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Electron scattering by nonspherically symmetric atoms: Zero-energy limit
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A modified perturbation theory, previously introduced for the construction of asymptotic states accounting
for a general class of long-range angle-dependent multipole potentials is developed in further detail. The
threshold behavior of these states is presented in explicit form and these results are used, with the aid of a
modified effective-range formulation, to determine the threshold energy dependence of the multichannel tran-
sition matrix. Unitarity properties are established formally and verified in the low-energy limit. A variational
procedure for determining the parameters appearing in the modified effective-range expansion is described.
The same procedure accounts for the presence of zero-energy bound states leading to resonant behavior that
alters the threshold energy dependence.
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[. INTRODUCTION channels, may be accommodated. The asymptotic solutions
are calculated to second order in the modified perturbation
Interest in the threshold properties of transition ampli-expansion and their zero-energy limits are displayed. Since
tudes, starting with Wigner's early work in the context of the nonanalytic energy-dependent factors associated with the
nuclear reaction theorfl], and then extended in modified threshold anomaly can be factored out, solutions obtained
form to account for long-range atomic interactida3, has  this way provide the basis for a modified effective-range ex-
persisted and intensified in parallel with experimental effortg?@nsion. The scattering formalism is developed in Sec. III.
involving collisions at the lowest energi3]. Stimulated by T_h|s_ material gompletes and corrects a treatment covering
these efforts, particular attention has been paid to systenfmilar ground in Sec. Il of Re{.13] and is meant to replace
with angle-dependent effective scattering potentials havindf [14]- The modified effective-range expansion is derived
long-range, inverse-cube and higher-order multipole compolrom a variational principle that provides the basis for deter-
nents[4,5]. A much earlier study, of the amplitude for low- Mining the parameters appearing in the expansion. As shown
energy electron scattering by an atom with a permanenif S€c. IV, the leading terms in the modified effective-range
quadrupole momeri6], was based on a generalization of the €xpansion desg:rlbe the_ threshold beh_awor of the scattering
asymptotic expansion approach of Levy and Kel& In a amplltude that is associated @rectly with the long-range po-
later effective-range analysis of low-energy electron scatterténtials of the model. The existence of a zero-energy bound
ing by nonpolar molecule8], the problem was formulated state induces resonant behawor_ that modifies the energy de-
in terms of coupled radial equations and the threshold behareéndence at threshold. For clarity of presentation a number
ior of partial-wave amplitudes for such systems was studied®f calculational details are placed in four appendixes.
Methods, based on asymptotic expansions, for solving close-
coupling radial equations in the presence of long-range mul- Il. DISTORTED WAVES
tipole potentials, proposed some time 4§dL0], are widely
used in accurat®-matrix calculationg11].
A novel approximation procedure for constructing suffi-
ciently accurate asymptotic solutions for problems involving
a superposition of power-law potentials was introduced by

We consider a model scattering system generated by re-
duction of the Schidinger equation to two coupled radial
equations of the matrix forrh y=0, where, in atomic units,

2
Cavagnerd12]. The method, a modified form of perturba- = d_+ 2| (. + 2|5 4V =
tion theory, is distinguished by the introduction of shifted I 2|dr? K=l DI 05+ vy, 1Li=1.2,
orbital quantum numbers and, being algebraic, has the attrac- 23

tive feature that higher-order corrections, beyond the Born
approximation, are obtained very easily. With this attractivewith 1,=1,+2. The energy, the same for each channel, is
feature as motivation, an extension of the method has bedff/2. In the regiorr >r the real, symmetric potential matrix
developed 13], in terms of a specific model based on two V takes on the power-law form

coupled partial waves, with orbital quantum numbers differ-

ing by two units and with the channels having identical 1( r—4,3§11>2 r‘3,83+r‘4,8£’12

threshold energies. Summation techniques based on the in-  Vi=—=

5 ) . (2.2

2 2
troduction of level shifts(in conjunction with the angular- r3Ba+r B, gy
momentum renormalization central to the methatlow, in
principle, for inclusion of arbitrarily high orders of perturba- Formal extensions of the model can be made without diffi-
tion theory. Our purpose here is to extend the analysis of Refiulty, as demonstrated below.

[13] in a number of ways. In Sec. Il, after a review of the Two linearly independent approximate solutions of the
formalism, it is shown how a wider class of power-law po- wave equation in the region>r,, denoted here af; and

tentials, as well as the coupling of more than two degeneratg;i, may be found in the form of a superposition of Bessel
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functions of the first and second kind, respectively. Startingrhe parameteA ; will be treated as a quantity of first order

with the former, we defing=kr and write with A, andD; taken to be of second order. While a system-
s atic (nonlineaj procedure is available for constructing solu-
fii(2)=Ci(mz/2)"mji(2), (2.3 tions to arbitrarily high ordef13], we confine the present

treatment to second ordéallowing us to ignore the depen-

whereC; is a normalization constant to be fixed later on. Theyance of thd” matrix on the phasé,). To simplify notation
wave equation then takes the form we define an “interaction” s

d2 d 1 2 H =2 1 -1 2
R e }mjmz) o(i,p) =27+ p)+1]7Y, 2.7
and “propagator”
- &.,.A“E 1—68,)mi, )_Dj (2) P
R (1= 6jr))m;ri(2) = 22 M;i(2), 9(j.p)=[(I;+ 1122~ (p+p+ 122" L (2.8

(2.4 In applications of the modified perturbation theory, such as
where we have introduced the dimensionless parameigrs those summarized below, a diagrammatic representation of
- N2 ()2 interactions and propagators, set up previo(ig] and re-
= B3K, A4=(B,4K)", andD;=(B;°k)". We look for a solu- e ye in Appendix B in the notation of Eq&.7) and(2.8),

tion generated by iteration based on a first approximations yery helpful. Consider first an application to the maffix
corresponding to a particular linear combination of degenerypqre is no contribution td in first order. In second order
ate states, labeled by the mode index1, 2, with ampli- /o find

tudesa;s and a, to be determined, as shown below. The
expansion is taken to be of the form =Aw(1,00(1,1) Tp=Aw(2,00(2,-1),
(2.99

I'=Av(1,09(2,—1)v(2,—1)+v(1,09(2,—3)v (2,
—=3)]+D4[v(1,0v(1,)+v(1,0v(1,—1)], (2.9b

m;i(2)=aisd,, +1/2(2) &) + ;;o aisaj(ip)‘] njs P+ 12A2),
(2.9

wheren;s=1;—(2/m) 6s. The phase shiff plays the role of

an eigenvalue to be chosen in a manner that renders consis- F22=Ag[v(Z,O)g(l,l)v(l,l)+v(2,0)g(1,3)v(2,3)]

tent the coupled equations satisfied by the2 matrix a;s .

[The combination of indice§i,s} appearing in the first term +D2[v(2,0v(2,)+v(2,0v(2,—1)]. (2.99

in the expansioini2.5), with i denoting one of the target states ) ) )

in modes, will serve to label an entrance or exit channel in The off-diagonal elements are seen to vanishig=0, i.e.,

the distorted-wave scattering formalism developed in Sedn the absence of the off-diagonal inverse-fourth-power po-
lIl. Since the mode remains fixed in the discussion in thistential. This remains true '|n.h|g_her orders. In that case Egs.
section, the index is omitted in labeling mode-dependent (2.6) are uncoupled, the distinction between target and mode

quantities in Eq.(2.3 and elsewhere when the meaning is indices vanishes, and the formulation simplifies to some ex-
clear] tent [15]. An attempt to construct the solution in the form

(2.5 for A,# 0 without imposing the eigenvalue conditions
éhown in Eqg.(2.6) fails due to the appearance of singulari-
ties.[It will be recognized that the prediagonalization proce-
dure involved in the solution of Eq2.6), with I" serving as
an effective-potential matrix, bears some analogy to that en-
-1 _ -1 countered in standard degenerate perturbation theory.

2 Jyead =20+ D)yl 2) 4 12 With the above approximation to thHé matrix in hand,
and Egs.(2.6) may be solved for the coefficientg after being
made consistent by suitable choice of phasesand 6,;

The coefficientSaJ(i”) may be determined at any stage of
the iteration procedure by inserting a truncated version of th
expansion2.5) into Eq. (2.4) and making use of the Bessel
function properties

) d? ) 2 results are given in Appendix A. The expansion coefficients
2Tt it ) (dnrudD) in first order are determined to be
=[(+112°= 1+ 12?13, 1(2). a3 =A(2,09(1,3), aiy=450(2,09(1),

One then requires that _the coefﬂue_n_t of each function a<211>:A3v(1,0)g(2,_1), a(213)=A3v(1,0)g(2,—3).
J )+ p+1/2 Must _vamsh. Setting the c_oefﬂment\ib,l;+ 12 equal (2.10
to zero we arrive at coupled equations of the form
5 Coefficients obtained in second order are recorded in Appen-
. i ions: =k~ (nst .. andg::
22— (1. +1/2)% A+ Ia..=0 j=12. dix B. To all orders, the function§; =k ji and g
[Cs )= )" 1356 Zl s J =k7sg;; vary smoothly with energy and have well-defined
(2.6 zero-energy limits; the limiting values are listed, to second
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order, in Appendix B. These results form the basis of our |~exr[—i(kr—|j77/2)](BT)ji ,
later discussion of the threshold behavior of the scattering
matrix. O~expli(kr—1;m/2)](BT); . (2.19

Extensions of these procedures to account for additional
power-law potentials and coupling of more than two chan-The first-order approximations for the expansion coefficients
nels are straightforward. Thus we may assume that the longre determined as
range potential includes a diagonal inverse-sixth-power com-
ponent that we write as-8Y)"/r8, j=1, 2, requiring the Cji = Cisaisji (2.153
addition of a term-(D{/z*)my; to the right-hand side of Eq.

: - = Azv(l, 2-1)—g(2,-3)], (21

(2.4, with D/ =(8PK)*. ThenT;, for example, would U21=Cas2ycAqv(1,0[9(2,-1)=9(2,-3)), (2,150
contain the additional contribution d1p=CoperAav(2,0[g(1,3—g(1,)], (2.159

D10 (1.0[v(1.Dv(1,29v(1,D)+v (1~ 1v(1,-2) with dy;=d,,=0. The normalization condition contained in
Xv(1,-1)], Eq. (2.133 requires that;; = §;; to first order andsince s
is of second order, as shown in Appendix e have the
generating, along with the corresponding additionItg, first-order approximatiom;,=d,;=A5[61,(1,—1)] 1.
corrections of ordek* to the phases;. Inclusion of fourth-

order contributions td’;; arising from combinations of ik IIl. DISTORTED-WAVE SCATTERING FORMALISM
and 1t would be required for consistency. Modifications of ] ] ] .
'y, andT,, enter only in sixth order. We set up a scattering formalism in terms of standing

The model may be extended to include more than twgvaves distorted by the long-range potential The reaction
degenerate channels, as would be required by the coupling §#atrix accounting for scattering by the short-range compo-
partial waves generated byRy(cos6) angular dependence Nent of the potential in the presence f is denoted as
contained in the original effective potentigd]. In a three-  Kjs;iq, Wherej andi are final and initial target indices, re-
channel approximation, withs=1,+2, new types of cou- SPectively. Since the short-range interaction can cause tran-
plings appear that involve all three channels. The leadingitions between modes, we must distinguish between final

contribution toms,, for example, would be of second order, and initial mode indicess andq, respectively. The scattering
taking the form wave function in the region>r has the form

aISAsv(l,O)g(Z’ 1)A3U(2, oG, 2)\]7735_2+1/2(Z), Uis;iq:fji,s5sq_2, gii’,sKi’s:iQ’ (3.9
1
where we distinguish between paramet&gsand A corre-
sponding to thg1, 2) and (2, 3 channel couplings, respec- Where the functiond and g now carry the mode indices
tively. The leading contribution tB 3, is only of fourth order. ~ previously omitted. To simplify notation target and mode in-
With the asymptotic solutions determined to a certain or-dices will often be combined in a single index, for example,
der their behavior at great distances may be obtained by ré&sp={i,q} or o={j,s}, with f;; ;954 written asf,,. Then
placing the Bessel and Neumann functions by their largeEg. (3.1) will be understood to be equivalent to
argument limits. We represent the standing-wave solutions
that are found in this way as U‘”’:f"”_Z GopKyrpr 110, 3.2
f;i~cji sin(kr —1;m/2+ 8;) + d;; cogkr —1;m/2+ &), P
(2.113  where the sum runs over target and mode indices. The matrix
. notationU =f —gK allows even further notational simplifi-
9ji ~ — Cji CogKr—Ijm/2+ &) + djj sin(kr —jm/2+ &5). cation. The solution in the regian>r, may, alternatively, be
(2.11b expressed in terms of traveling waves'is-1 —OS. From
the relationsf=(0O—1)/2i andg=—(O+1)/2 we find the
correspondenceS=(1+iK)(1—iK) ! and, with S=1
BT=(c+id)e'’%, (2.12 +2iT, we have T=K(1—iK) 1. Then, defining ¥°
=WVB, we find, using the unitarity property of the matix
where the superscrifit denotes transpose. A proof tHatis  that at great distances the functid? is expressed in terms
unitary (after a normalization condition is imposeid given  of undistorted traveling waves as
in Appendix C. The unitarity property implies the relations

It proves convenient to define the matrix

PO =exfd —i(kr—1;m/2)]8j; dsq

cc'™+dd™=1, c'c+d"d=1, (2.133 s
—exdi(kr=1;m/2)1S.iq, (3.3
c'd=d’c, dc'=cd'. (2.130b
with
Traveling-wave solutions are defined s —g—if and O
=—g+if with asymptotic forms s°=BTSB. (3.4
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As shown belowK is both real and symmetric. It follows K, ,=K,, is verified. Combining this result with Eq$3.5)
thatSis unitary, a property passed on$8, since(as shown and(3.6) we obtain the useful identity
in Appendix Q B is a unitary matrix.
To begin the derivation of a variational identity for tKe - 2 o

) . ; : Kyo=Kgoi— 2> > | dru
matrix we introduce a trial wave functidd, , regular at the P kT T o
origin and passing smoothly into the forh=f—gK; for (3.9
r=ry, with K, a trial K matrix; we also introduce the nota-
tion Ljs.ijq=L;i dsq- Now consider the expression

p,(,Lp,(,,U(,/pyt .

Replacement of the exact solution on the right-hand side by
a trial function provides a variational expression for the re-
action matrix(as elaborated on in Appendix)D

s;ig

r
R”pzz 2 f Odr[Up,(,Lp/(,/U(,lp,t To prepare for an analysis of threshold behavior_it is con-
plow 70 venient to define a reduced wave functiob g,
_(Lo’p’UP'U)UU’pt]v (35) :Uisiiq/kms+l andK matrix
. . . K. . =k~ stk o= (7ig+1/2)
to be evaluated in two ways; equating the results gives the Kjsiig=K™ " 7is7 77K jg;iqk 7™ 74, 3.9

desired identity. First, since satisfies the wave equation the 11,4, Eq.(3.9) implies that
second term in the integrand vanishes. Alternatively, integra-

tion by parts, using the boundary condition at the origin, — - o — —
results in the form Kvp:Kop,t_Zz, 2 0 drU,olyeUorpt-
p (o
3.1

1 d d (3.19

Rap=§2 arYere|YUopt=Ypral grUnrnt | We now consider a trial function defined fall r as

p r=rg
EW[U,Ut]O.p. (36) Uo’p,t:(bap_z g(rp/Kp’p,t! (311)
P

As a first step in evaluating this Wronskian-like quantity where the trial functionsp and ¢ are regular at the origin
using the boundary conditions et ry we setU,=U so that and, ag approaches, from below, merge continuously into
R=0 andW[U,U],,=0. Inserting the form3.2) in this last e forms =1 and £=g. (As previously defined,f;;
relation we isolate the terms independentkofand require :k—(ms+1)f_i and g;; =k7sg;; vary smoothly with energy
that they vanish independently of the remaining terms. Theyaa threshold, with well-defined zero-energy limito ar-
expression obtained this way W[ f,f],,=0. In the next  yjye at a version of the variational approximation from which
step we will show thatV[g,g],,, vanishes as well. To do this  threshold properties may be deduced most readily we first
we first verify thatW[g,9],,, defined atr=ro, is un- introduce some simplifying notation. We define the matrix
changed when evaluated for anyr,. To accomplish this
we return to an expression similar to that in E§.5), but _ "o
with U and U, each replaced by and with the integration X”P_Z, ; jo dr&palproréorp (312
running fromrg to r. Sinceg satisfies the wave equation in ’
this region, the integral vanishes and integration by parthe functionw,, == L,, ¢, ,, and the scalar product
leads to the stated result thaf g,g],, is independent of o
forr>r,. We may then evaluate this quantity by substituting (a, ,bP)EE f dra, b,,. (3.13
the asymptotic form shown in E2.119. Using the first of p’ 70
Egs.(2.13, the state_d resultvy[g,g](,pzo, follq\(vs. _[The As shown in Appendix D, a variational determination of the
same procedure provides an independent verification of th%e, | ) i lead iational imatio
relation W[f,f],,=0] A similar argument shows that rial reaction matrix e.a s to a variational approximatkon
W[g,f],,, defined forr=r,, may be evaluated for any  for the reducedk matrix of the form
>rg; in particular we may let —o and do the calculation o
using the asymptotic forms shown in Eq8.11). Then, with Kopo=—2
the aid of the second of Eq&.133, we find that

d d
(agi’j,s>fi’i,s_gi’j,s(afi’i,s) ‘
r:ro
It is readily verified that such an approximation satisfies the
— 55” 5o (3.7) required symmetry propertghereby guaranteeing unitarjty

2 71ed The energy dependence near threshold may be determined

from that of the trial functions, which are matched at the

With these results in hand the surface terms in &)  boundary to functions analytic in the neighborhood of zero
may be evaluated, yielding the relation KPM U, U], ,= energy. With boundary-condition constraints satisfied, any
— Ko+ Kgpt- Now settingU;=U the symmetry condition residual energy dependence of the trial functions may be

(6o Wp) =2 2 (Wy )
P o

x(xil)p’,a"(go" va)}' (314)

1
WG, =5 2

it
I
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ignored following the standard effective-range approxima- 3

tion [16] that treats the scattering energy term in the wave (T%)ji= 8s8ji+ m(l— dji) +
equation as negligible compared to the potential energy term 22

in the regionr<r, of strong interaction. A trial function

chosen in this manner introduces an error of olkferlead- We now consider the contribution from the second term in

ing to an error in the variational approximati#h, of order  EQ. (4.1), using the expression in E¢4.3) for the T matrix.
k* Thus the first two terms in an expansion@‘ in powers In its conventional form, the effective-range approximation

of the energy will provide variational approximations for the 'S
coefficients, the scattering-length and effective-range matri-
ces. In fact, the diagonal elements of the scattering-length
matrix satisfy a minimum prmmpl{al?]: A ZET0-ENEIgy reso- ith the scattering lengtA and effective rang®, appearing
nance corresponds to a divergence in the determinant of the ; ; ? -

) , e S as constant matrices. Terms of or#@will be ignored in our
scattering-length matrix. The variational principle for the S . . 2 .

. ; , .~ approximation forT, in which case th&~ term in Eq.(4.8
scattering length, closely related to the Rayleigh-Ritz prin- ) ; . .

may be omitted and we need only consider scattering with

ciple for bound states, allows for a direct connection betweer|1 0, 1,=2. Further, the Heitler equation foF reduces to

Lhoeu:]edsgpaazgce condition and the appearance of a zero-ener% second iteratiom=K +iK 2. Now from Eq.(3.9) along
' with the threshold behavior (2/7) 5s= y<k?, with y a con-

stant (see Appendix A we have, to the order considered
IV. THRESHOLD BEHAVIOR here,

A, )2
6l,(,—1)) -
(@.

K 1=—A"1+3Rok?, 4.8

With the replacemenS=1+2iT in Eq. (3.4 we have = K+ (vt 3
0=1+2iTO with Kls;lq [K+ (s 7q)k Ink]A, 4.9
N whereA, 14 has been written a& for brevity [18]. We note,

T"=T"+B'TB. (4.1) finally, that the matrixB appearing in Eq(4.1) may be rep-

. ) ) resented, to the required accuracy,ng 0 Ti(A5/12)(1

The first term, directly reflecting the presence of the long-_ 5;;)- The threshold behavior of tHE® matrix obtained in

range potential, is given by this way may be represented as
. (B'B—1) . [Ag)2 5 -
= (42 Tis1q=|Osti 15| |9sam [k+ (rs+ vk InkJA+ik?AZ,
(4.10a9
while T may be expressed in terms of the reduethatrix
as o 0 Az .
TZS:lq:qu;Zs:E[ésq_l'|(_kA)]v (4-1ob
T= kr]+1/2(i—l_ ik27}+l)_1k7]+1/2. (43)
AZ
0 _ . 3
From the definition2.12) of B we have T2s.2q=| Osti E) Osq- (4.100
B™B=(c+id)e'%e'%(cT+id"). (4.4  This form shows the required symmetry and correctly repro-

duces the threshold law obtained some time ago for the case
Combining this form with Eq(4.2), and making use of the of single-channel scattering with a pure “long-range po-
properties shown in Eq$2.13, we may put the expression tential[2]. As a final check, we may verify that, to the order

for T' in the form considered, unitarity is satisfied. One way to accomplish this
_ is to introduce the real symmetric reaction mati® with
. o[ e o elements
T-=(c+id) > (c'+id")+idd'+cd'. (4.5
Kfs.1q= 8s8sq— [K+ (vs+ ¥ k¥ INKJA,  (4.113
This is exact, but written in a way that leads very directly to A
) C . 3
a simple approximation correct to second order, that is, Kgs;lq: Kgq;Zs:E Ssq» (4.119
Tt=45,+idd"+cd'. (4.6) .
K2s:2q= s9sq- (4.110

Here we have recognized that the phase shifs of second
order (as shown in Appendix Aso that the matrices+id
and its transpose may each be replaced by unity. Then, wi
the last two terms on the right in E¢4.6) evaluated using
the approximations given just below Ed2.15, we have, TO —KO +i2 K® 1O (4.12
with corrections of ordek?® ignored, L

With this choice of reaction matrix the Heitler equation in
iihe form
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a= , (Ala)

1 1
|1+§ |2+§

1
|2+ ~ Fll] (Alb)

2

is satisfied and this guarantees tfdtis unitary, to the order matrix of coefficients to have vanishing determinant. This
of approximation maintained here. Fge>0 the second term  corresponds to the conditiams?+ b 85+ c=0, with
on the right-hand side of Ed4.1) is of the order ofk® or 5
higher, in which case long-range effects, generating terms of 4
the order ofk andk? appearing in the expression fat in T
Eq. (4.5, are dominant. The Wigner threshold Idd] is
inapplicable here. 1

The above discussion must be modified for resonant scat- b=— P I+ E) Paot
tering. Considering the zero-energy limit in E@.3), for
example, with deK=«, the T matrix, rather than vanishing, c=I11'5— T 5. (Alc)
takes on its maximum value allowed by unitarity. In the ) ) ) _
variational approximation of E¢(3.14), this corresponds to and with thel';; given in Egs.(2.9). The solution shows the
the condition deX=0, signaling the entrance of a bound threshold behavios,~k? referred to in the text. In the limit
state at threshold. A,—0 the two solutions are seen to correspond to the un-
coupled relations

V. SUMMARY [~ (2/m) 8+ 122~ (I, + 1/2?~T;;=0, j=12,
The threshold behavior of transition amplitudes for scat- (A2)

tering interactions of short range has a universal charact%th a,=0, j#s. Following the convention stated in the
[1], largely independent of the form of the potentials. Inter'text, tHSe mc’)de ir;dezs has been identified in EGA2) with

actions of long range, however, must be accounted for in th e channel index in the limis,—0 considered here. The

asymptotic solutions appearing in the scattering formalism in.__.". . .
orgi/erpto determine thfgsholdgbehavior. With gnalytic Solu_posmve root of the quadratic equation 6y corresponds to

s=2 and the negative root t&=1.

tions _unavailable in general, a number of a_\ppr_oximation With the phases determined in this approximation the ra-
techniques have been developed. Since application of sta?

dard perturbation theory can be cumbersome in going b 105 azS/als=rS_ may be Ca"?‘.”a“;‘d anzdihe coefﬂqents fixed
yond lowest orders, alternative procedures can be useful. Tﬁ%y the normalization conditiomy+az,=1 and sign con-
modified perturbation theory of Ref12] has the attractive V€NtON
feature that the calculational procedure is algebraic in nature, 1

is applicable to a variety of scattering systems, and is readily A= , aZS:L_ (A3)
extended beyond the lowest orders with the aid of diagram Vi+rs Vi+rs

summation methodsl 3]. The method has been adopted here

to treat a coupled-channel problem representing the scatteYVe setr;=tane,, r,=cote, and verify, using the properties
ing of an electron from a neutral atom with a permanentd:+ d,=—b/a, 6,8,=c/a, thatrr,=—1, from which we
quadrupole moment. The detailed form of the asymptoticconclude thak,=—e,=¢. We then have the result
solutions, including their zero-energy limits, have been
worked out in second order for a simplified two-channel ver-
sion of the system. Possible extensions of the model, allow-
ing for additional long-range potentials as well as multichan- . ) )
nel generalizations, were indicated. A scattering formalism! "€ coefficientsa;s are energy-independent in second order;
was outlined, in which these asymptotic solutions are incor@" explicit evaluation gives

porated as constituents of trial functions in a variational con- 1 b

struction that preserves the unitarity of the scattering matrix. A cot2e= _( — __rll) (21,+1)(21,—1). (A5)
The variational principle provides the basis for an effective- T\ a

range approximation, differing from the standard form in that

it contains terms reflecting the presence of the long-range APPENDIX B: ZERO-ENERGY LIMIT

potentials. A procedure for calculating such terms directly

from a knowledge of the asymptotic solutions was provided, '€ expansion coefficients appearing in E25 of the
and was illustrated using the explicit form of the secong-text are evaluated in second order and listed below using the

notation introduced in Eqg2.7) and (2.8). As a first entry
we have

sine
cose

cose
—sine

aip
az

ai
as

= . (A4)

order solutions derived here.

ACKNOWLEDGMENT b =Aw(1,0[v(1,D)+v(1,-1)]g(2-2), (BI)
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Foundation under Grant No. PHY-0070525. with the first and second term represented by Figa). and
1(b), respectively. These diagrams are quite helpful in keep-

ing track of the contributions, as is their purely formal inter-

pretation in the language of “states” and “propagators.” The
An explicit solution of the coupled homogeneous Eqgs.first of these diagrams is interpreted as a sequence consisting

(2.6), correct to second order, is obtained by requiring theof a transition from a “state(1,0) to (1,1), then a transition

APPENDIX A: PREDIAGONALIZATION
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anr @ | i |
I |
.0 (2,-2) (1,0) — (2,-2)

a1 :— L 23 I'— L amn L - (2,3)
| |
| | | | a2 O@-4)
(@) (b) (c)

FIG. 1. The second-order expansion coeffi-
cients given in Eqs(B1) through(B4) are repre-
sented by diagram&) through(g). Interactions

' i | I I | | I and propagators may be read off from the posi-
a.2) ! | | I | I tions of the filled and open circles in the diagrams

' | I I I | i I using rules given in the text.
@ ‘ r I I | I

| I [ [ [ I | |
.0 I I ool [ 1,0) [

I | f | | | | |

! I | | | | | |

[ [ [ O | r 2,-3)

f ! | | ' I | |

o H 1,2 I
() e () ° @)

from (1,1 to (2,—2), followed by propagation in staté?, ab,?=Dw(2,0v(2,-1)g(2,—2)
—2). An interaction leading to a transition from stdiep) is
represented by a filled circle in the diagram, while propaga- +A30(2,009(1,D)A50(1,1)9(2,-2). (B8)

tion in state(j, p) is represented by a larger open circle. In .

general, the sequence of transitions representing the coeffi- With these results in hand the asymptotic solutidfs

cienta}ip) begins with the reference state@) and ends with = k*(”is*l)fji andg;; =k”sg;; may be constructed in second

propagation in statéj, p). Figure Ic) corresponds to the order and their low-energy behavior determined by replacing

expression the Bessel and Neumann functions, appearing in the expan-
sions of these functions, by their small-argument approxima-

ay Y=Aw(1,00(1,-1)g(2,-4), (B2)  tions. Here we list the zero-energy limit of these functions.

For notational convenience in this listing we writlg;

= Cisais[<2| i+ 1) I ]_lfji and ajl =— Cisais(2| i 1) I g=JS

and continue to use the notation of Eg.8) for the propa-

a@=D1v(1,0v(1,)9(1,2+Az(1,09(2,— 1) gator with the understanding that fer=0, ;s reduces td;

since the phasé, vanishes in that limit. We find that

while Figs. 1d) and Xe) correspond to the two terms in the
expression

XAzv(2,—1)g(1,2). (B3) ,
fa=r1" 1+ g(1,-2)+ B39(2,—3)g(1,— 2)]r'1 7%,
The diagrams in Figs.(1) and Xg) correspond to the two " LBa" ol )+ B3l o )] (B9)
terms in appearing in the coefficient

a{12=Dw(1,00(1,- 1)g(1,-2) + Az (1,0 fa=Bag(2-3)ri+ BPg(2- )™, (B10

Xg(2,—3)Azv(2,-3)9(1,—2). (B4) f1=Bs0(1,Dr'2, (B11)

The remaining second-order coefficients are listed as fol- 2 _
owse ° ! fam i 4 168 (2= 2 + a0z 20
' B12

EAw@OWEITEIIMA BY g0+ sl De(Lal

ay=Aw(2,00(2,09(1,4), (B6) (B13)
a2 =D,w(2,0v(2,)9(2,2 G21=B3g(2,— 1r ~(1+D), (B14)
+A30(2,00(1,3A30(1,3)9(2,2), (B7) G10= B3g(1,3r (21, (B15)
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_ _ 2 _ P S — . ;
G212+ [ B 9(2.2 + B39(1,39(2. 2 Ir “2+zz' ) Xjie'?r=Cj +idj; = (cj +idj)e'>=Bj;  (CH
B16
. ) ) ) _The unitarity of B follows directly from the fact thak is
Extensions of this procedure provide higher-order terms iprthogonal and; is real.

the asymptotic expansion in powers roas well as correc-
- 2 -
tions of orderk® and higher. APPENDIX D: VARIATIONAL PRINCIPLE

APPENDIX C: UNITARITY As discussed in the text, the basis for the modified

o effective-range expansion is provided by the version of the
~ We prove here that the matr whose transpose is given yariational principle shown in Eq(3.14). Its derivation,
in Eq. (2.12), is unitary. The matrices andd appear in Egs.  starting with the identity(3.10, is sketched here. A trial
(2.1). These equations, providing the asymptotic forms offynction is chosen of the form shown in E€.11), and a

the basis functionsandg, may be expressed equivalently as yariational approximation is obtained with the replacement

of the exact solution by a trial function of the same form, but

with K, the trial reaction matrix, replaced b, , with the
two different matrices representing variational parameters.
One of the terms encountered after these replacements has

obtained by expanding the trigonometric functions and redethe form

fining the coefficients according to

f;i~Cji sin(kr—1;m/2) +d;; cogkr—1;m/2), (Cla

gji~—C; cogkr—1;m/2) +d;; sin(kr—I;m/2), (C1b

To — —
d ’ L ’or ’ K = , L K ,
Cji =c;ji cosds—d;; sind, (C29 ; ; zx: fo " Dorobory EpnKn = (o [LEK,)
(D1)

dii=ci sind.+d. coss.. C2b
e s s (€29 where the abbreviated notation defined in 313 has been

A new set of basis functions is obtained by definify —adopted to simplify the writing. With the aid of an

=fc ! andg-=gc !. These functions are seen to have theintegration-by-parts procedure of the type employed in the
asymptotic forms derivation of the variational identity we establish the relation

fi~sin(kr—1;m/2) 8 + cogkr = |;m/2)K};,  (C3a Kopit2(hg [LEK],)=2([L o, ,[EK(],). (D2)

g~ — cogkr —1;m/2) 8 +sin(kr = |;w/2)K5;,  (C3b)  Then, with the definitiow,,,=3 /L, ¢, introduced in
o the text, the variational approximation takes the form
with K-=dc 1. The symmetry property of the matri¢", a - o
key element in the unitarity proof, is verified using the Kopo=—2{—([Lo],.[EK{])) +(s.W,)

Wronskian relation _ _ _
- ([SKT]O' ![L¢]p) + ([gKT]O' ![LgKt]p)}

(C4) (D3)

The requirement that this expression be stationary with re-

satisfied for allr>r,. The proof runs parallel to the deriva- spect to variations irKt leads to the condition
tion, given below Eq(3.6), of an identical relation satisfied

i"j el L i

ar o erae

>

it
I

df}, df},
:O,

by the matrix functionf. The argument is modified here by _(Worf)\)—}_([éif]a'1[L§])\)=Ov (D4)
the replacement of and g with the alternative set§- and
g-, respectively. The symmetry reIatidﬁJﬁ = Kh follows di-  which may be used to determitie, as

rectly upon substitution of the asymptotic for(@3a into
Eqg. (C4). We may conclude that an orthogonal matxiex- = 1
ists such thak'x=x tans", with tans" diagonal. K,,p,f—z)\: (W, E) (X (D)

We now observe that the relationg = x;; coséiL andd;;
=x;; sind; guarantee that the solutions);; cossf andf; ~ WhereX,,=(&,.[L£],), as in Eq(3.12. With this form for
have the same asymptotic forms and are therefore seen to be substituted into EquD3) we observe that the first and last
identical. The equalitqux)ji cosé}zgji follows in a simi-  terms on the right-hand side of that equation cancel, leaving

lar way. It then follows that the form of the variational principle shown in E®.14.
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