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Schrödinger transmission through one-dimensional complex potentials
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~Received 15 March 2001; published 17 September 2001!

We prove that for a symmetric complex potential, the probabilities of quantal reflection and transmission of
a particle are independent of the direction of incidence of the particle. However, the reflectivity for a nonsym-
metric complex potential is found to be sensitive to the direction of incidence of the particle whether it is
incident from left or right.
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Nucleus-nucleus elastic-scattering results in models w
an added finite absorptive part to the short-ranged attrac
nuclear interaction potential are better understood than
sults from models without such an absorptive term. The
sorptive part of the potential is represented by a pur
imaginary potential of the short-range type or the one t
rapidly converges to zero. This absorptive potential is s
posed to represent, in a crude way, the unknown~nonelastic!
channels, which preferably remove some flux and reduce
elastically scattered flux. The relevant model, called the
tical model@1#, is found to be phenomenologically suitab
for measuring the elastic scattering. In the optical model,
Hamiltonian is non-Hermitian and hence the condition
unitarity of theS(E)-matrix, i.e. uS(E)u51, is replaced by
the condition for pseudounitarity, i.e.,uS(E)u,1.

A simpler but more intuitive model of optical scatterin
would, of course, be the Schro¨dinger transmission through
one-dimensional complex potential,Vc(x)5Vr(x)2 iVi(x)
@3#. For a stationary scattering state, the conservation
probability flux can be written as@1,3#

dJ

dx
52

2

\
Vi~x!C* ~x!C~x!, ~1!

where

J~x!5
\

2im S C*
dC~x!

dx
2C~x!

dC* ~x!

dx D
is the probability flux. Therefore, it is essential thatVi
(6`)50. In other words,Vi(x) should either be of finite
support or converging asymptotically. The probability of a
sorption,A(E), is defined as

A~E!5
J~2`!2J~`!

Jinc
, ~2!

which becomes

A~E!5
2m

\2kE2`

`

Vi~x!uC~x!u2 dx. ~3!

A negative value ofA would indicate emission. However,
more interesting idea would be to connect the reflectiv
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R(E), and the transmitivity,T(E). Let us insert C2`

5exp(ikx)1r exp(2ikx), C`5t exp(ikx), and C inc
5exp(ikx) in the above equation. Noting thatR(E)5r * r
andT(E)5t* t, we obtain

R~E!1T~E!512A~E!Þ1. ~4!

Thus, the condition for unitarity on the reflectionR(E) and
the transmissionT(E) probabilities, i.e.,R(E)1T(E)51, is
replaced by pseudounitarity, as given in Eq.~4!. Interesting
applications of transmission through complex on
dimensional potentials are found in Refs.@2–7#. Analo-
gously, on can see a lot of interesting results and applicat
@9# of the propagation of (s-polarized! electromagnetic
waves in a planer-stratified dielectric medium.

When the scattering potential is purely real, the reflect
and transmission probabilitiesR and T are told to be inde-
pendent of the direction~left or right! of incidence of the
particle impinging on the potential. These are supposed to
interesting consequences of invariance of the Hamilton
under time reversal@8,10#; see also pp. 34–37 and 249–25
in Ref. @9#. For a time-independent Hamiltonian, time
reversal invariance means that the Hamiltonian should
change wheni is changed to2 i . For a real potential, the sai
invariance is automatic.

In this paper, when the complex potential is symmetr
we prove thatTleft(E)5Tright(E) and Rleft(E)5Rright(E),
and when it is nonsymmetric, we prove thatTleft(E)
5Tright(E) but Rleft(E)ÞRright(E). In both the cases, it is the
pseudounitarity condition Eq.~4!, instead of the unitarity,
which holds. Here, the subscripts left/right indicate the dir
tion of incidence of the particle impinging on the potentia
In the above-mentioned physical situations, it is the loss
flux ~rather than the creation of flux! that needs to be ac
counted for and hence one is more often concerned with
complex potentials that are nonpositive~absorptive! or non-
negative~emissive!. However, the results mentioned abo
will also hold even for imaginary potentials that change s
in the domain ofxP@2`,`#.

It is worth noting that for the propagation of electroma
netic waves through a stratified medium, one genera
speaks about transmission~reflection! from one side of the
medium to the other, and the invariance of the reflectiv
meansR1,25R2,1 if the medium is nonabsorbing~see pp.160
and 161 of Ref.@9#!. In this regard, one of the very importan
points to be made is that the symmetry of the medium, e
©2001 The American Physical Society16-1
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ZAFAR AHMED PHYSICAL REVIEW A 64 042716
if it has imaginary components, determines the left and
right invariance of the reflectivities. For instance, ifN de-
notes the nonabsorbing medium andA denotes the absorbin
medium, the left and the right reflectivities of a~symmetric!
stratification,NAAN, will be the same. But the left and th
right reflectivities for the nonsymmetric stratifications—
NAA8N, NAAN8, NANA, NAA8N8, andNAN8A8—will be
different. However, the left and the right transmittivities w
be the same for all these~symmetric and nonsymmetric!
stratifications.

The time-independent Schro¨dinger equation for a genera
complex potential for the incident particle of massm can be
written as

d2C~x!

dx2 1
2m

\2 @E2Vr~x!1 iVi~x!#C~x!50, ~5!

whereVi(6`)50. It may be emphasized thatVi(x) need
not be only positive or only negative in the entire domain
xP@2`,`#. For practical purposes, let us assume that b
Vr(x) andVi(x) are appreciable only in@2D,D#, whereD
is some large asymptotic distance.
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Case I : Left incidence

In this case, we can assume the wave functionC(x) as

C~x,2D !5A Lexp@ ik~x1D !#1B Lexp@2 ik~x1D !#,

~6a!

C~2D<x<D !5au~x!1bv~x!, ~6b!

whereu(x) andv(x) are two linearly independent solution
of Eq. ~5!. They are such thatu(0)51, u8(0)50; v(0)
50, v8(0)51. Here, the prime indicates first derivative wi
respect tox. Next, we have

C~x.D !5C L exp@ ik~x2D !#. ~6c!

As usual, by matching the wave function and its derivative
x56D, we will get the scattering amplitudes asr left(E)
5B L/A L andt left(E)5C L/A L. Let us use the subscript ‘‘1’
to denote the value of the function atx52D and ‘‘2’’ for the
value of the same atx5D. Then we obtain
r left~E!52
@u28v182u18v28#1 ik@v2 u181u1 v28#2 ik@u2 v181v1 u28#1k2@u1 v22u2 v1#

@u28 v182u18 v28#1 ik@v2 u182u1 v28#2 ik@u2 v182v1 u28#2k2@u1 v22u2 v1#
, ~7a!

t left~E!5
22ik@u2 v282v2 u28#

@u28v182u18 v28#1 ik@v2 u182u1 v28#2 ik@u2 v182v1 u28#2k2@u1 v22u2 v1#
. ~7b!
The Wronskian function,W25@u2v282v2u28#, which is the
constant of the process, equals unity. The chosen la
distanceD is arbitrary since the potentials in Eq.~5! are
not actually of finite support. However, this is done so
to extend the utility of Eqs.~7a! and ~7b!, in general, for
the potentials that have a fairly rapid asymptotic conv
gence. Thus, by includingD in the boundary conditions~6a!
and ~6c!, we have gotten rid of the arbitrary phase facto
such as exp(62ikD), which might have otherwise appeare
~Eqs.@25# and @26# in Ref. @9#! in the scattering amplitude
~7!.
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Case II: Right incidence

For the right incidence of the particle, we choose

C~x,2D !5C Rexp@2 ik~x1D !#, ~8a!

C~2D<x<D !5gu~x!1dv~x!, ~8b!

C~x.D !5A Rexp@2 ik~x2D !#1B Rexp@ ik~x2D !#.

~8c!

As above, we obtain the scattering amplitudesr right(E)
5B R/A R and t right(E)5C R/A R as
r right~E!52
@u28v182u18 v28#1 ik@v1 u281u2 v18#2 ik@u1 v281u18 v2#1k2@u1 v22u2 v1#

@u28 v182u18 v28#1 ik@v1 u282u2 v18#2 ik@u1 v282u18 v2#2k2@u1 v22u2 v1#
, ~9a!

t right~E!5
22ik@u1 v182u18 v1#

@u28v182u18 v28#1 ik@v1 u282u2 v18#2 ik@u1 v282u18 v2#2k2@u1 v22u2 v1#
. ~9b!
6-2
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The Wronskian functionW15@u1v182u18v1#51. Notice that
the transmission amplitudes in Eqs.~7b! and~9b! are identi-
cal. Thus, the insensitivity of both the transmission amp
tude and the transmission coefficient to the direction of in
dence is proved,

t left~E!5t right~E!, Tleft~E!5Tright~E!, ~10!

irrespective of whether the potential is symmetric, nonsy
metric, real, of complex. For real potentials, this result
known as a consequence of time-reversal symmetry of
Hamiltonian@8#. The result in Eq.~10! is consistent with one
of the results of Abeles@11#, which has also been discusse
in Chap. 12-6 of Ref.@9#.

When the potential is symmetric~real or complex!, the
function u(x) is of even parity andv(x) is of odd parity.
Consequently, we haveu25u1 , v252v1 , u2852u18 , v28
5v18 . The second and third terms in the numerator of E
~7a! cancel each other as the square brackets in them bec
Wronskian functions. Similarly, the second and third terms
the numerator of Eq.~9a! cancel each other. Finally, we ge
both r left(E)5r right(E) and

Rleft~E!5Rright~E! ~11!

for symmetric potentials irrespective fact whether they
real or complex. It must be noted that when the potentia
complex, the time-reversal symmetry of the Hamiltonian
broken.

Next, when the potential is real but nonsymmetric, all t
square bracketed terms in Eqs.~7! and ~9! are real and we
have r left(E)Þr right(E), a result that is known@10#. How-
ever, the modulus of Eqs.~7a! and Eqs.~9a! will be identical,
justifying once again Eq.~11! for the invariance of the re
flectivity with respect to the direction of incidence.

The case of the complex potential is the most interes
in that all the square bracketed terms will essentially be co
plex quantities. As a serious consequence of this simple
the modulus of Eqs.~7a! and ~9a! will always be unequal.
Eventually, both the reflection amplitude and the reflectiv
of the nonsymmetric complex potential will be sensitive
the direction of incidence whether it is left or right, i.e.,

Rleft~E!ÞRright if Vc~2x!ÞVc~x!. ~12!

There is another way of stating the above-mentioned res
the left reflectivity of the complex potential,Vc(x), is
equivalent to the right reflectivity ofVc(2x) but the left and
the right reflectivities ofVc(x) will be different if Vc(2x)
ÞVc(x).

Schrödinger transmission from one-dimensional pote
tials is a well-researched fundamental topic in seve
branches of physics. Let us ask whether the expositions
sented here in Eqs.~10!, ~11!, and~12! have been expected
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not stated or proved earlier. In the literature@8#, using the
time-reversal invariance of the Hamilitonian~real potential!,
one shows thatTleft(E)5Tright(E), and since time-reversa
invariance ensures unitarity, i.e.,Rleft(E)1Tleft(E)51
5Rright(E)1Tright(E), the invariance,Rleft(E)5Rright(E),
follows automatically. On the other hand, for complex pote
tials the time-reversal symmetry is broken and the unitarity
withdrawn. The essential invarianceTleft(E)5Tright(E) in
Eq. ~10! only leaves the question of dependence of reflec
ity on the direction of incidence open for investigations. T
transmission is a two-sided~‘‘symmetric’’ ! process, i.e., the
particle to be transmitted enters from one side of the pot
tial and exits from an other side to carry away the combin
effect of the potential on both sides, hence its invariance@Eq.
~10!# could be quite intuitive. On the other hand, reflection
a one-sided~‘‘asymmetric’’! process and thus the variance
the left and right reflectivity may not be counterintuitive. Th
experimental evidence of the directionally asymmetric p
duction ofb particles from a polarized nucleus is known
have required a parity-violating part in the interaction Ham
tonian. Given this well-known phenomenon, the depende
of the reflectivity on the direction of incidence@Eq. ~12!# for
the nonsymmetric~parity-violating! complex potential may
not be unexpected.

To summarize, both the scattering amplitudes and
scattering coefficients have been found to be independen
the direction of incidence of the particle when the potentia
symmetric. The reflection amplitudes for a nonsymmetric p
tential have been found to be sensitive to the direction
incidence. These two results hold irrespective of whether
potential is real or complex. It is surprising to note that t
time-reversal symmetry of the Hamiltonian does not ha
any role to play with regard to the~in! sensitivity of the
scattering amplitudes to the direction of incidence. Instead
is the parity ~symmetry/nonsymmetry! of the Hamiltonian
that determines the sensitivity of the scattering amplitude
the direction of incidence of the particle. The time-rever
symmetry does, however, play a role in determining whet
the Schro¨dinger transmission entails the unitarity or th
pseudounitarity@Eq. ~4!#. We would like to remark that the
presently proved result of the dependence of the reflecti
on the direction of incidence for a nonsymmetric compl
potential could be crucial to unraveling the physical tru
behind the~in!sensitivity of the scattering co-efficients to th
direction of incidence.

Analogously, for the propagation of electromagne
waves through a stratified dielectric medium, the pres
study implies that the equivalence of the left and the rig
reflectivities of a stratification does not, as usual~e.g., see the
first line on p. 161 of Ref.@9#!, necessarily mean that th
medium is nonabsorbing. It may also mean that the med
is absorbing but symmetric. Moreover, in general, if the
flectivity measurements display a difference in the left a
the right reflectivities, the present study predicts that suc
dielectric medium must be nonsymmetric and absorpti
emissive.
6-3



v.

r-

n,

ZAFAR AHMED PHYSICAL REVIEW A 64 042716
@1# L.I. Schiff, Quantum Mechanics, 3rd ed.~McGraw-Hill, New
York, 1968!, pp. 129–138.

@2# J. Heading, J. Phys. A6, 958 ~1973!.
@3# P. Molinas-Mata and P. Molinas-Mata, Phys. Rev. A54, 2060

~1996!.
@4# J.P. Palao, J.G. Muga, and R. Sala, Phys. Rev. Lett.80, 5469

~1998!.
@5# B. Sahu, I. Jamir, E.F. Lyngdoh, and C.S. Sastry, Phys. Re

57, 722 ~1998!.
@6# M.V. Berry and D.H.J. O’Dell, J. Phys. A31, 2093~1998!.
@7# J.K. Boyd, J. Math. Phys.42, 15 ~2001!.
04271
C

@8# E. Merzbacher,Quantum Mechanics~Wiley and Sons, New
York, 1970!; A. Messiah,Quantum Mechanics~North-Holland,
Amsterdam, 1962!, Vol.1.

@9# J. Lekner,Theory of Reflection of Electromagnetic and Pa
ticle Waves~Nijhoff, Dordrecht, 1987!.

@10# B.F. Buxton and M.V. Berry, Philos. Trans. R. Soc. Londo
Ser. A282, 485 ~1976! ~see p. 525!; G. Barton, J. Phys. A18,
479 ~1985!; Y. Nogami and C.Y. Ross, Am. J. Phys.64, 923
~1996!.

@11# F. Abeles, Ann. Phys.~Paris! 5, 596 ~1950!; 5, 706 ~1950!.
6-4


