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Rigid rotor in phase space
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R. Boskovic Institute, 10001 Zagreb, Croatia
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Angular momentum is an important concept in physics, and its phase space properties are important in
various applications. In this work a phase space analysis of angular momentum is made starting from its
classical definition, and its quantum properties are obtained by imposing the uncertainty principle. The kinetic
energy operator is derived, but its part have a different interpretation from that in the standard treatment. The
rigid rotor is discussed and its phase space representation is shown. The true rigid rotor is defined and its phase
space properties are also discussed.
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I. INTRODUCTION

Angular momentum is a very important concept in t
dynamics of particles and within quantum mechanics
properties are very well understood@1# . One example where
the theory has direct application is the rigid rotor mod
which is the basis for understanding rotational spectrosc
and collisions of molecules. These processes are desc
by quantum dynamics, but there are circumstances w
classical dynamics is used as an alternative. For exam
rotational cross sections for two colliding molecules in pr
ciple can be calculated from quantum mechanics, but ofte
is a challenging task. Classical mechanics, on the other h
is relatively simple to use, but there are several problem
its implementation, say, to calculate atom-molecule collis
cross sections. The basic problem is how the initial con
tions are selected and the final results analyzed. For exam
if one says that a molecule is in the rotational state w
quantum numbersl 53 andm52 then the question is wha
to choose for the initial orientation and angular velocity
adequately represent it. An analogous problem has been
lyzed for collisions involving only vibrational energy ex
change in atom-molecule collisions, where it was shown h
to select initial conditions that adequately represent a p
ticular vibrational state of the molecule. A recipe was su
gested from which transition probabilities were successfu
calculated@2# from classical mechanics; by that it is mea
that initial conditions were selected from a prescribed ph
space density but the dynamics is calculated from the cla
cal equations of motion.

The problem is therefore how to choose a set of ini
positions and velocities for a particle so that on average
angular momentum has givenl andm values. In other words
what is needed is a functionf l ,m(rW,pW ) with the property that
the following averages are obtained:

^~rW3pW !2&5E d3rd3p~rW3pW !2f l ,m~rW,pW !5\2l ~ l 11!,

^rW3pW &5E d3rd3p rW3pW f l ,m~rW,pW !5\m ẑ. ~1!

In classical mechanics the functionf l ,m(rW,pW ) is interpreted as
a statistical weight from which the position and momentu
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are selected. It should be noted that it is not necessary
f l ,m(rW,pW ) is a positive function, as long as these averages
obtained. In practice this means that initial conditions a
randomly selected fromu f l ,m(rW,pW )u and if N sets are chosen
then the averages are approximately

^~rW3pW !2&'
(
j 51

N

~rW j3pW j !
2 sgn@ f l ,m~rW j ,pW j !#

(
j 51

N

sgn@ f l ,m~rW j ,pW j !#

,

and similarly for the angular momentum. The functio
sgn@ f l ,m(rW j ,pW j )# is the sign off l ,m(rW j ,pW j ) for the set of ini-
tial conditions (rW j ,pW j ). However, a much more stringent con
dition is that the functionf l ,m(rW,pW ) is stationary. The mean
ing of this can be demonstrated by a simple example.
particle of massM is free and the set of its initial condition
is (rW j ,pW j ) then its position after timet is rW5rW j1(pW j /M )t
and its velocityvW 5pW j /M . From these values one can calc
late a new distribution functiong(rW,pW ), by requiring it to
have the properties previously described for the funct
f l ,m(rW,pW ). Stationarity requires that the two functions a
identical for any timet. This restriction is very important, fo
obvious reasons, and it is sufficient to dismiss a large num
of ad hocdistributions.

The most obvious starting point would be the wave fun
tion for a particle in a particular angular momentum sta
which in the coordinate space isc l ,m(rW)5xn,l(r )Yl ,m(u,f),
whereYl ,m(u,f) is the spherical harmonic. Likewise, in mo
mentum space the wave function isw l ,m(pW )
5vn,l(p)Yl ,m(up ,fp), whereup and fp are angles of the
momentum. One could then form the functionf l ,m(rW,pW )
5uxn,l(r )Yl ,m(u,f)u2uvn,l(p)Yl ,m(up ,fp)u2 from which the
initial position vector and momentum could be selected,
cept that neither are the averages~1! obtained nor is the
condition of stationarity for the functionf l ,m(rW,pW ) satisfied,
which is easily proved. Therefore this simple idea fails, a
this is because one basic difference between classical
quantum dynamics was not taken into account: classical
namics is defined in the phase space, while quantum dyn
©2001 The American Physical Society08-1
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ics is in either the coordinate or momentum space. T
simple product that was suggested for the distribut
f l ,m(rW,pW ) only reflects this: it says that the initial condition
in the phase space are determined as the product of the
tributions from the coordinate and momentum space, wh
are independent. What is needed is a formulation of quan
mechanics in phase space, and then one would possibl
able to satisfy the two conditions above. The earliest atte
in this direction was by Wigner@3#, who looked for a func-
tion r(rW,pW ,t) with the property

P~rW,t !5uc~rW,t !u25E d3p r~rW,pW ,t !,

Q~pW ,t !5uw~pW ,t !u25E d3r r~rW,pW ,t ! ~2!

and obtained what is known as the Wigner function

r~rW,pW ,t !5
1

p3\3E d3q e2ipW •qW /\c* ~rW1qW ,t !c~rW2qW ,t !,

~3!

which is regarded as an extension of quantum mechanics
the phase space. This definition inevitably results in no
niqueness of the extension@4#, because there is a large cla
of phase space functions that are defined by the requirem
~2!. Another attempt to formulate quantum mechanics
phase space is due to Moyal@5,6#, whose main objective wa
to give it a sound statistical foundation. The starting poin
postulate observables as operators, and to postulate tha
each set of commuting observables there is a set of nonc
muting observables. Together they form a complete se
observables. For these observable~operators! one forms a
function from which the characteristic function of statistic
theory for a given quantum statec is obtained as a matrix
element. By the Fourier transform, Moyal obtained a dis
bution that becomes to the Wigner function if the obse
ables are coordinates and momenta. Common to both
proaches is that the principles of quantum mechanics
assumed, although the Moyal analysis is more general.
the Wigner function be used for the distributionf l ,m(rW,pW )? It
is not clear that the averages~1! are obtained; in fact, as wil
be shown later, they are only partly obtained. Furthermore
is also not clear that the stationarity condition is satisfi
however, the Wigner function is stationary under the qu
tum time evolution for the stationary wave function, which
c(rW,t)5c0(rW)e2 iEt/\. The Wigner function has been used
various applications and its properties investigated@7–21# ,
but its true significance is when the connection with class
dynamics is sought. This is achieved by the standard assu
tion that classical dynamics is the limit of quantum dynam
when\→0. It can be shown in general~a one-dimensiona
problem is discussed for the moment! that the Wigner func-
tion satisfies the equation@19,20#
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dy eipyG~x,y!c*

3~x2\y/2,t !c~x1\y/2,t !

where

G~x,y!5 (
n51

`
V(2n11)~x!

22n~2n11!!
~\y!2n11,

and in this limit the inhomogeneous term vanishes. It a
vanishes if the potential is quadratic, irrespective of t
limit. The homogeneous equation is the Liouville equatio
which determines the time evolution of the phase space d
sity r(rW,pW ,t), and it is solved using the classical equations
motion.

Despite this apparently very important connection b
tween quantum and classical dynamics, there are at least
remarks that one can make about this approach. It is de
able for understanding the quantum-classical connection
learn more about the foundations of quantum principles,
cause we are quite familiar with the classical. Strictly spe
ing, that goal was not achieved because with either
Wigner or Moyal formulation of the phase space nothing c
be learned about quantum principles, because they are
starting point anyway. The second remark concerns the l
of the phase space density when\→0, which should also be
taken, not only the limit for the inhomogeneous term. F
stationary states it can be shown that@13#

r~rW,pW ! 5
\→0

d~H2E0!5dF p2

2m
1V~r !2E0G

whereE0 is a fixed energy. This form greatly restricts th
possible phase space densities from among those statio
solutions that are obtained from the Liouville equation. Ho
ever, it is consistent with the accepted view, which is ba
on the correspondence principle: the quantum goes ove
the classical solution for large quantum numbers~the proof
of this is straightforward but not elaborated here!.

The classical-quantum connection can be examined s
ing from entirely classical principles@22,23#, and this, as will
be shown, allows much greater flexibility in the applicatio
of classical dynamics to quantum problems. One starts fr
the Liouville equation in classical dynamics, and the arg
ment on which one bases its use is quite straightforwa
initial conditions for a particle are never accurately det
mined, in which case its precise trajectory has no mean
only the probabilities for its position in the course of tim
For example, to claim that the position of the Earth is ac
rately determined is nonsense, and therefore prediction o
position accurately in the next, say, million years is not p
sible, especially if perturbation from other planets is tak
into account. However, it is possible to predict the probab
ity of finding it at a certain position after~almost! any length
of time. Therefore one starts by formulating classical m
chanics as a statistical theory~it should be strongly empha
sized thatstatistical does not implymanyparticles but the
8-2
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RIGID ROTOR IN PHASE SPACE PHYSICAL REVIEW A64 042708
probability for a single particle!, in contrast to the attempt b
Moyal, whose principal aim was to formulate quantum m
chanics as a statistical theory. In other words, one particl
the phase space is not a point but an extended density, w
takes into account all uncertainties in determining its whe
abouts. For a particle of massm this equation is

] tr~rW,pW ,t !1
pW

m
•¹W rr~rW,pW ,t !1FW •¹W pr~rW,pW ,t !50 ~4!

whereFW is the force on the particle andpW is its momentum.
The index of the operator¹W designates the variable wit
respect to which the derivatives are taken. For the partic
case when the phase space density is stationary, which m
that ] tr(rW,pW ,t)50, the solution is a function of the form
r(rW,pW ,t)5 f (h1 ,h2 ,h3 , . . . ),wheref is an arbitrary function
and hi are dynamic invariants of the classical equations
motion. One of them is the Hamiltonian for the particle, a
others are components of the angular momentum if the fo
FW is centrally symmetric. There are other invariants but th
will be mentioned later. These phase space densities, like
other solution of the Liouville equation, lack a very impo
tant ingredient in order to be regarded also as quantum s
tions. This ingredient is the restriction on the possible ph
space densities, and it is in the form of the uncertainty p
ciple

Dx Dpx>\/2

for any Cartesian coordinate. The standard deviationsDx
and Dp are calculated from the phase space density. Ma
ematically speaking, selecting phase space densities ac
ing to this restriction is a very well defined problem and it
solved within a Fourier analysis. They are obtained in
form of the convolution@25#

r~rW,pW ,t !5
1

p3\3E d3q e2ipW •qW /\ f * ~rW1qW , t ! f ~rW2qW ,t !

~5!

which is also recognized as the Wigner function. The fu
tion f is arbitrary, but if the phase space density satisfies
Liouville equation then it satisfies the equation@24#

i\ ] t f 52
\2

2m
D f 1V f ~6!

whereFW 52¹W V, and the potential is not required to be ha
monic ~for a general potential parametrization of the pha
space density is more elaborate!.

The common point between the Wigner and Moyal a
proaches and the one that starts from classical principle
the function ~3! or ~5!; however, it is an almost arbitrar
function in the former case~because there is no reason
choose it from many other functions! but a convolution in
the latter. Apart from that common point there are fundam
tal differences between the two approaches; the former s
from quantum principles and the latter from classical. O
04270
-
in
ich
-

ar
ans

f

e
y
ny

lu-
e
-

h-
rd-

e

-
e

e

-
is

-
rts
e

manifestation of that is the attitude toward the uncertai
relationship, which in the quantum case it is not considere
principle because it is derived from other ones, while in t
classical case it is assumed to be a fundamental princ
from which the basic dynamics equation of quantum m
chanics~6! is derived. One could cite other fundamental d
ferences between the two approaches, but one is that of
plicity. In the Wigner-Moyal approach one needs all t
postulates used in the formulation of quantum mechan
about whose number there is no general consensus, but i
approach from classical mechanics one needs only the t
Newton postulates and the uncertainty postulate. One co
question the meaning of the uncertainty principle, but o
could equally question the meaning of the observab
operator or wave-particle dualism postulates in the formu
tion of quantum mechanics. Other advantages that one g
by starting from classical principles and not from the qua
tum phase space formulation of Wigner and Moyal will
explicitly manifested in the following sections. In particula
it is not clear how to derive the phase space density for
true rigid rotor, which is done in this work, other than b
starting from classical principles.

There is one conceptual problem in the attempt to me
classical dynamics with the uncertainty principle. Witho
the latter, solutions of the Liouville equation are phase sp
probability densities, and as such they always have posi
values. As soon as one imposes a restriction in the form
the uncertainty principle this feature is lost and one of
ends with a phase space density that has positive and n
tive values. This is the price to be paid for imposing th
restriction, and its physics is justified on the grounds that
uncertainty principle makes it impossible to measure
phase space probability density precisely. One talks t
about the phase space density, whose properties are ex
the same as for the probability density. However, all meas
able quantities, e.g., probability density for the coordina
only, must have physically acceptable values.

In Eq. ~6! one recognizes the Schro¨dinger equation, the
basic equation of quantum mechanics. Therefore the step
classical mechanics described produce identical results a
quantum mechanics, provided the initial condition for t
phase space density is calculated from the parametriza
~5!. Using these principles, first the angular momentum fo
three-dimensional harmonic oscillator will be analyzed.

II. HARMONIC OSCILLATOR IN THREE DIMENSIONS

Stationary phase space densities for a three-dimensi
harmonic oscillator are analyzed assuming that the avera

LW 5E d3r d3p rW3pW r~rW,pW ! ~7!

has a given value. The starting point is the phase sp
density which is parametrized as~5!, where the functions
c are chosen in the form c5r lYl ,m(u,f)Rn,l(r )
5Yl ,m(x,y,z)Rn,l(r ), where u and f are spherical angles
and r is the radial coordinate. The indicesn, l , and m are
8-3
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TABLE I. Phase space density for the ground vibrational state of a harmonic oscillator for the firs
values of angular momentum numbers. The appropriate angular momentum and its modulus squa
given. Definition of the variables is given in the text.

l, m r0,l ,mp3eE
^LW & ^L2&

0,0 1 0 013/2
1,0 2112Ez 0 13213/2
1,1 211E2Ez12Lz 1 ẑ 13213/2

2,0 12(2/3)(E13Ez)1(1/3)(E23Ez)
21(8/3)L224Lz

2 0 23313/2
2,1 (122Ez)(12E1Ez22Lz) 1 ẑ 23313/2

2,2 211(1/2)@E2Ez22(12Lz)#2
2 ẑ 23313/2
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integers~in further analysis units are used in whichm5\
51 and the frequency of the oscillator isv51), Yl ,m(u,f)
is the spherical harmonic, and

Rn,l~r !5N1F1S 2n,l 1
3

2
;r 2De2r 2/2

whereN is a normalization constant and1F1(a,b;z) is the
hypergeometric function. The phase space density is now

rn,l ,m~rW,pW !5
1

p3E d3q e2ipW •qW Yl ,m* ~x1qx ,y1qy ,z1qz!

3Rn,l~ urW1qW u!Yl ,m~x2qx ,y2qy ,z2qz!

3Rn,l~ urW2qW u,! ~8!

which in general does not have a simple explicit form, bu
has a few nice features. It is stationary, which means tha
form does not change with respect to classical time evo
tion. In other words, if the classical solution for the trajecto
is

rW5rW0 cos~ t !1pW 0 sin~ t !

then

r~rW,pW ,t !5rn,l ,m@rW cos~ t !2pW sin~ t !,rW sin~ t !1pW cos~ t !#

5rn,l ,m~rW,pW !.

This means that the phase space density is a function o
dynamic invariants of the harmonic oscillator. One set

these are elements of the energy tensor (1
2 is omitted for
04270
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simplicity! Ei , j5pipj1xixj , i , j 51,2,3 ~the indices desig-
nate the Cartesian componentsx, y, and z), and the other
set are the components of the angular momentumxi pj
2xj pi , iÞ j . Of course, any other combination of the
basic invariants is possible, e.g., the total angular momen
squared. Which ones are present in the phase space de
~8! is determined by explicit calculation, and the first few f
the ground vibrational (n50) state are given in Table I. Th
symbols represent the following quantitie
E5p21r 2, Ez5pz

21z2, L25(ypz2zpy)
21(zpx2xpz)

2

1(xpy2ypx)
2, and Lz5xpy2ypx . These are dynamic in

variants for the harmonic oscillator, and therefore the ph
space density is indeed stationary.

From the phase space densities one can calculate the
angular momentum~7! and its squared modulus from

L25E d3r d3p~rW3pW !2r~rW,pW !.

Their values are given in Table I and as expected the ang
momentum is the same as from quantum analysis: it has
the z component and its value ism. However, the angular
momentum squared is not equal tol ( l 11), as expected from
the quantum treatment, but differs by 3/2. The same is t
for other thann50 states, as shown in Table II. In fact, th
most surprising finding is that the states withl 50, which are
normally associated with zero angular momentum, have
value 3/2 for the angular momentum squared. The questio
where this discrepancy comes from. The simplest answe
that the classical analysis is not correct, because it su
must violate certain rules that are not consistent with
quantum mechanical ones. However, this answer is not
rect, because if one writes the momentum squared asp2
first
ared are
TABLE II. Phase space density for the first excited vibrational state of a harmonic oscillator for the
few values of angular momentum numbers. The appropriate angular momentum and its modulus squ
given. Definition of the variables is given in the text.

l , m r0,l ,mp3eE
^LW & ^L2&

0,0 12(1/3)(4E22E218L2) 0 013/2
1,0 211(2/5)(2E2E219Ez28EEz12E2Ez112L228EzL

228Lz
2) 0 13213/2

1,1 211(1/5)(13E210E212E329Ez18EEz22E2Ez116L228EL2

18EzL
2110Lz28ELz14E2Lz216L2Lz18Lz

2)
1 ẑ 13213/2
8-4
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RIGID ROTOR IN PHASE SPACE PHYSICAL REVIEW A64 042708
5pr
21pu

21pf
2 , where the components of the momentum a

given with respect to the vectorrW, then its average for the
function c5Q(u,f)R(r ) is

^p2&5
1

p3E d3r dpr dpu dpf~pr
21pu

21pf
2 !

3E dqr dqu dqf e2i (prqr1puqu1pfqf)

3Q* ~u1 ,f1!R~r 1!Q~u2 ,f2!R~r 2!,

where

r 65A~r 6qr !
21qu

21qf
2 ,

cosu65
ẑ•~rW6qW !

urW6qW u
5

~r 6qr ! cosu6qu sinu

A~r 6qr !
21qu

21qf
2

, ~9!

eif65
~rW6qW !•~ x̂1 i ŷ !

urW6qW usinu6

5
~r 6qr !sinu7qu cosu6 iqf

urW6qW usinu6

eif.

After a straightforward but lengthy calculation of the int
grals, one obtains

^p2&52E d3r c* ~rW !
1

r 2 F d

dr S r 2
d

dr D
1

1

sin~u!

]

]u S sin~u!
]

]u D1
1

sin2~u!

]2

]f2Gc~rW !,

which is the correct answer for the kinetic energy opera
~up to a prefactor, which was not taken into account!. In the
standard interpretation the angular part is then associ
with the angular momentum squared operator, which ind
gives zero for angular momentum squared for thel 50
states. Therefore the procedure of deriving the kinetic ene
operator is correct, but then the question is where the an
sis that produced the results in Tables I and II is inconsis
with the quantum interpretation. To answer this question
explicitly calculates the average ofpV

2 5pu
21pf

2 , which is
the classical angular part of the momentum squared. For
plicity its average will be calculated for thel 50 state.

By definition,

^pV
2 &5

1

4p4E d3r dpr dpu dpf~pu
21pf

2 !

3E dqr dqu dqf e2i (prqr1puqu1pfqf)

3R@A~r 1qr !
21qu

21qf
2 #R@A~r 2qr !

21qu
21qf

2 #,

where the integration overpr andqr is calculated first, then
pu

2 andpf
2 are replaced by derivatives in the variablesqu and

qf that act on the exponential function, respectively, a
after partial integration over the same variables one obta
04270
e

r

ed
d

y
ly-
nt
e

-

d
s

^pV
2 &52

1

16p3E d3r dpu dpf E dqu dqf e2i (puqu1pfqf)

3~]qu

2 1]qf

2 !@R2~Ar 21qu
21qf

2 !#.

After integration over the variablespu andpf the only non-
zero contribution is

^pV
2 &52

1

4pE d3r R~r !
1

r
] rR~r !.

In fact, the average of the angular momentum squa
~which is L25r 2pV

2 ) is

^L2&52E
0

`

dr r 3R~r !] rR~r !5
3

2
,

which is precisely the value in Tables I and II. Furthermo
the result is independent of the radial function, which in
cates that this is a universal number. In order to check
correctness of the result one calculates the average of
radial part of the momentum squared, and the result is

^pr
2&52

1

4pE d3r R~r !F] r
2R~r !1

1

r
] rR~r !G .

Together with the angular part one obtains the radial par
the kinetic energy operator

Tr52
1

r 2
] r~r 2] r !.

which is the correct answer. Therefore, there is no discr
ancy between the quantum expression for the kinetic ene
and the classical treatment in this work; the difference is
the interpretation of its parts. According to the results in t
work one should interpret the radial kinetic energy opera
as

Tr52] r
22

1

r
] r

while

TV52
1

r
] r2

1

r 2 F 1

sin~u!

]

]u S sin~u!
]

]u D1
1

sin2~u!

]2

]f2G
is the operator for the angular momentum squared.

Further confirmation of this comes from calculating t
average angular momentum explicitly. Forl 50 states it is
given by

^LW &5^Lz&ẑ5
ẑ

4p4E d3r dpr dpu dpf rpf sin~u!

3E dqr dqu dqf e2i (prqr1puqu1pfqf)R~r 1!R~r 2!,
8-5
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S. DANKO BOSANAC PHYSICAL REVIEW A 64 042708
which is easily shown to be zero. This is no contradicti
with the previous finding, because the zero of the angu
momentum is the result of cancellations of the contributio
from the two signs ofpf , rather than the modulus of th
angular momentum being zero. One can therefore calcu
the angular momentum by averaging over only one sign
pf , because the average over the other gives the same r
but with the opposite sign, and the sum total is zero. T
average is

^Lz
1&5

1

4p4E d3r dpr dpu sin~u!E
0

`

dpf rpf

3E dqr dqu dqf e2i (prqr1puqu1pfqf)

3R~r 1!R~r 2!

and after evaluating most of the integrals one gets

^Lz
1&52

1

8ip2E d3rr sin~u!E
0

`

dpfE dqf e2ipfqf]qf

3R2~Ar 21qf
2 !.

By using the relationship

E
0

`

dpf e2ipfqf5pd~2qf!1 iPS 1

2qf
D ,

where P designates the principal value of the integral,
obtain

^Lz
1&52

i

8ip2E d3r r sin~u! PF E dqf R~Ar 21qf
2 !

3R8~Ar 21qf
2 !

1

Ar 21qf
2 G .

The principal value can be omitted because the integran
not singular, in which case

^Lz
1&5

1

4E dr r 2R2~r !5
1

4
.

The value of thez component of the angular momentum
which gets contributions from the spacepf.0, is indepen-
dent of the radial functionR(r ), the same result as before

III. RIGID ROTOR

The rigid rotor in classical physics is a very well defin
object, but one could argue that it is also in quantum phys
Unfortunately, as will be shown, the two definitions do n
have the same meaning. Intuition, which is essentially c
sical, defines a rigid object as one that does not have bre
ing ~radial! motion. Objects that appear to qualify as rigid a
diatomic molecules~at least many of them!, which is sup-
ported by the approximations in their quantum descripti
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The Schro¨dinger equation for the nuclear motion in a d
atomic molecule is

i\
]c

]t
52

\2

2mF 1

r 2

]

]r S r 2
]c

]r D1
1

r 2 sin~u!

]

]u S sin~u!
]c

]u D
1

1

r 2 sin2~u!

]2c

]f2G1V~r ! c,

wherem is the reduced mass of the diatomic molecule a
V(r ) is the internuclear potential. Typically, this potenti
has a deep minimum displaced from the origin by the d
tancer 0 ~the bond length!, which for modeling purposes is
approximated by (m/2)v2(r 2r 0)2. The ground state wave
function in this potential has the widtha, and its relationship
to the bond length isr 0@a. Under these circumstances th
radial coordinate in the angular part of the kinetic ener
operator is approximated by the fixed valuer 0, in which case
the wave function factors asc51/rR(r )Q(u,f,t)e2 iE0t/\,
where E0 is the ground state energy of the molecule. T
angular function then satisfies the equation

i\
]Q~u,f,t !

]t
5TrotQ~u,f,t !1W~u,f,t !Q~u,f,t !

~10!

where

Trot52
\2

2mr0
2 F 1

sin~u!

]

]u S sin~u!
]

]u D1
1

sin2~u!

]2

]f2G
and W(u,f,t) represents interactions of the molecule th
depend on the angles only~say, a dipole in the electric field!.

The unique feature of Eq.~10! is that it depends only on
the angle variables, the orientation angles of the molec
and in this sense it is called the equation for the rigid rot
The operatorTrot then represents the kinetic energy opera
for the rigid rotor, which has the discrete spectrum

TrotYl ,m~u,f!5
\2

2mr0
2

l ~ l 11!Yl ,m~u,f!,

l 50,1,2, . . . , m52 l ,2 l 11, . . . ,l ,

whereYl ,m(u,f) are spherical harmonics, the eigenfunctio
of the rigid rotor. However, this is far from being true, if on
has the image of the classical rigid rotor in mind. Althou
in the previous derivation the dynamics in the angle variab
is decoupled from the dynamics in the radial variable this
not sufficient to call the molecule a rigid rotor. It is als
necessary to prove that the radial component of the mom
tum for the relative motion of the two atoms is decoupl
from its angular ones, and to show this one needs to calcu
the momentum space wave function. This function for a s
tionary rotational state of the ‘‘rigid rotor’’ is
8-6
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w~pW !5E d3r
1

r
R~r !Yl ,m~u,f!eipW •rW

5~2p!3/2i lYl ,m~up ,fp!
1

Ap
E

0

`

dr r 1/2R~r !Jl 11/2~pr !

~11!

where the expansion of the plane wave in spherical coo
nates was used. Decoupling of the radial componentpr from
the angular onespu andpf is therefore not possible becau
p5Apr

21pu
21pf

2 , while the spherical anglesup andfp are
related to the same components in a complicated way. Th
fore it cannot be assumed that the theoretical model that
just described represents a rigid rotor.

Analysis in phase space is more revealing, but it is som
what approximate. It was mentioned that aroundr 5r 0 the
potential is very well approximated by a harmonic, in whi
case the entire wave function for the diatomic molecule

f l~rW !5Ne2~r 2r 0!2/2a2Yl ,m~u,f!

where the 1/r coefficient was assumed to be constant. T
phase space density is then

r l ,m~rW,pW !5
N2

p3E d3q e2ipW •qWYl ,m* ~u1 ,f1!

3Yl ,m~u2 ,f2!e2(urW1qW u2r 0)2/2a22(urW2qW u2r 0)2/2a2

where the anglesu6 andf6 are defined in Eq.~9!. The rigid
rotor model assumption implies thatq!r , and if spherical
coordinates are used for the vectorqW 5qr r̂ 1quû1qffW then
the exponent of the harmonic oscillator function is appro
mately

~ urW1qW u2r 0!2

2a2
1

~ urW2qW u2r 0!2

2a2
;

~r 2r 0!2

a2

1
qr

2

a2 S 12
qu

21qf
2

r 0
2 D 1

~qu
21qf

2 !2

4a2r 0
2

1O~q6!,

where, in the expansion coefficients, except in the lead
one, we setr 5r 0. By recalling that this expansion is in th
exponent, it follows that the range ofuqr u within which it
significantly contributes to the phase space density is of
dera; however, the range ofAqu

21qf
2 is of orderAar0. This

means thatuqr u!Aqu
21qf

2 , in which case the phase spa
density is approximately

r l ,m~rW,pW !5
2r 0a2N2

p5/2
e2(r 2r 0)2/a22pr

2a2E
2`

`

dquE
2`

`

dqf

3e2iA2ar0(puqu1pfqf)2(qu
2
1qf

2 )2

3Q l ,m~r 0 ,u,f,0,A2ar0qu ,A2ar0qf!
04270
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re-
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where the angular functionQ l ,m is shorthand for the produc
of two functionsYl ,m(u6 ,f6). Dependence of the angula
function on the radial variableqr is also neglected, in which
case the phase space density parametrizes as the produ
the function for the radial variables and the function for t
angular. The angular phase space density is now defined

r l ,m
V ~u,f,pu ,pf!5

2ar0

p2 E dqu dqf

3e2iA2ar0(puqu1pfqf)2(qu
2
1qf

2 )2

3Q l ,m~r 0 ,u,f,0,A2ar0qu ,A2ar0qf!

~12!

and appears to describe the rigid rotor because it is inde
dent of the radial variables. However, this conclusion is fa
because the phase space density depends on the radia
rametera, and in this respect it depends on the radial dyna
ics. Because of this feature the rigid rotor will be calle
‘‘soft.’’

The average of the angular momentum squared now
the value

^L2&5E r l ,m
V ~u,f,pu ,pf!r 0

2~pu
21pf

2 !5 l ~ l 11!

where the constant term 3/2 that was obtained in the prev
section is missing. This is expected because coupling w
the radial motion was neglected. Another property of t
angular phase space density is

E
2`

`

dpuE
2`

`

dpf r l ,m
V ~u,f,pu ,pf!

5Q l ,m~r 0 ,u,f,0,0,0!5uYl ,m~u,f!u2 ~13!

which shows that it correctly describes the essentials of
angular momentum. Its explicit form forl 5m50 is given
by

r0,0
V ~u,f,pu ,pf!5

ar0

p2 E0

`

dq qJ0~2A2ar0pq!e2q4
,

which does not have an explicit analytic expression. Ho
ever, its shape is simple, as shown in Fig. 1. For the ro
tional statel 51 andm50 the angular phase space density

r1,0
V ~u,f,pu ,pf!

5
6ar0

4p3 E2`

`

dquE
2`

`

dqfe2iA2ar0(puqu1pfqf)2(qu
2
1qf

2 )2

3
cos2u22equ

2 sin2u

112equ
212eqf

2
;S cos2u1

1

4r 0
2
]pu

2 1
cos2u

4r 0
2

]pf

2 D
3E

0

`

dq qJ0~2A2ar0pq!e2q4
8-7
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wheree5a/r 0, and in the last step only the terms up to ord
e were retained. Similarly the phase space density forl 51
andm51 is

r1,1
V ~u,f,pu ,pf!;S sin2u1

sinu

r 0
]pf

1
1

4r 0
2
]pu

2 1
1

4r 0
2
]pf

2

1
sin2u

4r 0
2

]pf

2 D E
0

`

dq qJ0

3~2A2ar0pq!e2q4
.

These phase space densities, exceptr0,0
V , are time depen-

dent, which means that they are not functions of only
dynamic invariants of the rigid rotor, e.g.,p25pu

21pf
2 and

pfsinu. Thus, for example, the terms inr1,0
V (u,f,pu ,pf)

that cannot be represented by invariants are

r1,0
V ~u,f,pu ,pf!5cos2uE

0

`

dq qJ0~2A2ar0pq!e2q4

2
cos2u

pr0
2
Aar0

2 E
0

`

dq q2J1

3~2A2ar0pq!e2q4
.

The explicit time dependence of the phase space densi
obtained from the time dependence of the angleu,

cosu5cosu0 cos
tp0

mr0
2

pu
0

p0
sinu0 sin

tp0

mr0
,

whereu0 , pu
0 , andp0 are the initial values of these variable

In the phase space density cosu is replaced by

cosu t5cosu cos
tp

mr0
1

pu

p
sinu sin

tp

mr0

and the time dependence of the probability density~13! is
calculated from

FIG. 1. Phase space density for ‘‘soft’’ rigid rotor, for angul
momentum indicesl 5m50.
04270
r

e

is

E
2`

`

dpuE
2`

`

dpf r1,0
V ~u,f,pu ,pf!

;E
2`

`

dpuE
2`

`

dpf cos2 uE
0

`

dq qJ0~2A2ar0pq!e2q4

5
p

32ar0
~11cos2 u!2

pmr0

8A2ar0

~3 cos2 u21!] t

3E
0

t/mr0A2ar0
dq

qe2q4

At2/2am2r 0
32q2

.

The first part is time independent, while the second goe
zero after the time intervalt.mr0A2ar0, which is typically
of the order 10213210214 sec for diatomic molecules
Therefore the probability density starts as Eq.~13! but its
limiting value is constant, although not in the form of th
squared modulus of the spherical harmonic.

IV. TRUE RIGID ROTOR

The previous discussion revealed great difficulty in fo
mulating the concept of a rigid rotor in quantum theory. Th
was manifested as an inability to formulate a phase sp
density that involves only the parameters for the rotatio
degrees of freedom. It does not help to take the limita→0 in
Eq. ~12! because that would imply infinite dispersion of th
variablespu and pf , which only reflects the fact that th
radial and angular components of the momentum are inte
lated. There is, however, a way of formulating the true rig
rotor, but it should be done by following the formulation o
quantum mechanics suggested in the Introduction. One s
from the Liouville equation in spherical coordinates, whi
for a free particle is

] tr2
pu

mr
]ur1

pf

mr sinu
]fr1

pr

m
] rr2

1

mr

3S pf
2 cosu

sinu
1prpuD ]pu

r2
pf

mr S 2pu

cosu

sinu
1pr D ]pf

r

1S pu
2

mr
1

pf
2

mrD ]pr
r50,

and the rigid rotor assumption implies that the phase sp
density isr and pr independent. This means that the Lio
ville equation for the rigid rotor is

] tr2
pu

mr
]ur1

pf

mr sinu
]fr1

pf

mr

cosu

sinu
~pu]pf

r2pf]pu
r!

50 ~14!

wherer is constant. It can easily be verified that if the pha
space density is a function of the formr(u,f,pu ,pf ,t)
5F(pu

21pf
2 ,pfsinu), whereF is an arbitrary function, then

it is time independent. An additional requirement is that t
phase space density should be in accordance with the un
8-8
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tainty principle, which is achieved by straightforward gen
alization of the rule that was used before. The phase sp
density is therefore parametrized as

r~u,f,pu ,pf ,t !5
1

p2E d2q e2i (puqu1pfqf)Q*

3~u1 ,f1! Q~u2 ,f2!, ~15!

where the angular functions will be determined for a parti
lar case when the solutions of the Liouville equation~14! are
stationary, i.e.,] tr50. The relevant variables were define
in Eq. ~9!. The parametrization~15! is replaced in the Liou-
ville equation~14!, and by using transformations of the kin

pur~u,f,pu ,pf!52
1

2i E d2q e2i (puqu1pfqf)]qu

3@Q~u2 ,f2! Q* ~u1 ,f1!#,

pu]pu
r~u,f,pu ,pf!52E d2q e2i (puqu1pfqf)]qu

3@qu Q~u2 ,f2! Q* ~u1 ,f1!#

one obtains, after lengthy simplifications, the result that
stationary solutions of the Liouville equation~14! satisfy

i

2p2E d2q e2i (puqu1pfqf)
1

r 21q2 S f 11
1

r
f 2D50, ~16!

where

f 15Q* F 1

sinu2
]u2

~sinu2 ]u2
Q!1

1

sin2u2

]f2

2 QG
2QF 1

sinu1
]u1

~sinu1]u1
Q* !1

1

sin2u1

]f1
2 Q* G ,

f 252
q2

2r
~cosu11cosu2!S Q* ]u2

Q

sinu2
2

Q]u1
Q*

sinu1
D

2
r

2
~cosu12cosu2!S Q* ]u2

Q

sinu2
1

Q]u1
Q*

sinu1
D

1qf sinuS Q* ]f2
Q

sin2u2

1
Q]f1

Q*

sin2u1

D ,

and q25qu
21qf

2 . It is implied thatQ is a function of the
variablesu2 andf2 while Q* is a function ofu1 andf1 .

If the function f 2 is neglected for the moment then th
condition ~16! implies that the angular function satisfies t
differential equation

1

sinu
]u~sinu]uQ!1

1

sin2u
]f

2 Q5lQ,
04270
-
ce
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e

wherel is a real constant. In this equation one recogniz
the equation for spherical harmonics, wherel52 l ( l 11).
However, the functionf 2 cannot be neglected, and therefo
the angular functions are only approximately the spher
harmonics. However, a very useful feature of the functionf 2
is that in the limitsqu→0 andqf→0 it is equal to zero, in
which case the angular functions are exactly the spher
harmonics. This means that when the phase space dens
integrated over the momentum variables the resulting pr
ability density should be the squared modulus of the sph
cal harmonics, i.e.,

P~u,f!5E dpuE dpf r~u,f,pu ,pf!

5uQ~u,f!u25uYl ,m~u,f!u2. ~17!

The choice of the spherical harmonics for the angular fu
tions means that the phase space density is approxim
which is manifested as being time dependent, i.e., it is no
function of only the dynamic invariants of the rigid roto
This is the price that is paid for neglecting the functionf 2 in
Eq. ~16!. Inclusion of this function results in the phase spa
density that is a function of only these invariants, and t
fact is used as the procedure to find a proper phase s
density. This is best demonstrated by one example. One
ticular case, however, has an exact solution, and this is w
the angular function is constant. In this case

r0,0~u,f,pu ,pf!5
1

p2E d2q e2i (puqu1pfqf)
1

4p

5
1

4p
d~pu!d~pf!.

The example that will be analyzed in more detail is wh
the angular function is the spherical harmonicY1,0(u,f).
The phase space density~15! is

r~u,f,pu ,pf ,t !5
1

p2E d2q e2i (puqu1pfqf)

3Y1,0* ~u1 ,f1!Y1,0~u2 ,f2!

and its explicit form is~the constantr is fixed to unity!

r~u,f,pu ,pf ,t !

5
3

4p3E d2q e2i (puqu1pfqf)
qu

2 sin2u2 cos2 u

11q2

5
3

2p2 S 12
pf

2 sin2 u

p2 D K0~2p!1
3 sin2u

4pp2

3S 122
pf

2

p2 D K1~2p!2
3

8p
d~pu!d~pf! sin2u
8-9
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where Kn(x) is a modified Bessel function of the secon
kind. This phase space density is not stationary, because
term

r t5
3 sin2 u

4pp2
K1~2p!

is not a combination of dynamic invariants. However, ifpf
is replaced byp cosa then

E
0

2p

daS 122
pf

2

p2 D 50,

which means that these two terms in the phase space de
can be omitted without in any way modifying the integr
~17!, the value of the total angular momentum squared

^L2&5E dVE d2p p2r~u,f,pu ,pf!,

on the angular momentum~its zth component!

^LW &5 ẑE dVE d2p pf sinur~u,f,pu ,pf!5^Lz&ẑ.

Therefore,

r1,0~u,f,pu ,pf!5
3

2p2 S 12
pf

2 sin2 u

p2 D K0~2p!

2
3

8p
d~pu!d~pf!sin2 u

is time independent and represents the phase space de
for a rigid rotor in the state with angular momentum squa
^L2&52 and angular momentum̂Lz&50, while the prob-
ability density ~17! is P(u,f)5uY1,0(u,f)u2. Similarly, the
phase space density forl 51 andm51 is

r1,1~u,f,pu ,pf!5
3

4p2 S 11
pf

2 sin2 u

p2 D K0~2p!

1
3pf sinu

2p2p
K1~2p!1

3

16p

3~221sin2 u!d~pu!d~pf!

with the property thatP(u,f)5uY1,1(u,f)u2, ^L2&52, and
^Lz&51.

The phase space densities for the angular momen
states (2,m), m50,1,2, were calculated as additional e
amples. They are associated with the angular momen
squared valuê L2&56 and the angular momentum̂Lz&
50,1,2, respectively. They are
04270
the

ity

sity
d

m

m

r2,0~u,f,pu ,pf!5
15

4p2 S 211
pf

4 sin4u

p4 D K0~2p!1
45p

8p2

3S 12
pf

2 sin2 u

p2 D 2

K1~2p!1
5

128p

3~8224 sin2 u127 sin4 u!d~pu!d~pf!,

r2,1~u,f,pu ,pf!5
15

4p2 S 2112pf sinu1
pf

2 sin2 u

p2

22pf
3 sin3 u2

2pf
4 sin4 u

3p4 D K0~2p!

1
15p

4p2 S 122
pf

3 sin3 u

p4
2

pf
4 sin4 u

p4 D
3K1~2p!1

15

16p S sin2 u2
3

4
sin4 u D

3d~pu!d~pf!,

r2,2~u,f,pu ,pf!5
15

8p2 S 2112pf sinu22
pf

2 sin2 u

p2

12
pf

3 sin3 u

p2
1

pf
4 sin4u

3p4 D K0~2p!

1
15p

16p2 S 124
pf sinu

p2
16

pf
2 sin2 u

p2

1
4pf

3 sin3 u

3p4
1

pf
4 sin4 u

p4 D K1~2p!

1
15

32p S 12sin2 u1
3

8
sin4 u D d~pu!d~pf!.

In this way the phase space for the true rigid rotor can
defined. It is ‘‘true’’ because only the variables that are r
evant for such an object were introduced.

V. DISCUSSION

Angular momentum in phase space was analyzed, an
this context the rigid rotor was discussed. Perhaps one of
most intriguing findings is the interpretation of the partitio
of the kinetic energy operator, which is in considerable d
agreement with the standard one. Part of what is conside
to be radial kinetic energy is in fact a contribution from th
angular momentum operator, despite the fact that it conta
only radial variables. This finding does not come as a s
prise if one makes the following observation in tradition
classical mechanics. Given spherically symmetric probabi
distributions of coordinatesP(r ) and momentaQ(p) for a
free particle ~say, obtained by measuring its position a
momentum! the average kinetic energy is not zero desp
8-10
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the fact that the momentum is. Likewise, the average ang
momentum is zero but its average modulus squared is
because

^L2&5E d3r E d3p r2~pu
21pf

2 !P~r !Q~p!Þ0.

Introducing the uncertainty principle does not change t
fact, except that instead of this average having an arbit
value it is fixed and equal to 3/2. Therefore a particle alwa
has a nonzero modulus of angular momentum, and its m
mal value is fixed and independent of the phase space
sity. This is like saying that the particle always carries
minimal intrinsic angular momentum, but in the way it
described it never manifests itself. For all practical purpo
this finding is immaterial, because the standard interpreta
is self-sufficient, but it becomes evident when classical m
eling is attempted.

From the phase space density for the rigid rotor one
pects to obtain the momentum space probability dens
which is given by

Q~pW !5E d3r r~rW,pW !.

However, one should be careful about the components of
momentum variable. Throughout this paper the compone
with respect to the vectorrW were used, because they a
natural when angular momentum is analyzed. This is beca
pu andpf are components along the appropriate angular
vectors that are perpendicular to the vectorrW and hence di-
rectly proportional to the angular momentum~they can be
called the radius vector components of the momentu!.
However, in momentum space one works only with the co
.
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ev

04270
ar
ot

s
ry
s
i-
n-

s
n
-

-
y,

he
ts

se
it

-

ponents of the momentum vector, for which this is not t
case. Ifp is the modulus of the vectorpW while up andfp are
its spherical angles, then

pr5p~cosu cosup1cos@f2fp#sinu sinup!, ~18!

pu5p~sinu cosup2cos@f2fp#cosu sinup!,

pf52p sin@f2fp#sinup ,

which explicitly shows that the radius vector components
momentum are a mixture of momentum and radial vec
spherical coordinates. Therefore in the phase space de
they must be replaced by Eq.~18! and integration over the
spatial coordinates performed. Indeed, for the ‘‘soft’’ rig
rotor it can be shown that one obtains for the moment
distribution the square modulus of Eq.~11!, but it is not clear
what the outcome would be for the true rigid rotor. For t
latter it is required thatpr50 and yet the expression for th
phase space density would be a function ofp andup without
an obvious restriction of that kind. However, the explic
expression for the momentum probability is not of impo
tance; it is only important to be able to calculate the av
ages. For example, the average of the square of the Carte
componentpx , say, with the phase space densityr2,0, is
given by

^px
2&5E dV dpu dpf@pf sinf1pu cosu cosf#2

3r2,0~u,f,pu ,pf!

5
22p
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,

where we setpr50.
er,

rs

,

,

,

@1# See any standard textbook on angular momentum, e.g., R
Zare,Angular Momentum~Wiley, New York, 1988!.

@2# H. Skenderovic and S. D. Bosanac, Z. Phys. D: At., Mol. Clu
ters35, 107 ~1995!.

@3# E. P. Wigner, Phys. Rev.40, 749 ~1932!.
@4# H.-W. Lee, Phys. Rep.259, 147 ~1995!.
@5# J. E. Moyal, Proc. Cambridge Philos. Soc.45, 99 ~1949!.
@6# M. Gadella, Fortschr. Phys.43, 229 ~1995!.
@7# J. G. Muga, R. Sala, and R. F. Snider, Phys. Scr.47, 732

~1993!.
@8# R. Sala, S. Brouard, and J. G. Muga, J. Chem. Phys.99, 2708

~1993!.
@9# N. L. Balazs and A. Voros, Ann. Phys.~N.Y.! 199, 123~1990!.

@10# E. J. Heller, J. Chem. Phys.65, 1289~1976!.
@11# H. W. Lee and M. O. Scully, J. Chem. Phys.77, 4604~1982!.
@12# L. Bonci, R. Roncaglia, B. J. West, and P. Grigolini, Phys. R

A 45, 8490~1992!.
@13# M. V. Berry, Philos. Trans. R. Soc. London, Ser. A287, 237

~1977!.
N.

-

.

@14# A. Bonasera, V. N. Kondratyev, A. Smerzi, and E. A. Reml
Phys. Rev. Lett.71, 505 ~1993!.

@15# A. Royer, Phys. Rev. A43, 44 ~1991!.
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