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Electron scattering by nonspherically symmetric atoms: Zero-energy limit

Leonard Rosenberg
Department of Physics, New York University, New York, New York 10003

~Received 8 March 2001; published 13 September 2001!

A modified perturbation theory, previously introduced for the construction of asymptotic states accounting
for a general class of long-range angle-dependent multipole potentials is developed in further detail. The
threshold behavior of these states is presented in explicit form and these results are used, with the aid of a
modified effective-range formulation, to determine the threshold energy dependence of the multichannel tran-
sition matrix. Unitarity properties are established formally and verified in the low-energy limit. A variational
procedure for determining the parameters appearing in the modified effective-range expansion is described.
The same procedure accounts for the presence of zero-energy bound states leading to resonant behavior that
alters the threshold energy dependence.
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I. INTRODUCTION

Interest in the threshold properties of transition amp
tudes, starting with Wigner’s early work in the context
nuclear reaction theory@1#, and then extended in modifie
form to account for long-range atomic interactions@2#, has
persisted and intensified in parallel with experimental effo
involving collisions at the lowest energies@3#. Stimulated by
these efforts, particular attention has been paid to syst
with angle-dependent effective scattering potentials hav
long-range, inverse-cube and higher-order multipole com
nents@4,5#. A much earlier study, of the amplitude for low
energy electron scattering by an atom with a perman
quadrupole moment@6#, was based on a generalization of t
asymptotic expansion approach of Levy and Keller@7#. In a
later effective-range analysis of low-energy electron scat
ing by nonpolar molecules@8#, the problem was formulated
in terms of coupled radial equations and the threshold beh
ior of partial-wave amplitudes for such systems was stud
Methods, based on asymptotic expansions, for solving clo
coupling radial equations in the presence of long-range m
tipole potentials, proposed some time ago@9,10#, are widely
used in accurateR-matrix calculations@11#.

A novel approximation procedure for constructing suf
ciently accurate asymptotic solutions for problems involvi
a superposition of power-law potentials was introduced
Cavagnero@12#. The method, a modified form of perturba
tion theory, is distinguished by the introduction of shifte
orbital quantum numbers and, being algebraic, has the at
tive feature that higher-order corrections, beyond the B
approximation, are obtained very easily. With this attract
feature as motivation, an extension of the method has b
developed@13#, in terms of a specific model based on tw
coupled partial waves, with orbital quantum numbers diff
ing by two units and with the channels having identic
threshold energies. Summation techniques based on th
troduction of level shifts~in conjunction with the angular
momentum renormalization central to the method! allow, in
principle, for inclusion of arbitrarily high orders of perturba
tion theory. Our purpose here is to extend the analysis of R
@13# in a number of ways. In Sec. II, after a review of th
formalism, it is shown how a wider class of power-law p
tentials, as well as the coupling of more than two degene
1050-2947/2001/64~4!/042711~9!/$20.00 64 0427
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channels, may be accommodated. The asymptotic solut
are calculated to second order in the modified perturba
expansion and their zero-energy limits are displayed. Si
the nonanalytic energy-dependent factors associated with
threshold anomaly can be factored out, solutions obtai
this way provide the basis for a modified effective-range
pansion. The scattering formalism is developed in Sec.
This material completes and corrects a treatment cove
similar ground in Sec. III of Ref.@13# and is meant to replace
it @14#. The modified effective-range expansion is deriv
from a variational principle that provides the basis for det
mining the parameters appearing in the expansion. As sh
in Sec. IV, the leading terms in the modified effective-ran
expansion describe the threshold behavior of the scatte
amplitude that is associated directly with the long-range
tentials of the model. The existence of a zero-energy bo
state induces resonant behavior that modifies the energy
pendence at threshold. For clarity of presentation a num
of calculational details are placed in four appendixes.

II. DISTORTED WAVES

We consider a model scattering system generated by
duction of the Schro¨dinger equation to two coupled radia
equations of the matrix formLc50, where, in atomic units,

L ji 52
1

2 F d2

dr2 1k22 l i~ l i11!/r 2Gd j i 1Vji , i , j 51,2,

~2.1!

with l 25 l 112. The energy, the same for each channel,
k2/2. In the regionr .r 0 the real, symmetric potential matri
V takes on the power-law form

VL52
1

2 S r 24b4
~1!2

r 23b31r 24b48
2

r 23b31r 24b48
2

r 24b4
~2!2 D . ~2.2!

Formal extensions of the model can be made without d
culty, as demonstrated below.

Two linearly independent approximate solutions of t
wave equation in the regionr .r 0 , denoted here asf j i and
gji , may be found in the form of a superposition of Bess
©2001 The American Physical Society11-1
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LEONARD ROSENBERG PHYSICAL REVIEW A64 042711
functions of the first and second kind, respectively. Start
with the former, we definez5kr and write

f j i ~z!5Ci~pz/2!1/2mji ~z!, ~2.3!

whereCi is a normalization constant to be fixed later on. T
wave equation then takes the form

Fz2
d2

dz2 1z
d

dz
1z22S l j1

1

2D 2Gmji ~z!

52S D3

z
1

D4

z2 D(
j 8

~12d j 8 j !mj 8 i~z!2
D j

z2 mji ~z!,

~2.4!

where we have introduced the dimensionless parameterD3

5b3k, D45(b48k)2, andD j5(b4
( j )k)2. We look for a solu-

tion generated by iteration based on a first approxima
corresponding to a particular linear combination of degen
ate states, labeled by the mode indexs51, 2, with ampli-
tudesa1s and a2s to be determined, as shown below. T
expansion is taken to be of the form

mji ~z!5aisJh is11/2~z!d j i 1 (
pÞ0

aisa j i
~p!Jh js1p11/2~z!,

~2.5!

whereh js5 l j2(2/p)ds . The phase shiftds plays the role of
an eigenvalue to be chosen in a manner that renders co
tent the coupled equations satisfied by the 232 matrix ajs .
@The combination of indices$i,s% appearing in the first term
in the expansion~2.5!, with i denoting one of the target state
in modes, will serve to label an entrance or exit channel
the distorted-wave scattering formalism developed in S
III. Since the mode remains fixed in the discussion in t
section, the indexs is omitted in labeling mode-depende
quantities in Eq.~2.3! and elsewhere when the meaning
clear.#

The coefficientsa j i
(p) may be determined at any stage

the iteration procedure by inserting a truncated version of
expansion~2.5! into Eq. ~2.4! and making use of the Bess
function properties

z21Jh11/2~z!5~2h11!21@Jh13/2~z!1Jh21/2~z!#

and

Fz2
d2

dz2 1z
d

dz
1z22S l j1

1

2D 2GJh11/2~z!

5@~h11/2!22~ l j11/2!2#Jh11/2~z!.

One then requires that the coefficient of each funct
Jh1p11/2 must vanish. Setting the coefficient ofJh11/2 equal
to zero we arrive at coupled equations of the form

@~h js11/2!22~ l j11/2!2#ajs1 (
j 851

2

G j j 8aj 8s50, j 51,2.

~2.6!
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The parameterD3 will be treated as a quantity of first orde
with D4 andD j taken to be of second order. While a syste
atic ~nonlinear! procedure is available for constructing sol
tions to arbitrarily high order@13#, we confine the presen
treatment to second order~allowing us to ignore the depen
dence of theG matrix on the phaseds!. To simplify notation
we define an ‘‘interaction’’

v~ j ,p!5@2~h js1p!11#21, ~2.7!

and ‘‘propagator’’

g~ j ,p!5@~ l j11/2!22~h js1p11/2!2#21. ~2.8!

In applications of the modified perturbation theory, such
those summarized below, a diagrammatic representatio
interactions and propagators, set up previously@13# and re-
viewed in Appendix B in the notation of Eqs.~2.7! and~2.8!,
is very helpful. Consider first an application to the matrixG.
There is no contribution toG in first order. In second orde
we find

G215D4v~1,0!v~1,1! G125D4v~2,0!v~2,21!,
~2.9a!

G115D3
2@v~1,0!g~2,21!v~2,21!1v~1,0!g~2,23!v~2,

23!#1D1@v~1,0!v~1,1!1v~1,0!v~1,21!#, ~2.9b!

G225D3
2@v~2,0!g~1,1!v~1,1!1v~2,0!g~1,3!v~2,3!#

1D2@v~2,0!v~2,1!1v~2,0!v~2,21!#. ~2.9c!

The off-diagonal elements are seen to vanish forD450, i.e.,
in the absence of the off-diagonal inverse-fourth-power
tential. This remains true in higher orders. In that case E
~2.6! are uncoupled, the distinction between target and m
indices vanishes, and the formulation simplifies to some
tent @15#. An attempt to construct the solution in the for
~2.5! for D4Þ0 without imposing the eigenvalue condition
shown in Eq.~2.6! fails due to the appearance of singula
ties. @It will be recognized that the prediagonalization proc
dure involved in the solution of Eq.~2.6!, with G serving as
an effective-potential matrix, bears some analogy to that
countered in standard degenerate perturbation theory.#

With the above approximation to theG matrix in hand,
Eqs.~2.6! may be solved for the coefficientsajs after being
made consistent by suitable choice of phasesd1 and d2 ;
results are given in Appendix A. The expansion coefficie
in first order are determined to be

a12
~3!5D3v~2,0!g~1,3!, a12

~1!5D3v~2,0!g~1,1!,

a21
~21!5D3v~1,0!g~2,21!, a21

~23!5D3v~1,0!g~2,23!.
~2.10!

Coefficients obtained in second order are recorded in App
dix B. To all orders, the functionsf̄ j i 5k2(h is11)f j i and ḡ j i
5kh isgji vary smoothly with energy and have well-define
zero-energy limits; the limiting values are listed, to seco
1-2
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ELECTRON SCATTERING BY NONSPHERICALLY . . . PHYSICAL REVIEW A64 042711
order, in Appendix B. These results form the basis of o
later discussion of the threshold behavior of the scatte
matrix.

Extensions of these procedures to account for additio
power-law potentials and coupling of more than two cha
nels are straightforward. Thus we may assume that the lo
range potential includes a diagonal inverse-sixth-power c

ponent that we write as2b6
( j )4

/r 6, j 51, 2, requiring the
addition of a term2(D j8/z

4)mji to the right-hand side of Eq
~2.4!, with D j85(b6

( j )k)4. Then G11, for example, would
contain the additional contribution

D18v~1,0!@v~1,1!v~1,2!v~1,1!1v~1,21!v~1,22!

3v~1,21!#,

generating, along with the corresponding addition toG22,
corrections of orderk4 to the phasesds . Inclusion of fourth-
order contributions toG j j arising from combinations of 1/r 3

and 1/r 4 would be required for consistency. Modifications
G12 andG21 enter only in sixth order.

The model may be extended to include more than t
degenerate channels, as would be required by the couplin
partial waves generated by aP2(cosu) angular dependenc
contained in the original effective potential@6#. In a three-
channel approximation, withl 35 l 212, new types of cou-
plings appear that involve all three channels. The lead
contribution tom31, for example, would be of second orde
taking the form

a1sD3v~1,0!g~2,21!D38v~2,21!g~3,22!Jh3s2211/2~z!,

where we distinguish between parametersD3 andD38 corre-
sponding to the~1, 2! and ~2, 3! channel couplings, respec
tively. The leading contribution toG31 is only of fourth order.

With the asymptotic solutions determined to a certain
der their behavior at great distances may be obtained by
placing the Bessel and Neumann functions by their lar
argument limits. We represent the standing-wave soluti
that are found in this way as

f j i ;cji sin~kr2 l jp/21ds!1dji cos~kr2 l jp/21ds!,
~2.11a!

gji ;2cji cos~kr2 l jp/21ds!1dji sin~kr2 l jp/21ds!.
~2.11b!

It proves convenient to define the matrix

BT5~c1 id !eids, ~2.12!

where the superscriptT denotes transpose. A proof thatB is
unitary ~after a normalization condition is imposed! is given
in Appendix C. The unitarity property implies the relation

ccT1ddT51, cTc1dTd51, ~2.13a!

cTd5dTc, dcT5cdT. ~2.13b!

Traveling-wave solutions are defined asI 52g2 i f and O
52g1 i f with asymptotic forms
04271
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I;exp@2 i ~kr2 l jp/2!#~B†! j i ,

O;exp@ i ~kr2 l jp/2!#~BT! j i . ~2.14!

The first-order approximations for the expansion coefficie
are determined as

cji 5Cisaisd j i , ~2.15a!

d215C1sa1sD3v~1,0!@g~2,21!2g~2,23!#, ~2.15b!

d125C2sa2sD3v~2,0!@g~1,3!2g~1,1!#, ~2.15c!

with d115d2250. The normalization condition contained i
Eq. ~2.13a! requires thatcji 5d j i to first order and~sinceds
is of second order, as shown in Appendix A! we have the
first-order approximationd125d215D3@6l 2( l 221)#21.

III. DISTORTED-WAVE SCATTERING FORMALISM

We set up a scattering formalism in terms of stand
waves distorted by the long-range potentialVL. The reaction
matrix accounting for scattering by the short-range com
nent of the potential in the presence ofVL is denoted as
K js; iq , where j and i are final and initial target indices, re
spectively. Since the short-range interaction can cause t
sitions between modes, we must distinguish between fi
and initial mode indices,s andq, respectively. The scatterin
wave function in the regionr .r 0 has the form

U js; iq5 f j i ,sdsq2(
i 8

gji 8,sKi 8s; iq , ~3.1!

where the functionsf and g now carry the mode indices
previously omitted. To simplify notation target and mode i
dices will often be combined in a single index, for examp
asr5$ i ,q% or s5$ j ,s%, with f j i ,sdsq written asf sr . Then
Eq. ~3.1! will be understood to be equivalent to

Usr5 f sr2(
r8

gsr8Kr8r , r .r 0 , ~3.2!

where the sum runs over target and mode indices. The ma
notationU5 f 2gK allows even further notational simplifi
cation. The solution in the regionr .r 0 may, alternatively, be
expressed in terms of traveling waves asC5I 2OS. From
the relationsf 5(O2I )/2i and g52(O1I )/2 we find the
correspondenceS5(11 iK )(12 iK )21 and, with S51
12iT, we have T5K(12 iK )21. Then, defining C0

5CB, we find, using the unitarity property of the matrixB,
that at great distances the functionC0 is expressed in terms
of undistorted traveling waves as

C js; iq
0 5exp@2 i ~kr2 l jp/2!#d j i dsq

2exp@ i ~kr2 l jp/2!#Sjs; iq
0 , ~3.3!

with

S05BTSB. ~3.4!
1-3
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LEONARD ROSENBERG PHYSICAL REVIEW A64 042711
As shown below,K is both real and symmetric. It follows
thatS is unitary, a property passed on toS0, since~as shown
in Appendix C! B is a unitary matrix.

To begin the derivation of a variational identity for theK
matrix we introduce a trial wave functionUt , regular at the
origin and passing smoothly into the formUt5 f 2gKt for
r>r 0 , with Kt a trial K matrix; we also introduce the nota
tion L js; iq[L ji dsq . Now consider the expression

Rsr5(
r8

(
v8

E
0

r 0
dr@Ur8sLr8s8Us8r,t

2~Ls8r8Ur8s!Us8r,t#, ~3.5!

to be evaluated in two ways; equating the results gives
desired identity. First, sinceU satisfies the wave equation th
second term in the integrand vanishes. Alternatively, integ
tion by parts, using the boundary condition at the orig
results in the form

Rsr5
1

2 (
r8

F S d

dr
Ur8sDUr8r,t2Ur8sS d

dr
Ur8r,tD G

ur 5r 0

[W@U,Ut#sr . ~3.6!

As a first step in evaluating this Wronskian-like quant
using the boundary conditions atr 5r 0 we setUt5U so that
R50 andW@U,U#sr50. Inserting the form~3.2! in this last
relation we isolate the terms independent ofK and require
that they vanish independently of the remaining terms. T
expression obtained this way isW@ f , f #sr50. In the next
step we will show thatW@g,g#sr vanishes as well. To do thi
we first verify that W@g,g#sr , defined atr 5r 0 , is un-
changed when evaluated for anyr .r 0 . To accomplish this
we return to an expression similar to that in Eq.~3.5!, but
with U and Ut each replaced byg and with the integration
running fromr 0 to r. Sinceg satisfies the wave equation i
this region, the integral vanishes and integration by pa
leads to the stated result thatW@g,g#sr is independent ofr
for r .r 0 . We may then evaluate this quantity by substituti
the asymptotic form shown in Eq.~2.11b!. Using the first of
Eqs. ~2.13b!, the stated result,W@g,g#sr50, follows. @The
same procedure provides an independent verification of
relation W@ f , f #sr50.# A similar argument shows tha
W@g, f #sr , defined forr 5r 0 , may be evaluated for anyr
.r 0 ; in particular we may letr→` and do the calculation
using the asymptotic forms shown in Eqs.~2.11!. Then, with
the aid of the second of Eqs.~2.13a!, we find that

W@g, f #sr[
1

2 (
i 8

F S d

dr
gi 8 j ,sD f i 8 i ,s2gi 8 j ,sS d

dr
f i 8 i ,sD G

ur 5r 0

5
k

2
d j i dsq . ~3.7!

With these results in hand the surface terms in Eq.~3.6!
may be evaluated, yielding the relation (2/k)W@U,Ut#sr5
2Krs1Ksr,t . Now settingUt5U the symmetry condition
04271
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Ksr5Krs is verified. Combining this result with Eqs.~3.5!
and ~3.6! we obtain the useful identity

Ksr5Ksr,t2
2

k (
r8

(
s8

E
0

r 0
dr Ur8sLr8s8Us8r,t .

~3.8!

Replacement of the exact solution on the right-hand side
a trial function provides a variational expression for the
action matrix~as elaborated on in Appendix D!.

To prepare for an analysis of threshold behavior it is co
venient to define a reduced wave functionŪ js; iq
5U js; iq /kh is11 andK matrix

K̄ js; iq5k2~h js11/2!K js; iqk2~h iq11/2!. ~3.9!

Then Eq.~3.8! implies that

K̄sr5K̄sr,t22(
r8

(
s8

E
0

r 0
dr Ūr8sLr8s8Ūs8r,t .

~3.10!

We now consider a trial function defined forall r as

Ūsr,t5fsr2(
r8

jsr8K̄r8r,t , ~3.11!

where the trial functionsf and j are regular at the origin
and, asr approachesr 0 from below, merge continuously into
the forms f5 f̄ and j5ḡ. ~As previously defined,f̄ j i

5k2(h is11)f j i and ḡ j i 5kh isgji vary smoothly with energy
near threshold, with well-defined zero-energy limits.! To ar-
rive at a version of the variational approximation from whi
threshold properties may be deduced most readily we
introduce some simplifying notation. We define the matrix

Xsr5(
r8

(
s8

E
0

r 0
dr jr8sLr8s8js8r , ~3.12!

the functionwsr5(r8Lsr8fr8r , and the scalar product

~as ,br![(
r8

E
0

r 0
dr ar8sbr8r . ~3.13!

As shown in Appendix D, a variational determination of th
trial reaction matrix leads to a variational approximationK̄v

for the reducedK̄ matrix of the form

K̄sr,v522H ~fs ,wr!2(
r8

(
s8

~ws ,jr8!

3~X21!r8,s8~js8 ,wr!J . ~3.14!

It is readily verified that such an approximation satisfies
required symmetry property~thereby guaranteeing unitarity!.
The energy dependence near threshold may be determ
from that of the trial functions, which are matched at t
boundary to functions analytic in the neighborhood of ze
energy. With boundary-condition constraints satisfied, a
residual energy dependence of the trial functions may
1-4
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ELECTRON SCATTERING BY NONSPHERICALLY . . . PHYSICAL REVIEW A64 042711
ignored following the standard effective-range approxim
tion @16# that treats the scattering energy term in the wa
equation as negligible compared to the potential energy t
in the regionr ,r 0 of strong interaction. A trial function
chosen in this manner introduces an error of orderk2, lead-
ing to an error in the variational approximationK̄v of order
k4. Thus the first two terms in an expansion ofK̄v in powers
of the energy will provide variational approximations for th
coefficients, the scattering-length and effective-range ma
ces. In fact, the diagonal elements of the scattering-len
matrix satisfy a minimum principle@17#. A zero-energy reso-
nance corresponds to a divergence in the determinant o
scattering-length matrix. The variational principle for th
scattering length, closely related to the Rayleigh-Ritz pr
ciple for bound states, allows for a direct connection betw
the resonance condition and the appearance of a zero-en
bound state.

IV. THRESHOLD BEHAVIOR

With the replacementS5112iT in Eq. ~3.4! we have
S05112iT0 with

T05TL1BTTB. ~4.1!

The first term, directly reflecting the presence of the lon
range potential, is given by

TL5
~BTB21!

2i
, ~4.2!

while T may be expressed in terms of the reducedK matrix
as

T5kh11/2~K̄212 ik2h11!21kh11/2. ~4.3!

From the definition~2.12! of B we have

BTB5~c1 id !eidseids~cT1 idT!. ~4.4!

Combining this form with Eq.~4.2!, and making use of the
properties shown in Eqs.~2.13!, we may put the expressio
for TL in the form

TL5~c1 id !S e2ids21

2i D ~cT1 idT!1 iddT1cdT. ~4.5!

This is exact, but written in a way that leads very directly
a simple approximation correct to second order, that is,

TL>ds1 iddT1cdT. ~4.6!

Here we have recognized that the phase shiftds is of second
order ~as shown in Appendix A! so that the matricesc1 id
and its transpose may each be replaced by unity. Then,
the last two terms on the right in Eq.~4.6! evaluated using
the approximations given just below Eqs.~2.15!, we have,
with corrections of orderk3 ignored,
04271
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~TL! j i 5dsd j i 1
D3

6l 2~ l 221!
~12d j i !1S D3

6l 2~ l 221! D
2

d j i .

~4.7!

We now consider the contribution from the second term
Eq. ~4.1!, using the expression in Eq.~4.3! for the T matrix.
In its conventional form, the effective-range approximati
is

K̄2152A211 1
2 R0k2, ~4.8!

with the scattering lengthA and effective rangeR0 appearing
as constant matrices. Terms of orderk3 will be ignored in our
approximation forT, in which case thek2 term in Eq.~4.8!
may be omitted and we need only consider scattering w
l 150, l 252. Further, the Heitler equation forT reduces to
the second iterationT>K1 iK 2. Now from Eq.~3.9! along
with the threshold behavior2(2/p)ds5gsk

2, with gs a con-
stant ~see Appendix A!, we have, to the order considere
here,

K1s;1q52@k1~gs1gq!k3 ln k#A, ~4.9!

whereA1s,1q has been written asA for brevity @18#. We note,
finally, that the matrixB appearing in Eq.~4.1! may be rep-
resented, to the required accuracy, asBji >d j i 1 i (D3/12)(1
2d j i ). The threshold behavior of theT0 matrix obtained in
this way may be represented as

T1s;1q
0 5Fds1 i S D3

12D 2Gdsq2@k1~gs1gq!k3 ln k#A1 ik2A2,

~4.10a!

T2s;1q
0 5T1q;2s

0 5
D3

12
@dsq1 i ~2kA!#, ~4.10b!

T2s;2q
0 5Fds1 i S D3

2

12D Gdsq . ~4.10c!

This form shows the required symmetry and correctly rep
duces the threshold law obtained some time ago for the c
of single-channel scattering with a pure 1/r 4 long-range po-
tential @2#. As a final check, we may verify that, to the ord
considered, unitarity is satisfied. One way to accomplish
is to introduce the real symmetric reaction matrixK0 with
elements

K1s;1q
0 5dsdsq2@k1~gs1gq!k3 ln k#A, ~4.11a!

K2s;1q
0 5K1q;2s

0 5
D3

12
dsq , ~4.11b!

K2s;2q
0 5dsdsq . ~4.11c!

With this choice of reaction matrix the Heitler equation
the form

Tsr
0 5Ksr

0 1 i(
r8

Ksr8
0 Tr8r

0 ~4.12!
1-5



s

ca

,
e

d

at
ct
er
th
i

lu
io
ta
b
T

ur
di
a
r
tt

en
ti
en
er
ow
n

sm
o
on
ri
e
a

ng
tl

ed
d

c

s
th

is

un-

e

ra-
ed

s

er;

the

ep-
r-
e

sting

LEONARD ROSENBERG PHYSICAL REVIEW A64 042711
is satisfied and this guarantees thatT0 is unitary, to the order
of approximation maintained here. Forl 1.0 the second term
on the right-hand side of Eq.~4.1! is of the order ofk3 or
higher, in which case long-range effects, generating term
the order ofk and k2 appearing in the expression forTL in
Eq. ~4.5!, are dominant. The Wigner threshold law@1# is
inapplicable here.

The above discussion must be modified for resonant s
tering. Considering the zero-energy limit in Eq.~4.3!, for
example, with detK̄5`, theT matrix, rather than vanishing
takes on its maximum value allowed by unitarity. In th
variational approximation of Eq.~3.14!, this corresponds to
the condition detX50, signaling the entrance of a boun
state at threshold.

V. SUMMARY

The threshold behavior of transition amplitudes for sc
tering interactions of short range has a universal chara
@1#, largely independent of the form of the potentials. Int
actions of long range, however, must be accounted for in
asymptotic solutions appearing in the scattering formalism
order to determine threshold behavior. With analytic so
tions unavailable in general, a number of approximat
techniques have been developed. Since application of s
dard perturbation theory can be cumbersome in going
yond lowest orders, alternative procedures can be useful.
modified perturbation theory of Ref.@12# has the attractive
feature that the calculational procedure is algebraic in nat
is applicable to a variety of scattering systems, and is rea
extended beyond the lowest orders with the aid of diagr
summation methods@13#. The method has been adopted he
to treat a coupled-channel problem representing the sca
ing of an electron from a neutral atom with a perman
quadrupole moment. The detailed form of the asympto
solutions, including their zero-energy limits, have be
worked out in second order for a simplified two-channel v
sion of the system. Possible extensions of the model, all
ing for additional long-range potentials as well as multicha
nel generalizations, were indicated. A scattering formali
was outlined, in which these asymptotic solutions are inc
porated as constituents of trial functions in a variational c
struction that preserves the unitarity of the scattering mat
The variational principle provides the basis for an effectiv
range approximation, differing from the standard form in th
it contains terms reflecting the presence of the long-ra
potentials. A procedure for calculating such terms direc
from a knowledge of the asymptotic solutions was provid
and was illustrated using the explicit form of the secon
order solutions derived here.
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APPENDIX A: PREDIAGONALIZATION

An explicit solution of the coupled homogeneous Eq
~2.6!, correct to second order, is obtained by requiring
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matrix of coefficients to have vanishing determinant. Th
corresponds to the conditionads

21bds1c50, with

a5S 4

p D 2S l 11
1

2D S l 21
1

2D , ~A1a!

b52
4

p F S l 11
1

2DG221S l 21
1

2DG11G . ~A1b!

c5G11G222G12G21. ~A1c!

and with theG j i given in Eqs.~2.9!. The solution shows the
threshold behaviords;k2 referred to in the text. In the limit
D4→0 the two solutions are seen to correspond to the
coupled relations

@ l j2~2/p!d j11/2#22~ l j11/2!22G j j 50, j 51,2,
~A2!

with ajs50, j Þs. Following the convention stated in th
text, the mode indexs has been identified in Eq.~A2! with
the channel index in the limitD4→0 considered here. The
positive root of the quadratic equation fords corresponds to
s52 and the negative root tos51.

With the phases determined in this approximation the
tios a2s /a1s[r s may be calculated and the coefficients fix
by the normalization conditiona1s

2 1a2s
2 51 and sign con-

vention

a1s5
1

A11r s
2

, a2s5
r s

A11r s
2

. ~A3!

We setr 15tan«1, r 25cot«2 and verify, using the propertie
d11d252b/a, d1d25c/a, that r 1r 2521, from which we
conclude that«152«2[«. We then have the result

S a11

a21
D5S cos«

2sin« D , S a12

a22
D5S sin«

cos« D . ~A4!

The coefficientsais are energy-independent in second ord
an explicit evaluation gives

D4 cot 2«5
1

p S 2
b

a
2G11D ~2l 211!~2l 221!. ~A5!

APPENDIX B: ZERO-ENERGY LIMIT

The expansion coefficients appearing in Eq.~2.5! of the
text are evaluated in second order and listed below using
notation introduced in Eqs.~2.7! and ~2.8!. As a first entry
we have

a21
~22!5D4v~1,0!@v~1,1!1v~1,21!#g~2,22!, ~B1!

with the first and second term represented by Figs. 1~a! and
1~b!, respectively. These diagrams are quite helpful in ke
ing track of the contributions, as is their purely formal inte
pretation in the language of ‘‘states’’ and ‘‘propagators.’’ Th
first of these diagrams is interpreted as a sequence consi
of a transition from a ‘‘state’’~1,0! to ~1,1!, then a transition
1-6
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FIG. 1. The second-order expansion coef
cients given in Eqs.~B1! through~B4! are repre-
sented by diagrams~a! through ~g!. Interactions
and propagators may be read off from the po
tions of the filled and open circles in the diagram
using rules given in the text.
ga
In
e

e

fo

d
ing
an-
a-
s.
from ~1,1! to ~2,22!, followed by propagation in state~2,
22!. An interaction leading to a transition from state~j, p! is
represented by a filled circle in the diagram, while propa
tion in state~j, p! is represented by a larger open circle.
general, the sequence of transitions representing the co
cienta j i

(p) begins with the reference state (i ,0) and ends with
propagation in state~j, p!. Figure 1~c! corresponds to the
expression

a21
~24!5D4v~1,0!v~1,21!g~2,24!, ~B2!

while Figs. 1~d! and 1~e! correspond to the two terms in th
expression

a11
~2!5D1v~1,0!v~1,1!g~1,2!1D3v~1,0!g~2,21!

3D3v~2,21!g~1,2!. ~B3!

The diagrams in Figs. 1~f! and 1~g! correspond to the two
terms in appearing in the coefficient

a11
~22!5D1v~1,0!v~1,21!g~1,22!1D3v~1,0!

3g~2,23!D3v~2,23!g~1,22!. ~B4!

The remaining second-order coefficients are listed as
lows:

a12
~2!5D4v~2,0!@v~2,1!1v~2,21!#g~1,2!, ~B5!

a12
~4!5D4v~2,0!v~2,1!g~1,4!, ~B6!

a22
~2!5D2v~2,0!v~2,1!g~2,2!

1D3v~2,0!g~1,3!D3v~1,3!g~2,2!, ~B7!
04271
-

ffi-

l-

a22
~22!5D2v~2,0!v~2,21!g~2,22!

1D3v~2,0!g~1,1!D3v~1,1!g~2,22!. ~B8!

With these results in hand the asymptotic solutionsf̄ j i

5k2(h is11)f j i andḡ j i 5kh isgji may be constructed in secon
order and their low-energy behavior determined by replac
the Bessel and Neumann functions, appearing in the exp
sions of these functions, by their small-argument approxim
tions. Here we list the zero-energy limit of these function
For notational convenience in this listing we writef̄ j i

5Cisais@(2l i11)!! #21f% j i and ḡ j i 52Cisais(2l i21)!!g% js
and continue to use the notation of Eq.~2.8! for the propa-
gator with the understanding that fork50, h js reduces tol j
since the phaseds vanishes in that limit. We find that

f% 115r l 1111@b4
~1!2

g~1,22!1b3
2g~2,23!g~1,22!#r l 121,

~B9!

f% 215b3g~2,23!r l 11b48
2g~2,24!r l 121, ~B10!

f% 125b3g~1,1!r l 2, ~B11!

f% 225r l 2111@b4
~2!2

g~2,22!1b3
2g~1,1!g~2,22!#r l 221,

~B12!

g% 115r 2 l 11@b4
~1!2

g~1,2!1b3
2g~2,21!g~1,2!#r 2~ l 112!,

~B13!

g% 215b3g~2,21!r 2~ l 111!, ~B14!

g% 125b3g~1,3!r 2~ l 211!, ~B15!
1-7
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g% 225r 2 l 21@b4
~2!2

g~2,2!1b3
2g~1,3!g~2,2!#r 2~ l 212!.

~B16!

Extensions of this procedure provide higher-order terms
the asymptotic expansion in powers ofr as well as correc-
tions of orderk2 and higher.

APPENDIX C: UNITARITY

We prove here that the matrixB, whose transpose is give
in Eq. ~2.12!, is unitary. The matricesc andd appear in Eqs.
~2.11!. These equations, providing the asymptotic forms
the basis functionsf andg, may be expressed equivalently

f j i ; c̄ j i sin~kr2 l jp/2!1d̄ j i cos~kr2 l jp/2!, ~C1a!

gji ;2 c̄ j i cos~kr2 l jp/2!1d̄ j i sin~kr2 l jp/2!, ~C1b!

obtained by expanding the trigonometric functions and re
fining the coefficients according to

c̄ j i 5cji cosds2dji sinds , ~C2a!

d̄ j i 5cji sinds1dji cosds . ~C2b!

A new set of basis functions is obtained by definingf L

5 f c̄21 andgL5gc̄21. These functions are seen to have t
asymptotic forms

f j i
L ;sin~kr2 l jp/2!d j i 1cos~kr2 l jp/2!K ji

L , ~C3a!

gji
L ;2cos~kr2 l jp/2!d j i 1sin~kr2 l jp/2!K ji

L , ~C3b!

with KL5d̄c̄21. The symmetry property of the matrixKL, a
key element in the unitarity proof, is verified using th
Wronskian relation

(
i 8

Fd fi 8 j
L

dr
f i 8 i

L
2 f i 8 j

L
d f i 8 i

L

dr
G50, ~C4!

satisfied for allr .r 0 . The proof runs parallel to the deriva
tion, given below Eq.~3.6!, of an identical relation satisfied
by the matrix functionf. The argument is modified here b
the replacement off and g with the alternative setsf L and
gL, respectively. The symmetry relationK ji

L 5Ki j
L follows di-

rectly upon substitution of the asymptotic form~C3a! into
Eq. ~C4!. We may conclude that an orthogonal matrixx ex-
ists such thatKLx5x tand L, with tand L diagonal.

We now observe that the relationsc̄ j i 5xji cosd i
L and d̄ j i

5xji sind i
L guarantee that the solutions (f Lx) j i cosd i

L and f j i

have the same asymptotic forms and are therefore seen
identical. The equality (gLx) j i cosd i

L5gji follows in a simi-
lar way. It then follows that
tt

.
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n

f

-

be

xji e
id i

L
5 c̄ j i 1 i d̄ j i 5~cji 1 id ji !e

ids[Bji
T ~C5!

The unitarity of B follows directly from the fact thatx is
orthogonal andds is real.

APPENDIX D: VARIATIONAL PRINCIPLE

As discussed in the text, the basis for the modifi
effective-range expansion is provided by the version of
variational principle shown in Eq.~3.14!. Its derivation,
starting with the identity~3.10!, is sketched here. A tria
function is chosen of the form shown in Eq.~3.11!, and a
variational approximation is obtained with the replacem
of the exact solution by a trial function of the same form, b
with K̄ t , the trial reaction matrix, replaced byK̄t , with the
two different matrices representing variational paramete
One of the terms encountered after these replacements
the form

(
r8

(
s8

(
l
E

0

r 0
dr fs8sLs8r8jr8lK̄lr,t[~fs ,@LjK̄ t#r!,

~D1!

where the abbreviated notation defined in Eq.~3.13! has been
adopted to simplify the writing. With the aid of a
integration-by-parts procedure of the type employed in
derivation of the variational identity we establish the relati

K̄sr,t12~fs ,@LjK̄ t#r!52~@Lf#s ,@jK̄ t#r!. ~D2!

Then, with the definitionwsr5(r8Lsr8fr8r , introduced in
the text, the variational approximation takes the form

K̄sr,v522$2~@Lf#s ,@jK̄ t#r!1~fs ,wr!

2~@jK̄t#s ,@Lf#r!1~@jK̄t#s ,@LjK̄ t#r!%.

~D3!

The requirement that this expression be stationary with
spect to variations inK̄ t leads to the condition

2~ws ,jl!1~@jK̄t#s ,@Lj#l!50, ~D4!

which may be used to determineK̄t as

K̄sr,t5(
l

~ws ,jl!~X21!lr , ~D5!

whereXsr5(js ,@Lj#r), as in Eq.~3.12!. With this form for
K̄t substituted into Eq.~D3! we observe that the first and la
terms on the right-hand side of that equation cancel, leav
the form of the variational principle shown in Eq.~3.14!.
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