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Time-dependent coupled-channel calculations of positronium-formation cross sections
in positron-hydrogen collisions
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We demonstrate the usefulness of the time-dependent coupled channel~TDCC! method in theoretical studies
of atomic rearrangement collisions. In the TDCC method, coupled-channel partial differential equations for
scattering wave functions are solved time dependently. We develop the Hankel-interpolation method, which is
used to transform wave functions from an initial coordinate to a final coordinate system. By using this method,
reaction cross sections of rearrangement collisions can be directly extracted from solutions of TDCC equations.
We calculate positronium-formation cross sections in positron-hydrogen collisions in which a considerable
number of theoretical calculations and precise experiments have been made. The present results for positron
energies of 6.8–35 eV are in excellent agreement with the recent experiment of Zhouet al. @Phys. Rev. A55,
361 ~1997!#.
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I. INTRODUCTION

Positronium ~Ps! formation by positron-hydrogen colli
sions is one of the simplest systems of atomic rearrangem
collisions. It provides a testing ground for theoretical mod
used to study more complex rearrangement reactions~see,
for example, Refs.@1,2# and references therein!. Beside, pre-
cise experiments recently made by Weberet al. @3# and Zhou
et al. @4# stimulate theoretical studies of the Ps formatio
However, treatment of the Ps formation is intrinsically dif
cult in comparison with that of ionization and excitation
the hydrogen by positron collisions, since different coor
nate systems must be used to describe the three-body sy
before and after the rearrangement collision. Hence, prev
theoretical models were available only for low energies
which a few channels are open. For positron energies
6.8–10.2 eV~Ore gap!, Humberstonet al. @5# calculated Ps-
formation cross sections using the Kohn-variational meth
and Kar and Mandal@6# using the Schwinger-variationa
method. Higgins and Burke@7# employed theR-matrix
method, Liu and Gien and Kuang and Gien@8# and Mitroy
et al. @9# close-coupling methods, Wardet al. @10# the
hidden-crossing method, and Janev and Solov’ev@11# the
advanced adiabatic method. The results of these calcula
agree with each other in a low-energy region.

For intermediate or high energies at which many chann
are open, Hewittet al. @12#, Mitroy and Stelbovics@13#,
McAlinden et al. @14#, Gien@15#, and Sarkar and Ghosh@16#
used close-coupling methods. However, unphysical re
nances were found in Ps-formation cross sections, s
atomic-type basis functions used were over complete
hydrogen and Ps components of the total wave functi
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were not orthogonal. The resonances have not been obta
with a hyperspherical close-coupling method as reported
Igarashi and Toshima@17# and Zhou and Lin@18#. Mitroy
@19# and Kernoghanet al. @20# avoided the problem of the
over completeness by decreasing the number of Ps-forma
channels; only the 1s, 2s, and 2p states of Ps were included
Other excited states were not included, even if they w
open channels. However, this treatment is not proper in
termediate energies where contribution of Ps-format
channels becomes important.

One of the promising approaches to overcome the pr
lem of the over completeness is to time-dependently so
coupled-channel partial differential equations for scatter
wave functions, i.e., the time-dependent coupled-chan
~TDCC! method@21#. In this approach, a wave packet th
describes relative motions in a three-body system is t
evolved on a lattice of the two-dimensional radial spa
Hence, a physical picture of dynamics can be easily obtai
within a full-quantal framework through a computer grap
ics. Another advantage is that no asymptotic boundary c
dition is required on wave functions. As a result, Ps form
tion and ionization channels need not be separately includ
In addition, by numerically describing wave functions, t
number of channels can drastically decrease. Thus,
TDCC method is expected to be useful for rearrangem
collisions in which many channels open. Ihraet al. @22#, Pin-
dzolaet al. @23#, and Oderoet al. @24# applied this method to
electron-atom collisions, Pindzola and Robicheaux@25# to
photo-ionization of atoms, and Schultzet al. @26# to atomic
auto-ionization.

Recently, Plante and Pindzola@27# applied the TDCC
method to the Ps formation. In their calculation, P
formation cross sections were deduced from trans
ionization ~Ps formation plus ionization! cross sections ob
tained with the TDCC method by subtracting ionization cro
sections calculated with a lowest-order distorted-wa
method. However, the distorted-wave method is not a g
©2001 The American Physical Society15-1
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approximation for low energies in which correlation effec
are important. In fact, they reported results only for energ
higher than 30 eV.

In the present paper, we demonstrate the usefulness o
TDCC method in theoretical studies of atomic rearrangem
collisions. First, we develop a fast and stable TDCC meth
employing a split-operator method in which the unita
transformation of potential operators and the Cayley exp
sion of kinetic energy operators are incorporated. TD
equations can be fast and stably solved on a para
computing scheme with an adhesive-operator method. N
we develop the Hankel interpolation method to transfo
wave functions in the initial coordinate system, which d
scribes the positron-hydrogen system, to those in the fi
system, which describes the proton-Ps system. By using
method, Ps-formation cross sections can be directly extra
from solutions of TDCC equations. For positron energies
6.8–50 eV, we calculate Ps-formation cross sections
compare with the experiments and the previous calculatio

In the present paper, the atomic units (e5\5me51) are
used unless otherwise stated.

II. TDCC EQUATIONS

We derive TDCC equations for three-body collision sy
tems that consist ofA-, B-, andC-particles. Relative motions
between the three particles are described in a Jacobi co
nate system (Rc ,rc), wherec51, 2, or 3, illustrated in Fig.
1. In the figure,gc is the angle betweenR̂c and r̂c , andPc
and pc are the conjugate momenta ofRc and rc . For ex-
ample, the (c51) coordinate system describes an arran
ment (A1BC) of free states of theA particle and the sub
system of theB andC particles. The Hamiltonian is given b

Ĥ5
1

2M1
P̂ 1

21
1

2m1
p̂1

21V̂ ~2.1!

with the interaction operator,

V̂5
ZBZC

r 1
1

ZAZB

uR11@m1 /mB#r1u
1

ZAZC

uR12@m1 /mC#r1u
,

~2.2!

whereZi andmi are the charge and mass of the particlesi
5A, B, or C), andM1 andm1 are the reduced masses,

FIG. 1. Jacobi coordinate systems (c51, 2, and 3) correspond
ing to arrangements ofA1BC, B1CA, andC1AB; Pc andpc are
the conjugate momenta of the relative position vectorsRc and rc

andgc is the angle betweenR̂c and r̂c .
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mA~mB1mC!

mA1mB1mC
, m15

mBmC

mB1mC
.

The eigenfunction of the Hamiltonian is written in a form

CJMJp~R1 ,r1 ,t !5
1

R1r 1
(
lK

c lK
JMJp

~R1 ,r 1 ,t !Y lK
JMJp

~R̂1 , r̂1!.

~2.3!

The parity adapted angular momentum function is defined
the body-fixed~BF! frame as

Y lK
JMJp

~R̂, r̂!5
1

A2~11dK0!
@Y lK

JMJ~R̂, r̂!

1~2 !J1pY l 2K
JMJ~R̂, r̂!# ~2.4!

with

Y lK
JMJ~R̂, r̂!5A2J11

4p
DKMJ

J ~R̂!YlK~g,0!, ~2.5!

whereJ is the total angular momentum,l the orbital angular
momentum associated withr̂, K the projection ofl on R̂, p
the parity, DKMJ

J the Wigner rotation matrix, andYlK the
spherical harmonics. The projection quantum number
values ofK5Kmin

p –min(J,l ), where Kmin
p 50 for p5even

andKmin
p 51 for p5odd. The expansion~2.3! is substituted

into the time-dependent Schro¨dinger equation,

i
]

]t
CJMJp~R1 ,r1 ,t !5ĤCJMJp~R1 ,r1 ,t !. ~2.6!

The rotation matrix and the spherical harmonics are eli
nated by projecting Eq.~2.4! from the left-hand side of Eq
~2.6!. This gives the TDCC equation

i
]

]t
c lK

JMJp
~R1 ,r 1 ,t !

5 (
l 8K8

F T̂
Kl 8K8

JMJp
1

Ŵ
lKl 8K8

JMJp

2M1R1
2

1
l ~ l 11!

2m1r 1
2

d l l 8dKK81V̂
lKl 8K8

JMJp G
3c

l 8K8

JMJp
~R1 ,r 1 ,t !, ~2.7!

where

T̂
lKl 8K8

JMJp
5F2

1

2M1

]2

]R1
2

2
1

2m1

]2

]r 1
2Gd l l 8dKK8 , ~2.8!

Ŵ
lKl 8K8

JMJp
5@J~J11!22K21 l ~ l 11!#d l l 8dKK8

2lJK
1 l lK

1 A11dK0d l l 8dK11K8

2lJK
2 l lK

2 A11dK1d l l 8dK21K8 , ~2.9!

l lm
6 5Al ~ l 11!2m~m61!, ~2.10!

and

V̂
lKl 8K8

JMJp
5^Y lK

JMJpuV̂uY
l 8K8

JMJp
&dKK8 . ~2.11!
5-2
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In the BF frame, the TDCC equation can be efficien
solved, sinceT̂

lKl 8K8

JMJp
is diagonal inl and K, Ŵ

lKl 8K8

JMJp
in l,

and V̂
lKl 8K8

JMJp
in K.

The radial part of the wave function~2.3! in the BF rep-
resentation is transformed into the radial functionxLl

JMJ in the
space-fixed~SF! representation through a relation

xLl
JMJ5(

K
A22dK0A2L11

2J11
ClK ,L0

JK c lK
JMJp , ~2.12!

andvice versa

c lK
JMJp

5(
L

A22dK0A2L11

2J11
ClK ,L0

JK xLl
JMJ , ~2.13!

whereL is the orbital angular momentum associated withR̂
andClK ,L0

JK is the Clebsch-Gordan coefficient.

III. FAST AND STABLE SOLUTION OF TDCC EQUATIONS

We present a fast and stable solution of TDCC equatio
for simplicity, in an one-dimensional problem,

i
]

]t
c l~r ,t !5Ĥ ll 8c l 8~r ,t !. ~3.1!

Here, we use Einstein’s convention of the summati
all 8bl 85( l 8all 8bl 8 . Solutions of Eq.~3.1! are written in the
form

c l~r ,t !5Ŝll 8~ t2t0!c l 8~r ,t0!, ~3.2!

with the time-evolution operator

Ŝll 8~ t2t0!5exp@2 iĤ ll 8~ t2t0!#. ~3.3!

The wave function is discretized on the time space with
spect to a short time stepDt5tmax/M ,

c l
(m)~r !5c l~r ,tm!, tm5mDt, m50,1, . . . ,M .

Solutions of Eq.~3.1! are obtained through iterations

c l
(m11)~r !5Ŝll 8~Dt !c l 8

(m)
~r !, ~3.4!

whereŜll 8(Dt)5exp(2iĤll8Dt).
We consider the Hamiltonian operator in the tim

evolution operator. For convenience, the HamiltonianĤ ll 8
consists of a nonlocal operatorT̂ll 8 and a local operatorV̂ll 8 .
With use of the Baker-Campbell-Hausdorff relation, the tw
operators are separated into the symmetric form@28–30#,

Ŝll 8~Dt !5expS 2 i
Dt

2
V̂ll 8Dexp~2 iDtT̂ll 8!expS 2 i

Dt

2
V̂ll 8D

1O~Dt3!. ~3.5!

By using this relation, Eq.~3.4! is separated into three equ
tions,
04271
s,

,

-

c l
(m11)~r !5expS 2 i

Dt

2
V̂ll 8Dc l 8

(m12/3)
~r !, ~3.6!

c l
(m12/3)~r !5exp~2 iDtT̂ll 8!c l 8

(m11/3)
~r !, ~3.7!

c l
(m11/3)~r !5expS 2 i

Dt

2
V̂ll 8Dc l 8

(m)
~r !. ~3.8!

First, we consider calculation of Eq.~3.8! which includes
the local operatorV̂ll 8 . The operator includes all of the non
diagonal operators; the centrifugal potential operators~2.9!
and the second term in Eq.~2.7!, and the interaction opera
tors ~2.11!. With use of a unitary transformation matrixU,
the operatorV̂ll 8 is transformed to a diagonal operatorD̂ ll -
5Ull 8

† V̂l 8 l 9Ul 9 l- , where D̂ ll 850 for lÞ l 8. Thus, solutions
of Eq. ~3.8! are obtained through three steps,

c l
(m11/3)~r !5Ull 8c l 8

(m12/9)
~r !, ~3.9!

c l
(m12/9)~r !5expS 2 i

Dt

2
D̂ ll 8d l l 8Dc l 8

(m11/9)
~r !, ~3.10!

c l
(m11/9)~r !5Ull 8

† c l 8
(m)

~r !. ~3.11!

Calculations of the intermediated functionsc l
(m11/3) with

Eqs.~3.9!, ~3.10!, and~3.11! nonconditionally stabilize, since
the absolute values of the unitary transform matrix and
exponential operator are unity.

Next, we consider calculations of Eq.~3.7!. The nonlocal
operatorT̂ll 8 that includes the kinetic-energy operators~2.8!
is diagonal, i.e.,T̂ll 850 for lÞ l 8. As an example, we define
T̂ll 852(1/2m)] r

2d l l 8 . The exponential operator withT̂ll 8 is
expanded into Cayley’s fractional form@31,32#,

exp~2 iDtT̂ll 8!5expS iDt
] r

2

2m
d l l 8D

5

11 iDt
] r

2

4m
d l l 8

12 iDt
] r

2

4m
d l l 8

1O~Dt3!. ~3.12!

The Cayley expansion is correct to orderDt2. By substitut-
ing Eq. ~3.12! into Eq. ~3.7! and moving the denominator t
the left-hand side, we have

S 12 iDt
] r

2

4m Dc l
(m12/3)~r !5S 11 iDt

] r
2

4m Dc l
(m11/3)~r !.

~3.13!

Calculations of the intermediate functionsc l
(m12/3) noncon-

ditionally stabilize, since the absolute value of the Cay
expanded operator, the first term in Eq.~3.12!, is unity.

Equation~3.13! is often solved with the Crank-Nicholso
scheme@31,32#. In the alternative direction implicit~ADI !
method, Konoet al. @33# employed the Peaceman-Rachfo
5-3



he

-
a

;

-

fi
he

ive

al

o-
onal
ive
s.
d-
t of
on-

rge-

the
on,
-
l

e
e
ion
the

ve
d-
ve

NOBUHIRO YAMANAKA AND YASUSHI KINO PHYSICAL REVIEW A 64 042715
scheme and Kawataet al. @34# employed the D’yakonov
scheme. We employ the modified Cholesky method@35#. The
wave function is numerically described on grid points of t
r space,

c l ,n
(m)5c l

(m)~r n!, r n5nDr , n50,1, . . . ,N,

where Dr 5r max/N. The differential operator is approxi
mated with the three-point finite difference method. As
result, Eq.~3.13! becomes a simultaneous linear equation

3 I 2 i
Dt

4mDx2 S 22 1 0 ••• 0 0

1 22 1 0 0

0 1 22 0 0

A � A

0 0 0 22 1

0 0 0 ••• 1 22

D 4
3S c l ,1

(m12/3)

c l ,2
(m12/3)

c l ,3
(m12/3)

A

c l ,N22
(m12/3)

c l ,N21
(m12/3)

D 5S c l ,1
(m11/3)*

c l ,2
(m11/3)*

c l ,3
(m11/3)*

A

c l ,N22
(m11/3)*

c l ,N21
(m11/3)*

D , ~3.14!

where I is the unit matrix andc l
(m11/3)* is the right-hand

side of Eq. ~3.13!. The values of c l ,0
(m12/3) , c l ,N

(m12/3) ,
c l ,0

(m11/3)* , andc l ,N
(m11/3)* are fixed to be zero by the bound

ary condition. The unknown functionc l
(m12/3) is efficiently

calculated with the modified Cholesky method, since the
nite difference matrix is a symmetric-band matrix with t
width of unity.

The simultaneous linear equation~3.14! can be calculated
also on a parallel computing scheme with an adhes
operator method@36#. The exponential operator~3.12! is de-
composed to be

expS iDt
] r

2

2m
d l l 8D 5expS iDt

] rad
2

4m
d l l 8DexpS iDt

] rbd
2

2m
d l l 8D

3expS iDt
] rad

2

4m
d l l 8D 1O~Dt3!, ~3.15!

where ] r
25] rbd

2 1] rad
2 . By expanding the three exponenti

functions into Cayley’s forms similar to Eq.~3.12!, Eq.
~3.13! is decomposed into a set of three equations;

S 12 iDt
] rad

2

8m Dc l
(m12/3)~r !5S 11 iDt

] rad
2

8m Dc l
(m15/9)~r !,

~3.16!

S 12 iDt
] rbd

2

4m Dc l
(m15/9)~r !5S 11 iDt

] rbd
2

4m Dc l
(m14/9)~r !,

~3.17!
04271
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S 12 iDt
] rad

2

8m Dc l
(m14/9)~r !5S 11 iDt

] rad
2

8m Dc l
(m11/3)~r !,

~3.18!

where the difference matrices are given by

] rbd
2 5

1

Dx2 S 22 1

1 � �

� 21 0

0 21 �

� � 1

1 22

D
~3.19!

and

] rad
2 5

1

Dx2 S 0 0

0 � �

� 21 1

1 21 �

� � 0

0 0

D . ~3.20!

Equation~3.17! can be calculated independently by two pr
cessors, since the nonzero elements in the block-diag
matrix ~3.19! are separated into two blocks. The adhes
matrix ~3.20! connects the two blocks. In calculations of Eq
~3.16! and~3.18!, it is needed to transfer data on the boun
aries between the two processors. However, the amoun
data transmission is quite small. Thus, by separating the n
zero elements in the matrix in Eq.~3.19! into many blocks
with adhesive operators, calculations can be made on a la
scale parallel computer.

Finally, by solving Eq.~3.6! with the procedures~3.9!–
~3.11!, the functionsc l

(m11) at the next time steptm11 are
obtained.

IV. NUMERICAL METHOD

In TDCC calculations of Ps-formation cross sections,
A, B, andC particles are assumed to be the positron, electr
and proton. The wave functionsc lK

JMJp are described numeri
cally on 2003200 grid points in the two-dimensional radia
space (R1 ,r 1) with the extent of (Rmax,r max). In the channel
expansion~2.3! of the wave functions, the upper limit of th
orbital angular momentuml max is taken to be seven; th
maximum number of channels is 36. The TDCC equat
~2.7! is solved according to the scheme represented in
preceding section. The time step isDt50.05 a.u.

In the SF representation, the radial part of the total wa
function att050 is constructed as the product of the groun
state wave function of the hydrogen and an incoming wa
packet for the positron,

xJ0
JMJp

~R1 ,r 1 ,t0!5gkJ~R1!f1s
H ~r 1!. ~4.1!
5-4
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The wave packet is given by

gkL~R!5
1

~s2p!1/4
expF2

~R2R0!2

2s2 GhL
2~kR!, ~4.2!

wherek5A2M1E is the wave number with energyE, R0 the
localization radius of the wave packet att0 , s the width of
the wave packet, andhL

2(kR)5exp(2ikR)exp(ipL/2) an
asymptotic Hankel function. Note that the wave packet~4.2!
has an energy width ofDE5(1/M1)kDk, whereDk's21.
The initial condition~4.1! is transformed into the BF repre
sentation with Eq.~2.13! to substitute into the TDCC equa
tion ~2.7!.

Positronium-formation cross sections are extracted fr
solutions of the TDCC equation~2.7! by projecting bound-
state wave functions of Ps@22#,

sPs5
p

k2 (
J

~2J11!rPs
J , ~4.3!

with

rPs
J 5(

nlm
E dR3u^CJMJ~R1 ,r1 ,t !ufnlm

Ps ~r3!& r3
u2, ~4.4!

where the angle bracket means an integral overr3. In calcu-
lation of Eq. ~4.4!, the total wave-functionCJMJ is trans-
formed to the function described in the (c53) coordinate
system in Fig. 1~3! with the Hankel-interpolation metho
mentioned in the next section.

The calculation is performed with a parallel computi
system that consists of five personal computers with Pent
III processors~500 and 800 MHz34). The computers have
been clustered with the software package PVM~parallel vir-
tual machine! which allows a computer network to be use
as a virtual parallel computer with distributed memories. O
computer code is organized according to a master-s
model. The master contains input-output and control routi
of slave processes and is running on one of the proces
The slave contains a time-evolution calculation routine a
runs as identical copies on all of the other processors. E
copy manages calculation of the TDCC equation in a qua
of the two-dimensional radial space. The CPU time of cal
lations for each partial wave is from several minutes to t
hours corresponding to the number of channels in the exp
sion ~2.3!. The AlphaServer GS60 at the Institute of Spa
and Astronautical Science is also used in the scalar com
ing scheme. The CPU time is about twice for correspond
calculations with the parallel computing system.

V. HANKEL-INTERPOLATION METHOD

We present the Hankel-interpolation coordinate trans
mation method. In the SF representation, the wave-func
x (c)JMJ in the (c51) coordinate is transformed into that
the ~3! coordinate.

First, we consider the Fourier transformation of the fun
tion x (1)JMJ in the position space (R1 ,r1) to the momentum
space (P1 ,p1),
04271
m

r
ve
s
rs.
d
ch
er
-

o
n-
e
t-

g

r-
n

-

x̂ (1)JMJ~P1 ,p1!5
1

~2p!3E dR1exp~2 iP1•R1!

3E dr1exp~2 ip1•r1!x (1)JMJ~R1 ,r1!.

~5.1!

In the SF representation, the momentum- and position-sp
functions are given by

x̂ (1)JMJ~P1 ,p1!5(
L1l 1

x̂L1l 1

(1)JMJ~P1 ,p1!Y L1l 1

JMJ~P̂1 ,p̂1!,

~5.2!

x (1)JMJ~R1 ,r1!5
1

R1r 1
(
L1l 1

xL1l 1

(1)JMJ~R1 ,r 1!Y L1l 1

JMJ~R̂1 , r̂1!,

~5.3!

with the angular momentum function

Y Ll
JMJ~ â,b̂!5(

Mm
CLM ,lm

JMJ YLM~ â!Ylm~ b̂!. ~5.4!

In Eq. ~5.1!, expanding the exponential functions into mul
pole terms and projecting out the angular momentum fu
tions, we have the radial part of Eq.~5.2!,

x̂L1l 1

(1)JMJ~P1 ,p1!5~2 i !L11 l 1
2

pE0

`

R1dR1 j L1
~P1R1!

3E
0

`

r 1dr 1 j l 1
~p1r 1!xL1l 1

(1)JMJ~R1 ,r 1!,

~5.5!

where j l is the spherical Bessel function.
Next, we consider the inverse transformation from t

momentum space to the position space,

x (1)JMJ~R1 ,r1!5
1

~2p!3E dP1exp~ iP1•R1!

3E dp1exp~ ip1•r1!x̂ (1)JMJ~P1 ,p1!.

~5.6!

In the right-hand side, the position vectorsR1 and r1 are
rewritten with the vectorsR3 and r3 in the ~3! coordinate
system through the relation

S R1

r1
D 5S a b

g d D S R3

r3
D , ~5.7!

where

a52
mC

mC1mB
, b52

mB~mA1mB1mC!

~mC1mB!~mA1mB!
,
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g51, d52
mA

mA1mB
.

Substituting the expansions~5.2! and~5.3! into Eq.~5.6! and
integrating over the angular variables, we obtain a relatio

xL3l 3

(3)JMJ~R3 ,r 3!5
2

p
R3r 3 (

L9 l 9L8 l 8L1l 1

i L91 l 91L81 l 8

3^~L9l 9!L1~L8l 8!l 1Ju~L9L8!L3~ l 9l 8!l 3J&

3E
0

`

P1
2dP1 j L9~aP1R3! j l 9~bP1r 3!

3E
0

`

p1
2dp1 j L8~gp1R3! j l 8~dp1r 3!

3xL1l 1

(1)JMJ~P1 ,p1!, ~5.8!

where

^~L9l 9!L1~L8l 8!l 1Ju~L9L8!L3~ l 9l 8!l 3J&

5~2 !L11 l 11L31 l 3L̂92 l̂ 92L̂82 l̂ 82L̂1 l̂ 1L̂3 l̂ 3

3S L9 l 9 L1

0 0 0 D S L8 l 8 l 1

0 0 0D S L9 l 8 L3

0 0 0 D
3S l 9 l 8 l 3

0 0 0D H L9 l 9 L1

L8 l 8 l 1

L3 l 3 J
J , ~5.9!

with l̂ 5A2l 11. In the left-hand side of Eq.~5.6!, we used
the identity

x (3)JMJ~R3 ,r3!5x (1)JMJ~R1 ,r1!. ~5.10!

The numerical calculation of Eqs.~5.5! and ~5.8! is very
hard, since they have double integrals and Eq.~5.8! includes
summations over six indices. We consider the three step
the coordinate transformation through the center-of-mass
ordinate systems (18) and (38) illustrated in Fig. 2,

S R1

r1
D 5S 1 b1

0 1 D S R18

r18
D , S R18

r18
D 5S 0 21

1 0 D S R38

r38
D ,

S R38

r38
D 5S 1 b3

0 1 D S R3

r3
D , ~5.11!

FIG. 2. Three steps of transformation from the~1!-coordinate to
the ~3!-coordinate system.
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where

b152
mC

mB1mC
, b352

mA

mA1mB
.

The three matrices satisfy the identity

S a b

g d D 5S 1 b1

0 1 D S 0 21

1 0 D S 1 b3

0 1 D . ~5.12!

Equations~5.5! and~5.8! are reduced to a simple form, sinc
one or two of the elements are zero in the three matrices.
the first transformation from the (1) to the (18) coordinate,
we have a relation

x
L

18 l
18

(18)JMJ~R18 ,r 18!5
p

2
R18 (

l 9L1l 1

i L182L1

3^~L18l 9!L1~0l 1!l 1Ju~L180!L18~ l 9l 1!l 18J&

3E
0

`

P1
2dP1 j L

18
~P1R18! j l 9~ ub1uP1r 18!

3E
0

`

R1dR1 j L1
~P1R1!xL1l 1

(1)JMJ~R1 ,r 1!.

~5.13!

Equation~5.13! can be calculated rapidly by storing value
of the spherical Bessel functions into arrays before the
culation. Here, the upper limit of theP1 integral is taken to
be Pmax5p/DR1 @37,38#, whereDR15Rmax/N andN is the
number of grid points.

The Hankel-interpolation method surpasses in numer
accuracy in comparison with previous interpolation metho
utilizing the Fourier transformation@39,40# and the reduced-
rotation matrix@41,42#. In these methods, one needs to inte
polate values on several grid points in the initial coordin
function to obtain a value for one grid point in the fin
coordinate function. This is because the grid points of
initial coordinate do not line up on the finial coordinate. O
method uses the same grid points for all channels. Moreo
the angular part~5.9! is determined by Racah algebra.

VI. RESULTS AND DISCUSSION

Time evolution of wave functions in the SF representat
for a positron energy of 30 eV is shown in Fig. 3@43#;
~a!–~c! and ~d!–~f! show the (L,l )5(0,0) and (1,1) chan-
nels. In this calculation, we takeRmax5r max540 a.u.,s56
a.u., andR0520 a.u. The propagation time of the wav
packet istmax527 a.u., which corresponds 540 time steps.
the figures, the wave densities, square of absolute value
the wave functions, are drown with contours on a logari
mic scale. Figure 3~a! shows the initial condition~4.1! in the
(0,0) channel. The shape of the contours is determined
the wave-packet width in theR direction and the ground
state orbital of the hydrogen in ther direction. In the two-
dimensional radial space, the incoming wave packet pro
gates to the origin along theR axis as the time passes. Th
wave packet is reflected atr 50 and becomes an outgoin
wave; the wave propagates to the right direction. The out
5-6
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FIG. 3. Time evolution of wave functions a
t50, 13.5, and 27.0 a.u.~a!, ~b!, and~c! represent
the (L,l )5(0,0) channel and~d!, ~e!, and~f! rep-
resent the (1,1) channel. Contours are plotted
a logarithmic scale.
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ing wave interferes with the rear component of the incom
wave. In Fig. 3~b!, this interference, which is due to quantu
effects, is found as many nodes of the contours. In Fig. 3~c!
at tmax, most components of the wave packet propag
along theR axis. These components represent elastic sca
ing and excitation to excited bounds states of the hydrogen
A small component that propagates to the right-diagonal
rection represents ionization and Ps formation.

In the (1,1) channel, as shown in Fig. 3~d!, the wave
density is zero att0 by the initial condition. In Fig. 3~e!, as
time increases, a wave emerges in the vicinity of the orig
In Fig. 3~f!, the emerging wave becomes a large mound. T
is due to the fact that the (1,1) channel is directly coup
with the (0,0) channel through the dipole interaction. T
wave includes two components; one of which propaga
along theR axis, while the other propagates to the rig
diagonal direction. The former represents excitation top
states of the hydrogen. The latter represents ionization an
formation.

Table I shows contributions of partial waves,J50 –8, to
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Ps-formation cross sections at positron energies of
20, . . . ,50 eV.Here, the upper limit of the electron angula
momentum in the channel expansion~2.3! of wave functions
has been taken to bel max57. The partial-wave contributions
converge within three percents. Thus, the numerical e
caused by the cutoff of partial-wave contributions is su
ciently small. Table II shows convergence of Ps-formati
cross sections with increasingl max50 –7, where partial wave
contributions ofJ50 –8 are summed at each step ofl max.
The cross section is quite small forl max50 and rapidly in-
creases withl max. The convergence of the cross section
slow in comparison with that of the partial-wave contrib
tions; it is, in particular, slow at positron energies higher th
40 eV. We estimate the numerical error caused by the li
tation of l max to be within several percents for energies low
than 30 eV. However, for energies higher than 40 eV,
error is somewhat large and estimated to be about ten
cent.

Table III shows the present results of Ps-formation cr
sections. In this calculation, we tookRmax56s, r max540
5-7
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a.u., R05Rmax/2, s53l with the de Broglie wave-length
l52p/k, andtmax>2R0 /v with the velocityv of the wave
packet. In Fig. 4, the results are compared with the exp
ments of Weberet al. @3# and Zhouet al. @4#, and previous
calculations which deal with a wide range of positron e
ergy; Schwinger variational calculation by Kar and Mand
@6,44#, close-coupling calculations by Mitroy@19# and Ker-
noghanet al. @20#, and TDCC calculation by Plante and Pi
dzola@27#. In positron energies lower than 35 eV, the pres
results are in excellent agreement with the experimen
Zhou et al. For energies higher than 40 eV, the present
sults somewhat underestimated the measured cross se
This underestimation is due to the limitation of the chan
expansion of wave functions discussed above. In compar
with the experiment of Weberet al., all of the results under-
estimate the experiment. However, the other calculations,
cept for the TDCC calculation of Plante and Pindzola, ag
with the experiment of Zhouet al. Their TDCC method is
essentially equivalent to our method. However, they made
inconsistent treatment; Ps-formation cross sections were
timated from transfer-ionization~Ps-formation plus ioniza-
tion! cross sections obtained with the TDCC method by s
tracting ionization cross sections calculated with a lowe
order distorted-wave method. The distorted-wave metho
not a good approximation for this energy region in whi
correlation effects are important. Moreover, the number
channels included is small. Thus, their results have large

TABLE I. Convergence of Ps-formation cross sections~units of
pa0

2) with respect to the partial waveJ.

E ~eV!

J 10 20 30 40 50

0 0.022 0.013 0.007 0.003 0.001
1 0.499 0.314 0.124 0.048 0.021
2 0.999 0.706 0.304 0.124 0.057
3 0.530 0.705 0.345 0.148 0.070
4 0.194 0.480 0.275 0.125 0.061
5 0.119 0.258 0.173 0.084 0.042
6 0.107 0.123 0.095 0.049 0.025
7 0.096 0.057 0.046 0.025 0.013
8 0.071 0.026 0.021 0.012 0.006

Total 2.636 2.681 1.391 0.617 0.299

TABLE II. Convergence of Ps-formation cross sections~units of
pa0

2) with increasing the upper limitl max of the electron angular
momentum.

E ~eV!

l max 10 20 30 40 50

0 0.659 0.144 0.048 0.020 0.010
1 0.732 0.273 0.110 0.046 0.024
3 1.650 1.630 0.538 0.283 0.139
5 2.335 2.561 1.220 0.509 0.244
6 2.513 2.673 1.336 0.575 0.277
7 2.636 2.681 1.391 0.617 0.299
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certainties. Therefore, we may conclude that in the pres
calculation, accurate values of Ps-formation cross sect
have been obtained with a time-dependent treatment.

Figure 4 also shows that the present results are more
curate for intermediate energies, 20-40 eV, in contrast to
close-coupling calculation. The results of Mitroy@19# and
Kernoghanet al. @20# overestimate the cross section for th
intermediate energies. It is supposed that this overestima
comes from their treatment of Ps formation of excited sta
In their close-coupling calculations, only the 1s, 2s, and 2p
states of Ps were included, while the other states were
included, even if they ware open channels. Ps formation
exciteds and p states was taken into account with then23

scaling law@45#. However, the scaling law is applicable on
for highly exited states such as Rydberg states. On the o
hand, the Schwinger variational calculation by Kar and Ma
dal @6,44# is in excellent agreement with the experiment@4#
in the whole energy region. However, they took into acco
only Ps formation of the ground state that was the m
important contribution. In the present calculation, Ps form
tion of excited states is also important at high energies;
contribution amounts to a few tenths of a percent of
Ps-formation cross section.

FIG. 4. Ps-formation cross section. Closed circles represent
present calculation~Table III!; closed squares, TDCC by Plante an
Pindzola@27#; solid line, Schwinger variational method by Kar an
Mandal @6,44#; dash-dotted line, 28-state close-coupling by Mitro
@19#; broken line, 33-state close-coupling by Kernohganet al. @20#;
pluses and crosses, experiments of Weberet al. @3# and Zhou
et al. @4#.

TABLE III. Ps-formation cross section.

E ~eV! sPs ~units of pa0
2) E ~eV! sPs ~units of pa0

2)

6.8 0.572 20 2.681
8 1.228 25 1.990
10 2.636 30 1.391
12 3.216 35 0.955
14 3.318 40 0.617
16 3.206 45 0.432
18 2.960 50 0.299
5-8
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It should be noted that in the present calculation, the cr
section does not vanish at the threshold~6.8 eV!. This is
caused by the use of the wave-packet approximation.
wave packet used at the threshold has an energy widt
about 1 eV. This width corresponds to that of positron be
used in the experiment@4#. Therefore, the present calculatio
has reproduced the experimental result at the threshold.

VII. SUMMARY

We have developed a fast and stable TDCC method
the Hankel-interpolation method to apply to Ps formation
positron-hydrogen collisions. In the TDCC calculation, w
showed time evolution of wave packets that described
namics of positron-hydrogen collisions. The Ps-format
cross sections have been calculated for positron energie
6.8–50 eV. For energies lower than 35 eV, the present res
are sufficiently accurate and in excellent agreement with
experiment by Zhouet al. For energies higher than 40 eV
ne
,
e

ys

.

. A

s,

04271
ss

e
of

d

-
n
of

lts
e

the present calculation somewhat underestimates the ex
mental results. The present paper has consistently treate
formation with the TDCC method and demonstrates use
ness of the method for atomic rearrangement collisions.
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