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Convergent series representation for the generalized oscillator strength of electron-impact
ionization and an improved binary-encounter-dipole model
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The use of the Bethe cross section in the binary-encounter-dip&B) model for electron-impact ioniza-
tion is studied. While the dipole contribution in the Born approximation accounts for the longest-range inter-
action in electron-neutral atom/molecule inelastic collisions at any incident energy, the Bethe formula is
applicable only at high energies. To derive a suitable representation of the Born cross section for dipole-
allowed transitions, a convergent series representation for the generalized oscillator $@&§thf electron-
impact ionization is studied. It is shown that by transforming to a new variable determined by the location of
the singularities of the GOS on the complex plane of momentum trakseseries representation for the GOS
is obtained that is convergent at all physically attainable valuds. &n approximate representation of the
GOS that truncates the series representation to the first three terms is also given. The approximate GOS
describes the interaction of the electron with a shielded dipole potential and satisfies both Lassettre’s limit
theorem aK =0 and the asymptotic behavior at larg§ederived by Rau and Farfé. R. P. Rau and U. Fano,
Phys. Rev162 68(1967]. The dipole-Born cross section so obtained is applicable at all incident energies and
goes to the Bethe cross section at the high-energy limit. It provides a more suitable representation of the dipole
contribution in the BED model than the Bethe cross section and is valid over the entire energy range. A similar
analysis of the optical-oscillator strengt®OS as a function of the complex momentum for the ejected
electronk,, plus the requirement that the OOS satisfies both the low- andKpidimits produces an analo-
gous series representation for the OOS. An approximate one-term representation of the OOS is also developed
that can be used in modeling calculations. Numerical examples of total ionization cross sectighdhON
CO,, CH,, and CR using the new analytical representation are presented to illustrate the applicability of the
improved BED model.
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[. INTRODUCTION target and ion wave functions or from experiment. Calcula-
tions based on either model are generally in good agreement
Electron-impact ionization of atoms and molecules is awith experiment at incident energies from threshold to sev-
fundamental process in a plasma. While a large experimentaral keV. For many cases the deviation from experiment is
database for electron-impact ionization cross sections iwithin 5-15% at the peak, with the BED model performing
available, in a number of cases significant discrepancies stifomewhat better than the BEB modlé-10]. More recently,
remain. Furthermore, measurements of reactive species sublhare et al. [11,12 introduced their version of the binary-
as radicals are known to be difficult. Theoreticalifp initio  encounter-dipole model. Again the Bethe cross section was
calculation of electron-impact ionization cross sections forused to describe long-range dipole collisions.
atoms is a challenging problem and is actively being pursued While the BED/BEB model has met much success, puz-
[1-4]. In the case of molecules, only Born calculations with zling aspects of the model exist. The Bethe cross section is a
a simple function describing the ejected electron have beehigh-energy approximation. However, the BED and BEB
attempted so far. Thus physically based models are currentijmodels have been applied successfully at energies close to
the only means to determine the electron-impact ionizatiorthe first ionization threshold. Furthermore, analysis of the
cross section of large, complex molecules. calculated cross sections shows that the contribution of the
The binary-encounter-dipolBED) model for electron- Bethe term at low energies is nontrivial, as much as 30-50 %
impact ionization of Kim and Rudfb] combines a modified of the total cross section. Does the success of the BED/BEB
form of the Mott cross section and the Bethe-dipole crossnodel arise from the empirical replacement of by 1/(T
section. In the BED model, the incident-electron enefgy +U+a§/2) in the Bethe cross section? If so, what is the
appearing in the denominator of the Bethe cross section igheoretical basis for doing so? Another puzzling aspect is the
replaced byl + U + a2/2, with U being the kinetic energy of manner in which BED/BEB cross sections vary with im-
the bound electron andglz its binding energy. Kim and proved molecular parameters. In a BEB calculation of per-
Rudd also introduced a simplified version of the BED model fluorocarbons[9], BEB cross sections for GFagree best
called the binary-encounter-BettBEB) model in which a  with experiment when RHF parameters are used. But for
simple expression for the optical-oscillator strength, based,F; and GFg, parameters from complete-active-space self-
on the results from H, He, and,His employed in the ex- consistent-fieldCASSCH calculations give the best results.
pression of the Bethe cross section. Both the BED and BEB here is no obvious explanation to account for such irregular
models depend only on quantities either determined usingehavior. In order to put the BED/BEB model on a
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sound theoretical footing, it is important to investigate thismental and theoretical data for bound-bound transitions, a
further. similar analysis for electron-impact ionization has not been
Theoretically, the most questionable aspect of the BEDtarried out. Thus the study of ionization GOS does not have
BEB model lies in the use of the Bethe cross section at lovihe benefit of the convergent series expansion available for
incident-electron energies. The role of the dipole interactiorPound-bound transitions. To derive a simple, analytical rep-
(or transition-dipole interaction for inelastic collisigria the ~ resentation of the Born cross section for ionization, we em-
Born series has been studied previously by Ha8]. By ploy Lassettre’s approach and analyze the singularities of the
analyzing the Fourier transform of the collision amplitude, GOS as a function of complex. A convergent series repre-
including both Born and non-Born contributions, it was dem-sentation of the GOS for electron-impact ionization is de-
onstrated that the long-range dipole-interaction potentiafived by transforming to a new variable that accounts for the
1/r2, coming from the Born term, is the longest-range poten-singularities. The resulting series bears a strong resemblance
tial in electron-neutral atom/molecule inelastic collisions. All to Lassettre’s result for bound-bound transitions except that
non-Born contributions are of shorter range. It was also arthe momentum of the ejected electron is involved. By retain-
gued that the long-range dipole potential in the Born terming the first term in this series, and requiring this represen-
must be shielded as the incident electron moves into théation to satisfy both the Lassettre’s limit theoremkas:0
molecular-charge cloufll4]. These results hold independent and the correct asymptotic behavior at latgederived by
of the incident-electron energy. It can therefore be arguedRau and Fan§21], we obtain a simple analytic form for the
that, in order to account for dipole interactions over a wideGOS for dipole-allowed ionization. A three-term representa-
energy range, the Born cross section, instead of the BetHéon of the GOS is also proposed. Both are suitable for mod-
cross section, is a more appropriate form to use. eling purposes. The latter, however, provides a better de-

To derive a simple, analytical representation of the Bornscription of the shielding of the dipole potential.
cross section, we study the generalized oscillator strength Alternatively, numerical calculations of the Born cross
(GOS for electron-impact ionization. GOS is frequently em- section for electron-impact ionization of atoms and mol-
ployed in the study of high-energy electron collisidis). ecules can be used directly in the BED model. Unless a
However, certain properties of the GOS are actually appli.COU|0mb wave function is used for the ejected electron,
cable to low-energy collisions as well. One example is Lasthese calculations are quite involved, particularly so when
settre’s limit theorenf16,17] which states that at the limit of  the result must be integrated over the momentum transfer of
zero-momentum transfeK =0, the GOS is equal to the theincoming electron and the energy of the ejected electron.
optical-oscillator strength. This result holds for any atoms oMVe consider the present approach, employing a simple rep-
molecule regardless of whether the Born approximation igesentation of the Born cross section with parameters obtain-
applicable. While zero-momentum transfer for inelastic col-able by bound-state quantum-chemistry calculations of the
lisions is a mathematical limit reachable only by extrapola-target and ions or tabulated thermochemistry data, to be more
tion from the measured GOS, the limit theorem shows thagfficient. In this sense, the present approach retains much of
extrapolation can be done using low as well as high-energghe utility of the original BED/BEB model and requires a
data. relatively small amount of computing effort.

For inelastic collisions involving bound-bound transitions, An analogous complex analysis for the optical-oscillator
Lassettre also investigated a convergent series representatigiiength(OOS for dipole-allowed ionization has also been
of the GOS18]. An expansion of the GOS in a power series carried out. Based on its singularities on the complex mo-
of K generally leads to a series with finite radius of conver-mentum plane for the ejected electron, and the limiting be-
gence. However, by introducing a new expansion variable havior of the OOS at large and small ejected-electron mo-
=K?/(K?+ a?), based on the location of the singularities of mentumk,, we arrive at a series representation of the OOS.
the GOS as a function of complék Lassettre showed that it An approximate one-term expression is also developed for
is possible to transform the GOS representation to a newnodeling purposes. This expression is different from what is
series that converges for all physically attainable valugé.of used by Kim and Rud¢] in their BEB approximation.

Here K=*ia is the position of the singularities for the =~ By combining the dipole-Born cross section and the sym-
GOS, anda?=a?+ a2, with o?=—2¢; and & the binding  Metrized Mott cross section, with the incident-electron en-
energy of the electron being excited. ergy modified using the binary-encounter model, we obtain

In applying Lassettre’s series to deduce the limit of GOSN improved BED(BED) model. Further simplification by
at K=0, Huo [19] showed that at the limit of zer& the ~ €mploying the one-term representation of the OOS gives the
derivative of the GOS with respect kbdoes not vanish and Simplified version of the IBED(SIBED) model. Numerical
the derivative with respect 62 becomes infinite at all finite c@lculations of N, H,0, CO,, CH,, and Cf using IBED/
incident energies, both resulting from the non-Born contribuSIBED demonstrate the applicability of these models.
tions. Thus it is necessary to include odd-power ternt§ in Theoretical developments are presented in Sec. Il and nu-
a series expansion of the GOS to deduce its limiKat0. merical examples in Sec. lll. Sec. IV summarizes our results.
Recently Felfliet al.[20] introduced a new generalized Las-
settre expansion that employed a Reggie Po]e representation Il THEORETICAL DEVELOPMENT
for the non-Born term and demonstrated reliable extrapola-
tion to the OOS limit even at low incident-electron energies. The generalized oscillator strendtly, for electron-impact

While Lassettre’s series is often useful in fitting experi- ionization of an atom or molecule from the initial stat¢o
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th.e final state with the ion at stapaand 'Fhe ejected electron gpo(K,Ep):<¢p(r)|eiK~f|%(r)>_ (2.5
with energyE, and momentunk, is defined by
Again the assumption of one-electron orthogonality is not
k, d?c essential to our results but makes the presentation simpler.
k¢ m (2.9 The relaxation of the sudden approximation, one-electron or-
thogonality, and the simple product form of the final-state
whered?s/dE,dQ is the differential cross sectiok, andk; ~ Wave function will be discussed in Sec. Il A. o
the momenta of the incident and scattered electforihe The present study considers only the Born contribution to
momentum transfer, and/,,, the excitation energy. For ion- the GOS. Our analysis determines the primary singularities
ization W,, is the energy difference between the initial neu-in the GOS and is sufficient for the derivation of a conver-
tral state and theth ion state plus the ejected-electron en-9ent series representation of the Born cross section, one of

ergy. In the Born approximatiofy,, is given by the goals of this paper. Additional singularities in the GOS
may arise from the non-Born contributions but they will not

1 2
Fpo(K,Ep) =5 WpoK

2W,, , be considered here.
fpo(K,Ep)=—Kz—|spo(K,Ep)| . (2.2
A. Singularities of the GOS on the complexK plane
The form factore , is given by The rationale for deriving a series representation of the

GOS based on its singularities comes from Liouville’s theo-
rem, which states that a functidifz) that is analytic for all
values ofz and bounded alg|—« must be a constant. Thus
it follows that we can determine the GOS to an additive
constant if all its singularities are known. The present analy-
Wo(ry-- 'TnaR)>- (2.3 sis is an extension of Lassettre’s work on the GOS for
bound-bound transitions.

The wave functionsp,(r) and ¢,(r) are expanded in
Jerms of spherical harmonics,

spo(K,Ep)=<\I’p(Tl~ -1, R)

n
XE eiK~I’i
i=1

Here 7, is theith electron coordinate including spin aid
the totalilty of the nuclear coordinates. The final-state wav
functionW,(r;- - - 7,,R) is approximated by an antisymme- R
trized product of the ion wave functichy(7,- - - 7,,R) and (pi(r)ZZ r’lR”i ,mi(r)Y,imi(r), (2.6)
the continuum wave function for the ejected electron fimi

¢p(71,R) (See discussions near the end of Sec. Il A for th
removal of this approximation Due to the large difference
between the electronic and nuclear mass, the ionization of
electron is significantly faster than the relaxation of the
nuclear configuration and the sudden approximation can be

employed. In that case,, is rewritten as £po(K.Ep)= 2 > a
Nokto }\p/’-p vz

Swith the subscript representing eithes or p. After a similar
spherical-harmonics expansion f@X' and integrations
er the angular variables, can be written as

epo( K,Ep) = < W71+ T Ro) X f:R;KPMp(r)jA(Kr)RokoMO(r)dr. 2.7

. . Here the summations ov&fu,\q,iq,\p, andu, cover the
Xizl e Wo(ry ... 7, Ro) allowed values of,m,l,,m,,l,, andm, after angular inte-
grations. The constamt=a(\,u.\pup\ ) comes from the

X(Lp(R)|L6(R)), (2.9 angular integration. The radial integral is separated into two

regions: the firste("), is inside a sphere with a large radiQs
whereR, is the equilibrium geometry of the initial state and and the second;(®, outside this sphere. By expanding the
¢ the nuclear wave function. It should be pointed out that theBessel functionj, (Kr) in an ascending series ¢fr, it is
results presented below do not depend on the validity of thgeen immediately that for any finite value i6f £V is regu-
sudden approximation. However, in the sudden approximatar. Thus any singularity o must come from the exterior
tion &, is expressed in terms of a product of electronic andntegrale(® that is given by
nuclear matrix elements and the derivation is more transpar-

ent. In the following, we shall omit writing out the nuclear- (e)_ -
overlap term and the nuclear geomeRy. &= E Z E a Rp}‘p“p(r)
; : . Noto Nptp Ap c
In Sec. Il A the location of the singularities for the GOS _
are derived with the assumption that the initial- and final- ><Slr‘(Kf—?ﬂT/Z) R q 28
state electronic wave functions are one-electron orthogonal Kr 0)‘01”‘0([') r. 2.8

[22] to each other at any nuclear configuration. The assump-
tion of one-electron orthogonality further simplifies the ex- Since sinKr—A#/2)/Kr is an analytic function of bothk
pression fore ,, to andr neark=0, £(® has no singularities & =0.
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If the radius of the spher€ is chosen to be so large that =«, and z=«. The singular point at= «, is regular. To
exchange and correlation effects are unimportant outside, thaetermine if it is a branch cut off a pole, we use the follow-
asymptotic form ofR,, ,, (r) satisfies the differential equa- ing series expansion fdr,

tion,

d? 2 Ao(No+1)

ﬁRoxoﬂo(r)"’ 28t 2 Rox (1) =0,

r=C_C (2.9

where &, is the binding energy of the electron. Thus the
leading term oRoxOM0 in the asymptotic expansion at large

has the form,

(2.10

MR,y , (1)~byrY/*oe™ ",
oo
r=C

with a,={—2&, andb, a normalization constant.

Asymptotically, the ejected electron behaves like a Cou-

lomb wave,

M Ry e (1) =ba(kol) ™ 7exifi (Kot =N p/2+ 7,)]

r=C
+by (ko) Yexp —i (Kol =\ pmr/2+ 3,)],
(2.1)
with ny=argl’(A,+1+iy) and y= -1k, .
Using Egs.(2.10 and(2.11), ¢® can be rewritten as

Ka(®— alf rVo= 17 lexpf[i (K +k,) — ao]ridr
C

0

+a2J rteot 1y~ texp[i(K—k,) — ao]ridr
C

o0

+a3J r oo~ 17~ Texpl[ —i (K —kp) — ao]r}dr
C

+a4J rteo™ 1y~ texpl[ —i(K+ky) — ao]rdr.
C

(2.12

Let us consider the first integral in E(.12),

|1:J rPelz-@lrgr, (2.13
C

with B=1/a,—iy—1 andz=i(K+kp). It can be readily
shown thatl ; satisfies the following differential equation:

d?1,
9z

B+2 —c)ﬂ— C(,8+1)|

ZI—« dz ZI—«
[o] [o]

l,=(z— aofngo En(z—ao)". (2.15

At z=a,, the only nonvanishing term i§,(z— «,)°. Sub-
stitute the expression of to Eq.(2.14), we find

[S(s—1)+S(B+2)](z— a)* 2

—C[s+(B+1)](z— ay)s t=0. (2.16
The indicial equation for thez— a,)%™ 2 term is
s(s—1)+(B+2)s=0. (2.17
For the g— a,)® ! term it is
s+(B+1)=0. (2.18

The solution of Eq(2.17) is s=0 ands=—(B8+1), and for
Eq.(2.18 itis s= —(B+1). The solutiors=0 gives rise to
an analytic function ofl; and thus is of no interest. The
solution s= —(B+1) identifies the singularity at= «, to
be a branch point i3 is a noninteger or a pole of ordg
+1 if B is an integer.

Similar analysis can be applied to the other three integrals
in Eqg. (2.12. Thus the form factoe,, has singularities at
the following locations:

K=ikp—iao,

(2.19

K==xkp+tia,.

In addition,&,, may also be singular & =, but this value
of K is not physically reachable.

Based on Eq(2.2) f,, will have the same set of singu-
larities asep,, i.€., the points listed in E¢2.19. In addi-
tion, it may also be singular & =0 andK=c«. However,
Lassettre’s limit theorem16,17] states that,

iimofpo(K,Ep)_)fgg(Ep), (2.20

with f{?)(E,) the optical-oscillator strength. Sindé?(E,)

is a constantf,,(K,E,) should also be regular &=0.
Otherwise Lassettre’s limit theorem will not hold. On the
other handf,4(K,Ep), like €,,, may be singular aK =cc.
This singularity is not considered here becalfsex is not
physically accessible.

It is important to point out that we have located the sin-
gularities for f,,(K,Ep) based on the asymptotic forms of
the initial and final wave functions. Equatiori2.10 and
(2.11) are accurate representationsRy, , and Rpxpup at

r=C. No approximation has been assumed for the full-range
wave functiong, or ¢,. In particular, since asymptotically

The differential equatiori2.14) is linear and homogeneous. Rox ., @ndRp) , can be represented by single-center wave
Hence the only singularities of are located at the points for functions, their multicenter nature in the interior region does
which the coefficients are singular. These points are at not enter into the derivation of the singularities. Also, while
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the Bethe cross section uses a Coulomb wave to represent To test the validity of Eq(2.19, we compare our result

the ejected electron, we only require that the ejected-electrowith the generalized oscillator strength for electron-impact

wave function asymptotically behaves like a Coulomb waveionization of H atom originally derived by Betti&7] and by
Similarly, the removal of the sudden approximation for Massey and Mohf23],

nuclear motion and the assumption of one-electron orthogo-

nality for initial and final wave functions will not invalidate 28[K2+(kg+ aﬁ)/S](kSﬂL a?)

the present result. If the Born-Oppenheimer approximation is f(K,Ep)= [(K+ ko) 2+ a2 [(K—ky) 2+ a2]?

used instead of the sudden approximatieg, is given by P ° P ©

X[1—exp(—2m/ky)] !

Spo(K’Ep)=f g;(R)<\Pp(Tl"'TnuR) Xexp[—garctar{ 2K

kp K2—k3+aj

(2.23

Walske[24] and Holt[25] pointed out that the derivation of

Eq. (2.23 requires the branch lying between 0 ando be
(2.2 used for the multivalued arctangent function. Taking this into

account, the location of the singularities of the H-atom GOS

instead of Eq(2.4). The() in the integrand denotes an in- are identical with the list in Eq2.19).

tegration over all electronic coordinates. The fact that the Based on Eq(2.19, a series representation fog, that

radial integrale® is now R dependent does not change theconverges for all physically accessible valueskotan be

nature of the singularity. However, and k, need to be constructed. A general form will be,

averaged over the nuclear wave functions. This leads to the

le ek ri|w (7. Tan)> {o(R)AR,

use of the electron-binding energy for a particular rovi- foo(K,Ep) =[(K+kp)?+ al]%
brational level of the initial state and the ejected-electron o w
energyE,, associated with a particular rovibrational level of

9 P X[(K=kp)?+a]2 X 2 &,
the ion. nN1=0n,=0 12

The relaxation of the one-electron orthogonality also will
not change the major conclusions. If the initial and final v
states are not one-electron orthogonal, the expressias,for [(K+ kp)2+ as]M[(K— kp)2+ ag]"’
will include overlap integrals and possible additional singu- (2.24

larities coming from the non-orthogonal orbitals. Neverthe-
As far as we know, this is the first derivation of a series

less, the singularities identified in EqR.19 are still the
primary singular pointgor branch cuts representation of ,o(K,E,) based on its singularities on the
complexK plane. As in Lassettre’s series for bound-bound

The removal of the approximation that the final-state
wave function be represented by an antisymmetrized prOdu?Fansitions, this series should converge for all physically ac-

of the lon wave function and ejected—elgctron wave funCt'oncessible values df. Inokuti et al.[26] studied the analytical
also will not alter the results on the singularities. A more

accurate representation of the final-state wave function is otﬁroperties of the GOSUfpo/dE,, ie., the integral of
tained by a linear combination of such products. The addi- po(K,Ep) overK. They proposed to fit the GOS by a power

. : . . series ofE,/AE, with AE the energy transfer. However,
tional terms, which describe the correlation between the " . : .
) . heir approach appeared to work well only at high energies.
ejected electron and the bound electrons of the ion, go to . . )
Equation (2.24) is applicable to any type of electron-

éetfa?sér::i?i?r?g?rl:g ﬁqzzrménzhgjtgeinignr(;:gO:r? dth(i) r?gllus impact ionization, including dipole- or quadrupole-allowed
P grais, e or symmetry-forbidden transitions. In Sec. Il B an approxi-

be so large that & t.hose terms become ljegllglble comparedmate representation of the GOS for dipole-allowed ionization
to the term associated with the outgoing Coulomb waveg . be derived

Thus we conclude that the same set of singularities will re-
sult using a more sophisticated final-state wave function.

Kz(n1+n2)

For bound-bound transitions, Lassetfts] derived the B. GOS for dipole-allowed ionization
following singularities for the GOS: and its approximate expression
Using the alternate expression of the form factor
K==*i(ayt+ ap). (2.22 1
spo(K,Ep)=<wp(Tl. -7, R)EKI o Z oot

Here a,=\—2&, and &, is the binding energy of the
excited-state electron. Notice that for both bound-bound Z
transitions and ionization, the location of the singularities in —2 m
the GOS depends only on energies, and not on s o7
lo,Mg,lp, My, I, andm. (2.2

Wo(7ye -7y 1R)eik°'r°> )
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itis readily seen tha¢,,, and hencé ,,, includes ionization K4 (2.2
of all symmetry types. However, only the dipole-Bethe con- = Rk 2 r 2 T Kk 21 a2l 2.2
tribution is used in the BED model. Furthermore, while the [(KHkp) ™ a ][ (K —kp) "+ o]

expansion off, in Eq. (2.24) is useful for analyzing experi- r‘}l’he values ofl; andd, can be obtained using experimental

mental data, it is unswted for simple-model cal(;ulatlons SUCTL; theoretical differential cross-section data at lagén the
as the BED calculations. For that purpose, a simpler expres-

N : ) - . (?bsence of such data, they can be determined based on fitting

sion is preferable with the expansion coefficient determine .
: . . Integrated cross sections.

by known physical conditions that the GOS must satisfy. To understand what roles the three terms in E2j27)
Two physical conditions are used. The first is Lassettre’s lav. let us consider the soherical-harmonics expansion of
limit theorem, which determines the value of the GOS at th heyboulomb otential P P
limit K=0. The second is the asymptotic behavior of the P '
GOS at largek. Rau and Fan$21] showed that for dipole-

o / Va
allowed transitions, the GOS should decreaseKas? at 1 =5 > 4w =y (F)Y ()
large K. Thus for dipole-allowed transitions, a one-term ex-  [ro—ri| o m<t, 2/ +1 ¢ t1 /m ol t/miil
pression forf ,, that accounts for the singularities listed in (2.29
Eq. (2.19 and satisfies both physical conditions listed above
is wherer - =(ry,r)min @ndr~=(ry,r)max- For dipole inter-
action,/ =1,
t KE) df(E,) (K3+ad)® L,
) = . mr ~ ~
PRI AR, [(K+Kp) 2+ a2PL(K—kp) 2+ a2 Vaipole= 2 377 Yin(To) Yan(T))-
== >
(2.26

The first term in?‘po, which becomes the OOS Kt=0 and

Herefpo denotes the dipole GOS, to be distinguished from_hence proportional to the transition dipole moment, can be

: o identified with the long-range dipole interaction figy>r; .
the GOSf ,, that includes transitions of all symmetry types. X . . -
po
Also, the OOSff)‘Q is written out explicitly as a differential The second and third terms in (.27, which vanish at

(2.26 with Eqg. (2.23, we find that the GOS for H-atom
ionization has two contributions, one that does not vanish
K=0 and decreases & 2 at largeK, and the second that
vanishes ak =0 and decreases &s 1° at largeK. The first

comes from a dipole transition and the second a nondipol

transition.fTh(ra] GdQSIin E<1.2'.§6): on tlhe othe2r hgncli,donly electrons to come close. The fact that the shielding terms
accounts for the dipole contribution. Also Eg-26 includes )0 me more important at higher energies distinguishes it

only the Born contribution to the GOS. Consequently theyq 4 nojarization potential, which is most important at low
expansion only includes even powerskaflf non-Born con- energies

tributions are included, Eq2.26) needs to be modified to

include odd-poweK terms. ) ) - o
Note that Lassettre’s limit theorem uniquely defines the C- The dipole Born cross section and its high-energy limit

functional dependence df,, and its magnitude & =0. On Using the GOS in Eq(2.27), the singly differential Born

the other hand, Rau and Fano’s latgdimit only provides cross section is written as

the functional dependence at large but not its magnitude.

Thus the one-term expression in E@.26 describes the dopo(Ep)

smallK behavior off,, better than largek. An analogous dE,

situation occurs in Lassettre’s series representation for the

GOS of bound-bound transitions. In fitting experimental data 47 dfé%)(Ep)

for bound-bound transitions, it has been found that more than kgwpo dE,

one term in the expansion is necessary to give a good de-

scription off over a wide range oK. In the present case, a meax 1+d;t+d,t? 4K

corresponding three-term expression is given by K[(K+kp)2+ a§]3[(K— kp)2+ a§]3 '

(2.30

with the fact that the second and third terms become more
Eﬂnportant with increasingK since large-angle scattering
samples close scattering more. The shielding also becomes
more important as the incident-electron energy increases
from threshold because it is more difficult for low-energy

(K3+a3)®

Kmin

dfS)(Ep) (K3+ad)®
dE, [(K+ky) 2+ afP[(K—kp) 2+ af]’® One test for the validity of the approximate Born cross sec-

tion so obtained is to see if it reaches the Bethe asymptote as

T—oo, with T= k§/2. To analyze the high-energy behavior of

the approximate Born cross section, we follow the procedure
with described in Ref{15], Sec. 4.1 and 4.3, and find

foo(K,Ep)=

X{1+dt+d,t?}, (2.27
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7In(T) (= 1 df(o)( Ep) . M, has been investigated by Rau and F&Rb| using an
f E T a/2 dE dE,+O(T). energy-normalized spherical Bessel function to represent
poe P 2.3 ®p(r). They obtained zil;l;(XOH p*25) dependence foM ,, .
' Slnce the minimum value of,+ X\, is 1, M, varies at least
Similarly, the high-energy limit of the stopping cross sectionask, *° at largek, . However, if\y=X\,+1, thek, *° term

lim opo=

T—x

is vanlshes and,, varies at least |Ik(k a5 . Based on the two
asymptotic Ilmlts and the relatlonshlp\/\l;m— k2+ ag, the
lim O_ST zf Wpod"gcéEp) dE,=27N, '”EI_T) following series is recommended,
Toe P (0) % 2 \n
(232 dfpo: 2 : 4[ao+k 2 Cn 2kp ]
. dE, (ky+ a’d) kg+
with (2.39
(o]
N = mﬁdE _ (2.33 There are other, alternate series representations that account
" JodE, TP for the singularities on the complé, plane and satisfy all
the necessary constraints. For example,
Thus o, and oy, are identical with their respective Bethe
asymptotes. For nondipole allowed transitions, the Bethe as- dfg’) 2 n
ymptotes for the integrated and stopping cross sections has dE, (k2+a 7 E k2+ 2 (2.39

1/T instead of IAT/T dependenc¢l5]. Thus asT— Egs.
(2.31) and (2.32 are the sole contributors to the Bethe as-

L In EqQ.(2.38 the singularities ak,= *i«, are represented as
ymptotes for theo— p ionization processes. g.(2:38 g P o P

poles whereas in Eq2.39 they are presented as branch
points. Based on our experience in fitting the OOS for a

D. Singularities of the optical-oscillator strength number of ionization channels of ,Nand CH,, Eq. (2.39
on the complexk,, plane generally converges faster than E§.39. The former is
1. Singularities of {2 therefore the preferred representationf[;ﬁ in this study.
The analysis in Sec. Il A can be employed to analyze the 3. One-term representation of.§)
' p

optical-oscillator strength, )
For modeling purposes, we look for a one-term represen-

dff)‘g , tation off (9) and use an approximate sum rule to determine
dE =2W,o|Mpql%, (234 the associated parameter. A suitable candidate that satisfies
P both asymptotic behaviors would appear to be the first term
M. = Olr Ny 23 in Eq. (2.39). Somewhat surpns_mgly, this representation
po=(@p(nlrl@a(r) (239 does not give the best one-term fit to the molecular OOS we
Again the singularities oM ,, are located in the radial inte- tested, even though it may be suited for simpler systems such

gral outside a large sphere with radi@sThe outer integrals @S H, He, and bl Instead, the one-term representation of
are, dffj%)/d E, that gives the best overall performance is,

df(?) _ boky
dE, (k§+a§)3’

o0
[ L= f rll%*i“ﬁle(ikp*%)"dr,
C

(2.40

with b, a constant to be determined by an approximate sum
rule. Note that the above expression forces the OOS to be
zero atk,=0. Thus it does not necessarily match with the
The S|ngu|ar|t|es are located b& +|a,0 Aconvergent se- Corresponding bound-bound transition at threshold. It also
ries representation df?) for all physically accessible values decreases too slowly at largig. However, the main goal of

|7:fmrl/a0+iy+1e(7ikpfao)rdr. (23@
C

of k, can be obtained using the transformed variaple this study is integral cross sections. Modeling this quantity
only requires the integral ove‘rﬁfg. It is not too surprising

kg that the best one-term representation for the OOS of the five
9=i2 .2 (2.3 molecules studied here, E(2.40, does not satisfy the lim-
p- o iting conditions. As a consequence, Ef.40 is not a suit-

able expression to use in the study of the ejected-electron
distribution. We believe that a more accurate representation
To derive a series representation f(é%) , we make use of of ff;f)) involving more than one term, is required in the
the asymptotic behavior dfl ,, at small and largé, . Atthe  study of the ejected-electron distribution. It should also be
limit of zero k,, My, should match smoothly with the noted that many molecular OOSs, unlikg, o not peak at

bound-bound transition moment. The largg behavior of  k,=0. For example, the least square fit of experimental data

2. A series representation for({)
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using Eq.(2.39 for several ionization channels in,Nand dobs(Ep) 87N, 1
CH, appear to indicate a threshold OOS valqe of zero. dE, T K+ K2+l (k’2)+a(2))2

We employ an approximate sum rule to estimate the value
of b,. Because of electron correlation, the Thomas-Reich- 1 1
Kuhn (TRK) sum rule for a many-electron system cannot be T 1Rt K= K2 + K2—K22[

. . . . . ( p ao)( 0 p) ( 0 p)

decomposed into orbital contributions. However, if an ap-
proximate, effective one-electron Hamiltonian can be used to (2.43
describe the active orbitad,, then the transition among its 2

eigenstates will satisfy one-electron sum rules. One exampld€'€ Ko IS twice the kinetic energy of the bound elecron in
of such effective Hamiltonian is the closed-shell Fock operao- 1€ above expression, called the binary-encounter cross

tor. Consider the integral in Eq2.33 with N, representing S€ction by Kim and Rudd, differs from the symmetric form
the contribution of the photoionization process:p to the ~ ©f the blnary—encountezr Jross sec;ﬂonzo; Vrigas) in the
sum rule. Assuming that the TRK sum rule for individual 2PSénce of the jk€+ ao)” and 1/&; —ky)* terms. Because
orbitals holds, and the bound-bound contribution to the sunih® Mott cross section is a generalization of the Rutherford
rule is negligible, thenN;=N,, with N, the occupation Cross section for Coulomb scattering by taking exchange into
number ofe, . Equation(2.33 becomes account, the direct interaction term in £8.43 is obviously
associated with the’=0 term in Eq.(2.29. On the other
~df© hand, the dipole-Born cross section is associated with the
f PO HE.=N (2.41) /=1 term in the two-electron Coulomb interaction and de-
o dE, ~ P ° scribes collisions of a different symmetry type than the
modified binary-encounter cross section. Thus the two con-

Analysis of the experimental OOS data for photoionizationtributions should be additive. Neglecting the interference
out of the valence orbitals of N[27] and CH, [28] shows e€rm between the two contributions, we obtain the singly
the above approximation works reasonably well for thesdlifferential-ionization cross section in the iBED model.
cases. However, it works less well for the more tightly boundd IBED, £
orbitals where double excitation may occur. Tpo (Ep)

It is possible to determiné, by substituting Eq(2.40 dE,
into Eqg. (2.4) and integrating overE,. We find b,

N 1 1
=8agN,/m and = 287720 2\ 02 22 2 222
kS+ kgt ag (kp+ao) (kp+ao)(ko—kp)
(0) 3 (0)
dify 8a20N0k2ps. (2.42 L L) BTARE o o
dE,  w(K3+a?) (K-k32] " K& dg, P e
2

It should be pointed out that Eq2.42 has a number of meaX 21+d21t3+d2t ———dK.
shortcomings. First, as pointed out earlier in this section, Eq. Kmin KL(K+Kp)“+ ag]°[(K—kp)“+ ag]

(2.42 does not take into account the correct asymptotic be-
havi (o) ; : : (2.49
avior of f;5 and thus is not expected to provide a reliable

ejected-electron distribution. Second, it assumes that for eXxn the BED model, Kim and Rudfb] combined the dipole-
citation out of each orbital,, there is only one ion state Bethe and the binary-encounter cross sections with the con-
created, corresponding to the hole sta@l_ Thus double straint that the high-energy limit of the integrated-ionization
excitations are not allowed. In the next section an example ofross section and thtal-stopping cross section from the
CH, will be presented where experimentally it was shownBED model agreed with the their respective Bethe asymp-
that double excitation plays a role at moderate enef@8p  totes. In the present case, it has been demonstrated in Sec.
Third, it is assumed that all dipole-allowed excitations go toll C that the approximate dipole-Born cross section in Eg.
the ionization continuum. Obviously this assumption is never2.44 gives the Bethe asymptotes for both the integrated and
fully satisfied. However, because OOS is weighted by thestopping cross sections due to the ionization procesg.
excitation energy, the contribution from the ionization con-Furthermore, the high-energy limit of nondipole ionization
tinuum dominates. The error introduced by neglecting thedecreases withT faster than the dipole term and does not
bound-bound transitions may be reasonably small. Th&ontribute to the Bethe asymptote. Since the Bethe asymp-
present derivation suggests that subtracting the contributioriotes are already built in, they can no longer be used as a
from bound-bound transitions to E.41) should improve guide for combining the Born and binary-encounter contri-
the accuracy. butions.

While the integrated cross section from the binary-
encounter term in Eq(2.44) decreases faster than (T
and does not contribute to the Bethe asymptote for this quan-

The modified Mott cross section, with the incident- tity, it does contribute to the Bethe asymptote for the stop-
electron energy replaced by the average energy from thping cross section. This is a shortcoming of the binary-
binary-encounter model, is given by encounter model. By requiring the sum of the binary-

E. iBED model and a simplified version of this model(siBED)
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encounter and dipole-Born contributions to the stoppingexperiment by Rapp and Englander-Goldgg6] has the
cross section equal to thetal-stopping cross section, as next-tightest error estimate of 7%. Both CH, and CR
done in the BED model, would incorporate extraneous conhave Jahn-Teller splitting. Comparing the results of these
straints outside the ionization process. Thus for the iIBEDwo molecules may be of interest. Also, £iE used as a feed
model we choose to add the two contributions together withyas for plasma etching. A large pool of experimental data on
out any additional constraint. _ _ ~ this molecule has been review¢d7,38. Among the re-
The integrated cross sectiof, is obtained by integrating jewed data the measurement of Nishimatal. [9] has the
Eq.(2.44 overE, . For the binary-encounter term that has agmgajiest error estimate: 7.5%), and it will also be included
symmetrized expression including both direct and exchanggs 5 penchmark for our calculations. For all five molecules
contrlbuthns, the integration I|_m|t IS f_rom _O _to‘_l'e Eo)l2. considered, a wealth of experimental data are available be-
For the d|pole-E.30.rn term, the mtegrapon limit is from 0 to sides what we use for benchmarking. However, for clarity in
T—&, because it includes direct collisions only. the presentation of the figures, we choose to compare only

' 47N K2— o 1 K2 with a more selected set.
iBED o (o] o o} .
Tpo 121 o | KCaZ I+ a?) In(?” . As in the case of BED/BEB model, m_ost of the computa—
o "o Tol To™o o “o 0 tional effort is spent on quantum-chemistry calculations to
8T [((C-adi2, 5 de)C:))(Ep) determine the molecular parameters: the binding energy
22 R L ao)STd E, (=—a?2) and kinetic energy of the bound electron
00 P (=«2/2). In the iIBED/siBED model, the latter is used only
Kmax 1+dt+d,t? in the binary-encounter part of the calculation. All quantum-
mein K[(K+kp)2+a§]3[(K—kp)2+a§]3dK' chemistry calculations were done using the experimental-

equilibrium geometry of the neutral molecule. The effect of
(2.49 nuclear motion has been neglected except in, @hd CF,.
For CH, the large Jahn-Teller splitting observed in the ion is
accounted for in the iBED calculation. For €& rough es-
OIimate of the Jahn-Teller effect is given. The quantum-
chemistry calculations use the augmented correlation-
consistent aug-cc-pVQZ basis of Gaussian funct{@ for

In the absence of experimental or theoretical datd g‘Qr,
the approximate one-term expression in E242 can be
used and we obtain the simplified version of the improve
binary-encounter dipolésiBED) model,

_ 47N k2— o2 1 Kk? N,, H,O0, CO,, and CH. For CF, the augmented
SiBED 0 0 o o . . .
Opo  =p2r 2 2| w22 T N 2 correlation-consistent aug-cc-pVTZ ba$B9| is used. The
ki+ko+ag| koag  (k§+ag) 5 o . .
kinetic energies, being a one-electron property, are deter-
640N, KR-ad2, 5 2, mined using Hartree-Fock calculations. The binding energies
R fo ® 7 kp(kpt ag)“dE, are either taken from experimental vertical ionization poten-
° tials (VIP) or from ab initio calculations. In theab initio
Kmax 1+dt+d,t? calculations the VIP to the lowest-ion state of each symmetry
JKmm K[(K+kp)2+ a§]3[(K— kp)2+a§]3dK' is determined by taking the difference between the total en-

ergies for the target and the ion states using the RGTED
(2.49 (spin-restricted coupled-cluster singles and doubles with per-

As discussed earlier, the binary-encounter contribution ir;[urbatlon correction for riplgsmethod[40,41. Since size-

the iBED and SIBED cross sections are of symmetry typ consistency is not a problem for RCC@ED, it is well suited

/=0. Due to the difference in symmetry, the short-ranggor determining the energy difference between two systems

interactions described by the binary-encounter contributiorY\”tlh cz)lfferen(tjnurr;ber of _electr:orlls. However]: RCCr:](SDcan
do not cause redundancy problems with the shielding part f"lY Pe used to determine the lowest IP of each symmetry.

the shielded-dipole interaction described by the dipole Born' € énergies of the second and higher ion states of a sym-
contribution. metry and the corresponding IPs are determined using

CASSCF calculations and the result scaled by the

RCCSOT) result for the lowest state. For,Ninternally con-

tracted multireference configuration interaction calculations
Total ionization cross sections for,NH,0, CO,, CH,, [42] are used to search for the ctgl) hole state. All theo-

and CF, have been calculated to illustrate the applicability ofretical calculations have been carried out usiay PRO[43].

the iBED and siBED models. These five molecules are choThe agreement between theory and tabulated experimental

sen because recent experimental data from the Rice group fdata[44] are consistently good, giving confidence that the set

these moleculeg30—35 have tight error bounds: 5%, and  of molecular parameters used in our calculations are the best

hence well suited as a benchmark for our models. For N available set.

H,O, CO,, and CH, a recent recalibration of the apparatus The two-dimensional integration ové& andE, are car-

by the Rice group results in data that differ slightly from ried out numerically using Simpson’s rule. The calculated

those in the original publication85]. The revised data are partial cross sections'-=° are added up to give the total

D o
used as benchmark. For these four molecules, an older set whization cross section,

I1l. NUMERICAL EXAMPLES
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. 4 In our iBED calculation, we fitted the experimentdf)

2 2 0_|BED:0_|BED (3 1) . - ; °

S 4 Tpo : : using three-, four-, and five-term expansions of €38 for
the X*%, , A’Il,, andB?S, data, and three-term expan-

The SiBED model assumes only one ion state is producedions for theZ state and what Hamnegt al.[27] labeled as

from the ionization ofe,, so the labep is dropped, 204 hole state. The optimal length of expansion was deter-
mined by the shortest expansion that satisfied the following

BED ) three criteria(1) The OOS should be positive at all electron
>, o5 BEP=gSIBED, (3.2 energies(2) The f sum obtained should be physically rea-
0 sonable.(3) The fit should have a reasonable root-mean-

The results using the iBED and siBED models are de->quare error after satisfying conditiof® and (2). For the

. ) T .
scribed separately below. In the iBED calculations, we usg’zzu and; states, we found tge first coefﬁment in the fit,
the OOS from available experimental data. The optimal valcorresponding to the value d‘(po_ at zero ejected-electron
ues for the coefficients; andd, in the expression for the €nergy, to be consistently negative for any reasonable value
dipole-Born cross section are determined by the best fit t®f f sum. Thus the final fit for these two cases was obtained
experimental total ionization cross section. The goal is ty forcing the first coefficient to be zero. The oscillator-
investigate the nature of the shielding of the dipole potentialstrength sums from the fit were 2.251 for the photoionization
In the SiBED calculations, our goal is to derive a set ofof an electron out of the @; orbital, 3.464 for I
parameters that is applicable to all five molecules undert 1y, 0.739 for the 2r,, 0.301 for theZ hole, and 1.085
study. The calculated cross sections are compared with tHer 204. For 20y, and 274 hole states, thé sum was far
BEB cross sections as well as experiment. Note that othdfom the orbital occupation number of 2, even after including
theoretical models for electron-impact ionization cross secthe contribution of the state. We believe this to be partially
tions are also available. One frequently used model is thélue to the limited-energy range in the experimental data so
semiclassical Deutsch-ka model [45]. Nevertheless, we that for the more tightly bound orbitals there are larger un-
have limited our comparison to the BEB model in order tocertainties in the extrapolation.

illustrate the difference between the use of Bethe and dipole- Due to the uncertainty in the nature of thestate and the
Born cross sections. 204 hole state, two iBED calculations have been carried out

for N,. The first iBED calculation, labeled as iBED,

treated theZ state as the lowesta, hole state and the ion
state observed by Hamnedt al. [27] at 37.8 eV as an ex-
1.N, cited state associated with ther hole. This treatment was

The OOS for the photoionization of Nhas been mea- consistent with the quantum-chemistry result for dtates of
sured by Hamnetet al. [27] from threshold to 50 eV in an g Symmetry. The VIP used, together with their sources,
(e,2e) coincidence experiment. They reportéf) for the — Were: 37y, 1558 (expt, Ref. [44]), 1m,, 16.98
production of the ion statexzzg (304 hole), AT, (1, [RC.CS[.IT)]’ 20, 18.78[RCCSOT)], and 2, forming
hole) BZEJ (20, hole), and 22; (204 hole). They also excited ion, 37.8 eVexpt., Ref[27]). AVIP of 29.20 eV for

. . the production of the&Z state of the ion, based on a scaled
reported the production of an ion state that they narded .
: o CAS calculation, was used. Note that our RCG¥HDcalcu-
state because it does not relate to a specific hole state. Tr|1

VIP for the 20y hole listed in Levin and Lia$44] varies ation for the VIP of drq was 15.60 eV, in good agreement

from 28-29 eV to 38.9 eV. We investigated the nature of theW'th experiment. RCCSIT) VIPs for other ion states were

7 dthe . hol b . dexpected to be of similar level of accuracy. Because the
(1(S)titfeg?ont/12 grbic;;i éf;eg,CypCi;mgt%urf:%fg@gaff binary-encounter model was based on the collision between
ICMRCI for the lowest six N states onE; symmetry. We a free and a bound electron, it could not describe ionization

¥ resulting in an excited-ion state, such as the highey Bole
could not locate a pured, hole state. The secorf® state  giare Hence excited-ion states were not included in the cal-

was the first state with significang hole character. Its VIP - ¢jjation of binary-encounter cross section. The occupation

was 29.20 eV, in good agreement with #@9 eV threshold  ,,mpers from the SCF configuration of the neutral molecule
that Hamnetiet al. reported for theilZ state and the lowest \\ore used foN, in all the binary-encounter calculations.

est_imatedZVIFz’ °f128_229 ‘;V b32’ Le\éin and Lias. The configu-Tpys for the 24 hole, we usedN,=2 for theZ state and the
ration loglo 20420 1m,dm, 30y had a weight coeffi-  pinary.encounter contribution from the 37.8 e\r hole
cient of —0.3433, but two configurations corresponding togtate was neglected.

double excitations, &;1o720520, 1wy, 175 3051mg, and Due to the lack of experimental OOS, the contributions
loglop2o2olmidmy 3oslmg,, had weight coeffi-  from the core orbitals, &4 and 1o, were calculated using
cients of 0.5333. Thus th2 state was not a pure hole state, the siBED model. However, the contributions from these two
but had characteristics of both a doubly excited state and arbitals were very small. At 1 keV electron energy their con-
hole state. The third to sixtkY | states, corresponding to tribution was only 0.008 10°2° m?. Thus their contribu-
VIPs 33.43-37.99 eV, all exhibited the character of a mixedions could be safely neglected.

204 hole state and doubly excited states. None could be Based on the molecular parameters described above,
characterized as a purerg hole state. iBED calculations were carried out to determine the param-

A. Calculations using the iBED model
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35 ¢ . ] erate. The threshold electron spectrum fok; peaks at
b N, PN ] ~13.5 eV, and’E spectrum peaks at14.5 eV. In their
«— . /e \\ ~ ] analysis, Backx and van der Wiel used 13.5 eV as the thresh-
SE 28 | - E old of the (1, ') OOS and lumped the contributions from
2 Lt 1 the A, and 2E states together. They also identified the two-
5 ] electron excited state with the configuratiot§da33aj.
g 1or i N E In order to understand how the Jahn-Teller effect influ-
g 1L W ----siBED ences the photoionization cross section, we fitted the OOS
S i L R s ] for the (1t, ) state in three different ways1) Following
05 o Staubetal ] Backx and van der Wiel, we used 13.5 eV as the VIP and
ot . e . R lumped the?A; and 2E states together. A five-term expan-
10 100 1000

sion for the OOS gave an ionizatidreum of 5.93 and the
average % difference between the fit and experiment was
6.0%.(2) A VIP of 13.5 eV was used for théA,; state and
2

iBED and siBED models. Two sets of iBED calculations, iBED 14.5 e\( for the“E state. The OOS of the tW(.) states \.N?re
and iBED(2), corresponding to different treatments of the doubly constrained t_o use the same set of expansion coefficients,
excited state, are shown. Also presented are the experimental de#XC€Pt that different VIPs are used fof [see Eq(2.39]. A
of Straubet al. [30] and Rapp and Englander-Goldég6]. The  range of expansion lengths, from two to seven terms, was
BEB cross sections using Kim’'s molecular parameters and the pdied. In all cases, the fitting of the low-energy OOS worked
rameters determined in this study are included for comparison. well but the OOS at the high-energy end consistently had

large fitting errors, as much as50%. (3) Two VIPs, 13.5
etersd; andd, in the Born cross section by a fit to the and 14.5 eV, were used for the two Jahn-Teller states and the
experimental data of Strauletal. [30] and Rapp and expansion coefficient were allowed to vary freely. We ob-
Englander-Goldef36]. Since the contributions from tha tained the poorest fit in this case. Theums for the two sets
term became important near the peak of the cross-sectiasf OOS were unphysical. The above three fittings seem to
curve and thed, term was relatively unimportant until the indicate that the OOS is best approximated by a single VIP,
energies were higher, we determined first by fitting the  as practiced in the data analysis of Backx and Van der Wiel
cross-section peak. Thety was determined using the high- [28], but it is difficult to reconcile this result with the Jahn-

energy data. The value$;=—2.0 andd,=0.5 have been Tg|ier effect indicated by the zero-energy2e coincidence
chosen in this manner. experiment.

The second iBED calculation, iBER) used the same set  The 0OS for the (a; %) state was fitted using a five-term
of VIPs as(1), but treated theZ state as a doubly excited expansion and a VIP of 22 eV. THesum from the fit was
state associated with theog hole. The binary-encounter 57 A five-term expansion with 29 eV for the VIP is used
contribution was calculated usirig,=2 for theB?%, [ state  for the two-electron excited state, giving 0.44 for fheum.
and the 37.8 eV &, hole state. The contribution of the  Both VIPs were values suggested by Backx and Van der Wiel
stgte was ngglected. The ionization cross sec'tions calculatedg]. |n both fittings, the first coefficient in the expansion,
using both iBED models are presented in Fig. 1. As seeorresponding to the value 6f%) at zero energy, was set to
from Fig. 1, the iBERL) and iBED2) cross sections aré zerg, Otherwise we either obtained unphysitalalues at
very close. Thus electron-impact ionization data cannot bg,me electron energy or unphysidasums. Also, as in the

used to determine if th& state should be labeled as a2 case of ionization of the inner orbitals of,Nthe f sum for
hole state or a doubly excited state associated with #4¢ 2 he jonization of the @, orbital of CH, did not match its
hole. Figure 1 will be further discussed in Sec. 1l B 1 Whenoccupation number, even though theum for the (151)

the siBED cross sections for,Nare presented. hole was close to its occupation number of 6.

Two IBED calculations were carried out to test the role of
2.CH, Jahn-Teller effect in Cll In iIBED(1), the Jahn-Teller effect
In an electron-ion coincidence experiment, Backx andwas accounted for by assigning 13.5 and 14.5 eV for the VIP
Van der Wiel[28] measured the OOS for the production of of the 2A; and %E state, respectively, with 1/3 of the O0S
(1t;Y), (2a;1), and a third, two-electron excited state thatassigned to?A; and 2/3 to%E. The (2a; ') state and the
they labeled as “higher states.” In addition, Badkixal.[46] ~ doubly excited state were explicitly accounted for in the
reported coincidence experiment of the high-energy, scat8orn calculation, but the binary-encounter calculation ex-
tered electron and the essentially zero-energy ejected elecluded the doubly excited state aNg=2 was used for the
tron. Their spectra clearly showed the Jahn-Teller splitting of2a; ) state. The coefficientd; andd, in the Born cross
the ion state labeled as 1@1). The equilibrium geometry of section are chosen based on a fit to the experimental data of
the ion corresponding to thet L hole has a lower symmetry, Straubet al.[33] and Rapp and Englander-Goldg6]. The
Cs,, than theTy symmetry of the neutral molecule. The optimal choice wasl;=—0.4,d,=0.2.
triple degeneracy of théT, state is lifted and the ion splits In IBED(2), Jahn-Teller splitting in (tlgl) was neglected
into two states,?A; and 2E, the latter being doubly degen- and a VIP of 13.5 eV was used for all electrons in theg 1

Electron energy (eV)

FIG. 1. Total-ionization cross section of,Malculated using the
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FIG. 2. Total ionization cross section of GHalculated using FIG. 3. Total ionization cross section of,Malculated using the

the iBED and siBED models. Two sets of iBED calculations, SIBED model as a function of the paramethr The experimental
iBED(1), which includes Jahn-Teller splitting, and iBED, which data of Strautet al.[30] and Rapp and Englander-Goldg36] are
neglects Jahn-Teller splitting, are shown. Also presented are thalso presented for comparison.

experimental data of Strauét al. [33] and Rapp and Englander-

Golden[36], plus the BEB cross sections of Kiet al. [7]. dron. It has a more open structure and the short-range inter-

orbital. The treatment of the egl) state and the doubly action probably is only slightly repulsive.

excited state were identical with iBED). Figure 2 presents

the two iBED cross sections as well as the experimental B. Calculations using the SiBED model

cross section of Strauét al. [33] and Rapp and Englander- i ) )

Golden [36]. Of the two theoretical cross sections, the |N€ Preceding discussion shodsandd, to be molecu-
iBED(1) data are close to experimental values of Strau@’ SPecific parameters and related to the nature of the mo-
et al. at 35 eV and above. Below 35 eV they become Cbse}gcular charge distribution in the.bondllng region. In this sec-
to the data of Rapp and Englander-Golden. The iBED tion, we approach the problem in a d|fferent manner. As in
cross sections are larger than both sets of experimental daf3€ case of the one-term prepresentatiord tf/dEs ,» we
except below 30 eV and above 200 eV. Below 30 eV itl0ok for a set of generid, and d, applicable to siBED
becomes quite close to the data of Straital. Overall, it ~ calculations for all flve.molecules. _Thls is done by choosing
appears that accounting for the Jahn-Teller effect intfle & set of vaIues_ that gives the optimal rep_resentation in the
state is important to obtain a good fit to experiment. ThereS'BEDS?B‘"“ElguIa"'onS of i, H;O, and CQ. Figure 3 shows
appears to be a slight hump in the data of Stratal. how o of N, varies withd; andd,. As discussed in
around the 20—30 eV region, but it is absent in the data oP€C: I B,d; andd; have no effect at the low-energy cross
Rapp and Englander-Golden. It should be pointed out thagection but improve the agreement of the overall cross sec-
Straubet al. reported higher light ion productions than pre- fion with the experiment of Strauét al.[30] and Rapp and
vious experiment§47—50. This is attributed to a better col- Englander-Golde36]. With d, changing in step of 0.4, the
lection technique used by the Rice group and provides ghqnge of the cross section is small arjd smooth. Als_o, once
possible explanation for the difference between the two setd iS chosen, the parametds is determined by an optimal
of experimental data. We shall return to Fig. 2 when we'€Presentation of the high-energy part of the.cro_ss-_sectlon
discuss the siBED cross sections for CiH Sec. 111 B 4. curve. The effect on the J® and CQ results is similar.

It is worthwhile to compare the two sets of parametdgs, Based on these calculations, the valubs=0.0 andd,
andd, for N, and CH,, both obtained by a fit to the experi- =0.05 are chosen and these values will be used for all five
mental cross-section data. In the base the paramete is ~ Molecules.
large and negative;2.0. Since it is opposite in sign to the
leading dipole term, it represents a repulsive short-range po- LN,
tential acting as the shielding potential. The paramdieis The siBED cross sections of;Nvere calculated using the
smaller and positive, 0.5, representing a small attractive corsame set of molecular parameters as the iBEDalculation.
rection to the repulsive shielding term representedpy=or ~ The Z state was used to represent the;zhole and the con-
CH,, the parameters ady = — 0.4 andd,=0.2, indicating a tributions from the 37.8 eV state was neglected. Figure 1
shielding potential that is slightly repulsive. The two sets ofpresents the siBED cross sections together with the two
d,,d, values appear to be related to the nature of the chemiBED cross sections and the experimental data of Straub
cal bond in the two molecules. Becausg s a triple bond, etal. [30] and Rapp and Englander-Golddi36]. The
electron-charge distribution builds up at the center of théBED(1), iBED(2), and SiBED cross sections are in good
molecule. It is reasonable for the incoming electron to expeagreement with one another and the experimental data except
rience a strong repulsive potential as it comes neap, ©H near the cross-section peak. There the iBED calculations
the other hand, has four single bonds extending in a tetrah@verestimate the cross section slightly. Note that the values
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FIG. 4. Total ionization cross section of,8 calculated using FIG. 5. Total ionization cross section of G@alculated using

the siBED model. Also presented are the experimental data ofhe SiBED model. Also presented are the experimental data of
Straubet al. [31] and the BEB cross sections of Hwaagal. [6]. Straubet al. [32] and Rapp and Englander-Goldgs6], plus the
BEB cross sections of Hwangt al. [6].

of d; andd, used for the iBED and siBED calculations are
very different, representing a different description of the 3.CG

short-range part of the shielded-dipole potential. It appears The siBED cross sections for GQre presented in Fig. 5,
that the inaccuracies in the one-term approximation of theogether with the experimental data of Straettal. [32] and
OOS used in the siBED calculation is partially compensateRapp and Englander-Goldg86], plus the BEB cross sec-
by a more weakly shielded dipole potential, resulting in totaltions of Hwanget al. [6]. The VIPs used in the siBED cal-
ionization cross sections that are in overall agreement witlzulations are 13.73 for &y [expt, Ref.[44]], 17.85 for 1m,
experiment and with the iBED results. However, as pointedRCCSOT)], 18.16 for 3r, [RCCSOT)], 19.45 for 4y

out in Sec. I D 3 the siBED model does not provide a reli-[RCCSOT)], 37.79 for 2r,(CASSCF), and 39.16 eV for
able secondary-electron energy distribution whereas thggg(CAsscp)_ The RCCSQ@) value for the first VIP is
IBED results, based on experimental OOS, should be able t93.88 eV. As in the case of 4@, the siBED cross sections
do so. o ~are in better agreement with experimental data than the BEB
B@éSO presented in Fig. 1 are two BEB cross sectionscross sections, especially at higher energies. Also, the overall
o°=", calculated using the parameters determined by Hwangigreement is better with the data of Strattal. than with
etal.[6] and using the same set of parameters employed iRapp and Englander-Golden. Except for the,lorbital, the

the ¢'®5P(1) and o*'®FP calculations. Both BEB cross sec- BEB cross sections were calculated using the Hartree-Fock
tions are larger than iBEQ), iIBED(2), SiBED, and experi- VIPs. Thus the BEB cross sections will be significantly
mental data. Notice that the set of VIPs used by Hwantigher if the present set of VIPs are used.

et al, except for the 3, hole, are determined using Hartree-

Fock calculations. Their values are c%gsistently higher than 4.CH,

the presen oot of pavammetors ar arger e ro.) _ The SIBED calulations for Chneglected the Jahn-Telr
ported by Hwanget al. This is also the case for all molecules SPIitting in the (1, ) channel and used 13.5 eV as the VIP
studied. for the 1t, orbital. It also neglected the contribution from the
doubly excited state with a VIP at 29 eV. Both Born-dipole
and binary-encounter calculations uséd,=2 for the
(2a; ) channel.

Figure 4 presents the siBED calculations gi(H together The siBED cross sections are presented in Fig. 2, together
with the experimental data of Straebal.[31] and the BEB  with the IBED cross sections, the experimental cross sections
cross sections of Hwangt al. [6]. The VIPs used in the of Straubet al. [33] and Rapp and Englander-Goldg36],
siBED calculations are 12.61 fobl [expt, Ref[44]], 14.75 and the BEB cross section of Kiwet al. [7]. Unlike the N,
for 3a, [expt, Ref[44]], 18.74 for 1b, [expt, Ref[44]], and  case where the SiBED and iBED cross sections employing
32.61 eV for 2, [expt, Ref.[44]]. As in the case of  we  the same set of molecular parameters are in good agreement
find the siBED cross sections are in better agreement withvith each other, we find significant differences between the
experiment than the BEB result. Note also that a BEB calsiBED and iBED cross sections, both with each other and
culation using the present set of VIP will give even largerwith experiment. The siBED and iBED) cross sections dif-
cross sections. Both the siBED and BEB cross sections arfer by 21% at the cross-section peak. While the two sets of
larger than the experimental cross sections around the lowsalculations use slightly different values df and d,, it
energy side of the cross-section peak. This is the energgppears that the major source of the difference comes from
range where the largest deviation between the siBED modéhe OOS. The use of experimental OOS greatly improves the
and experiment is found. agreement with measured data. This is one case where the

2. H,0
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& T ] Again we used 1 eV as the Jahn-Teller splitting for this or-
C CF ] bital. The siBED cross sections calculated in this manner are
TS ] labeled as siBED with Jahn-Teller in Fig. 6. This simple

3 introduction of Jahn-Teller effect improves the siBED result
] with experiment, particularly with the data of Nishimura
et al, but insufficient to account the difference between
] SIBED results and the data of Sieglaff al.

. Note that the BEB calculations in Fig. 6 were done using
Hartree-Fock data, as is the case of the other molecules in
this study. Indeed, Nishimurat al. pointed out that BEB
cross sections for GFcalculated using Hartree-Fock param-
eters gave results in better agreement with experiment than
CASSCF parameters. They chose the BEB cross sections
determined using the Hartree-Fock parameters as the “rec-

FIG. 6. Total ionization cross section of ¢Ealculated using ommended” cross section. _Here we show that in the S'B_ED
the siBED model. Also presented are the experimental data orand,eI' parameters_ dete“’n'”e,d from correlated calcqlatlons
Sieglaff et al. [34] and Nishimuraet al. [9], plus the BEB cross &€ important to bring theory into closer agreement with ex-
sections of Nishimurat al. [9]. periment. The earlier conclusion that Hartree-Fock param-
eters should be “best suited” is a fortuitous result due to the

one-term approximation for the OOS is insufficient and a's¢® of energy-scaled Bethe cross sections.

reasonable representation of the total ionization cross section
requires experimental OOS data. IV. SUMMARY

The BEB cross section of Kirat al. is between the iBED ) )
and siBED results. The agreement with Rapp and Englander- 1h€ approximate GOS and OOS derived here, based on
Golden’s datd36] is very good from threshold to the cross- variables deduced from the smgularlt_les of the_se guantities
section peak. The agreement with the recent data of Straulj? the complex plane ork, plane and incorporating known
et al.is not as good. In view of the fact the OOS fitted from limiting behavior, enable us to use the dipole-Born cross sec-
experimental data is quite different from the OOS used bylON instead of an _energy—scaled Bethe cross section in the
Kim et al. [7], the agreement found between the BEB resultPinary-encounter-dipole model. Furthermore, the dipole-
and experiment is probably due to the use of the energyBorn cross section includes the effect due to the shielding of
scaled Bethe cross section in the BEB calculation, whicHh€ long-range dipole potential. The iBED model so derived
tends to overestimate the cross section and, in this case, p&tovides a viable method to analyze electron-impact ioniza-

tially compensates for the shortcoming in the OOS. tion cross sections and are capable of incorporating finer de-
tails of molecular interactions such as doubly excited states

and Jahn-Teller splitting. These issues in electron-impact
ionization cross sections have not been treated by calcula-
Calculations of siBED cross sections have been carrietions previously.
out using the following values for the VIP: 16.30 eV for; 1 The siBED model is developed to provide a means to
[expt, Ref.[44]], 17.49 for 4, [RCCSOT)], 18.41 for &  calculate approximate total ionization cross sections based
[RCCSOT)], 22.64 for 3, (CASSCH, and 25.86 eV for on known molecular parameters. Here a simple one-term ap-
4a, (CASSCH. All other parameters were deduced from proximation of the OOS is used instead of the experimental
Hartree-Fock calculations and have been tabulated previ@OS. The parameted; andd, are chosen to represent the
ously [9]. Figure 6 presents the siBED and BHEBJ cross shielding of a generic dipole potential, instead of a molecular
sections as well as the experimental data of Siegafil.  specific potential. For N H,O, CO,, and CF, the siBED
[34] and Nishimuraet al. [9]. The two sets of theoretical model works quite well, but in the case of gHt underes-
cross sections are in excellent agreement with each other @itnates the ionization cross section by21% at the peak,
low energies and both are larger than the experimental datdemonstrating the importance of reliable OOS data.
Above 80 eV, the two sets of theoretical data differ, with the  The role of Jahn-Teller effects in electron-impact ioniza-
SiBED cross section coming to close agreement with experition are investigated for CHand CR. For CH;, the fit of
ment. OOS works best if a single VIP is used for the Jahn-Teller
Like CH,, Jahn-Teller effect should play a role in the state, °T,. However, the iBED cross sections agree much
ionization of CR. To understand the role of Jahn-Teller ef- better with the experiment of Straeh al.[33] if Jahn-Teller
fect, we have carried out the calculation with two ion statessplitting is incorporated. For GF we simulate the Jahn-
in C3, symmetry. The 1, orbital in Ty symmetry was split Teller effect by introducing splittings in both the,land 4,
into two components, the nondegeneratecomponent and hole states. The resulting cross section is in better agreement
the doubly degeneratecomponent. As a rough approximate, with experimental data than the calculation without the Jahn-
we used the Jahn-Teller splitting observed in,Gifd raised Teller effect, but below 200 eV there is still a sizeable dif-
the VIP of thea, orbital by 1 eV. The 4, orbital was split ference between the siBED data and the data of Sieglaff
into ana; component and component inCz, symmetry. et al.[34]. It is uncertain at present whether this is due to the

siBED
--------- siBED with Jahn-Teller
-----BEB, Kim
o Sieglaff et al. ]
o Nishimura 4

Cross section (102° m?)
w
T

10 100 1000

Electron energy (eV)

5. CF,
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approximate OOS used or inaccurate description of the Jahn- As in the case of the Lassettre series for the GOS of
Teller effect. Future experiment measurements or quantunbound-bound excitations, the series expansion for the GOS
chemistry studies of the Jahn-Teller splitting of Clen will  derived here should be useful in the analysis and extension
be very useful to determine the role of the Jahn-Teller effecof experimental data of electron-impact ionization.

on the ionization of Ck.

In this study, the parameteds andd, used in the shield-
ing of the long-range dipole potential have been chosen by
fitting experimental data. Analysis of the calculations indi- A critical reading of this paper by Dr. Y.-K. Kim is appre-
cate that they are related to the molecular charge distributiortiated. | also thank Dr. Bernard Lindsay for sending his re-
Further studies are required to relate these two parametevised cross-section data. This work was supported by the
with molecular properties in a quantitative manner. NASA Ames IPT on devices and nanotechnology.
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