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Schrodinger transmission through one-dimensional complex potentials
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We prove that for a symmetric complex potential, the probabilities of quantal reflection and transmission of
a particle are independent of the direction of incidence of the particle. However, the reflectivity for a nonsym-
metric complex potential is found to be sensitive to the direction of incidence of the particle whether it is
incident from left or right.
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Nucleus-nucleus elastic-scattering results in models wWitlR(E), and the transmitivity, T(E). Let us insertW_,
an added finite absorptive part to the short-ranged attractive exn(kx)+r exp(—ikx), W..=texp(kx), and Vi,
nuclear interaction potential are better understood than re= exp(kx) in the above equation. Noting th&(E)=r*r
sults from models without such an absorptive term. The abandT(E)=t*t, we obtain
sorptive part of the potential is represented by a purely
imaginary potential of the short-range type or the one that R(E)+T(E)=1-A(E)#1. @)
rapidly converges to zero. This absorptive potential is sup-
posed to represent, in a crude way, the unknémonelasti¢ . o .
channels, which preferably remove some flux and reduce th hus, the 9ond|t|on for umta'r.lt'y on the reflectiét(E) and
elastically scattered flux. The relevant model, called the op’E e transmissiof (E) pr_obgbllltles,_l.e.R(E)+T(E)= 1’.'5
tical model[1], is found to be phenomenologically suitable fep"’?‘ce‘?‘ by pseudoumtar!ty,_as given in E4). Interesting
for measuring the elastic scattering. In the optical model, th&PPlications  of transmission through complex one-

Hamiltonian is non-Hermitian and hence the condition fordimensional potentials are founq in Ref2-7]. Ana!o- .
unitarity of the S(E)-matrix, i.e.|S(E)| =1, is replaced by gously, on can see a lot of interesting results and applications

the condition for pseudounitarity, i.6 S(E)|<1. [9] of the propagation of g-polarized electromagnetic

A simpler but more intuitive model of optical scattering waves in a planer—st.rauﬁed du_aleptnc medium. .
would, of course, be the Schtimger transmission through a When th? scattering pqtlgntlal is purely real, the rgflectlon
one-di,mensional, complex potentialiy(x) =V, (x) — iV (x) and transmission probabilitie® and T are told to be inde-

iC r I

[3]. For a stationary scattering state, the conservation openFjent_ of _the_ directiorfleft or _right) of incidence of the
probability flux can be written agL,3] ' particle impinging on the potential. These are supposed to be
’ interesting consequences of invariance of the Hamiltonian

dJ 2 under time reversdB,10]; see also pp. 34—37 and 249-251
d—:——Vi(X)‘I’*(X)‘I’(X), (1)  in Ref. [9]. For a time-independent Hamiltonian, time-
X h . . -
reversal invariance means that the Hamiltonian should not
where change wheimis changed te-i. For a real potential, the said
invariance is automatic.
h , d¥(x) dWw*(x) In this paper, when the complex potential is symmetric,
IO=5m\ V" Tax Y™ T we prove thatTiex(E)=Trgn(E) and Req(E)=Rign(E),
and when it is nonsymmetric, we prove thai.(E)
is the probability flux. Therefore, it is essential thet =Tiign(E) butReq(E) # Riign( E) . In both the cases, it is the

(*=%)=0. In other words,\V;(x) should either be of finite pseudounitarity condition Eq4), instead of the unitarity,
support or converging asymptotically. The probability of ab-which holds. Here, the subscripts left/right indicate the direc-
sorption,A(E), is defined as tion of incidence of the particle impinging on the potential.
In the above-mentioned physical situations, it is the loss of
J(—2)=J(») flux (rather than the creation of flisthat needs to be ac-
Jinc ' 2) counted for and hence one is more often concerned with the
complex potentials that are nonposititebsorptive or non-
which becomes negative(emissivg. However, the results mentioned above
will also hold even for imaginary potentials that change sign
3) in the domain ofx e[ —o0,].
It is worth noting that for the propagation of electromag-
netic waves through a stratified medium, one generally
A negative value ofA would indicate emission. However, a speaks about transmissidreflection from one side of the
more interesting idea would be to connect the reflectivitymedium to the other, and the invariance of the reflectivity
meansR; ,= R, ; if the medium is nonabsorbin@ee pp.160
and 161 of Ref[9]). In this regard, one of the very important
*Email address: zahmed@apsara.barc.ernet.in points to be made is that the symmetry of the medium, even

A(E)=

2 3
AB)= | Violwoor dx
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if it has imaginary components, determines the left and the Case | : Left incidence

right invariance of the reflectivities. For instance,Nfde- In this case, we can assume the wave functiofx) as
notes the nonabsorbing medium aldenotes the absorbing

medium, the left and the right reflectivities of(gsymmetrig V(x<—-D)=Alexdik(x+D)]+ Brexqd —ik(x+D)],
stratification,NAAN, will be the same. But the left and the (63)
right reflectivities for the nonsymmetric stratifications—
NAA’'N, NAAN', NANA NAA'N’, andNAN"A’—uwill be

different. However, the left and the right transmittivities will ¥(=D=x<D)=au(x)+pBv(x), (6b)
be the same for all thesessymmetric and nonsymmetjic
stratifications. whereu(x) anduv(x) are two linearly independent solutions

The time-independent Schiimger equation for a general of Eq. (5). They are such that(0)=1, u’(0)=0; v(0)
complex potential for the incident particle of masxan be =0,v'(0)=1. Here, the prime indicates first derivative with
written as respect tax. Next, we have

2
qu;(ZX—)+ iTm[E—Vr(x)HVi(x)]\If(x):O, (5 W (x>D)=C"exdik(x—D)]. (60)

whereV;(+»)=0. It may be emphasized that(x) need As usual, by matching the wave function and its derivative at
not be only positive or only negative in the entire domain ofx=*D, we will get the scattering amplitudes agq(E)

x e[ —o,]. For practical purposes, let us assume that both= B-/.A" andt«(E)=C"/A". Let us use the subscript “1”
V. (x) andV;(x) are appreciable only ih—D,D], whereD  to denote the value of the function>at —D and “2” for the

is some large asymptotic distance. value of the same at=D. Then we obtain

[ujv;—ujvs]+ik[vy ug+uy vol—ik[up, vi+ovy usl+k[u; va—Uy vy]

rl ﬂ(E):_ ’ ’ ’ ’ . ’ ’ . ’ ' ! (73)
¢ [uy vi—uj vhl+ik[v, Uj—u; vil—ik[Uy vi—vy Us]—kZU; vo—Up vq]
—2ik[uy vy—v, Uy]
tew(E) = ——————— ; P ; P : (7b)
(v —Uy va]+ik[vy Uup—ug vy]=ik[U; vi—vy Uy ]—=KTUp v—Uy V4]
|
The Wronskian functionW,=[u,v5—v,us], which is the Case II: Right incidence

constant of the process, equals unity. The chosen large For the right incidence of the particle, we choose
distanceD is arbitrary since the potentials in E¢) are

not actually of finite support. However, this is done so as W(x<—D)=CRexd —ik(x+D)], (8a)
to extend the utility of Egs(7a) and (7b), in general, for
the potentials that have a fairly rapid asymptotic conver-

ence. Thus, by includinB in the boundary condition&a) R . R .
gnd(Gc), we ha)</e gotten@rid of the arbitrgry phase factors, W(x>D)=A"ex ~ik(x=D)]+ Bexik(x=D)].
such as expf2ikD), which might have otherwise appeared (80)
(Egs.[25] and[26] in Ref. [9]) in the scattering amplitudes As above, we obtain the scattering amplitudggy,(E)
7). =BRIAR andtg(E)=C*/ AR as

T (—D=x<D)=yu(x)+ dv(Xx), (8b)

[uswi—u; val+ik[vy Us+u, vi]—ik[uy vi+Uul vo]+KH Uy v~ Uy v4]

rright( E)=- (9a)

[u; vi—uy vol+ik[vy Uy—up vi]—ik[uy vy—ug vol—k¥uy vy—uy Ul],

—2ik[u; v]—u} v4] o)

tright(E): roor ’ ’ ik ’ ’ ik ’ ’ k2 )
[Uv;—Uy vy]+iK[vy Uy—Up vi]—ik[uy vy—U; vo]—K Uy v~ Uy vq]
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The Wronskian functioW,; =[ujv;—ujv,]=1. Notice that not stated or proved earlier. In the literaty&, using the
the transmission amplitudes in Eqgb) and(9b) are identi- time-reversal invariance of the Hamilitoniéreal potential,
cal. Thus, the insensitivity of both the transmission ampli-one shows thaf ¢(E) = T,ign(E), and since time-reversal
tude and the transmission coefficient to the direction of inciinvariance ensures unitarity, i.e.Ren(E)+ Tier(E)=1

dence is proved, =Riigh E) + Trigh E), the invariance,Rieq(E) = Rign E),
follows automatically. On the other hand, for complex poten-
tietl(E) =trign E), Tien(E)=Trign(E), (10) tials the time-reversal symmetry is broken and the unitarity is

withdrawn. The essential invarianCBen(E) = T/ign( E) in

. ” ¢ whether th tential i i Eqg. (10) only leaves the question of dependence of reflectiv-
Irespective of whether the potential IS Symmetric, nonsyr.n“lty on the direction of incidence open for investigations. The
metric, real, of complex. For real potentials, this result is

K f i | v of thtransmission is a two-sidelsymmetric”) process, i.e., the
nown as a consequence of ime-reversal Symmetry o ﬁarticle to be transmitted enters from one side of the poten-
Hamiltonian[8]. The result in Eq(10) is consistent with one

) , tial and exits from an other side to carry away the combined
of the results of Abelefl1], which has also been discussed i fth ial h si h L .
in Chap. 12-6 of Ref[9]. effect of the potential on both sides, hence its invarigiimp

U . (10)] could be quite intuitive. On the other hand, reflection is
When the potennal IS symmetn@real or complex the a one-sided“asymmetric”) process and thus the variance of
function u(x) is of even parity and(x) is of odd parity. e |eft and right reflectivity may not be counterintuitive. The
Consequently, we have,=u;, v,=—v1, U;=—U, V2  experimental evidence of the directionally asymmetric pro-
=v;. The second and third terms in the numerator of Eqqyction of 8 particles from a polarized nucleus is known to
(7a) cancel each other as the square brackets in them becomgye required a parity-violating part in the interaction Hamil-
Wronskian functions. Similarly, the second and third terms inygnian. Given this well-known phenomenon, the dependence
the numerator of Eq(9a) cancel each other. Finally, we get of the reflectivity on the direction of inciden¢gq. (12)] for

both rieq(E) =r igh( E) and the nonsymmetrigparity-violating complex potential may
not be unexpected.
Riert(E) = Ryign( E) (11 To summarize, both the scattering amplitudes and the

scattering coefficients have been found to be independent of

for symmetric potentials irrespective fact whether they ardghe direc@ion of inciden_ce of the_ particle when the poten'tial is

real or complex. It must be noted that when the potential i$YMMetric. The reflection amplitudes for a nonsymmetric po-

complex, the time-reversal symmetry of the Hamiltonian istent|al have been found to be sensitive to the direction of

broken. ' incidence. These two results hold irrespective of whether the
Next, when the potential is real but nonsymmetric, all the

potential is real or complex. It is surprising to note that the
square bracketed terms in EqZ) and (9) are real and we time-reversal symmetry of the Hamiltonian does not have

have req(E) # I ign(E), a result that is knowri10]. How- any role to play with regard to thén) sensitivity of the

ever, the modulus of Eq&7a) and Eqs(9a) will be identical scattering amplitudes to the direction of incidence. Instead, it

justifying once again Eq(11) for the invariance of the re- is the parlty (symmetry/ n_qn_symmet)yof the. Hamllto.nlan

flectivity with respect to the direction of incidence that determines the sensitivity of the scattering amplitudes to
The case of the complex potential is the most 'interestin he direction of incidence of the particle. The time-reversal

in that all the square bracketed terms will essentially be comsymmetry ‘?'095, howevgr, play a ro[e in determini_ng whether
the Schrdinger transmission entails the unitarity or the

plex quantities. As a serious consequence of this simple fac .Y :
the modulus of Eqs(7a and (98 will always be unequal. pseudounitarityf Eq. (4)]. We would like to remark that the

Eventually, both the reflection amplitude and the reflectivityPreSently proved result of the dependence of the reflectivity

of the nonsymmetric complex potential will be sensitive to O thg direction of incidence for a npnsymmetric.complex
the direction of incidence whether it is left or right, i.e., potgntlal cpuld be. .CF“C'a' to unrave!mg the ph_ysmal truth
behind the(in)sensitivity of the scattering co-efficients to the

direction of incidence.

Analogously, for the propagation of electromagnetic
waves through a stratified dielectric medium, the present
There is another way of stating the above-mentioned resultstudy implies that the equivalence of the left and the right
the left reflectivity of the complex potentialV (x), is  reflectivities of a stratification does not, as us{gaf., see the
equivalent to the right reflectivity of .(—x) but the left and first line on p. 161 of Ref[9]), necessarily mean that the
the right reflectivities oV (x) will be different if V.(—Xx) medium is nonabsorbing. It may also mean that the medium
#V(X). is absorbing but symmetric. Moreover, in general, if the re-

Schralinger transmission from one-dimensional poten-flectivity measurements display a difference in the left and
tials is a well-researched fundamental topic in severathe right reflectivities, the present study predicts that such a
branches of physics. Let us ask whether the expositions prelielectric medium must be nonsymmetric and absorptive/
sented here in Eq$10), (11), and(12) have been expected if emissive.

Rleft( E) i Rright if Vc( - X) * Vc(X)- (12)

042716-3



ZAFAR AHMED PHYSICAL REVIEW A 64 042716

[1] L.I. Schiff, Quantum Mechani¢s3rd ed.(McGraw-Hill, New [8] E. MerzbacherQuantum Mechanic¢Wiley and Sons, New

York, 1968, pp. 129-138. York, 1970; A. Messiah Quantum Mechanic&North-Holland,

[2] J. Heading, J. Phys. A, 958(1973. Amsterdam, 196¢ \Vol.1.

[3] P. Molinas-Mata and P. Molinas-Mata, Phys. Re\x6A 2060 [9] J. Lekner,Theory of Reflection of Electromagnetic and Par-
(1996. ticle Waves(Nijhoff, Dordrecht, 1987.

[4] J.P. Palao, J.G. Muga, and R. Sala, Phys. Rev. Bett5469  [10] B.F. Buxton and M.V. Berry, Philos. Trans. R. Soc. London,
(1998. Ser. A282 485(1976 (see p. 525 G. Barton, J. Phys. A8,

[5] B. Sahu, I. Jamir, E.F. Lyngdoh, and C.S. Sastry, Phys. Rev.C 449 (1985; Y. Nogami and C.Y. Ross, Am. J. Phy84, 923
57, 722(1998. (1996.

[6] M.V. Berry and D.H.J. O’Dell, J. Phys. &1, 2093(1998.

11] F. Abeles, Ann. PhygParig 5, 596 (1950; 5, 706 (1950.
[7] 3.K. Boyd, J. Math. Phys42, 15 (2001). [11] ysParis (1950 (1950

042716-4



