt1Vae2 iH at1Uc i~1,2!nv,s51L 1••• .

~13!

Because of the orthogonality of the Fock states,

^nv,s50unv,s51&50, ~14!

the first nonvanishing contribution toaf i originates from the second term in Eq.~13!,

af i
I 52 i E

T8

T

dt1ei (Ef
tot

2Ei
tot)t1^f f~1!fk f

~2!nv,s50u
1

c
p2•Auc i~1,2!nv,s51&. ~15!

Taking the limitT→`, T8→2`, the first-order term for the transition amplitude becomes

af i
I 52 i E

2`

`

dt1ei (Ef
tot

2Ei
tot)t1^f f~1!fk f

~2!nv,s50u
1

c
p2•Auc i~1,2!nv,s51&

52 i 2p d~Ef2Ei2vph!^f f~1!fk f
~2!nv,s50u

1

c
p2•Auc i~1,2!nv,s51&. ~16!

The physical picture is that of an atom in a~ground! state with energyEi absorbing a photon with energyv, which leads to
ionization of electron 2 and simultaneously to excitation of electron 1 to a~bound or continuum! statef f in a ‘‘shake’’ process.
This results in the well known ‘‘shake limit’’ which provides the correct~nonrelativistic! high photon energy limit for multiple
ionization. The second-order contribution originating from the third term in Eq.~13! is

af i
II 52Xa,bE

T8

T

dt1E
t1

T

dt2ei (Ef
tott22Ei

tott1)^f f~1!fk f
~2!nv,s50uVeee

2 iH bt2ucab&^cabueiH bt1
1

c
p2•Auc i~1,2!nv,s51&.

~17!

The physical picture underlying Eq.~17! is that of an atom absorbing a photon, creating an intermediate statecab in the
process which, in turn, leads to a final state by electron-electron scattering. Choosing as basis statescab the eigenstates ofHb,
we find

af i
II 522p d~Ef2Ei2vph!Xa,bE

0

`

dtei (Ef2Eab)t^f f~1!fk f
~2!uVeeucab~1,2!&^cab~1,2!nv,s50u

1

c
p2•Auc i~1,2!nv,s51&.

~18!

The final-state electron-electron correlation is taken into account in Eq.~18! to first order ofVee while the amplitudeaf i
II is,

overall, of second order. From the derivation of the series expansion~Appendix A!, it is easy to see that the higher-order term
in the expansion correspond to contributions that are to first order in the photon-atom interaction and to subsequent
orders inVee. This is analogous to the so-called strong potential Born theory familiar from charge-exchange calculat
ion-atom scattering@16,17#. In our case, the ‘‘weak’’ potential, taken to first order, is the photon-atom interaction, while
Coulomb interaction can be taken into account to arbitrary order. The obvious generalization to infinite order inVee would then
be to replaceVee in Eq. ~18! by the CoulombT matrix for electron-electron scattering

af i
II 522p d~Ef2Ei2v!Xa,bE

0

`

dtei (Ef2Eab)t^f f~1!fk f
~2!uTeeucab~1,2!&^cab~1,2!nv,s50u

1

c
p2•Auc i~1,2!nv,s51&.

~19!

For later reference, we note that in the generalized form, Eq.~19!, the range of the HCM could be extended to lower pho
energies, i.e., to lower kinetic energies of the ejected primary electron. We restrict ourselves in the following to the nu
evaluation of the lowest-order perturbation theory. Combining Eqs.~18! and ~16! yields
042720-3
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af i522p i d~Ef2Ei2vph!Xa,b^cab~1,2!nv,s50u
1

c
p2•Auc i~1,2!nv,s51&S ^f f~1!fk f

~2!ucab~1,2!&

2 i E
0

`

dt ei (Ef2Eab)t^f f~1!fk f
~2!uVeeucab~1,2!& D . ~20!
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At very high photon energies, the first-order contribution
Eq. ~20! leads to the asymptotic shake factor@18#

^f f~1!fk f
~2!nv,s50u

1

c
p2•Auc i~1,2!nv,s51&

→S 2p

L D 3/2

4A2 Z

3cos~g! kf
24^f f~1!uc i~1,r250!&.

~21!

Here,g is the angle betweenk f and the photon polarization
vector, and the factor (2p/L)3/2 stems from the box quanti
zation of the photon field. We now employ a straight-li
impact-parameter approximation~see Appendix B for de-
tails! for the fast electron taking off near the nucleus~‘‘half-
scattering’’!. The transition amplitude is then given to seco
order by

af i522p i d~Ef2Ei2vph!S 2p

L D 3/2

4A2 Z cos~g!
1

~2Ef !
2

3S ^f f uc i~1,r250!&2 iXaE
0

`

dt^f f uVee~ t !ufa&

3ei (e f2ea)t^fauc i~1,r250!& D . ~22!

In Eq. ~18!, we chose the intermediate statescab to be eigen-
states ofHb. They are therefore productsfa(r1)fb(r2) of
one-electron hydrogenic states. From the doubly infinite s
over these intermediate states, one sum is removed by
impact-parameter approximation, but a summation ove
complete set of single-particle statesfa is still required. In
addition to the impact-parameter approximation describe
detail in the appendices, we made the approximation~which
is implicit in any impact-parameter treatment! that the energy
transfer during the half-collision is small and the second
electron will be slow so thatkf

2/2'Ef . For a numerical
evaluation, expression~22! is still not well suited because o
the infinite sum over intermediate states and the highly
cillatory nature of the integrals. However, with one furth
approximation one can greatly reduce the numerical eff
In our calculations, the energyea of the intermediate state
was replaced by an average energy^e& independent offa ,
thereby invoking a closure approximation. In this case,
transition amplitude is reduced to
04272
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af i522p i d~Ef2Ei2vph!

3S 2p

L D 3/2

4A2 Z cos~g!
1

~2Ef !
2 S ^f f uc i~1,r250!&

2 i E
0

`

dt^f f uVee~ t !ei (e f2^e&)tuc i~1,r250!& D . ~23!

Finally, the probabilities for single and double ionization a
obtained by summing over bound and integrating over c
tinuum states, respectively, of the secondary electron. N
that all prefactors as well as density-of-states for the pho
field and for the primary electron~i.e., the photoabsorption
probability! drop out when calculating the ratios21/s1.

At this point, it may be worthwhile to point out a few
differences and similarities to the case of double ionizat
by charged particles@19#. The analogous process@Eq. ~22!#
is in this case referred to as ‘‘TS1’’~where 1 refers to first-
order perturbation in both electron-electron scattering a
primary ionization! and closely resembles the half-scatteri
process. The major differences lie in the primary ionizati
event. Charged-particle ionization is not confined to ne
zero impact parameter but extends over the entire ato
charge cloud. The matrix element is not restricted tor250.
The ejected primary electron spectrum is broad with a p
at near-zero energy rather thand shaped for photoelectrons
This has profound consequences for the ratios21/s1 @20#.
Moreover, the final state is a four-body rather than a thr
body Coulomb continuum state. The exit channel pertur
tion due to the receding projectile~proton, electron! cannot
be neglected unless asymptotic speeds (vP.10 a.u.! are
reached.

C. Numerical results for helium

Since for two-electron problems accurateab initio calcu-
lations are available, the quality of the HCM presented ab
can be tested by comparing it with results obtained fr
well-established theoretical methods as well as experime
As a critical test of the model, we have performed calcu
tions for the double ionization of ground state helium. Th
test case might be considered, to some extent, the worst
scenario for this model. In the helium ground state, b
electrons are equivalent and there is a maximum amoun
correlation in the initial state~e.g., it is well known that a
simple product wave function ansatz fails by a wide mar
to provide the correct shake limit!. The picture of a primary
electron that absorbs the photon and subsequently scatte
0-4
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HALF-COLLISION MODEL FOR MULTIPLE . . . PHYSICAL REVIEW A 64 042720
the second electron appears poorly justified in such a c
One might expect that for more asymmetric electron c
figurations with less correlation among the electrons,
HCM should perform better. The results of our calculatio
and the comparison withab initio data are summarized i
Figs. 1, 2, and 3.

In Fig. 1, the ratios21/s1 as obtained within the HCM
@by a numerical evaluation of Eq.~23!# is compared to a
hyperspherical close-coupling calculation at lower energ
and a perturbation expansion@6# at high energies. The agree
ment with these more involved calculations is remarka
good, not only for high energies where, by construction,
HCM will converge to the correct shake limit, but over
surprisingly wide energy range that extends almost down
the maximum of the ratio. Figure 1 can be considered
quantitative realization of the picture originally suggested
Samson@13#. Note, however, that the convergence to t
shake limit was absent in the original model.

One can carry this simple picture of sequential ionizat
a few steps further. In a first step, rather than evalua

FIG. 1. The ratios21/s1 for helium. Comparison of the HCM
results~squares! with accurateab initio data@6#.

FIG. 2. The helium double-ionization cross section. Compari
of the half-collision model using the electron impact data@Eq. ~24!#
~circles! with data from a hyperspherical close-coupling calculat
~squares!. The weight of the electron-impact ionization cross se
tion relative to the shake has been used as a fit parameter, se
for details.
04272
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amplitudes@Eq. ~23!# one can further simplify the model b
invoking experimental electron-impact ionization cross s
tions. Froms21/s tot5R`1ks̃1, the ratio can be expresse
as

s21/s15
R`1ks̃1

12R`2ks̃1
. ~24!

Here,s tot5s11s21 is the total photoabsorption cross se
tion, R` is the asymptotic shake limit, ands̃1 the experi-
mental electron-impact ionization cross section of He1. k is
an energy-independent proportionality factor relating
cross section for the half-collision to the cross section for
full collision. In Fig. 2, this idea is applied to yield a double
ionization cross sections21 usings1 from a hyperspherica
close-coupling calculation ands̃1 from an electron-impact
ionization experiment~wherek50.00278 which includes al
relevant prefactors relating the transition-matrix element
the cross section!. As can be seen, the agreement is rema
ably good and extends from the asymptotic limit to the cro
section maximum. This simplified picture provides a quali
tive underpinning of the HCM.

A second step can be taken to extrapolate such a sim
fied model to even lower energies, specifically to the reg
near the cross-section maximum. As one would include
electron-electron interaction to all orders into theT-matrix
element ofaf i

II @Eq. ~19!#, the separate shake amplitudeaf i
I

@Eq. ~16!# should cease to contribute. The shake amplitu
contains effects of the electron-electron interaction to all
ders, however only in their impulsive limit. As the syste
undergoes a transition from the sudden to the near-adiab
limit, those effects represented in the sudden limit~as the
speedv of the primary electron goes to infinity! by aI should
reappear inaII asv tends tov threshold. The half-collision term
then contains the electron-electron interaction to all orders
now aII is represented by the electron-impact ionization a
plitude ~or its experimental cross section!, aI should be adia-

n

-
text

FIG. 3. The helium double-ionization cross section revisite
The hyperspherical close-coupling results~squares! already shown
in Fig. 2 are compared to a half-collision calculation with adiaba
switchoff of the shake contribution@Eq. ~25!#, see text for details.
0-5
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THOMAS PATTARD AND JOACHIM BURGDÖRFER PHYSICAL REVIEW A64 042720
batically switched off. For an adiabatic switching functio
we use the functionf RZ(v)5exp(22bD E/v) first introduced
by Rosen and Zener in the context of ion-atom collisio
~e.g., @21#, Chap. 4.9!. b signifies here an effective ‘‘impac
parameter’’ used in the following as a free parameter. W
f RZ as switching function and the experimental electro
impact ionization cross section as the ‘‘representative’’ of
nonperturbative treatment of the half collision, the ratio
double to single ionization@Eq. ~24!# becomes

s21

s1
5

R`e22bDE/v1ks̃1

12R`e22bDE/v2ks̃1
. ~25!

As before,s̃1 refers to the electron-impact single ionizatio
cross section of He1. In Fig. 3, the resulting cross section
compared to the result of a hyperspherical close-coup
calculation. In applying Eq.~25!, an analytical parametriza
tion of s̃1 as put forth in Ref.@22# has been used,k is fixed
by the requirement to yield the correct slope of the cr
section for high energies as calculated within the HC
above. The only free parameter isb, which has been set ‘‘by
eye’’ to 0.1 to give a favorable fit to the correct cross secti
With this simple extension of the half-collision model w
reproduce the double ionization from threshold to asympt
cally high photon energies~within the nonrelativistic dipole
approximation!. While, in view of the free parameter in
volved, the quantitative significance should not be ov
stated, this model contains the proper physical input
leads to at least qualitatively correct results for all energ
In particular, it leads to the correct shape of the cross sec
with a single maximum at approximately the correct ener

At this point, a few further comments about the use of E
~23! within the HCM are in order. First, the relatively crud
approximation of replacingea by an averagêe& should be
addressed. Even if one accepts this approximation as ne
sary simplification of the numerical calculation, there is
unique choice for̂ e& which can be justifieda priori. In
practice, we tested several values of^e& between 24 eV and
55 eV ~first and second ionization potential! and found the
result to be largely insensitive to the actual value used
particular for high photon energies. For the lowest ene
shown in Fig. 1, the values ofs21/s1 obtained with differ-
ent choices of̂ e& differed by about 11%. One should, how
ever, note that this approximation cannot be used to calcu
the transition amplitudes into bound states~i.e., excitation
rather than ionization of the second electron! since, depend-
ing on the value chosen for^e&, different bound final states
will come into resonance and the approximation will bre
down. Instead, one has to invoke a completeness relatio
determine the single-ionization cross section as the dif
ence between the total cross section and the dou
ionization cross section.

Another critical point is the relative phase between
first-order and second-order term in Eq.~23!. In an ordinary
Born series, terms of different orderN carry a relative phase
exp@i(N2N8)p/2# and add incoherently forN2N8 odd. In
04272
s

h
-
e
f

g

s

.

i-

-
d
s.
n
.
.

es-

in
y

te

to
r-
e-

e

the present case of a half-collision, this phase relation
modified and interference terms cannota priori be excluded.
Their contribution would be determined by the exact value
the lower limit of the time integral in the half-scatterin
term. As this value is poorly defined within our model, w
omit here and in the following interference terms. There is
additional reason why interference terms are not prope
defined in Eq.~23! and, hence, should be omitted. After ta
ing the shake limit, the quantum numbers of the final state
the fast electron have been eliminated~apart from the en-
ergy; specifically,l ,m in a spherical basis or the emissio

direction k̂ f in a plane-wave basis!. Inclusion of interference
terms resulting from Eq.~23! would therefore overestimat
coherences as the finall ,m content of the shake and thee–e
scattering terms are expected to be different while true
herences would occur only for final states within the sa
angular momentum sector after integration over all angle

III. THE THREE-ELECTRON CASE: LITHIUM

In the following section, we will treat the three-electro
case of lithium triple ionization. We will first discuss th
generalization of the HCM to this more complex break
process. We will compare our results with experimental d
and other theoretical work on the triple ionization proble
@10,11#.

A. Generalization of the half-collision model

In the previous section, we showed that the half-collisi
model proposed in this paper is able to give cross section
surprisingly good agreement with experiments over a w
range of energies, given the simplicity of the model.
seems, therefore, worthwhile to use the model for a calc
tion of triple ionization cross sections. As discussed abo
the ansatz divides the double-ionization process into two
quential processes, namely,~primary! photoionization and a
subsequent~secondary! half-collision, which are calculated
separately. In the generalization to the three-electron c
which is presented below, an analogous breakdown is
tempted. Here we decompose the process in sequence
two-electron processes: as a primary process we conside
double photoionization of the two inner electrons (1s2) of Li
~more precisely, of Li1 as we ignore the presence of th
outer-shell spectator electron in this first step! followed by
pair-wise electron-electron scattering at the ‘‘spectator’’s
electron. The second step corresponds to two subsequenin-
dependenthalf-collisions of the two primary electrons wit
the third. This decomposition is both appealing for physi
reasons as well as technically convenient. Electron-elec
correlations between the two inner electrons are strong w
they are very weak with the outer electron. A perturbat
treatment of the final-state electron correlation within t
framework of the HCM seems therefore appropriate. Furth
more, the inner and outer electrons in Li are well separate
both coordinate space (^r &1s /^r &2s!1) as well as energy
space~the binding energyEB(1s2) accounts for 97% of the
0-6
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total binding energy!. From a technical point of view, this
decomposition allows the usage ofab initio methods of two-
electron systems for double ionization in the first ste
thereby accounting for electron correlations in both the
tial state and final state as well as the energy sharing betw
these electrons accurately while neglecting the spect
electron. The triple ionization cross section is calculated

s31~Li !5
s31

s21
s21~Li1!, ~26!

wheres21(Li1) is taken fromab initio methods while the
ratio s31/s21 is determined by the HCM.

An important point to be noted with reference to Eq.~26!
is that s21(Li1) refers to true double ionization in a two
electron system as opposed to two-electron removal in
neutral three-electron system, i.e.,s21(Li). Unlike
s21(Li1), the double ionization of neutral Li includes a si
nificant contribution from indirect processes of inner-sh
single ionization followed by Auger decay.

The treatment of triple ionization within the HCM pro
ceeds in close analogy to the two-electron case. In analog
Eqs.~1! to ~7!, we denote the initial and final states by

uC i&5uc i~1,2,3!nv,s51&, ~27!

uC f&5uf f~1!c f~2,3!nv,s50&. ~28!

The model Hamiltonian for the HCM for Li–like system
reads

H5h~1!1h~2!1h~3!1hph1Vee
(1,2)

1Vee
(1,3)1Vee

(2,3)1W(2,3,ph). ~29!

The channel Hamiltonians for the entrance (a) and exit (b)
channel are

Ha5h~1!1h~2!1h~3!1hph1Vee
(1,2)1Vee

(1,3)1Vee
(2,3)

~30!

and

Hb5h~1!1h~2!1h~3!1hph1Vee
(2,3) . ~31!

The corresponding channel perturbations read

Va5H2Ha5W(2,3,ph)[
1

c
~p21p3!•A ~32!

and

Vb5H2Hb5Vee
(1,2)1Vee

(1,3)1
1

c
~p21p3!•A. ~33!
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Labeling the outer electron by 1 and the inner electrons b
and 3, the amplitude for triple ionization within the HCM t
first order in the electron-electron interactionVee is given by

af i52 i E
2`

`

dt ei (Ef
tot

2Ei
tot)t^c f u

1

c
~p21p3!•Auc i&

2E
2`

`

dt1E
t1

`

dt2ei (Ef
tott22Ei

tott1)^c f u~Vee
(1,2)

1Vee
(1,3)!e2 iH bt2eiH bt1

1

c
~p21p3!•Auc i&. ~34!

As in the double-ionization case treated in Sec. II, in t
following discussion we consider the outer~secondary! elec-
tron ~1! to be distinguishable from the two inner~primary!
electrons~2,3! and neglect antisymmetrization. The first ter
represents the shake amplitude, while the second term
tains the additional electron-electron scattering between
ejected electrons and the spectator electron. In Eq.~28! we
have used the assumption that the spectator electro
weakly correlated with the pair of inner-shell electrons in t
final state such that the wave function can be factorized
we now employ a similar approximation for the initial sta

uc i~1,2,3!&5uf i~1!c i~2,3!&, ~35!

the first term in the transition amplitude factorizes into t
amplitude for double ionization of the inner electrons tim
an asymptotic one-electron shake factor for the spect
electron,

afi
I 522pi d~Ef2Ei2vph!^cf~2,3!u

1

c
~p21p3!•Auc i~2,3!&

3^f f~1!uf i~1!&. ~36!

It is important to note that in the present treatment the i
ization dynamics of the (1s2) is taken into account accu
rately ~save for the presence of the spectator electron!. The
shake approximation is only invoked for the spectator el
tron. The shake factor is given by the overlap between thes
single-particle orbital of the neutral lithiumuf i(1)& with the
hydrogenic ~bound or continuum! orbitals uf f(1)& of the
doubly ionized Li.

The second term in Eq.~34! can be written as a product o
the amplitude for photoionization to an intermediate co
tinuum state (kn ,ko) followed by the electron-impact ioniza
tion of the spectator electron@fkn

(r2)[(1/(2p)3/2)eikn•r2#

af i
II }(

j 52

3

Xkn,k0
^c f uVee

(1,j )uf i~1!fkn
~2!fko

~3!&

3^fkn
~2!fko

~3!u
1

c
~p21p3!•Auc i~2,3!&. ~37!
0-7
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The notation in Eq.~37! is rather sloppy in that we did no
write the integrations and phase factors related tot1 and t2
that appear in Eq.~34! for the sake of a simpler notation
They are treated exactly as in the two-electron case@Eqs.
~17!, ~20!, and~22!#. In Eqs.~36! and~37!, we use as single
particle orbital for the initial state of the spectator electron
Roothaan Hartree Fock wave function

f i~r1!5S (
j 51

2

cje
2a j r1(

j 53

6

cj re
2a j r DY00 ~38!

with the coefficientscj and a j for the 2s orbital given in
Ref. @23# with binding energye i520.1981 a.u. The fina
statef f is a hydrogenic bound or continuum orbital in th
field of the bare Li nucleus.

The half-scattering amplitude in Eq.~37! is evaluated in
the same way as in the two-electron case, namely, in fi
order time-dependent perturbation theory treatingVee as a
time-dependent perturbation

Vee
(1,i )~ t !5

1

ur12k i tu
, ~39!

where the outward trajectory of the ‘‘projectile’’ electro
starts near the nucleus with zero impact parameter relativ
the nucleus. Details of the evaluation of the matrix eleme
for the half-scattering amplitude can be found in the app
dices.

We employ a Fourier transform of the final-state wa
function c f(r2 ,r3)

c f~r2 ,r3!5
1

~2p!6E d3k3E d3k2 ,c̃ f~k2 ,k3!eik2•r2eik3•r3

[
1

~2p!3E d3k3E d3k2c̃ f~k2 ,k3!fk2~r2!fk3~r3!.

~40!
re
al
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We make the further approximation that the outer second
electron will be slow and electrons 2 and 3 share the to
energy@see also the discussion following Eq.~22!#,

k2
21k3

252E, ~41!

so that

c f~r2 ,r3!5
1

~2p!6E dV3E d3k2c̃ f~k2 ,k3!

3eik2•r2eiA2E2k2
2k̂3•r3. ~42!

Inserting Eq.~42! into the first matrix element of Eq.~37!,
we are then left with expressions of the form

^f f~1!fk2
~2!fk3

~3!uVee
(1,2)uf i~1!fkn

~2!fko
~3!&

5^f f~1!fk2
~2!uVee

(1,2)ufm~1!fkn
~2!&d~k32ko!

~43!

and a similar expression involvingVee
(1,3) . Subsequent inte-

gration overd3ko eliminates thed distribution. The remain-
ing bracket on the right-hand side of Eq.~43! is thus reduced
to a two-particle matrix element similar to that for the tw
electron problem. The only difference to Eq.~18! is that the
expansion ~40! requires an additional integration ove
d3k2dV3. The half-collision part of Eq.~37! is thus written
as a sum of two independent half-collisions of the outer el
tron with electron 2 and electron 3, respectively,
~44!
tial
ess
lli-
of
Within the impact-parameter approximation employed he
the resulting half-collision transition probabilities into a fin
state with given energy for the secondary electron~i.e., after
summation overl ,m) do not depend on the directionsk̂2 and
,k̂3. Physically, this can be seen from the fact that the ini
state is spherically symmetric, so after the complete proc
has been broken down into independent two-electron co
sions, the only physically preferred axis is the direction
0-8
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the outgoing ‘‘projectile.’’ Mathematically, it relies on th
fact that (mYlm* (V)Ylm(V)5(2l 11)/(4p) is invariant un-
der rotation. The half-collision integral then selects fin
states that havem50 with respect to the direction of th
‘‘projectile’’ as the quantization axis~see Appendix C!. It is,
however, important to note that this independence of

half-collision transition probabilities of the directionsk̂2 and

k̂3 ~after summation overm as discussed above! holds only
for the secondary electron, which has to be clearly dis
guished from the photoabsorption process, which does
course, not lead to isotropic emission of the primary el
trons. The argument therefore relies on the factorization
the final state, which allows for an independent summat
over final states for the primary and secondary electro
respectively. In this case, we can define the energy sha
distribution of the primary electrons:
u
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P~e![X fU E dV3E dV2E d3r 3

3E d3r 2c f~r2 ,r3!eik2•r2eiA2E2k2
2k̂3•r3U2

, ~45!

wheree5k2
2/2 is the energy of the slower of the two prima

electrons and the summation is over the final states of
primary electrons only. The half-collision contribution to th
transition probability can then be obtained by integrati
over the energy sharingP(e).

With the amplitudes evaluated according to Eqs.~36! and
~44!, the cross section ratios31/s21 is then given by sum-
ming over continuum (fk,l) and bound (fn,l) final states,
respectively. Using the same approximations, namely, a
sure approximation for the intermediate states and incohe
addition of shake and half-collision contributions, discuss
in detail for the two-electron case, we finally have
s31

s21
5

(
l
E dk ku^fk,l uf i&u21(

l
E dk kE de P~e!U E

0

`

dtK fk,lUei (k2/22Ei )tS 1

ur2A2etezu
1

1

ur2A2~E2e!tezu
D Uf i L U2

(
l ,n

u^fn,l uf i&u21(
l ,n

E de P~e!U E
0

`

dtK fn,lUei (2Z2/(2n2)2Ei )tS 1

ur2A2etezu
1

1

ur2A2~E2e!tezu
D Uf i L U2 .

~46!
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in
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The incoherent addition of shake and half-collision contrib
tions has already been discussed in the two-electron c
The same argument, namely, avoidance of double coun
applies to the integration of the half-collision probabiliti
~rather than amplitudes! over the energy sharing distributio
P(e), which already involves a summation over differe
final states for the primary electrons. The double-ionizat
cross section for Li1 does not explicitly appear in the rati
Eq. ~46!. However, it enters implicitly through the energ
sharing distributionP(e) of the ejected primary electron
from Li1 in its ground state. Sinces21 for Li1 can be in-
dependently and accurately calculated, the absolute tr
ionization cross section can be determined using Eqs.~46!
and ~26!.

B. Results and discussion

The validity of first-order perturbation theory in thee
2e interaction for triple ionization underlying Eq.~46! is a
priori not obvious. Even in the limitEph→`, the energy
sharing in double ionization is strongly asymmetric~‘‘ U
shaped’’!, consisting of a slow and a fast electron, whi
give rise to different half-collision contributions with th
slow electron providing the dominant term. For the extre
low-energy tail, the perturbation theory breaks down. W
have therefore introduced, in the energy integral in Eq.~46!,
a low cutoff e.ec , thereby excluding the most asymmetr
energy sharing contributions. This cutoff is not only requir
to suppress spurious contributions from the breakdown
-
se.
g,

t
n

le

e
e

f

perturbation theory but also to exclude contributions that
inconsistent with the threshold for impact ionization. With
the HCM, the ‘‘projectile’’~i.e., the departing electron! must
have an energy in excess of the threshold for ionization
the spectator electron.ec should be somewhat larger than th
initial binding energy of the 2s electron in neutral Li becaus
the screening of the nuclear charge due to the two 1s elec-
trons is no longer operative during the half-collision. Mor
over, the assumption of a projectile moving with a~near!

FIG. 4. The triple ionization cross section of lithium: expe
mental data~circles! and HCM results~squares!. At 301, 540, 780,
and 1068 eV photon energy, error bars indicate the effect of dif
ent cutoff energiesec .
0-9
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constant well-defined velocity underlying the impac
parameter approximation becomes questionable for slow
mary electrons due to their intrinsic momentum spre
~Compton profile!. Near the radius of the 2s electron where
the collision will take place, the projectile will have a high
kinetic energy balancing the potential energy at intermed
distances from the nucleus. A precise value for a low
boundec cannot be given, however, as we show below,
found that the final result is remarkably insensitive to t
value used.

Figure 4 displays the resulting triple ionization cross s
tion in comparison with recent experimental data@8#. The
theoretical error bar represents variation for different choi
of ec varying between 0.4 and 1 a.u. The uncertainty in
final result fors31 does not exceed'10%, which is well
within the overall uncertainty we can expect from the sim
HCM. The agreement for energies above the cross sec
maximum (Eph.300 eV) is again remarkably good consi
ering the simplicity of the model.

The ratio s31/s21 is a smoothly decreasing functio
~Fig. 5!. This smooth energy dependence suggests the
trapolation toEph→`, which allows a comparison with pre
vious estimates for the asymptotic ‘‘shake-off’’ limit@10,11#
in close analogy to the case of double ionization in tw
electron systems@24–26#. In Fig. 5 we present a smoot
1/Eph extrapolation of this ratio to zero which should, how
ever, be taken with caution since a numerically stable ev
ation of Eq.~46! is difficult to achieve asEph→` and there-
fore could not be directly verified. The indicated limit diffe
from the previous estimates. Cooper@11# has calculated
asymptotic shake probabilities by assuming that both inn
shell electrons are removed instantaneously, i.e., a dou
shake process. He used for the spectator electron Ha
Fock wave functions to describe the initial state and p
jected them onto hydrogenic final states. This appro
closely resembles the first termaf i

I @Eq. ~36!#. However, the

FIG. 5. The ratios31/s21 for photoionization of lithium as a
function of 1/E. The high-energy limits given in Refs.@8,10,11# are
indicated. Note that the HCM does not include contributions tos21

from indirect processes, see text for a discussion. Tentatively ta
them into account on the basis of Ref.@10# leads to a reduced ratio
the high-energy limit of which is denoted by HCMAuger ~the ‘‘error
bar’’ here corresponds to the range 40% to 50% indirect contr
tions stated in Ref.@10#!.
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HCM does not converge to this limit since the final-sta
Coulomb correlation represented byaf i

II does not vanish as
Eph→`. Van der Hart and Greene@10# have calculated the
triple-ionization probability by representing the lithium
ground state and the final states of the residual two-elec
Li1 system ~bound states, single continuum, double co
tinuum! by B splines. For the fast electron instant remov
i.e., the shake limit, is assumed. Transition amplitudes h
then been calculated in terms of overlap integrals betw
the ground state~with r350) and the various final states i
Li 1. This method features a more accurate representatio
the initial state as well as the final state of the ‘‘slow’’ ele
tron in the double ejection process. On the other hand,
method neglects any residual interaction of a ‘‘fast’’ electr
with any of the residual electrons, i.e., half-scattering w
the spectator electron as well as the electron-electron co
lation in the final state of the (1s2) two-electron pair. When
comparing results fors31/s21, it is important to realize that
Ref. @10# includes indirect processes contributing
s21(Li), namely via the excitation of doubly excited state
and subsequent autoionization. It was estimated in Ref.@10#
that they account for more than 40% of all double-ionizati
events, so that the ratio of triple to double ionization wou
be roughly a factor of 2 smaller than the one shown
HCMdirect in Fig. 5, which usess21(Li1). Applying this
correction to the HCM~denoted by HCMAuger in Fig. 5!
brings our data in the range of the experimentally obser
ratios at finite energies. However, our high-energy d
would still differ from the previous estimates, even thou
by a smaller amount. A direct comparison of the asympto
ratios is further complicated by the fact that the method
Ref. @10# as well as ours require additional technical appro
mations in the evaluation~an approximate ‘‘incoherent’’ pro-
jection of Li1 orbitals onto hydrogenic orbitals and the ind
rect determination of triple ionization by subtraction in Re
@10#, and the closure approximation for intermediate state
the present HCM!. Clearly, more comprehensive numeric
studies are required to determine the high-energy limit m
accurately.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have presented the half-collision mo
for the calculation of multiple ionization by single-photo
absorption. The model is based on a simple and appea
underlying physical picture. It can be derived from a hig
energy approximation in the framework of a Born-type p
turbation series. In a benchmark calculation for heliu
double ionization, we have shown that the HCM is capa
of producing cross sections in remarkable agreement w
experiments and other more elaborate numerical calculat
over a surprisingly wide energy range. We furthermore
plied the model to the triple ionization of lithium, wher
again the results compared favorably with recent exp
ments. Previous calculations have been limited to the hi
energy limit, which was assumed to be approached only
several keV photon energy. In this high-energy limit, o
results differ from those previously obtained, which can on
in part be attributed to the neglect of indirect processes le

g

-
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HALF-COLLISION MODEL FOR MULTIPLE . . . PHYSICAL REVIEW A 64 042720
ing to doubly excited intermediate states that eventually
toionize and contribute to the double-ionization cross s
tion.

One future direction for application of the HCM is mu
tiple ionization in intense laser fields. Rescattering at c
electrons of the field-ionized primary electron has be
shown to be the dominant multiple ionization mechanis
Such a process could be treated within an analog to the H
presented here.
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APPENDIX A: MULTICHANNEL SCATTERING THEORY

For the sake of completeness of the derivation, we giv
summary of the essential steps leading to the series exp
sion ~13! for the transition amplitude. The content of th
appendix employs standard multichannel scattering the
~e.g., Ref.@15#! taylored to our specific problem.

We start from the general expression~12!. Let us define
the operator

s~ t ![eiH bTU~T,t !e2 iH at ~A1!

from which we will finally get

S5 lim
T→`T8→2`

s~T8!. ~A2!

Using the relationi ] tU(T,t)52HU(T,t) for the time evo-
lution operator, we obtain

] ts~ t !5eiH bTU~T,t !iH e2 iH at1eiH bTU~T,t !~2 iH a!e2 iH at

5eiH bTU~T,t !i ~H2Ha!e2 iH at

5 i eiH bTU~T,t !Vae2 iH at. ~A3!

This leads to

s~T8!5s~T!2E
T8

T

dt1] ts~ t1!

5eiH bTe2 iH aT2 i E
T8

T

dt1eiH bTU~T,t1!Vae2 iH at1

5eiH bTe2 iH aT2 i E
T8

T

dt1eiH bTU~T,t1!e2 iH bt1

3eiH bt1Vae2 iH at1. ~A4!

Similarly, we use
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] t@eiH bTU~T,t !e2 iH bt#5eiH bTU~T,t !~ iH !e2 iH bt

2eiH bTU~T,t !~ iH b!e2 iH bt

5 i eiH bTU~T,t !Vbe2 iH bt ~A5!

to get

Ũ~ t1![eiH bTU~T,t1!e2 iH bt1

5eiH bTe2 iH bT2 i E
t1

T

dt2eiH bTU~T,t2!Vbe2 iH bt2

512 i E
t1

T

dt2eiH bTU~T,t2!e2 iH bt2eiH bt2Vbe2 iH bt2

512 i E
t1

T

dt2Ũ~ t2!eiH bt2Vbe2 iH bt2. ~A6!

Repeatedly using this relation in Eq.~A4!, we obtain a Born
series expression fors(T). Note that this series contains on
first-order terms inVa ~the ‘‘weak potential’’!, but arbitrary
orders in the electron-electron interaction. To second or
Eq. ~A4! reads

s~T8!5eiH bTe2 iH aT2 i E
T8

T

dt1eiH bt1Vae2 iH at1

1~2 i !2E
T8

T

dt1E
t1

T

dt2eiH bt2Vbe2 iH bt2eiH bt1Va

3e2 iH at11•••. ~A7!

Thus, with Eq.~11! and Eq.~A2! the transition amplitude can
be expressed as

af i5 lim
T→` T8→2`

^f f~1!fk f
~2!nv,s50

3ueiH bTe2 iH aTuc i~1,2!nv,s51&

1K f f~1!fk f
~2!nv,s50U

2 i E
T8

T

dt1eiH bt1Vae2 iH at1Uc i~1,2!nv,s51L
1K f f~1!fk f

~2!nv,s50U~2 i !2

3E
T8

T

dt1E
t1

T

dt2eiH bt2Vbe2 iH bt2eiH bt1Va

3e2 iH at1Uc i~1,2!nv,s51L 1••• ~A8!

which is Eq.~13!.
0-11
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THOMAS PATTARD AND JOACHIM BURGDÖRFER PHYSICAL REVIEW A64 042720
APPENDIX B: AN IMPACT-PARAMETER
APPROXIMATION FOR THE HALF-COLLISION

INTEGRAL

As discussed in Sec. II, for high photon energies the
mary electron is very fast when leaving the target and
trajectory will be perturbed only slightly by the Coulom
interaction with the secondary electron. Since the naive
ture is that of the primary electron first absorbing the phot
thereby being in a high-energy continuum state, it see
reasonable to make the assumption that the matrix elem
^cabnv,s50u(1/c)p2•Auc inv,s51& peaks at energiesEab
'Ef that are high enough that the correspondingcab can be
approximated by a product wavefunctio
(1/A(2p)3)fa(r1)fk(r2). Moreover, we also assume th
the electron-electron interaction will only be a small pert
bation, so thatk'k f . The integral in Eq.~18! can then be
written as

I f i
II [Xa,bE

0

`

dt ei (Ef2Eab)t^f f~1!fk f
~2!uVeeucab~1,2!&

3K cab~1,2!nv,s50U 1

c
p2•AUc i~1,2!nv,s51L

5XaE d3kE
0

`

dt ei (kf
2/21e f2k2/22ea)t

3^f f~1!fk f
~2!uVee

(1,2)ufa~1!fk~2!&

3 K fa~1!fk~2!nv,s50U 1

c
p2•AUc i~1,2!nv,s51L .

~B1!

The second matrix element is evaluated in the high-ene
limit analogous to the first-order term and yields

K fa~1!fk~2!nv,s50U 1

c
p2•AUc i~1,2!nv,s51L

→S 2p

L D 3/2

4A2Zcos~g!k24

3^fauc i~1,r250!&. ~B2!

~Here and in the remainder of this appendix, we denote
angles between the photon polarization vector andk andk f
asg andg f , respectively.! This leads to

I f i
II 5S 2p

L D 3/2

4A2ZXa^fauc i~1,r250!&

3E
0

`

dt ei (e f2ea)tE d3k cos~g! k24ei (kf
2/22k2/2)t

3 K f f~1!fk f
~2!U 1

ur12r2u Ufa~1!fk~2!L , ~B3!
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where we have inserted the Coulomb interactionVee. In
order to evaluate the matrix element

K f f~1!fk f
~2!U 1

ur12r2u Ufa~1!fk~2!L
5

1

~2p!3E d3r 2E d3r 1

f f* ~r1!fa~r1!

ur12r2u
ei (k2k f )•r2,

~B4!

let us choosek f along thez direction and assumek'k f .
Thenk f•r25kfz2 andk•r2'kz2, so that~see Ref.@21# for
an analogous treatment!

~k2k f !•r2'kxx21kyy21~k2kf !z2 ~B5!

@kx[(k)x ,ky[(k)y ,kz[(k)z#. Moreover, we have

k22kf
25k22@k1~kf2k!#2'2k~k2kf !, ~B6!

i.e.,

k2kf'
k22kf

2

2k
[

k22kf
2

2v
. ~B7!

After substitutingz25vt in Eq. ~B4!, insertion of Eq.~B4!
into Eq. ~B3! and the use ofk'k f to replace cos (g) k24 by
cos (gf) kf

24 , leads to

I f i
II 5

1

~2p!3 S 2p

L D 3/2

4A2ZXa^fauc i~1,r250!&

3E
0

`

dt ei (e f2ea)tE d3r 1E dy2E dx2E dtE d3k

3
f f* ~r1!fa~r1!

@~x12x2!21~y12y2!21~z12vt!2# (1/2)

3cos~g f !kf
24ei (kxx21kyy2)ei (kf

2/22k2/2)(t2t)v. ~B8!

Since

vdkz5kdkz'kdk5d~k2/2! ~B9!

we have

E dkze
i (kf

2/22k2/2)(t2t)v'2pd~ t2t!. ~B10!

Subsequent integration overt then leads to
0-12
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I f i
II 5

1

~2p!3 S 2p

L D 3/2

4A2Zcos~g f !kf
24

Xa^fauc i~1,r250!&E
0

`

dt ei (e f2ea)tE d3r 1E dy2E dx2

3
f f* ~r1!fa~r1!

@~x12x2!21~y12y2!21~z12vt !2# (1/2)E dkyE dkxe
i (kxx21kyy2)2p

5
1

~2p!2 S 2p

L D 3/2

4A2Zcos~g f !kf
24

XaE
0

`

dt E dy2E dx2ei (e f2ea)t^fauc i~1,r250!&

3^f f~1!uVee~1,r25~x2 ,y2 ,vt !!ufa~1!&E dkyE dkxe
i (kxx21kyy2). ~B11!
rd

on
ve

he
In order to perform the integrals over the transverse coo
natesx2 andy2, let us now write

kx[v sin~Q!cos~a!, ky[v sin~Q!sin~a!,

kz[v cos~Q!. ~B12!

Then, sincek f'k, 1@Q and we can replace sin (Q)'Q.
Defining

h[S hx

hy
D[S vQ cos~a!

vQ sin~a!
D ~B13!

and

r'[S x2

y2
D , ~B14!

we can write

E dy2E dx2E dkyE dkxe
i (kxx21kyy2)

'E dy2E dx2E
0

2p

daE
0

p

dQ

3exp@ ivQ„cos~a!x21sin~a!y2…#v
2Q
04272
i-
'E d2r'E d2h ei h•r', ~B15!

where we usedvp→` becausev@1. Integration overd2h
then leads tod distributions inx2 and y2, and we finally
arrive at

I f i
II 5S 2p

L D 3/2

4A2Z cos~g! fkf
24

3XaE
0

`

dt^f f uVee„r1 ,r25~0,0,vt !…ufa&

3ei (e f2ea)t^fauc i~1,r250!&, ~B16!

which can then be inserted in Eq.~20! to give Eq.~22!.

APPENDIX C: CALCULATION OF HALF-COLLISION
INTEGRALS IN MOMENTUM SPACE

In this appendix, we give an example for the calculati
of the half-collision integrals in momentum space. We ha
to deal with integrals of the form

I 5E dtE d3rf f* ~r !
1

ur2R~ t !u
f i~r !eivt. ~C1!

Using Fourier transformations, this can be written in t
seemingly more complicated form
~C2!
0-13
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Here,B(q) is the Bethe integral

B~q!5
4p

q2
. ~C3!

We therefore have

I 5
2

~2p!5E dtE d3QE d3q eivt
1

q2
f ~Q!eiq•R(t)

3E d3r e2 i (q1Q)•r

5
2

~2p!2E dtE d3qE d3Q eivt
1

q2
f ~Q!eiq3vtd~q1Q!

5
2

~2p!2E dtE d3q ei (v1q3v)t
1

q2
f ~2q!, ~C4!

where in the second step we usedR(t)5vtez . With the iden-
tity for distributions

E
0

`

dt eiat5pd~a!1P
i

a
, ~C5!

Eq. ~C4! becomes

I 5
1

2pE2`

`

dq3E
2`

`

dq2E
2`

`

dq1

f ~q1 ,q2 ,q3!

~q1
21q2

21q3
2!v

dS v

v
2q3D

1
i

2p2
PE

2`

`

dq3E
2`

`

dq2E
2`

`

dq1

3
f ~q1 ,q2 ,q3!

~q1
21q2

21q3
2!~v2q3v !

~C6!

which, of course, helps only if we can evaluatef (q) analyti-
cally. To proceed, we make use of the following obser
tions: ~a! the final state is a hydrogenic wave function

f f~r !5Cle
2 ikrkl 11r 1

l F1~ l 112 ih,2l 12,2ikr !Ylm

5f f~r !Ylm ~C7!

and ~b! f i5f i(r )Y00. Furthermore, we use the expansion

eiQx54p (
l 850

`

(
m852 l 8

l 8

i l 8 j l 8~Qx!Yl 8m8
* ~Q̂!Yl 8m8~ x̂!.

~C8!

This leads to
04272
-

f ~Q!5 (
l 850

`

(
m852 l 8

l 8 E
0

`

dr r 2f f* ~r !f i~r !A4p i l 8 j l 8~Qr !

3E dV rYlm* ~ r̂ !Yl 8m8~ r̂ !Yl 8m8
* ~Q̂!

5A4p i lYlm* ~Q̂!E
0

`

dr f f* ~r !f i~r ! j l~Qr !r 2. ~C9!

We now use

j l~Qr !5
Ap

G~ l 13/2! S 1

4i D
l 11 1

Qr
M0,l 11/2~2iQr !

~C10!

~whereM is Kummer’s function! and

1F1~ l 111 ih,2l 12,22ikr !

5~22ikr !2( l 11)e2 ikrM 2 ih,l 11/2~22ikr !.

~C11!

If we further assume thatf i(r ) is of the form

f i~r !5( cj r
nje2a j ~C12!

with normalization constantscj and integer nj ~e.g.,
Roothaan Hartree Fock wave functions@23#!, then even the
remaining r –integral in Eq. ~C9! can be evaluated in a
closed form. Using formula~A2! of Ref. @27#, we get

f ~Q!5A2pki l
uG~ l 111 ih!ue2p/2h

~2l 11!!G~ l 13/2!
Ylm* ~Q̂!

3~kQ! l(
cjG~2l 131nj !

@a j1 i ~Q2k!#~2l 131nj !

3F2S 2l 131nj ,l 11,l 111 ih,2l 12,2l

12;
2iQ

a j1 i ~Q2k!
,

22ik

a j1 i ~Q2k! D ~C13!

for continuum final states and

f ~Q!5 i l
2p

G~ l 13/2!
A2S Z

nD l 13/2A ~n1 l !!

~n2 l 21!!2n

3Ylm* ~Q̂!Ql(
cjG~2l 131nj !

~a j1Z/n1 iQ !(2l 131nj )

3F2S 2l 131nj ,l 11,l 112n,2l 12,2l

12;
2iQ

a j1Z/n1 iQ
,

2Z/n

a j1Z/n1 iQ D ~C14!
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for bound final states, whereF2 is an Appellfunction@28#.
After inserting the final expression~C13! into ~C6!, the an-
gular integrations~overdV q̂) can be carried out analyticall
again. In the first integral of Eq.~C6!, we get

E
21

1

d~cosQ!dS v

qv
2cosQ D Pl~cosQ!

5H Pl S v

vqD v

vq
P~21,1!

0 otherwise,

~C15!

and in the principal part integral we can insert the expl
expressions for thePl , e.g., forl 50 we obtain

PE
21

1

d~cosQ!
P0~cosQ!

v/vq 2cosQ
5 lnS 11v/~vq!

u12v/~vq!u D ,

~C16!

where of course the remaining integral overq has to be un-
derstood as a principal part integral again. Forl 51,2,3, we
get
. B

.
et

H.

04272
t

PE
21

1

d~cosQ!
P1~cosQ!

v/vq2cosQ

5221
v

~vq!
lnS 11v/~vq!

u12v/~vq!u D , ~C17!

PE
21

1

d~cosQ!
P2~cosQ!

v/vq2cosQ

523
v

~vq!
1

1

2 F3S v

vqD 2

21G lnS 11v/~vq!

u12v/~vq!u D ,

~C18!

PE
21

1

d~cosQ!
P3~cosQ!

v/vq2cosQ

5
4

3
25S v

vqD 2

1
1

2

v

vq F5S v

vqD 2

23G lnS 11v/~vq!

u12v/~vq!u D .

~C19!
-
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