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Rigid rotor in phase space
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Angular momentum is an important concept in physics, and its phase space properties are important in
various applications. In this work a phase space analysis of angular momentum is made starting from its
classical definition, and its quantum properties are obtained by imposing the uncertainty principle. The kinetic
energy operator is derived, but its part have a different interpretation from that in the standard treatment. The
rigid rotor is discussed and its phase space representation is shown. The true rigid rotor is defined and its phase
space properties are also discussed.
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I. INTRODUCTION are selected. It should be noted that it is not necessary that

_ _ _ f, m(r,p) is a positive function, as long as these averages are
Angular momentum is a very important concept in theoptained. In practice this means that initial conditions are
dynamics of particles and within quantum mechanics 'tsrandomly selected frOfJ(f|,m(F,5)| and if N sets are chosen

properties are very well understopt]] . One example where then the averages are approximately
the theory has direct application is the rigid rotor model,

which is the basis for understanding rotational spectroscopy N
E\nd collisions of mo_lecules. These processes are described Z (Fjij)ZSgr{f|,m(Fj Pl
y quantum dynamics, but there are circumstances when YN
classical dynamics is used as an alternative. For example, ((rxp)9)= N '
rotational cross sections for two colliding molecules in prin- > sgif, m(Fj ,51')]
=1 ’

ciple can be calculated from quantum mechanics, but often it

is a challenging task. Classical mechanics, on the other hand,

is relatively simple to use, but there are several problems i@nd similarly for the angular momentum. The function
its implementation, say, to calculate atom-molecule collisiorsgr{f,'m(r»j ,5j)] is the sign off,,m(Fj ,5j) for the set of ini-
cross sections. The basic problem is how the initial conditig| conditions (J. ,51_)_ However, a much more stringent con-

tions are selected and the final results analyzed. For examplai,tion is that the functiorf (F 5) is stationary. The mean
I,m\t s . -

if one says that a molecule is in the rotational state with. . .
ST ing of this can be demonstrated by a simple example. If a
guantum numberk=3 andm=2 then the question is what 9 Y P b

T . : . particle of masdV is free and the set of its initial conditions
to choose for the initial orientation and angular velocity to, -~ - i - ..
(rj,p;) then its position after time is r=r;+(p;/M)t

adequately represent it. An analogous problem has been arla- )
lyzed for collisions involving only vibrational energy ex- and its velocityv =p;/M. From these values one can calcu-
change in atom-molecule collisions, where it was shown howate a new distribution functiom(r,p), by requiring it to

to select initial conditions that adequately represent a pathave the properties previously described for the function
ticular vibrational state of the molecule. A recipe was SUg-f, (r,p). Stationarity requires that the two functions are
gested from which transition probabilities were successfullyigentical for any timet. This restriction is very important, for
calculated[2] from classical mechanics; by that it is meant gpyious reasons, and it is sufficient to dismiss a large number
that initial conditions were selected from a prescribed phasgt 54 hocdistributions.

space density but the dynamics is calculated from the classi- The most obvious starting point would be the wave func-
cal equations of motion. tion for a particle in a particular angular momentum state,

The problem is therefore how to choose a set of initial, . . i+ the coordinate space i m(1) = i (N)Y1 (6, b),

positions and velocities f(_)r a particle so that on average 't%vhereY| _(6,) is the spherical harmonic. Likewise, in mo-
angular momentum has givémandm values. In other words, : . . -
mentum space the wave function is¢ (p)

what is needed is a functioi (r,p) with the property that — w1 (P)Y1.m(fp . b,), Where 8, and ¢, are angles of the

the following averages are obtained: ) I
momentum. One could then form the functidn.,(r,p)
- - > > > - :|Xn,|(r)YI,m(01¢)|2|wn,l(p)Yl,m(0pv¢p)|2from which the
((rxp)2>=f d*rd®p(rxp)®f) u(r,p)=A2(1+1), initial position vector and momentum could be selected, ex-
cept that neither are the averag@s obtained nor is the
s [ az. 2o s s n condition of stationarity for the functiofy (r,p) satisfied,
<r><p>—f d*rd"p rxp fim(r.p)=fm z (1) which is easily proved. Therefore this simple idea fails, and
. this is because one basic difference between classical and
In classical mechanics the functibp,(r,p) is interpreted as  quantum dynamics was not taken into account: classical dy-
a statistical weight from which the position and momentumnamics is defined in the phase space, while quantum dynam-
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ics is in either the coordinate or momentum space. The gp p ap IV dp
simple product that was suggested for the distribution — —r+ -~ -

f, m(r,p) only reflects this: it says that the initial conditions
in the phase space are determined as the product of the dis- X (X—hyl2t)p(x+hyl2})
tributions from the coordinate and momentum space, which

are independent. What is needed is a formulation of quanturwhere

mechanics in phase space, and then one would possibly be

able to satisfy the two conditions above. The earliest attempt ”
in this direction was by Wignef3], who looked for a func- G(x.y)= 2,

tion p(r,p,t) with the property

1 (= .
- r__ - py *
m dx  dx dap 2i f,xdy ePCxy)¥

V(2n+1) X
—()(ﬁy)ZnJrl,

and in this limit the inhomogeneous term vanishes. It also

R R .. vanishes if the potential is quadratic, irrespective of this

P(f,t)=|$(r,t)|2=f d®p p(r,p,t), limit. The homogeneous equation is the Liouville equation,

which determines the time evolution of the phase space den-
sity p(F, 5,'{), and it is solved using the classical equations of
motion.

Despite this apparently very important connection be-
tween quantum and classical dynamics, there are at least two
remarks that one can make about this approach. It is desir-
able for understanding the quantum-classical connection to
learn more about the foundations of quantum principles, be-

- . .o cause we are quite familiar with the classical. Strictly speak-
fdsq P Vhyr(r+q,H)¢(r—q.), ing, that goal was not achieved because with either the
Wigner or Moyal formulation of the phase space nothing can
) be learned about quantum principles, because they are the
starting point anyway. The second remark concerns the limit
which is regarded as an extension of quantum mechanics intf the phase space density whien-0, which should also be
the phase space. This definition inevitably results in nonutaken, not only the limit for the inhomogeneous term. For
niqueness of the extensidd], because there is a large class stationary states it can be shown thas]
of phase space functions that are defined by the requirements
(2). Another attempt to formulate quantum mechanics in
phase space is due to Moy&l,6], whose main objective was
to give it a sound statistical foundation. The starting point is
postulate observables as operators, and to postulate that f\%
each set of commuting observables there is a set of nonco
muting observables. Together they form a complete set
observables. For these observabibperatory one forms a

Q(ﬁ,t)=|<p(|5,t>|2=f & p(r,p,t) (2)
and obtained what is known as the Wigner function

1

w3h3

p(r,p,t)=

.. p?
P(f,p)f:o5(H—Eo)= 5[ﬁ +V(f)—Eo}

ereE, is a fixed energy. This form greatly restricts the
g%bssible phase space densities from among those stationary
olutions that are obtained from the Liouville equation. How-

function from which the characteristic function of statistical ever, itis consistent with the accepted view, which is based
on the correspondence principle: the quantum goes over to

tr?eory ftorBa (E:]r:velrzu qu_antrjm S]Eat*e 'Sl\ﬁbta'lnegt as zmaéf'ﬁ . the classical solution for large quantum numbéhe proof
element. by the Founertranstorm, ioyal oblain€d a distri- e g straightforward but not elaborated here

bution that becomes to the Wigner function if the observ- = classical-guantum connection can be examined start-

} ) o . ¥ classical dynamics to quantum problems. One starts from
the Wigner function be used for the distributibn.(r.p)? It the Liouville equation in classical dynamics, and the argu-
is not clear that the averageh are obtained; in fact, as will  ment on which one bases its use is quite straightforward:
be shown later, they are only partly obtained. Furthermore, ifjtial conditions for a particle are never accurately deter-
is also not clear that the Stational’ity condition is Satisﬁedmined’ in which case its precise trajectory has no meaning’
however, the Wigner function is stationary under the quangnly the probabilities for its position in the course of time.
tum time evolution for the stationary wave function, which is gor example, to claim that the position of the Earth is accu-
z/r(F,t) = wO(F)e*iEt”l. The Wigner function has been used in rately determined is nonsense, and therefore prediction of its
various applications and its properties investigdteéd21] , position accurately in the next, say, million years is not pos-
but its true significance is when the connection with classicastible, especially if perturbation from other planets is taken
dynamics is sought. This is achieved by the standard assumjmrto account. However, it is possible to predict the probabil-
tion that classical dynamics is the limit of quantum dynamicsity of finding it at a certain position aftéalmos} any length
when7—0. It can be shown in genergh one-dimensional of time. Therefore one starts by formulating classical me-
problem is discussed for the momgttiat the Wigner func- chanics as a statistical theofiy should be strongly empha-
tion satisfies the equatidri 9,20 sized thatstatistical does not implymany particles but the
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probability for a single particlein contrast to the attempt by manifestation of that is the attitude toward the uncertainty
Moyal, whose principal aim was to formulate quantum me-relationship, which in the quantum case it is not considered a
chanics as a statistical theory. In other words, one particle iprinciple because it is derived from other ones, while in the
the phase space is not a point but an extended density, whiatassical case it is assumed to be a fundamental principle
takes into account all uncertainties in determining its wherefrom which the basic dynamics equation of quantum me-
abouts. For a particle of massthis equation is chanics(6) is derived. One could cite other fundamental dif-
ferences between the two approaches, but one is that of sim-
- . - = .o plicity. In the Wigner-Moyal approach one needs all the
Vep(r,p,t) +F-Vpp(r,p,t)=0 (4 postulates used in the formulation of quantum mechanics,
about whose number there is no general consensus, but in the
approach from classical mechanics one needs only the three
Newton postulates and the uncertainty postulate. One could

. o . uestion the meaning of the uncertainty principle, but one
respect to which the derivatives are taken. For the particul ould equally question the meaning of the observable-

case when the phase space density is stationary, which me erator or wave-particle dualism postulates in the formula-

that dip(r,p,t)=0, the solution is a function of the form tion of quantum mechanics. Other advantages that one gains
p(r,p,t)=f(hy,hy,hs, ...),wherefis an arbitrary function by starting from classical principles and not from the quan-
and h; are dynamic invariants of the classical equations oftum phase space formulation of Wigner and Moyal will be
motion. One of them is the Hamiltonian for the particle, andexplicitly manifested in the following sections. In particular,
others are components of the angular momentum if the forc# is not clear how to derive the phase space density for the

F is centrally symmetric. There are other invariants but theytrue rigid rotor, which is done in this work, other than by
will be mentioned later. These phase space densities, like arffarting from classical principles.

other solution of the Liouville equation, lack a very impor- ~ There is one conceptual problem in the attempt to merge
tant ingredient in order to be regarded also as quantum soli§lassical dynamics with the uncertainty principle. Without
tions. This ingredient is the restriction on the possible phaséhe latter, solutions of the Liouville equation are phase space

space densities, and it is in the form of the uncertainty priniProbability densities, and as such they always have positive
ciple values. As soon as one imposes a restriction in the form of

the uncertainty principle this feature is lost and one often
AXx Ap,=hi2 ends with a phase space density that has positive and nega-
tive values. This is the price to be paid for imposing that
for any Cartesian coordinate. The standard deviatid®s restriction, and its physics is justified on the grounds that the
andAp are calculated from the phase space density. Mathuncertainty principle makes it impossible to measure the
ematically speaking, selecting phase space densities accorghase space probability density precisely. One talks then
ing to this restriction is a very well defined problem and it is about the phase space density, whose properties are exactly
solved within a Fourier analysis. They are obtained in thethe same as for the probability density. However, all measur-
form of the convolutior 25] able quantities, e.g., probability density for the coordinates
only, must have physically acceptable values.
.1 Sy 2EG ek Py 2 - - In Eqg. (6) one recognizes the Scliioger equation, the
p(r,p,t)= 7T3ﬁ3f d*q € f*(r+a, Hf(r-aq,0 basic equation of quantum mechanics. Therefore the steps in
(5) classical mechanics described produce identical results as in
quantum mechanics, provided the initial condition for the
which is also recognized as the Wigner function. The funchase space density is calculated from the parametrization
tion f is arbitrary, but if the phase space density satisfies th€d). Using these principles, first the angular momentum for a
Liouville equation then it satisfies the equati@¥] three-dimensional harmonic oscillator will be analyzed.

ﬁZ
in g f=— %Af-i-Vf (6) Il. HARMONIC OSCILLATOR IN THREE DIMENSIONS

3o

ap(r,p,t)+

whereF is the force on the particle arﬁj is its momentum.
The index of the operatoﬁ designates the variable with

Stationary phase space densities for a three-dimensional
whereF = —VV, and the potential is not required to be har- harmonic oscillator are analyzed assuming that the average
monic (for a general potential parametrization of the phase
space density is more elaborate R ) .

The common point between the Wigner and Moyal ap- sz d3r d3p rxpp(r,p) (7)
proaches and the one that starts from classical principles is
the function(3) or (5); however, it is an almost arbitrary
function in the former casébecause there is no reason to has a given value. The starting point is the phase space
choose it from many other functionbut a convolution in  density which is parametrized d§), where the functions
the latter. Apart from that common point there are fundamen+ are chosen in the form ¢=r'Y|,ﬂ(0,¢)Rn,|(r)
tal differences between the two approaches; the former starts Y| ,(X,y,2)R,,(r), where § and ¢ are spherical angles
from quantum principles and the latter from classical. Oneandr is the radial coordinate. The indices |, and u are
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TABLE |. Phase space density for the ground vibrational state of a harmonic oscillator for the first few
values of angular momentum numbers. The appropriate angular momentum and its modulus squared are
given. Definition of the variables is given in the text.

I, u Po,|,#7TseE (L) (L?)

0,0 1 0 0+ 3/2

1,0 —1+2E, 0 1X2+3/2

1,1 —-1+E—-E,+2L, 17 1Xx2+3/2

2,0 1—(2/3)(E+3E,) + (1/3)(E—3E,)?+ (8/3)L?— 4L2 0 2X3+3/2

2,1 (1-2E,)(1-E+E,—2L,) 1% 2X3+3/2

2,2 —1+(1/2)E-E,—2(1-L,)7]? 2 % 2X3+3/2
integers(in further analysis units are used in whioh=7# simplicity) E; j=pip;+XiX;, i,j=1,2,3 (the indices desig-
=1 and the frequency of the oscillatords=1), Y, ,(6,¢) nate the Cartesian components y, andz), and the other
is the spherical harmonic, and set are the components of the angular momentynp;

—X; pi, i#]. Of course, any other combination of these

12 basic invariants is possible, e.g., the total angular momentum
squared. Which ones are present in the phase space density
(8) is determined by explicit calculation, and the first few for

whereN is a normalization constant andr,(a,b;z) is the  the ground vibrationalr{(=0) state are given in Table I. The

hypergeometric function. The phase space density is now symbols represent the following guantities:

E=p?+r%,  E,=p2+2, L2=(yp,—zp,)2+(zp—xp,)?

> e

3
Rn,,(r)=NlF1( —n,l+=:r2

~.o 1 +(xp,—ypy)? andL,=xp,—ypy. These are dynamic in-
Pn)u(F,P)= ;j dq e*? qYﬁ#(x+qX,y+qy,z+qz) variar:lts for the harmonic >(l)scillator, and therefore the phase
space density is indeed stationary.
X Ry (|r + ﬁl)Ym(x—qx Y—0y,2—0;) From the phase space densities one can calculate the total
o angular momentun(7) and its squared modulus from
XRy,(Ir=q],) tS)
which in general does not have a simple explicit form, but it Lzzf d3r d3p(rxp)p(r,p).

has a few nice features. It is stationary, which means that its
form does not change with respect to classical time evolu-

tion. In other words, if the classical solution for the trajectory Their values are given in Table | and as expected the angular
is momentum is the same as from quantum analysis: it has only

the z component and its value ig. However, the angular
r=rgcogt)+ posin(t) momentum squared is not equall{b+ 1), as expected from
the quantum treatment, but differs by 3/2. The same is true
then for other thann=0 states, as shown in Table Il. In fact, the
most surprising finding is that the states wlith0, which are
p(r,p,t)=pn, [T cogt)—psin(t),r sin(t)+p cogt)] normally associated with zero angular momentum, have the
. value 3/2 for the angular momentum squared. The question is
=pn1u(lP). where this discrepancy comes from. The simplest answer is
] o ) that the classical analysis is not correct, because it surely
This means that the phase space density is a function of th@yst violate certain rules that are not consistent with the
dynamiC invariants of the harmonic oscillator. One set quuantum mechanical ones. However, this answer is not cor-
these are elements of the energy tenspri§ omitted for rect, because if one writes the momentum squareg?as

TABLE Il. Phase space density for the first excited vibrational state of a harmonic oscillator for the first
few values of angular momentum numbers. The appropriate angular momentum and its modulus squared are
given. Definition of the variables is given in the text.

L pos ues (0) (L%
0,0 1—(1/3)(4E— 2E%+8L?) 0 0+3/2
1,0 —1+(2/5)(2E— E?+9E,— 8EE,+ 2E’E,+12.2— 8E,L2—8L?) 0 1X2+3/2
1,1 —1+(1/5)(1E— 10E%+ 2E®— 9E,+ 8EE,— 2E°E,+ 16L.%2—8EL? 17 1X2+3/2

+8E,L%+10L,— 8EL,+4E?L,— 16L%L,+8L2)
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=pr2+ p§+ pf,,, where the components of the momentum are ,
given with respect to the vectar, then its average for the (pa)=—

function y=0(60,p)R(r) is
X ((7334‘ a§¢)[RZ( 2+ q2+a3)].

After integration over the variablgs, andp,, the only non-
zero contribution is

dp(b J’ dqadq(beZi(pé)Qf)erqsq(ﬁ)

1
(p%)= ;j d3r dp, dp, dpy(pf+ pj+p3)

8 f da, dg, dq,, e (Prar Pt Pydy)

<p?).>: - %J d3r R(I’)EﬁrR(r).
XO*(0,,¢,)R(r)O(6_,¢ IR(r_), m '

In fact, the average of the angular momentum squared

where (which is L?=r?p3?) is
re=(r=a,)+ds+dj, i}
o (7)== [ drermaRrm=3.
z-(r=q) (r*qg,)cosf*qysing 0 2
CcoSf,=———= —, 9)
Ir=q| V(r=q,) 05T 0ay which is precisely the value in Tables | and Il. Furthermore,
o the result is independent of the radial function, which indi-
b, (rxq)-(x+iy) (r*q,)siné+q,cosf=iq, s cates that this is a universal number. In order to check the
T IF=q[sin6. - IF=q|sin6. e correctness of the result one calculates the average of the

radial part of the momentum squared, and the result is
After a straightforward but lengthy calculation of the inte-

. 1 1
grals, one obtains (p2)=— Ej d3r R(r)| 9?R(r) + FﬂrR(r) _
- 1)|d d . : .
(p?)= —f d®r y*(r) ar rzd— Together with the angular part one obtains the radial part of
refar r the kinetic energy operator
2
— |u(r 1
sm(ﬁ) 30|50 75 ) SirA(6) 92 wir), Tr=—r—20r(f20r)-

which is the correct answer for the kinetic energy Operato(/vhich is the correct answer. Therefore, there is no discrep-

(up to a prefactor, which was not taken into accoult the cy between the quantum expression for the kinetic energy
standard interpretation the angular part is then assouatea;Fd the classical treatment in this work: the difference is in

with the angular momentum squared operator, which indee e interpretation of its parts. According to the results in this

gives zero for angular momentum squared for theO work one should interpret the radial kinetic energy operator
states. Therefore the procedure of deriving the kinetic energ P gy op

operator is correct, but then the question is where the analy-
sis that produced the results in Tables | and Il is inconsistent
with the quantum interpretation. To answer this question one T,=—0°—=0
explicitly calculates the average @f,=p3+p?, which is
the classical angular part of the momentum squared. For SivahiIe
plicity its average will be calculated for tHe=0 state.

By definition,

11{1&

To=~79~515ne) 96

) 1 P
1 SIn6) 54 Sir?(9) d¢?
<pé>=—4f d3r dp, dp,dpy(p5+p3)
4m is the operator for the angular momentum squared.
Further confirmation of this comes from calculating the
xf da, dg, dq,, e (PrarPets™ Pedy) average angular momentum explicitly. For0 states it is
given by

XRIV(r+0,)2+05+q5IRV(r —g,) 2+ a5+a3],

where the integration oves, andq, is calculated first, then <L> (Loz= _f d*r dp dpsdpg rp s sin(o)
po andp are replaced by derivatives in the variabtgsand

q, that act on the exponential function, respectively, and 21(PrAr+PgUot Pydy)

after partial integration over the same variables one obtains x| da-dg,da,e ATRAER(rR(r ),
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which is easily shown to be zero. This is no contradictionThe Schrdinger equation for the nuclear motion in a di-
with the previous finding, because the zero of the angulaatomic molecule is
momentum is the result of cancellations of the contributions

from the two signs 0fp_¢, rather than the modulus of the oy 2201 ¢ oy 1 o o
angular momentum being zero. One can therefore calculateg —=— —| — —( r2—) + .——(sm( 0) —)

the angular momentum by averaging over only one sign of gt 2m| r2 Jr or resin(6) ¢ 90

ps. because the average over the other gives the same result 5

but with the opposite sign, and the sum total is zero. This + 1 ‘9_‘/’ +V(r) o

average is r2sir(9) a¢? '

A\ 1 3 : j“’ wherem is the reduced mass of the diatomic molecule and
(L >_mJ d*r dp; dp, sin(0) 0 dpy TPy V(r) is the internuclear potential. Typically, this potential

has a deep minimum displaced from the origin by the dis-
tancer, (the bond length which for modeling purposes is
approximated by f/2)w?(r —r,)2. The ground state wave
function in this potential has the widty and its relationship

to the bond length isy>a. Under these circumstances the
radial coordinate in the angular part of the kinetic energy
operator is approximated by the fixed valygin which case
the wave function factors ag=1/R(r)0(6,,t)e 'Eot/?

Xfdq,dq(,dq¢e2i(prqr+p9q9+p¢q¢)

XR(r)R(r_)

and after evaluating most of the integrals one gets

(Lyy=—— Zf d3rr sin( a)fcd p¢f day e2ip¢%aq where E, is the ground state energy of the molecule. The
8im 0 ¢ angular function then satisfies the equation
XRA(\r?+q3). 20(6,6.1)
By using the relationship i = Te®(6,4,0+W(6,4,00(6.4.1)
(10)
“dp, e2iPgts— ipl
fo dp,e“Pede=ms(2q,)+iP) 2%), where
Wk?tere P designates the principal value of the integral, we 52 9 ( o P )+ 1 5
obtain =——|= — | si — —
U 2mr2|sin(6) 96 0] sirt(6) a¢p?
i :
(L)=- 8i7rzj d®rr sin(6) P{f day R(VIZ+0a3) and W(#,¢,t) represents interactions of the molecule that

depend on the angles onlyay, a dipole in the electric field
1 The unique feature of Eq10) is that it depends only on
—_—. the angle variables, the orientation angles of the molecule,
and in this sense it is called the equation for the rigid rotor.

2 2
Vretay
o ) i The operatoiT,,; then represents the kinetic energy operator
The principal value can be omitted because the integrand ig,, theprigid ror'?(;r whichphas the discrete spectn?rﬁ P
not singular, in which case ’

XR'(Jr?+q3)

1 1 h?
<L+>:_f drrZRZ(r)=—. TrotYI,m(aa¢)= |(|+1)Yl,m(91¢),
4 4 2mr}
The value of thez component of the angular momentum,

which gets contributions from the spapg>0, is indepen-

dent of the radial functioR(r), the same result as before. ) ) .
whereY, (6, ¢) are spherical harmonics, the eigenfunctions

of the rigid rotor. However, this is far from being true, if one
has the image of the classical rigid rotor in mind. Although

The rigid rotor in classical physics is a very well defined in the previous derivation the dynamics in the angle variables
object, but one could argue that it is also in quantum physicds decoupled from the dynamics in the radial variable this is
Unfortunately, as will be shown, the two definitions do not not sufficient to call the molecule a rigid rotor. It is also
have the same meaning. Intuition, which is essentially clasnecessary to prove that the radial component of the momen-
sical, defines a rigid object as one that does not have breattum for the relative motion of the two atoms is decoupled
ing (radia) motion. Objects that appear to qualify as rigid arefrom its angular ones, and to show this one needs to calculate
diatomic moleculegat least many of theimwhich is sup- the momentum space wave function. This function for a sta-
ported by the approximations in their quantum descriptiontionary rotational state of the “rigid rotor” is

1=0,1,2..., m=—I,—1+1,...],

lll. RIGID ROTOR
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R 1 - where the angular functio®, ., is shorthand for the product
@(p):j d’r TRINDY (0, $)eP of two functionsY, (8- ,¢-). Dependence of the angular
function on the radial variablg, is also neglected, in which
1 (= case the phase space density parametrizes as the product of
=(2m)¥A'Y, 0p1¢p)_f dr r2R(r)Jy. 1 pr) the function for the radial variables and the function for the
‘/6 0 angular. The angular phase space density is now defined as

(11)
Q 2arg

where the expansion of the plane wave in spherical coordi-P.m(¢:#:Ps.Py) = 2 f da,da,
nates was used. Decoupling of the radial compoperfitom
the angular onep, andp, is therefore not possible because % @2i\2aro(pgdg+ p¢q¢,)f(q§+qi)2
p= \/pzr + p29+ p2¢, while the spherical angleg, and ¢, are
related to the same components in a complicated way. There- X0 m(ro,0,¢,0,y2arq,,V2arqdy)
fore it cannot be assumed that the theoretical model that was (12)

just described represents a rigid rotor.

Analysis in phase space is more revealing, but it is someand appears to describe the rigid rotor because it is indepen-
what approximate. It was mentioned that aroundr, the  dent of the radial variables. However, this conclusion is false
potential is very well approximated by a harmonic, in whichbecause the phase space density depends on the radial pa-
case the entire wave function for the diatomic molecule is rametera, and in this respect it depends on the radial dynam-

ics. Because of this feature the rigid rotor will be called
$i(r)=Ne—(r—r0)*/2a%Y,| n(6,¢) “soft.”
The average of the angular momentum squared now has
where the 17 coefficient was assumed to be constant. Thethe value
phase space density is then

\2 <L2>=fpf,’m<a,¢,p9,p¢>ré<p5+pé)=|<|+1>
rp)=— | d3qe?Pavy (o,
Pi(r-P) 7T3j q 6 &) where the constant term 3/2 that was obtained in the previous
section is missing. This is expected because coupling with

the radial motion was neglected. Another property of the
angular phase space density is

XY} m(6- ,¢,)e*(|F+‘i|*'0)2/232*(\Ff&|7r0)2/2a2

where the angle8.. and¢.. are defined in EQ9). The rigid
rotor model assumption implies thgtr, and if spherical
coordinates are used for the vectpe g, + 0,6+, then
the exponent of the harmonic oscillator function is approxi-

f,mdp"f,xdp‘l’ Pls,)m(ﬁyd’:pe,p(z;)

mately :®I,m(r0101¢10y0102|Yl,m( 01¢)|2 (13)
- - 2 > - 9 2 which shows that it correctly describes the essentials of the
(Ir+al=ro) n (Ir=al-r9* (r=ro) angular momentum. Its explicit form fd=m=0 is given
2a? 2a? a? by
2 2 2 2 252
qr dptd,| (dgtdy) arg (= 4
+;( 1= prer G p80(0,¢,p9,p¢)=—2f0 dg qk(2v2arepaie 7,
0 0 T

where, in the expansion coefficients, except in the leadingvhich does not have an explicit analytic expression. How-
one, we set =r,. By recalling that this expansion is in the €ver, its shape is simple, as shown in Fig. 1. For the rota-
exponent, it follows that the range ¢d,| within which it  tional statd =1 andm=0 the angular phase space density is
significantly contributes to the phase space density is of or-

dera; however, the range ofq3+q3 is of ordery/ar. This p1.d 0,4.P9,Py)

means thaiq,|<\/q2+q2, in which case the phase space

density is approximately - 6ar0f°° dqgfw d%eZi\/@a_w(pgqﬁp,;,%)f(q%mi)z
473 ) - -
.. 2rga®N? 2. [ »
p|,m(r,p)=O—S,Ze—ﬁ—fo)z/az—r)razf dqef da, coL6—2€q2sint0 1, coso,
™ —o o X 5 —~| coso+ — a5 +—— 3
1+2eqy+2eqy, 4rg 77 4rg ¢
% @2IVZaT5(Pgdgt Pgay) — (a5 +a5)?
— — X | d 2+/2ar e d
X®|,m(r016!¢101 2ar0q0! 2ar0q(/)) fo qq%( Opq)
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1.0 4

J_wdpaf_xd Py Psllo( 0,$,P0,Pyp)

~f dpgj dp, cos QJ dq qJO(Z\/Zaropq)e‘q4
— — 0

0.5

p0,0

v 7Tmr0
——(1+co< 6)—

~ 32ar, 8+/2ar,

(3cog 6—1)4,

] t/mrg/2arg qe 4
] ! 2 8 4 s 0 t“/2amry;—q

FIG. 1. Phase space density for “soft” rigid rotor, for angular The first part is_ tim_e independent, while the S_GCO“P' goes to
momentum indices=m=0. zero after the time intervdl>mrgyy/2arg, which is typically
of the order 10*—10"1* sec for diatomic molecules.
wheree=alr, and in the last step only the terms up to order 1 Nérefore the probability density starts as Eg3) but its

€ were retained. Similarly the phase space density fot limiting value is constant, although not in the form of the
andm=1 is squared modulus of the spherical harmonic.

o sing 1, 1, IV. TRUE RIGID ROTOR

0,,05,P4)~| SIPO+——03, + —3% +—0 . . . e :
P16, $:Pg.Py) ro Pé 4r} Po 4r(2) Py The previous discussion revealed great difficulty in for-
mulating the concept of a rigid rotor in quantum theory. This

sirfe ) ol was manifested as an inability to formulate a phase space
4r2 ap¢ 0 daad density that involves only the parameters for the rotational
0 degrees of freedom. It does not help to take the lamit0 in
><(2~/2ar0pq)e*q4. Eq. (12) because that would imply infinite dispersion of the

variablesp, and p,,, which only reflects the fact that the
radial and angular components of the momentum are interre-
e]ated. There is, however, a way of formulating the true rigid
rotor, but it should be done by following the formulation of
quantum mechanics suggested in the Introduction. One starts
from the Liouville equation in spherical coordinates, which
for a free patrticle is

These phase space densities, ex¢%’@t are time depen-
dent, which means that they are not functions of only th
dynamic invariants of the rigid rotor, e.gp?=p5+p3 and
pgsing. Thus, for example, the terms m§%0(6,¢,p(,,p¢)
that cannot be represented by invariants are

o _ ) ~a P P Pr
6,¢,pp, —cos’-GJ' d 2\2arypqg)e 9 _Pe ¢ Pr =
pP1o0,b,Pg.Py) o q qJ( obq) ap mr30p+ mrsin6(7¢p+ marp e
cosd /arOJ'w pZ cosf p cosé
- - d ZJ X d)— LA . —_
pr3 2 J, 999 sing " PrPo) 9, | TPoGing TP dp,p
2 2
X(Z\/Zaropq)e*q“. +<&+& 9. p=0
p,P=Y
mr mr/ Pr
The explicit time dependence of the phase space density is
obtained from the time dependence of the angle and the rigid rotor assumption implies that the phase space
density isr and p, independent. This means that the Liou-
tpo P9 tpo ville equation for the rigid rotor is
cosf=cosé, cos ———— Do sinfg sin el
S 0 p pa&pﬂL Do c9p+l%msg(p(7 pP—Pgdp p)
. P mrP T mrsing P mr sing \Pe%p,P T Pe
whered,, p§, andp, are the initial values of these variables. mr mrsing mr sing "7 Pe Po
In the phase space density @bs replaced by -0 (14)
COS6.= COSO cost—p P sindsin tp wherer is constant. It can easily be verified that if the phase
t mro p mro space density is a function of the forp(6,¢,p,.py.t)

=F(pj+p’.pysin6), whereF is an arbitrary function, then
and the time dependence of the probability dengli§) is it is time independent. An additional requirement is that the
calculated from phase space density should be in accordance with the uncer-
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tainty principle, which is achieved by straightforward gener-where\ is a real constant. In this equation one recognizes
alization of the rule that was used before. The phase spathe equation for spherical harmonics, where —I(1+1).
density is therefore parametrized as However, the functiorf, cannot be neglected, and therefore
the angular functions are only approximately the spherical
1 A harmonics. However, a very useful feature of the funcfion
p(0,¢,pg,Py )= _zj d?q &' (PedoPual @ * is that in the limitsq,—0 andg,—0 it is equal to zero, in
& which case the angular functions are exactly the spherical
X(0,,d5) O(O_,¢_), (15) harmonics. This means that when the phase space density is
integrated over the momentum variables the resulting prob-
where the angular functions will be determined for a particu-ability density should be the squared modulus of the spheri-
lar case when the solutions of the Liouville equati@d) are ~ cal harmonics, i.e.,
stationary, i.e.g,p=0. The relevant variables were defined
in Eq. (9). The parametrizatioiil5) is replaced in the Liou-
ville equation(14), and by using transformations of the kind P(0,¢>)=f dp[,f dpy,p(6,¢,py,Py)

1 oi :|®(01¢)|2:|Yl,m(6:¢)|2 (17)
pap( 0,¢,p€,p¢): — Zf d2q e I(DGQHJrD(/)qqs)aqe
The choice of the spherical harmonics for the angular func-
X[O(O_,p_) O*(0,,0,)], tions means that the phase space density is approximate,
which is manifested as being time dependent, i.e., it is not a

B 2 2i(pyst D) function of only the dynamic invariants of the rigid rotor.
Podp,p(6, 0,9, Py) = _J dq e Pt P9, This is the price that is paid for neglecting the functigrin
Eq. (16). Inclusion of this function results in the phase space
X[dg O(0_,¢-) ©*(0,,4,)] density that is a function of only these invariants, and this

) S fact is used as the procedure to find a proper phase space
One. ObtaInS, a.ﬁ.:er |engthy Sl_mp|l.flcatI0nS,_ the reSl.J|t that thqjensny This is best demonstrated by one examp|e_ One par-
stationary solutions of the Liouville equatidth4) satisfy ticular case, however, has an exact solution, and this is when
the angular function is constant. In this case
i . 1
I 2q 2i(PglgtPydy)
deq e™PoTPefie) —

1
| 1+ Ffz) =0, (16

2 1 . 1
T B pod 0,6,pg.Py) = _zf d%q ez'(F’e%*F’d»q«s)E
where m
1
N . 1 ) :E5(p0)5(p¢)-
fl_® Maai(S”]ef aﬁ*®)+3|nze_ 0"¢7®
The example that will be analyzed in more detail is when
) the angular function is the spherical harmonig 6, ).
)| ——— 0 2 > . !
-0 sing, dg,(SiNG.d O%)+ = T4+ 0%, The phase space densitib) is

2

fo=— g—r(cose++cos¢9_)<

0*d, O ®a9+®*)

1 :
p(0.6.py.Py.1)= _zf d?q €/ (Pt Pude)
sing_ sing, ™

0%, O ®¢90+®*) XY1o 01,0 )Y1d 0 ,¢)

;
_§(C050+_C056)( sing_ sing,

and its explicit form is(the constant is fixed to unity
0*9 04, OF
b b,

+q,sind + , p(0,0,pg.Py,t)
Ao Sirfe_ Sirte.,
2 i _
and g?=qj5+qj. It is implied that® is a function of the — ij d%q €2i(Podls P4y —qgsmza cos’ 6
variablesf_ and ¢_ while ®* is a function ofd, and¢, . 473 1+

If the function f, is neglected for the moment then the

condition (16) implies that the angular function satisfies the :i( 1 p<215 sir? 9) Ko(2p)+ 3 sirto
differential equation 2.2 p2 0 4p7?
d '0a+1(92®—>\® 12p‘2’5K2 35 b in?
sing 4(SiN6d,0) L x| 1= ? 1( p)_ﬁ (Pg)8(py) siné
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where K,(x) is a modified Bessel function of the second 15 p4 sinto 45p
kind. This phase space density is not stationary, because thg 6, ¢,py,p )= —( - ¢ Ko(2p)+ —
term ' 472 4 8?2
2 . 2
. p5 Sire 6
3sirt 9 _e i
S] X o2 K1(2p)+12&7

= K1(2
Pt apn? 1(2p)

X (8—24 sirf 9+ 27 sirf 6) (py) 8(py),
is not a combination of dynamic invariants. Howeverpf

is replaced byp cosa then 15 ] pi Sir? 6
p21(0,0,p0,p4)=—| —1+2p,sind+
' 472 p2
J‘Zﬂ'd ( p(zz,))
a| 1-2—/=0, 2p3, sin 6
0 p? —2p3sir 9— —p‘gp4 Ko(2p)
which means that these two terms in the phase space density 3 i 4 girf
can be omitted without in any way modifying the integral 15 1_2p¢ S 6 pysin” &
(17), the value of the total angular momentum squared A7 p* p*
15 2 3 it
<L2>:f dﬂf dzp p2p( 0’¢’p0,p¢)’ XKq(2p)+ 16m sin® 60— ZSI 0
X 8(pg)d(Py),
on the angular momentufits zth component ’ ¢
(8.0 ) 15 Li0. sing 2p(zf,sinzﬁ
o - . - D.Pg.Py)=—| — sinf—
<L>=ZJ dQJ d2p Py SiNBp( 6, .0y .Py) =(L,)Z. P2 PRI =g Po p
3 o 4
sin® 0 sinto
Therefore, +2p¢ + Ps Ko(2p)
p2 3p* 0
3 psir? 6 15p p,sSin®  p3sirt 6
p1,d0,b.P0,Py) = P 1- 2 Ko(2p) + 1-4 ¢ +6 ¢
2m P 1672 p? P2
3 3 o 4 i 4
= - 4p3sint o pisint o
g O(P0) 3(Py)SIT 0 + ‘;p4 + ¢p4 )Kl(zp)
is time independent and represents the phase space density _ 3
for a rigid rotor in the state with angular momentum squared 3o 1-sir? 6+ gsin 9) o(Py)d(Py)-
(L?=2 and angular momenturfL,)=0, while the prob-
ability density (17) is P(6,¢)=|Y1d0,4)|*. Similarly, the In this way the phase space for the true rigid rotor can be
phase space density fo1 andm=1 is defined. It is “true” because only the variables that are rel-
evant for such an object were introduced.
p’ sir? 0
p11(0,0,P4,Py) = m 1+ 02 Ko(2p) V. DISCUSSION
. Angular momentum in phase space was analyzed, and in
N 3pg sind K.(2p) + 3 this context the rigid rotor was discussed. Perhaps one of the
27%p 16 most intriguing findings is the interpretation of the partition

) of the kinetic energy operator, which is in considerable dis-
X(—2+sir’ ) 8(py) 8(py) agreement with the standard one. Part of what is considered
to be radial kinetic energy is in fact a contribution from the
with the property thaP(0,¢)=|Y1,1(6,¢)|2, (L?y=2, and angular momentum operator, despite the fact that it contains
(Ly=1. only radial variables. This finding does not come as a sur-
The phase space densities for the angular momentumrise if one makes the following observation in traditional
states (2n), m=0,1,2, were calculated as additional ex- classical mechanics. Given spherically symmetric probability
amples. They are associated with the angular momentuniistributions of coordinate®(r) and momentaQ(p) for a
squared valugL?)=6 and the angular momentugl,)  free particle(say, obtained by measuring its position and
=0,1,2, respectively. They are momentum the average kinetic energy is not zero despite
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the fact that the momentum is. Likewise, the average angulggonents of the momentum vector, for which this is not the

momentum is zero but its average modulus squared is n@fgse. Ifp is the modulus of the vectcp} while 6, and ¢, are
because its spherical angles, then

<L2>:f d3rf &p r2(p§+ pf,,)P(r)Q(p)iO. pr=p(cosf cosh,+cog p— ¢ylsindsing,), (18

Ps=p(sin @ cosd,—cog p— ¢,]lcosdsing,),

Introducing the uncertainty principle does not change this _ . .
fact, except that instead of this average having an arbitrary Py=—psi¢—dplsing,,
value it is fixed and equal to 3/2. Therefore a particle alwaysyhich explicitly shows that the radius vector components of
has a nonzero modulus of angular momentum, and its minimomentum are a mixture of momentum and radial vector
mal value is fixed and independent of the phase space despherical coordinates. Therefore in the phase space density
sity. This is like saying that the particle always carries athey must be replaced by E¢L8) and integration over the
minimal intrinsic angular momentum, but in the way it is spatial coordinates performed. Indeed, for the “soft” rigid
described it never manifests itself. For all practical purposesotor it can be shown that one obtains for the momentum
this finding is immaterial, because the standard interpretatiodistribution the square modulus of EdJd), but it is not clear
is self-sufficient, but it becomes evident when classical modwhat the outcome would be for the true rigid rotor. For the
eling is attempted. latter it is required thap, =0 and yet the expression for the

From the phase space density for the rigid rotor one exphase space density would be a functiompa@ind 6, without
pects to obtain the momentum space probability densityan obvious restriction of that kind. However, the explicit

which is given by expression for the momentum probability is not of impor-
tance; it is only important to be able to calculate the aver-
Q(p)= f d3r p(r,p). ages. For example, the average of the square of the Cartesian
’ componentp,, say, with the phase space densityy, is
However, one should be careful about the components of the /&N by

momentum variable. Throughout this paper the components

- 2\ _ ; 2
with respect to the vector were used, because they are (P f d€2 dpydpylpy sine+p,cose cose]
natural when angular momentum is analyzed. This is because

p, andp, are components along the appropriate angular unit Xp2,d0,¢:Pa:Py)
vectors that are perpendicular to the veataand hence di- 227t
rectly proportional to the angular momentuimey can be =7

called the radius vector components of the momentum
However, in momentum space one works only with the comwhere we sep,=0.
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