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We demonstrate the usefulness of the time-dependent coupled ckiBD@AT) method in theoretical studies
of atomic rearrangement collisions. In the TDCC method, coupled-channel partial differential equations for
scattering wave functions are solved time dependently. We develop the Hankel-interpolation method, which is
used to transform wave functions from an initial coordinate to a final coordinate system. By using this method,
reaction cross sections of rearrangement collisions can be directly extracted from solutions of TDCC equations.
We calculate positronium-formation cross sections in positron-hydrogen collisions in which a considerable
number of theoretical calculations and precise experiments have been made. The present results for positron
energies of 6.8—35 eV are in excellent agreement with the recent experiment oeZab{iPhys. Rev. A65,

361(1997)].
DOI: 10.1103/PhysRevA.64.042715 PACS nuntber34.70+e, 36.10.Dr
I. INTRODUCTION were not orthogonal. The resonances have not been obtained

with a hyperspherical close-coupling method as reported by
Positronium (P9 formation by positron-hydrogen colli- Igarashi and Toshim@l7] and Zhou and Li{18]. Mitroy

sions is one of the simplest systems of atomic rearrangemebt9] and Kernogharet al. [20] avoided the problem of the
collisions. It provides a testing ground for theoretical modelsover completeness by decreasing the number of Ps-formation
used to study more complex rearrangement reactisas, channels; only the d, 2s, and 2 states of Ps were included.
for example, Refd.1,2] and references thersirBeside, pre- Other excited states were not included, even if they were
cise experiments recently made by Webeal.[3] and Zhou  OPen channels. prever, this treatment is not proper in in-
et al. [4] stimulate theoretical studies of the Ps formation,tlermediate energies where contribution of Ps-formation
However, treatment of the Ps formation is intrinsically diffi- channels becomes important.
cult in comparison with that of ionization and excitation of One of the promising approaches to overcome the prob-

the hydrogen by positron collisions, since different coordi-Iem of the over completeness is to time-dependently solve

nate systems must be used to describe the three-body systecr%uF)kad_(:h"’.mneI part|al d|ff(_arent|al equations for scattering
wave functions, i.e., the time-dependent coupled-channel

before _and after the rearrangc_ament collision. Hence, pr_ewoua.DCC) method[21]. In this approach, a wave packet that
the.oretlcal models were available only forllow energies arzescribes relative motions in a three-body system is time
which a few channels are open. For positron energies Oky,ed on a lattice of the two-dimensional radial space.
6.8—-10.2 eMOre gap, Humberstoret al. [5] calculated Ps-  ence a physical picture of dynamics can be easily obtained
formation cross sections using the Kohn-variational methody;ithin a full-quantal framework through a computer graph-
and Kar and Manda[6] using the Schwinger-variational jcs. Another advantage is that no asymptotic boundary con-
method. Higgins and Burké7] employed theR-matrix dition is required on wave functions. As a result, Ps forma-
method, Liu and Gien and Kuang and Gig8] and Mitroy  tion and ionization channels need not be separately included.
etal. [9] close-coupling methods, Warét al. [10] the |n addition, by numerically describing wave functions, the
hidden-crossing method, and Janev and SoloVEl the  number of channels can drastically decrease. Thus, the
advanced adiabatic method. The results of these calculatiof®©CC method is expected to be useful for rearrangement
agree with each other in a low-energy region. collisions in which many channels open. Ifeal.[22], Pin-

For intermediate or high energies at which many channelsizolaet al.[23], and Odercet al.[24] applied this method to
are open, Hewittet al. [12], Mitroy and Stelbovicg13],  electron-atom collisions, Pindzola and Robiche#%] to
McAlinden et al.[14], Gien[15], and Sarkar and Gho$fh6]  photo-ionization of atoms, and Schuk al. [26] to atomic
used close-coupling methods. However, unphysical rescauto-ionization.
nances were found in Ps-formation cross sections, since Recently, Plante and Pindzo[27] applied the TDCC
atomic-type basis functions used were over complete anchethod to the Ps formation. In their calculation, Ps-
hydrogen and Ps components of the total wave functionformation cross sections were deduced from transfer-

ionization (Ps formation plus ionizationcross sections ob-

tained with the TDCC method by subtracting ionization cross
*Email address: yam@nucl.phys.s.u-tokyo.ac.jp sections calculated with a lowest-order distorted-wave
TEmail address: kino@mail.cc.tohoku.ac.jp method. However, the distorted-wave method is not a good
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FIG. 1. Jacobi coordinate systenms=<(1, 2, and 3) correspond- (2.3

ing to arrangements &+ BC, B+ CA, andC+ AB; P, andp. are ) o ) )
the conjugate momenta of the relative position vecRysandr,  1he parlty_adapted angular momentum function is defined in
and y, is the angle betweeR, andr,. the body-fixed(BF) frame as

R 1 R
approximation for low energies in which correlation effects yIJ,E/'J”(R,r)= —[yﬂg"J(R,r)
are important. In fact, they reported results only for energies V2(1+ bko)

higher than 30 eV.
In the present paper, we demonstrate the usefulness of the

TDCC method in theoretical studies of atomic rearrangemenyith

collisions. First, we develop a fast and stable TDCC method,

employing a split-operator method in which the unitary IMa, A [2J+1 R

transformation of potential operators and the Cayley expan- Vi (RN= WDJKMJ(R)Y'K(Y’O)' (2.5

sion of kinetic energy operators are incorporated. TDCC ] )

equations can be fast and stably solved on a parallewvherelis the total angular momenturhthe orbital angular

computing scheme with an adhesive-operator method. Nexmomentum associated with K the projection ofl on R, =

we develop the Hankel interpolation method to transformthe parity,waIJ the Wigner rotation matrix, ant/|x the

wave functions in the initial coordinate system, which de-spherica| harmonics. The projection quantum number has

scribes the positron-hydrogen system, to those in the finglglues of K=K —min(J,1), whereKT, =0 for m=even

system, which describes the proton-Ps system. By using thigndk ™. =1 for 7= odd. The expansiof2.3) is substituted

method, Ps-formation cross sections can be directly extracteglto the time-dependent Schinger equation,

from solutions of TDCC equations. For positron energies of

6.8—-50 eV, we calculate Ps-formation cross sections and

compare with the experiments and the previous calculations.
In the present paper, the atomic unies{{i=m.,=1) are

used unless otherwise stated.

+(=) AR N] (2.4)

9 .
|E\I’JMJ’T(R1,r1,t)=H\I'JMW(Rl,rl,t). (2.6)

The rotation matrix and the spherical harmonics are elimi-
nated by projecting Eq2.4) from the left-hand side of Eq.
(2.6). This gives the TDCC equation
Il. TDCC EQUATIONS P
. IM y7r
We derive TDCC equations for three-body collision sys-'ﬁ ik (Rusra,t)
tems that consist oA-, B-, andC-particles. Relative motions

between the three particles are described in a Jacobi coordi- A JMJ,”, I(1+1)
nate systemR;,r.), wherec=1, 2, or 3, illustrated in Fig = T oMo KK Sy S+ M
cilc)s s &y i “ . ~ KITK! oM R2 2 rz 11" KK IKITK!
1. In the figure,y. is the angle betweeR, andr., andP, 'K 1™ K1
and p, are the conjugate momenta Bf andr.. For ex- Xw‘JMJW(R rt) 2.7
ample, the ¢=1) coordinate system describes an arrange- N
ment (A+BC) of free states of thé\ particle and the sub- \here
system of théB andC particles. The Hamiltonian is given by
gomgr |1 L7 8106 2.9
B O IR 2My IR 2um1 gr? oK
H=—P3+_—pi+V (2.1)
2M; 2p1 ~ IMym
W|K|?Kr:[‘](‘]+1)_2K2+I(I+1)]5||'6KK’
with the interaction operator, —NjNik \/1+—5K05”,5K+1K,
\7 ZBZC ZAZB " ZAZC _)\.;K)\ﬂ( \ 1+ 6K15”’5K*1K’ ’ (29)
s IR +[pa/mglry|  [Ry—[mq/mc]ry 2.2 o= J(I+1)—m(m=1), (2.10
and
whereZ; andm; are the charge and mass of the particles ( ~ IM o Mzt IM
=A, B, or C), andM; and u, are the reduced masses, V|K|3K'=<yu< ’ |V|yI’KJ’ ) Sk - (2.19
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In the BF frame, the TDCC equation can be efficiently
solved, smceTIKI,:Z, is diagonal inl andK, leK'\ffE, inl,
andeK'\ffz, in K.

The radial part of the wave functia2.3) in the BF rep-
resentation is transformed into the radial functj‘qj_l’ﬁ’IJ in the
space-fixed SF) representation through a relation

IMy_ IMym

XLI 2 V 2J+1 IK L0¢’ ’ (212
andvice versa
- 2L+1
JMJ 2 V2= dko 2J+1 ﬁlFLoXi:VIJ: 213

whereL is the orbital angular momentum associated vidth
andCj’ o is the Clebsch-Gordan coefficient.

IIl. FAST AND STABLE SOLUTION OF TDCC EQUATIONS

We present a fast and stable solution of TDCC equations,

for simplicity, in an one-dimensional problem,

0 N
iﬁz/q(r,t):H”,zm,(r,t). 3.1

PHYSICAL REVIEW A 64 042715

At
lm(m”)(r)=exp<—l V||f)¢|(m+2/3)(r)' (3.6
Y =exp(—iAtT g ), @)
At
¢|(m+1/3)(r):ex% —i ?tV” ,) l//I([")(r)_ (3.8

First, we consider calculation of E¢3.8) which includes

the local operato¥,;. . The operator includes all of the non-
diagonal operators; the centrifugal potential operat@r9)
and the second term in EQR.7), and the interaction opera-
tors (2.11). With use of a unitary transformation matrix,

the operatolV,;, is transformed to a diagonal operaff;»
:Uﬁ,f/,,|,,u,,,|,,,, where 15“,:0 for 1#1’. Thus, solutions
of Eq. (3.8 are obtained through three steps,

A ORIV AR (O} (3.9

At .
l/,l(m*z’g)(r):exy{ —i7tD||r5||')<//|([n+1/9)(r), (3.10

MOy =ul, g (r). (3.10)

Calculations of the intermediated functiong™" ¥ with

Here, we use Einstein’s convention of the summationEgs.(3.9), (3.10, and(3.11) nonconditionally stabilize, since

ay /b, =%,a,/b;,. Solutions of Eq(3.1) are written in the

form
(1= (t—to) ¢y (r,to), (3.2
with the time-evolution operator
Si(t—to)=exd —iHy (t—ty)]. (3.3

The wave function is discretized on the time space with re-

spect to a short time stept=t,5,/M,

™) = (1 t),

Solutions of Eq.3.1) are obtained through iterations

tp,=mAt, m=0,1,... M.

Hm ()=, (A (1), (3.4

whereS,/ (At)=exp(—iH, At).
We consider the Hamiltonian operator in the time-
evolution operator. For convenience, the Hamiltonl%hm,

consists of a nonlocal operatdf;, and a local operatdr,, .
With use of the Baker-Campbell-Hausdorff relation, the two
operators are separated into the symmetric fi28+30,

N At - At .
S” /(At):exl{ _| 7V||,>exr(—iAtT” /)ex% _| ?V” /)

+O(At3). (3.5

By using this relation, Eq(3.4) is separated into three equa-
tions,

the absolute values of the unitary transform matrix and the
exponential operator are unity.
Next, we consider calculations of E.7). The nonlocal

operatorT;. that includes the kinetic-energy operat¢2s8)
is diagonal, i.e.T;, =0 for | #1’. As an example, we define
Ty =—(1/2u)3?8,. . The exponential operator witfy,: is
expanded into Cayley’s fractional forf31,32,

(?2
eXFx—iAtT“r):eX4 At 5“/)
2
5”7
+O(AE).

1AO7
+|t4

(3.12

The Cayley expansion is correct to ordet?. By substitut-
ing Eq.(3.12 into Eq.(3.7) and moving the denominator to
the left-hand side, we have

(92
1+iAt¢) M),
(3.13

Calculations of the intermediate functiogié™"** noncon-
ditionally stabilize, since the absolute value of the Cayley
expanded operator, the first term in Eg.12), is unity.
Equation(3.13 is often solved with the Crank-Nicholson
scheme[31,32. In the alternative direction implicitADI)
method, Konoet al. [33] employed the Peaceman-Rachfold

2
( _|At (9 )w(m+2/3)(r)
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scheme and Kawatat al. [34] employed the D'yakonov 92 92
scheme. We employ the modified Cholesky metf&. The (1—iAt8—) (M ()= 1+iAt8—) M3y,
wave function is numerically described on grid points of the K K (3.19

r space,

'/ll(,mn): z//,(m)(rn), f nAr. n=0d,...N. where the difference matrices are given by

-2 1
where Ar=r,,/N. The differential operator is approxi- 1
mated with the three-point finite difference method. As a
result, Eq.(3.13 becomes a simultaneous linear equation; ) 1 .. =1 0
Y _
i 2 1 0 -~ 0 0}|] Ax 0 -1
1 -2 1 !
1 -2
i At 0 1 -2 0 0 (3.19
4uAX? i q
0O 0 o0 2 1 an
L 0 0 o - 1 =2/ 0 O
lﬁf,nf+2/3) lM(,an 1/3)% ’ .
¢|(’r2+2/3) (/I|(’r2+l/3)* ﬂrzadz—z . ' (3'20)
I/jl(rg+2/3) wl(r2+1/3)* AX 1 -1 -
x| = o , (3.14
AP || e 00
wl(mt 21/3) llffmt 11/3)* Equation(3.17) can be calculated independently by two pro-

cessors, since the nonzero elements in the block-diagonal
where| is the unit matrix andy{™"Y®* is the right-hand matrix (3.19 are separated into two blocks. The adhesive
side of Eq. (3.13. The values of wl(n8+2/3), l/f|(n|21+2/3), matrix (3.20 conn_e(_:ts the two blocks. In calculations of Eqs.
dll(naﬂls)* _and lrlll(n’z‘+l/3)* are fixed to be zero by the bound- (3_.1@ and(3.18), it is needed to transfer data on the bound-
ary condition. The unknown functiom,(m”m is efficiently aries between the two processors. However, the amount of

calculated with the modified Cholesky method, since the fi data transmission is quite small. Thus, by separating the non-

ite diff rix | tric-band matrix with th 'zero elements in the matrix in E€3.19 into many blocks
C\/Iideth IofGlrJenri]t;e matrix 1S a symmetric-band matrix wi € with adhesive operators, calculations can be made on a large-

The simult li ti6R 1 b lculated scale parallel computer.
also g: Irgup:paell(zalfscl)nme;[iteigg aslgﬁlel“;?ecixr/]ithe;r? C;dﬁ:sive Finally, by solving Eq.(3.6) with the procedures3.9—
( ; (m+1) .
operator metho@i36]. The exponential operat¢8.12) is de- (3.11), the functionsy at the next time stepy,., are
obtained.
composed to be

92 92 92 IV. NUMERICAL METHOD
expl iAt=—2, | =exp IAt—25,, |exp iAt—25,, . . _
2u du 2u In TDCC calculations of Ps-formation cross sections, the

A, B, andC particles are assumed to be the positron, electron,
+0(At®), (3.15  andproton. The wave functio JKMJ” are described numeri-

cally on 200< 200 grid points in the two-dimensional radial

space Ry,rq) with the extent of T max - In the channel
where 97 = dfyq+ d7ag. By expanding the three exponential egpansl:i%r(Zl.)S) of the wave funcﬁggé, tnFlaé()upper limit of the
functions into Cayley's forms similar to Eq3.12, Eq.  grpjtal angular momentunh,,, is taken to be seven; the
(3.13 is decomposed into a set of three equations; maximum number of channels is 36. The TDCC equation
(2.7) is solved according to the scheme represented in the
preceding section. The time stepA$=0.05 a.u.

In the SF representation, the radial part of the total wave
(3.16  function atty=0 is constructed as the product of the ground-
state wave function of the hydrogen and an incoming wave
packet for the positron,

92
. ra
xex;{ |At—4M o

2

. Orad
(1—|At£) Y2 ()=

2

. arad
1+i Ata) lﬁfm+5/9)(r),

(92
1+i At4'—bd> POy,

arzbd
i (m+5/9) —
(l iAt 7 )l/fl (r)

(3.17) XIT(Ry,F1,t0) = Gua(Ry) dHL(r1). (4.1)
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The wave packet is given by

1 (R—Rp)?
gkL(R)z(sz)lmex 22

wherek= \/2M,E is the wave number with enerdy, R, the
localization radius of the wave packettgt o the width of
the wave packet, andh, (kR)=exp(-ikR)exp(wL/2) an
asymptotic Hankel function. Note that the wave padke?)
has an energy width chE=(1/M,)kAk, whereAk~o 1.
The initial condition(4.1) is transformed into the BF repre-
sentation with Eq(2.13 to substitute into the TDCC equa-
tion (2.7).

Positronium-formation cross sections are extracted from
solutions of the TDCC equatiof®.7) by projecting bound-
state wave functions of H&22],

1hL(kR), 4.2

PDIMyp by =
X (P1,p1) 2

XIMI(R, 1) = =——

PHYSICAL REVIEW A 64 042715

_IPl Rl)

X J dryexp(—ipy-r) xRy, ry).

(5.9

In the SF representation, the momentum- and position-space
functions are given by

> (1)IMy

Xe (PP Y (P Py,

(5.2

5(<1>JMJ<P1,p1>=LE

111

“’JMJ(Rl,u)yL. (Ry.T1),

Rqrq
p= > @3+ 1), 4.3 ®3
with the angular momentum function
with
YIHEh =3 Cl Yim@Yinb). (6.9
o3 [ dRIR, 0 051 (@9

In Eqg. (5.1), expanding the exponential functions into multi-

where the angle bracket means an integral ayem calcu-
lation of Eq.(4.4), the total wave-function?’™s is trans-
formed to the function described in the=3) coordinate
system in Fig. (3) with the Hankel-interpolation method
mentioned in the next section.

The calculation is performed with a parallel computing
system that consists of five personal computers with Pentium
[l processors(500 and 800 MHx 4). The computers have
been clustered with the software package PYfdrallel vir-
tual maching which allows a computer network to be used
as a virtual parallel computer with distributed memories. Our,
computer code is organized according to a master-slave
model. The master contains input-output and control routine
of slave processes and is running on one of the processors.
The slave contains a time-evolution calculation routine and
runs as identical copies on all of the other processors. Each
copy manages calculation of the TDCC equation in a quarter
of the two-dimensional radial space. The CPU time of calcu-
lations for each partial wave is from several minutes to two
hours corresponding to the number of channels in the expan-
sion (2.3). The AlphaServer GS60 at the Institute of Space
and Astronautical Science is also used in the scalar comput-

pole terms and projecting out the angular momentum func-
tions, we have the radial part of E(.2),

(1);|MJ(Pl )= (—I)L1+'1—f Rldej,_ (P1Ry)

* : 1)IM
Xfo rldrlJll(plrl)X(Ll)|1 J(Ry,ry),

(5.9

wherej, is the spherical Bessel function.
Next, we consider the inverse transformation from the
omentum space to the position space,

1 .
WIM(Ry,ry) = Wf dP;exp(iP;-Ry)

X J dpyexplipy - 1) xMMI(Py,py).

(5.6

ing scheme. The CPU time is about twice for correspondingn the right-hand side, the position vectdRs andr, are

calculations with the parallel computing system.

rewritten with the vectorfk; andr; in the (3) coordinate

system through the relation

V. HANKEL-INTERPOLATION METHOD

We present the Hankel-interpolation coordinate transfor-
mation method. In the SF representation, the wave-function
XM in the (c=1) coordinate is transformed into that in
the (3) coordinate.

First, we consider the Fourier transformation of the func-
tion "M in the position spaceR;,r;) to the momentum

042715-5
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\(TTT

@) —

FIG. 2. Three steps of transformation from ti¢-coordinate to
the (3)-coordinate system.

ma+mg’

Substituting the expansioi(s.2) and(5.3) into Eq.(5.6) and

integrating over the angular variables, we obtain a relation

2 iL"+|"+L'+|'

LML ,Llll

XL L (L)1) (LL ) Lg(1717)15d)

2
(S)JMJ( R3.r3)=— R3r3

X fo P2dPyj n(aP1R3)jin( BP1r 3)

Xfo p2dpajL (YP1Ra) 1 (pars)

e (PP, (5.9
where
((L1Ly(LID1I|(L"L ) Ls(1717)159)

— ( o )L1+Il+ L3+I3|:/l2ir/2|:/2'|‘/2|:1'|‘1|:3’|‘3

LH |H Ll L! I! Il LU I! L3
0O 0 o0/\0 O 0/\0 0 O

X
LH |N Ll
I/I I/ |3 L’ |, I
X .
0 0 0 L (5.9
Ly I3 J

with T=2I+1. In the left-hand side of Eq5.6), we used
the identity
xRy, r3) = xDIM(Ry 1y). (5.10

The numerical calculation of Eq$5.5 and (5.8) is very
hard, since they have double integrals and &) includes

summations over six indices. We consider the three steps
the coordinate transformation through the center-of-mass cQr,

ordinate systems ()} and (3) illustrated in Fig. 2,

R B [ A B P ]
)-(2 %)%

(5.17

PHYSICAL REVIEW A 64042715

where

Mc Ma

Bz=—

B1=—

mg+me’ ma+mg’

The three matrices satisfy the identity

a B 1 B1)(0 —1}/1 Bs
= . (6.12
y 6 0o 1/\1 o0)/)\0 1
Equationg5.5) and(5.8) are reduced to a simple form, since
one or two of the elements are zero in the three matrices. For

the first transformation from the (1) to the’(lcoordinate,
we have a relation

(1)JM mT_, o
Yo (Rurp=gRy it
1"Lqlq

X ((L{1")L1(01)153|(L1OIL (1" )113)

X JO PIdPj Ly (P1Rjin(] B1lParD)

XJ RldeJL (Pq Rl)X(l)JMJ(Rlvrl)-

(5.13

Equation(5.13 can be calculated rapidly by storing values
of the spherical Bessel functions into arrays before the cal-
culation. Here, the upper limit of the, integral is taken to

be P .= /AR, [37,38, whereAR; =R,,.«/N andN is the
number of grid points.

The Hankel-interpolation method surpasses in numerical
accuracy in comparison with previous interpolation methods
utilizing the Fourier transformatiof89,40 and the reduced-
rotation matrix{41,42. In these methods, one needs to inter-
polate values on several grid points in the initial coordinate
function to obtain a value for one grid point in the final
coordinate function. This is because the grid points of the
initial coordinate do not line up on the finial coordinate. Our
method uses the same grid points for all channels. Moreover,
the angular par(5.9 is determined by Racah algebra.

VI. RESULTS AND DISCUSSION

Time evolution of wave functions in the SF representation
for a positron energy of 30 eV is shown in Fig.[33];
(8—(c) and (d)—(f) show the (,1)=(0,0) and (1,1) chan-
nels. In this calculation, we tak®,,;,= I max=40 a.u.,c=6
a.u., andRy=20 a.u. The propagation time of the wave
cket ist 4= 27 a.u., which corresponds 540 time steps. In
e figures, the wave densities, square of absolute values of
e wave functions, are drown with contours on a logarith-
mic scale. Figure &) shows the initial conditiori4.1) in the
(0,0) channel. The shape of the contours is determined by
the wave-packet width in th& direction and the ground-
state orbital of the hydrogen in thedirection. In the two-
dimensional radial space, the incoming wave packet propa-
gates to the origin along thR axis as the time passes. The
wave packet is reflected at=0 and becomes an outgoing
wave; the wave propagates to the right direction. The outgo-
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40 ————7—— 40 ————7——
- (@)(0,0) t= 0.0a.u. - - (d)y(1,1) t= 0.0au. -
30 |- - 30 | -
r 20 4 r 2 -
10 | . 10 | -
0 D) 0 P T SRR N
0 10 20 30 40 0 10 20 30 40
R R
40 T T T T T T T 40 T T T T T T T
- (b) (0,0) t=13.5a.u. T - (e)(1,1) t=13.5a.u. 1
30 |- - 30 - -
i ) i 7 FIG. 3. Time evolution of wave functions at
r 20 - r 20 - t=0, 13.5, and 27.0 a.(a), (b), and(c) represent
B i i J the (L,1)=(0,0) channel andd), (e), and(f) rep-
resent the (1,1) channel. Contours are plotted on
7] a logarithmic scale.

40 T T T T T T T

- (c) (0,0) t=27.0 au. - E(f) (1,1) t=27.0a.u. 1
30 |- - 30 |- -

0 10 20 30 40
R

40

ing wave interferes with the rear component of the incomingPs-formation cross sections at positron energies of 10,
wave. In Fig. 3b), this interference, which is due to quantum 20, . . . ,50 eVHere, the upper limit of the electron angular
effects, is found as many nodes of the contours. In Fig. 3 momentum in the channel expansi@3) of wave functions
at t,.x, Most components of the wave packet propagatdas been taken to bg,=7. The partial-wave contributions
along theR axis. These components represent elastic scatteconverge within three percents. Thus, the numerical error
ing and excitation to excited boursstates of the hydrogen. caused by the cutoff of partial-wave contributions is suffi-
A small component that propagates to the right-diagonal diciently small. Table Il shows convergence of Ps-formation
rection represents ionization and Ps formation. cross sections with increasihg,=0—7, where partial wave

In the (1,1) channel, as shown in Fig(d3 the wave contributions ofJ=0-8 are summed at each steplgfy.
density is zero at, by the initial condition. In Fig. &), as  The cross section is quite small foy,=0 and rapidly in-
time increases, a wave emerges in the vicinity of the origincreases with ,o,. The convergence of the cross section is
In Fig. 3f), the emerging wave becomes a large mound. Thislow in comparison with that of the partial-wave contribu-
is due to the fact that the (1,1) channel is directly coupledions; itis, in particular, slow at positron energies higher than
with the (0,0) channel through the dipole interaction. The40 eV. We estimate the numerical error caused by the limi-
wave includes two components; one of which propagatesation ofl ., to be within several percents for energies lower
along theR axis, while the other propagates to the rightthan 30 eV. However, for energies higher than 40 eV, the
diagonal direction. The former represents excitationpto error is somewhat large and estimated to be about ten per-
states of the hydrogen. The latter represents ionization and Rent.
formation. Table Il shows the present results of Ps-formation cross

Table | shows contributions of partial wavelss 0—-8, to  sections. In this calculation, we todR;,,,=60, I'na= 40
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TABLE I. Convergence of Ps-formation cross sectiomsits of TABLE lll. Ps-formation cross section.
wa(z,) with respect to the partial wawe
E (eV) ops (Units of 7a3) E (eV) ops (Units of 7a3)
E (eV)

J 10 20 30 40 50 6.8 0.572 20 2.681

8 1.228 25 1.990
0 0.022 0.013 0.007 0.003 0.001 10 2.636 30 1.391
1 0.499 0.314 0.124 0.048 0.021 12 3.216 35 0.955
2 0.999 0.706 0.304 0.124 0.057 14 3.318 40 0.617
3 0.530 0.705 0.345 0.148 0.070 16 3.206 45 0.432
4 0.194 0.480 0.275 0.125 0.061 18 2.960 50 0.299
5 0.119 0.258 0.173 0.084 0.042
6 0.107 0.123 0.095 0.049 0.025
7

0.096 0.057 0.046 0.025 0.013  certainties. Therefore, we may conclude that in the present
8 0.071 0.026 0.021 0.012 0.006  calculation, accurate values of Ps-formation cross sections
Total 2.636 2.681 1.391 0.617 0.299  have been obtained with a time-dependent treatment.
Figure 4 also shows that the present results are more ac-
curate for intermediate energies, 20-40 eV, in contrast to the
a.u., Ro=Rma2, o=3\ with the de Broglie wave-length close-coupling calculation. The results of Mitr¢g9] and
N =2m/K, andt,,= 2Ry /v with the velocityv of the wave  Kernoghanet al. [20] overestimate the cross section for the
packet. In Fig. 4, the results are compared with the experimtermediate energies. It is supposed that this overestimation
ments of Webeet al. [3] and Zhouet al. [4], and previous  comes from their treatment of Ps formation of excited states.
calculations which deal with a wide range of positron en-|n their close-coupling calculations, only the,12s, and 2
ergy; Schwinger variational calculation by Kar and Mandalstates of Ps were included, while the other states were not
[6,44], close-coupling calculations by Mitrdyi9] and Ker- included, even if they ware open channels. Ps formation of
noghanet al.[20], and TDCC calculation by Plante and Pin- exciteds and p states was taken into account with the®
dzola[27]. In positron energies lower than 35 eV, the presentcaling law[45]. However, the scaling law is applicable only
results are in excellent agreement with the experiment ofor highly exited states such as Rydberg states. On the other
Zhou et al. For energies higher than 40 eV, the present rehand, the Schwinger variational calculation by Kar and Man-
sults somewhat underestimated the measured cross sectigqa| [6,44] is in excellent agreement with the experimé}
This underestimation is due to the limitation of the channelin the whole energy region. However, they took into account
expansion of wave functions discussed above. In comparisognly Ps formation of the ground state that was the most
with the experiment of Webeet al, all of the results under-  jmportant contribution. In the present calculation, Ps forma-
estimate the experiment. However, the other calculations, eXtjon of excited states is also important at high energies; its

cept for the TDCC calculation of Plante and Pindzola, agreontribution amounts to a few tenths of a percent of the
with the experiment of Zhowet al. Their TDCC method is Ps-formation cross section.

essentially equivalent to our method. However, they made an
inconsistent treatment; Ps-formation cross sections were es-
timated from transfer-ionizatioiPs-formation plus ioniza-
tion) cross sections obtained with the TDCC method by sub-
tracting ionization cross sections calculated with a lowest-
order distorted-wave method. The distorted-wave method is
not a good approximation for this energy region in which
correlation effects are important. Moreover, the number of
channels included is small. Thus, their results have large un-

4.0 T T T T T T T

TABLE II. Convergence of Ps-formation cross sectigasits of
waé) with increasing the upper limit,,,, of the electron angular
momentum.

Cross Section (units of na3)

E (eV)
I max 10 20 30 40 50 Energy (eV)
0 0.659 0.144 0.048 0.020 0.010

FIG. 4. Ps-formation cross section. Closed circles represent the
0.732 0.273 0.110 0.046 0.024 present calculatiofiTable 11l); closed squares, TDCC by Plante and
1.650 1.630 0.538 0.283 0.139  pindzola[27]; solid line, Schwinger variational method by Kar and
2.335 2.561 1.220 0.509 0.244  Mandal[6,44]; dash-dotted line, 28-state close-coupling by Mitroy
2.513 2.673 1.336 0.575 0.277  [19]; broken line, 33-state close-coupling by Kernohgaral. [20];
2.636 2.681 1.391 0.617 0.299 pluses and crosses, experiments of Webeal. [3] and Zhou

et al.[4].

~N o 01wk
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It should be noted that in the present calculation, the crosthe present calculation somewhat underestimates the experi-
section does not vanish at the thresh¢fd8 eV). This is  mental results. The present paper has consistently treated Ps
caused by the use of the wave-packet approximation. Thtormation with the TDCC method and demonstrates useful-
wave packet used at the threshold has an energy width afess of the method for atomic rearrangement collisions.
about 1 eV. This width corresponds to that of positron beam
used in the experimef#]. Therefore, the present calculation
has reproduced the experimental result at the threshold. ACKNOWLEDGMENTS
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