PHYSICAL REVIEW A, VOLUME 64, 042514

Variational description of the helium trimer using correlated hyperspherical
harmonic basis functions
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A variational wave function constructed with correlated hyperspherical harmonic functions is used to de-
scribe the Helium trimer. This system is known to have a deep bound state. In addition, different potential
models predict the existence of a shallow excited state that has been identified as an Efimov state. Using the
Rayleigh-Ritz variational principle, the energies and wave functions of both bound states have been obtained
by solving a generalized eigenvalue problem. The introduction of a suitable correlation factor reduces consid-
erably the dimension of the basis needed to accurately describe the structure of the system. The most recent
helium-helium interactions have been investigated.
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[. INTRODUCTION (SAPT) and a very large orbital basis set. In addition, re-
tarded dipole-dipole dispersion interaction is included over
The system He-He is greatly interesting both from a thethe range 0—100 000 a.(SAPTJ), or the more appropriate
oretical and an experimental point of view, and it has beerf0—-100 000 a.u(SAPT2.
the object of intense investigations in the last years. Despite All these five interactions support only a single bound
its simplicity, it is not easy to determine whether it supportsstate of zero total angular momentum. In Table I, we sum-
or not supports a bound state. Experimentally, usual spectrosaarize the different characteristics of each potential, as well
copy techniques are not suitable to its study, and only reas salient properties of the associated bound state. The latter
cently [1-4], diffraction experiments proved its existence, has been computed solving the two-body Sdimger equa-
with a direct measurement of its bond lengRy). Its binding  tion by means of the Numerov algorithm. We used the value
energy has been estimated through the relat|m)| #2/m=43.281307 K a.d. From the table, we can immedi-
~%?/4m(R)? and thes-wave scattering length has been es-ately see that the five potentials do not differ qualitatively
timated asag~2(R). The most recent values for these quan-among each other, though there is a spreading in the binding
tities have been quoted in Ré#] after a new determination energy of the dimefE,| of 0.51 mK. The SAPT potentials
of the bond length by diffraction from a transmission grating.predict the highest-binding energies whereas the LM2M2
They are(R)=98+=8 a.u.,|Ep|=1.1+0.3/~0.2 mK, and and TTY predictions are very close to each other and are the
ap=197+15/-34 a.u.. lowest ones. The differences observed in the binding energy
Theoretically, difficulties in the description of thtHe,  are reflected in the mean values of the ragRsand(R?) as
arise because the He-He interaction results from the subtragvell as in the scattering length.arhe estimate bond length
tion of the huge energies of the separated atoms, which akgR) can be directly compared to the experiment and can be
only slightly different. Moreover, a 1% decrease of thealso used for an estimation of the binding enefgy| and
strength of the interaction makes the system unbound. As the scattering lengthyahrough the relations given in the first
result of the continuous refinement in the past years of botlparagraph. Those values are shown in the last two rows of
experimental data and electronic structure computationalable | and reasonably agree with the estimation of RAf.
techniques, several potential curves for He-He appeared im particular the results obtained with the LM2M2 and TTY
literature. Most of them are presented and compared in apotential are inside the quoted errors. We can also observe
article review by Janzen and Azjs]. However, due to the that the system is strongly correlated as its binding energy
vivid interest in *He,, and to the difficulties in making a |E,| results from a large cancellation between the kin€fig
really accurateab initio potential, newer and more accurate and potential energyV). Its spatial extension is consider-
potentials have recently appeared in literature. Among thably bigger than the range of the potential, as shown in Fig.
ones described in Ref5], the potentials called HFDEG], 1 where the LM2M2 potential and the dimer bound-state
LM2M2 [7], TTY [8] have been widely used in helium clus- wave function® are plotted. Finally, the scattering length
ter calculations. Furthermore, two more up-to-date curvesy, of the system is bigger than the range of the potential by
namely SAPT1 and SAPT®] are now available. The latter an order of magnitude. All these features characterize the
is believed to be the most accurate characterization of théHe, as the weakest, as well as the biggest, diatomic mol-
He-He interaction yet proposed. These potentials are corecule found in nature so far. Moreover, the bound state at
structed on completelpb initio calculations made by Ko- practically zero energy suggests the possibility of observing
rona et al. [10], using infinite order perturbation theory an Efimov-like state in the triatomic compoupti,12.
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TABLE I. Characteristic values of the different potentials and their relative bound sRatepresents the
He-He distanceg is the strength of the potential at its point of minimupy, ando is the distance at which
the potential changes sign.

HFDB  LM2M2  TTY  SAPT1  SAPT2 Ref[4]

€ (K) 10.95 10.97 10.98 11.05 11.06

Mm (a.u) 5.599 5.611 5.616 5.603 5.602

o (a.u) 4.983 4.992 5.000 4.987 4.987

|Ep| (MK) 1.685 1.303 1.313 1.733 1.816

(T) (MK) 112.2 99.43 99.93 115.0 117.8

—(V) (mK) 113.9 100.7 101.2 116.8 119.6

(R) (a.u) 87.81 97.96 97.62 86.04 84.24 o8
WR?) (a.u) 119.0 132.9 1325 116.5 114.0

a (a.u) 170.5 191.4 190.7 166.9 163.2

f214m(R)? (MK) 1.403 1.127 1.136 1.462 1.525 £0.3~0.2
2(R) (a.u) 175.6 195.9 195.2 172.1 168.5 1915/ 34

Along with the observations of small clusters of helium of A, the same property holds for the other potentials men-
atoms, different theoretical methods have been used to studipned above. Therefore, the helium trimer gives the unique
the properties of such systems. From the beginning, it hagossibility of observing the Efimov effect, as the narrow
been clear that standard techniques could have problems fAnge in\ where the excited stattHe} appears contains the
describe thp;e highly correlated structures a_nd, accordinglbhysicm case.=1.
more sophisticated methods have been applied. In[R8f, In the present paper, a set of correlated basis functions is
the diffusion Monte CarldDMC) method was used to de- ,5eq o describe th&He; molecule. The correlated hyper-

?pherical harmoni¢CHH) basis has been applied success-

fully in the ground-state description of light nuclgl8].
imilarly to the cluster of helium, these systems are strongly
rrelated due to the high repulsion of the nucleon-nucleon

“He, has been extensively studied by different methee
Ref. [14] and references therginTheoretically, it has been
shown that the trimer has a deep ground state of about 1

mK and a singlé- =0 excited state of about 2 mK. There are yieniial at short distances. Essentially, the method consists
not .bound states with >0 [1_5]' "_1 Refs..[16,1ﬂ, th,eLZO in a decomposition of the wave function in terms of the
excited state has been studied, in particular looking at thosﬁyperspherical harmoni¢iH) basis multiplied by a suitable
characteristics identifying an Efimov state. In fact, this stat§,qre|ation factor that takes into account the fact that the
has the property of disappearing when the interaction, znapiiity of finding any pair of atoms at distances smaller

strength is tuned with a parameter For example, the ex-  han 3 4.4, is practically zero. The correlation factor has been
cited state exists in the very narrow interval Gs9v=1.2for  (aren as product of one-dimensional correlation functions

the LM2M2 potential. Though with slightly different values f(r) (Jastrow type In Fig. 1,f(r) is compared to the dimer

wave function, showing that both have the same short-range
behavior.

The variational description of the trimer using the CHH
basis is twofold. First, we would like to evaluate the capa-
bility of the correlated basis functions to describe a strongly
correlated system. Special attention will be given to the con-
vergence pattern of the energy for both the ground and ex-
cited states. In Ref.14], calculated binding energies of the
ground and excited states of the trimer obtained by different
groups are given in correspondence with different interac-
tions. The solutions of the Faddeev equations, as well as
variational methods and adiabatic approaches, have been

V(r) [arb. units]

--=-- groundstate used in those calculations. For the very shallow excited state
—-— LM2M?2 potential 1 . ; it
o function of the trimer, only few results using the variational method
have been reported so far, showing the difficulty of describ-
] 1‘0 100 1000 ing this state with the required accuracy using such a tech-

nique. In the present paper, we will show that it is possible to
obtain high-precision upper-bound estimates and wave func-
FIG. 1. The LM2M2 potentiaV, its corresponding ground-state tions for both the ground and excited states by solving a
wave function®, as well as the correlation functidras a func-  generalized eigenvalue problem. Moreover, a detailed study
tion of the interparticle distance of the wave function will be performed. In particular, the tall

r [a.u.]
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of the wave function will be analyzed with the extraction of wherep is the hyperradius that is symmetric under any per-
the asymptotic constants. The second motivation of thenutation of the three particles anrf| is the hyperangle. In
present paper regards the extension of the method to descriterms of the interparticle distances=|r;—r;| the hyperra-
larger systems. In fact, a complete study of the ground statdius reads

and excited states of the tetramer has still to be performed. In

this context, the variational technique is promising and the
present study should be considered a first step along this

direction.

The paper is organized as follows. In the next section,

1

2 2 2
= —\rtrotri;. (6)
P \/5 127 23T 31

discussion of the CHH basis for the systems of three atoms ,glsmg the set of coordinatefp,1=[p, i .x;.yil,
given. The numerical results for the binding energy of thevolume element is

two bound states are given in Sec. lll. Some properties of the

wave functions and the asymptotic constants are calculated dV=p°dp dQ;=p°dp sir? ¢; cog ¢; d¢, dx; dy; .

in Sec. IV whereas the main conclusions as well as some

perspectives for the extension to larger systems are given in The two-dimensional radial amplitude of E@) is now

the last section.

Il. CHH BASIS

In the present paper, the interaction between three helium
atoms is taken as a sum of three pairwise potentials. The

Hamiltonian of the system will be

H=T+ >, V(i,j), (1)

1<j

where T is the kinetic-energy operator and(i,j) is the

He-He interaction that in the present paper will be taken asvith M

one of the potentials mentioned in the previous section.

expanded in terms of the CHH basis
D o (x;,Yi)=p " Lef(r ) f(rag)f(ray

|2 (PPt @)
where the hyperspherical polynomials are giver[ b§)|

@p¢ata( g )= N} e (cose;) a(sin ¢;) P
X (cos ), ®)

/ +1/2L,+1/2

« a normalization factor an@}’ P 3 Jacobi poly-
nomial. The quantum numbeéc is a non-negative integer

Considering the helium atom as a spinless boson, thgelated to the grand orbital quantum number/,+L,
wave function for three identical spinless bosons can be writ-; 2k The product of the hyperspherical polynomlal defmed

ten as a sum of three Faddeev-like amplitudes

W= ih(X1,Y1) + #(X2,Y2) + #(X3,Y3), 2

where the sets of Jacobi coordinates,¥;)(i,j,k=1,2,3 cy-
clic) are

1
Xizﬁ(rj_rk),
Yi:%(rﬁ'rk_zri)- ©)

Eachi amplitude has total angular momenturiv and can
be decomposed into channels

WX i) E@(x.,yo[v/(xm v @

A symmetric wave function requires, to be even. More-
over,/ ,+L, should be even for positive parity states.
Let us introduce the hyperspherical variables

=pCos¢g;, Yyi=psing;, ()

in Eq. (8) times the spherical harmonics coupledLib in
Eq. (4) gives a standard three-body hyperspherical harmonic
(HH) function with defined total angular momentum.

The other ingredient in the expansion of H¢) is the
correlation factor, taken in the present paper of the product
(Jastrow type. Its role is to speed the convergence of the
expansion describing those configurations in which two par-
ticles are close to each other. The use of Jastrow correlation
factors has a long tradition in the description of infinite sys-
tems as nuclear matter or liquid heliJ20], as well as in the
description of light nucle[18]. The wave function describ-
ing strongly interacting structures, in which the interaction is
highly repulsive at short distances, is practically zero when
the distance between any pair of particles is smaller than the
repulsive core of the potential. The correlation factor im-
poses this behavior as can be seen from the specific form of
the correlation functiori(r) given in Fig. 1. The short-range
behavior of f(r) is governed by the two-body potential
whereas its medium and long-range form is not critical since
the structure of the system will be constructed by the HH
basis. A simple procedure to determine the correlation func-
tion for states in which the pairi(j) is in a relative state
with zero angular momentum is to solve the following zero-
energy Schrdinger-like equatio21]

[ ﬁ2< P 29
-— +—
&r rﬁr

+V(r)+W(r)}f(r) 0, (9)
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whereV(r) is the He-He interaction used in the Hamiltonian over, an optimum choice of the nonliner parameezan be
of Eq. (1). The additional ternW(r) is included to allow the used to improve the pattern of convergence.
functionf(r) to satisfy an appropriate healing condition. It is

chosen as IIl. BOUND-STATE CALCULATIONS

W(r)=Wyexp —r/y). (10) The generalized eigenvalue problem of E#3) can be
solved to find bound states of general value of total angular
The specific value ofy is not important provided that the momentumLM. Here we are interested in the ground and
ranges of the additional potentMl(r) andV(r) are compa- excited state of the helium trimer both having total angular
rable [21]. Hereafter, its value has been fixed 465 a.u. momentumL=0. In such a case, the angular dependence of
The depthw, is fixed requiring thaf(r)—1 for values off ~ eachi amplitude of the wave function reduces to a Legendre
greater than the range of the potentigr). polynomial P,(u;) with ui=X;-y;. Moreover, the angular

The hyperradial functionsy(p) of Eq. (7) are taken as a channel with/',=L,=0 is, by far, the most important and it
product of a linear combination of Laguerre polynomials andhas been the first one to be considered. Contributions from
an exponential tail: successive channels, with,=L >0, are highly suppressed
due to centrifugal barrier considerations and can be safely
disregarded as it will be discussed later.

The matrix elements defined in E¢L3) have been ob-
tained numerically. In general, as the dimension of the ma-
Wherez:pr andﬁ is a nonlinear variational parameter. Let trices increases, numerical problems could arise from inte-
|a,k,m) be a correlated completely symmetric element ofgrals containing polynomials of high degree. In fact, a high
the expansion basis, whete denotes the angu|ar channels number of basis functions is expected in order to describe
andk,m are the indices of the hyperspherical and Laguerrésimultaneously both the ground and excited state, which

polynomials, respectively. In terms of the basis elements, thBave a completely different spatial extent. On the other hand,
wave function(2) results the correlation functions introduce a complicated structure at

short distances. Therefore, a dense grid of integration points
N is necessary. The integrals have been performed in the set of
V= a;m A ml @, k,m). (12 coordinate$ p, ¢35, 3] using a Gauss formula in the variable
o us and a Chebyshev Lobatto formula in the variable
The problem is to determine the linear coefficieAfs, . The €0s(2p;). Grids of 300 points for the first case and 3000 for
wave function and energy of the different bound states ar%1e second have been used. In the varighléhe integrals
obtained by solving the following generalized eigenvalueh@ve been performed on a scaled grid
problem [

Ug(p)=2 Aﬁ,mLsﬁ”(z)exp( - ; : (12)

pOZhr

(16)
Pn=XPn-1 (N=1Nna,

> AL (e K m[H—E|a,km)=0. (13
a’k'\m' with the choiceh=0.07 a.u., x=1.008, andn,,,~800,
covering the range 0-5000 a.u. A numerical accuracy of
10"3 mK has been obtained in the calculation of the binding
energies.

The convergence of the eigenvalues has been studied in-
creasing the number of basis elements, restricting the discus-
ion to one channel, namely, tie,=L ,=0 channel. In this
3se, a totally symmetric wave function can be constructed
for values of the quantum numbler=0,2, . . . Ky ax (N0 Sym-
metric function exists fok=1). Therefore, the number of
hyperspherical polynomialk, included in a specific calcu-
(14) lation is Kp,ay, €xcept forky,a,=0, which .correspondKO

=1. The number of Laguerre polynomials My=myay
+1 with m,,,, the maximum degree considered. The total

The dimensiorN of the involved matrices is related to three
indices: the number of angular channblg, the number of
hyperspherical polynomials per chanig], and the number
of Laguerre polynomials per channé,. According to the
Hylleraas-Undheim-MacDonald’s theord@2,23, there ex-
ists a one-to-one correspondence between the approximag
energy levelE;(N) and the exact levelg;=E;(«), theith
approximate level being an upper bound to ille exact
level. Mathematically, the following relations hold:

Ei+1(N+1)=E{(N)=E;(N+1)

and
dimension of the problem to be solvedNs=KyxX M.
lim E(N)=¢;. (15) In Table II, the convergence &, andE, is shown as a
N— +2 function ofky,ax, Mmax for the LM2M2 potential. We observe

that, while the ground-state enerdy, converges with a
The implementation of the method in the specific case of theather small basis set, for the excited stiate it is needed a
helium trimer in which two bound states are known to exist,much bigger basigabout one order of magnitude bigger
consists in solving the generalized eigenvalues problem fofhe ground state converged to the valugEy=
increasing values d¥l, until a convergence is achieved in the —126.36 mK withk,,,=20 andm,,,= 20 whereas the ex-
estimates of the ground staig and excited stat&,. More-  cited state converged #,=—2.27 mK withk,,,,=80 and
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TABLE II. Convergence of the LM2M2 ground-state eneify TABLE lll. Binding energy and mean values of the kinetic and
and excited-state enerdy; for increasing values of the order of potential energy of the helium trimer ground state calculated for
hyperspherical polynomials,,,, and Laguerre polynomialsi,ay. different pairwise interactions. The mean values and square-root

In the last column, the convergence for the kinetic energy is shownmean values of the distance of particlei from the CM, and the
Basis states wittr’,=L,=0 have been considered. The nonlinear interparticle distance;; are also given. In the last two rows, the
parametep3 has been fixed to 0.40 a.it.for the ground state and asymptotic constart, and the probability of a dimerlike structure

0.10 a.u.? for the excited state. are reported.
Ground state HFDB LM2M2 TTY SAPT1 SAPT2
Kinax 5 10 15 20
Mo Eo (M) Eo (M) By (M) Eo () To (o) X (L 00 B0 8 mor s
4 —120.376 —120.689 —120.726 —120.737 1769.481 —(V) (mK) 1831 1787 1788 1841 1850
8 —126.080 —126.274 —126.286 —126.288 1662.829 (r;) (a.u) 10.38 10.51 10.49 10.36 10.25
12 —126.143 —126.337 —126.348 —126.349 1660.232 m (au) 1211 12.28 12.26 12.09 12.03
16 —126.148 —126.342 —126.353 —126.354 1660.185 (rij) (a.u) 17.98 18.21 18.16 17.95 17.77
20 —126.149 —126.343 —126.354 —126.355 1660.186 \/<_r|2_> (a.u) 20.97 20.71 20.71 20.95 20.84
24 —126.149 —126.343 —126.354 —126.355 1660.187 ¢, 1.22 1.17 1.18 1.24 1.25
Excited state PJ 0.3614 0.3310 0.3311 0.3619 0.3539
Kimax 20 40 60 80
Mmax E1 (MK) E; (MK) E; (MK) E; (MK) T; (MK)
8 —-1168 -1579 -1612 -1622 139.535 Special attention has been given to the study of the con-
L —-1523 -2097 -2148 -2160 127.139  ygrgence with the nonlinear paramef@rin Fig. 2, we re-
16 —1585  —-2150 —2222 —2.237 123526  ported the ground- and excited-state energy curves as a func-
20 —-1.562  —2.157 -2.237 —2.257 122.247  tjon of B for increasing values oK,. The number of
24 —1565 —-2.160 —2.240 -2.262 121.943 | aguerre polynomials has been kept fixedvat,,= 24. For
28 —1.567 —-2.161 2241 -2.264 121927 the ground-state energy, the upper curve corresponds to
32 —-1567 -2.162 -2.242 -2.265 121.935 K.,~=0, i.e., only one hyperspherical polynomial has been

taken into account, and the lower curve corresponds to
Kmax=20. Results with larger values &f,,, are not shown
Myax=32. In order to speed the convergence with respect tgince they completely overlap with the resultlqf,,= 20.

the Laguerre polynomials, the value of the nonlinear paramFor the excited-state energy the different curves correspond
eter 8 has been optimized. For the ground and excited stat®o k,,,,=20,40,60,80. We observed that there is a region
we have use@8=0.40 a.u.! and3=0.10 a.u.’, respec- where the variation of8 does not appreciably affect the
tively. binding energies.

After the convergence of the first channel is achieved, the The variational method provides, in addition to an upper
contribution of the channet',=L,=2 can be evaluated. bound to the exact energy of the states, a variational estimate
The first four linearly independent totally symmetric basisof the corresponding wave functions. Through the wave
elements belonging to the second channel correspond to vdiinction, it is possible to calculate a certain number of mean
ues of the grand angular quantum numBer 12,16,18,20. values characterizing the ground and excited state. In Tables
The inclusion of these elements gives extremely small conHI-IV, we computed the binding energy, the mean value of
tributions to the binding energy of the two states and doeshe kinetic energy, the potential energy, the interparticle dis-
not change the estimates given above. It is important to nokancer;; , and the distance; between the particle and the
tice that the Jastrow correlation factor introduced contribucenter of mass. The HFDB, LM2M2, TTY, SAPT1, and
tions from channels with'',=L ,=2 already in a calculation SAPT2 interactions have been considered. Other than typical
limited to the first channel. observables, we also computed the asymptotic normalization

-50 : . - . 05 : . : .

FIG. 2. The ground-state en-
ergy E, and excited-state energy
E, as a function of the nonlinear
= paramete3. For the ground state,
—100 | § E 15} 4 the curves corresponding Q.
ur =0,20 are shown, whereas for the
excited state, the curves are given

\K in  correspondence  t0 Kyax
=20,40,60,80. The number of La-

_150 . . 25 . . guerre polynomials has been fixed
0

02 0.4 0 01 L 02 t0 My a,= 24 in all cases.
B [au’] B [a.u™]

E, [mK]
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TABLE IV. Binding energy and mean values of the kinetic and where® is the dimer w.f., and, the asymptotic constant.
potential energy of the helium trimer excited state calculated forTherefore, the overlap function
different pairwise interactions. The mean values and square-root
mean values of the distance of particlei from the CM, and the
interparticle distance;; are also given. In the last two rows, the
asymptotic constant, and the probability of a dimerlike structure
are reported.

0,(y)= f PF(X) YY)V, dy dx (19)

is proportional toe™ 9¥/y asy—c«. In Fig. 3, we plot the
overlap functions?,(y) and the asymptotic functior@® ,(y)

HFDB  LM2M2  TTY  SAPT1 SAPT2 ¢ hoth the ground and excited state. From the figure, it is

B (MK) 2735 2265 2277 2788 2.885 clgar that the two curves approach each other as thg distance
(™ (MK)  134.1 121.9 1224 1357 137.8 Y increases. We also observe _the very large extenS|c_)n of the
(V) (mK) 1368 1242 1247 1385 1417 excited state. The asymptotic constamis are obtained
(r) (au) 87.24 94.00 93.67 83.07 7622 eyalua@tmg the ratia@?,(y)/0 ,(y) atllargey yalues gnd are
JF  (@u 1035 1111 1095 9667  81.00 given in Tables Il and IV for the different interactions con-
(r--)l (@u) 1456 1570 1507 1391 1250 s!dgred. For the ground state, the five interactions produce

ij : - : ' ' "~ similar values ofcy, though the values of LM2M2 and TTY
frf)  @w 1777 1025 1837 1675 1411 L slightly smaller. Conversely, for the excited state, the
Cll 1.20 1.24 1.24 119 109 result obtained with SAPT2 is smaller than that obtained
P3 0.7266 0.7462 0.7461 0.7030 0.5816 \yith the other potentials.

constantsc, for the two bound states, as defined in Refs.

[24,25 and briefly described below, and the percent®gje
of dimerlike structures in the trimer wave functios, (v

~0,1).

The percentag®, of a dimerlike structure inside the tri-
mer is defined as

Pa= fo |O,(y)|?y? dy. (20)

The variational wave function is constructed in the
present paper as a sum of correlated products of polynomia
with an exponential tail in the hyperradius. The short-range o ; - .
behavior of the wave function is governed by the correlatior"r:]round state, the probability of a dimerlike .structure s
factor whereas in the medium and asymptotic region the eX@round 0.35, whereas for the excited state this probability

pansion should reproduce the structure of the system. It jiicreases up to 0.75 for LM2L.2 and TTY interactions. The

interesting to evaluate the flexibility of the correlated basis WO SAPT interactions predict a lower dimerlike structure, in

g ; - particular SAPT2. This behavior is related to the slightly
e ?ﬁgeascfgsgg’c ﬁ;ﬁic?iso%mfx.t'c behavior. Let us intro, e binding predicted by the SAPT potentials for the two
e_qu

he results for the ground and excited state are collected in
ables Il and IV for the different interactions. For the trimer

17

bound states. As a general remark, the very high vaIU@éof
(nearly 70%, compared to 35% of the ground stateggests
0,(y)= \/2_% ) that the excited state diHe; can effectively be pictured as a
y third particle orbiting around a two-particle structure.
whereq, = Vm[E,— E4|/%2, andE, andE are, respectively, In Fig. 4, we plotted some distribution functions relevant
the trimer (*=0,1) and the dimer binding energies. Heye, !0 understanding the structure of the two bound states of the
denotes the second Jacobi coordinate defined in(@gin  trimer. Namely, we plotted the pair distribution function
the configuration in which one atom is far from the other twoP(rj), Which represents the probability to find the partidles
the trimer wave functior(w.f.) for the ground and excited @ndj at distancer;;, and the mass distribution function
stateW , behaves asymptotically like m(r;), which is related to the probability to find the particle
i at distance; from the center of mass of the system.
Our results for the ground state agree quite well with the

y—

W, ———¢,0,(y) Yo V) Dy(x), (18 ones published in literaturel6,17,26,28,2 For the SAPT
10’ . 10° . . .
107" #\ .
\ FIG. 3. Overlap functions
$—. PRIAN | O,(y) (solid line) and asymptotic
5 10 N
s, Y functions®,(y) (dashed ling for
g R N the ground state =0) and ex-
107 1 cited state {=1).
107 '

y[a.u]

100
y[a.u]

042514-6

1
150

200



VARIATIONAL DESCRIPTION OF THE HELIUM. .. PHYSICAL REVIEW A64 042514

0.1 . — : 0.01 . —
7 T
= =
S 0.05 . & 0.005 | .
g ]
0 L 0 N
0 25 50 0 250 500 o .
. [a] r [an] FIG. 4. Distribution functions
p(ri;) and m(r;) for the ground
0.06 and excited state of the helium tri-
: ' ' ' mer.
0.004 - g
— 004 . _
3 '3
] S
= =~ 0.002 [ .
£ 002} . =4
0 0 L .
0 50 100 10° 10' 10° 10°
r;; [au] r;; [au]

potentials, we find that the bond becomes slightly tightemwith the claim that it is an Efimov state. Our results agree
(=~5%), as a result of the its more attractive well. But, basi-quite well with Refs[16,17], where the peculiarity of such a
cally, there are not qualitative differences in describing thebehavior has been widely discussed. To summarize it, we
trimer with any of the different pairwise interactions. There observed that the trimer begins to support an excited state at
is a discrepancy in literature whether the main spatial arA~0.975; then, increasing, the binding energy first in-
rangement of the three particles in the ground state is either@eases, until it achieves its maximum»at 1.05, and suc-
quasilinear or equilateral configuratior29]. Our results cessively decreases, until it dissociates.

seem to agree with the latter. In fact, we can try to discrimi- In order to compare the different pairwise interactions, we
nate between the two by looking at the pair distribution andassume that due to the very large extension of the w.f. com-
the mass distribution functions. As shown in Fig. 4, the probpared to the range of the potential, the particles are not sen-
ability to find any particle in proximity of the c.m. is almost sitive to the particular shape of it, but somehow to its aver-
zero. This strongly suggests that the most probable configiage strength. Accordingly we define

ration is the equilateral one. Moreover, the ratio between
(rij)/(ri) is very close to the ideal3 of equilateral triangle 0
for all the potentials we used. Regarding the excited state

the presence of a two-peaks structure in the pair distributior
function agrees with the interpretation of such a state as com

posed by a two-particle core surrounded by the third atom ai

a larger distance.

For the excited state, the results do not depend qualita%
tively on the potential we use. This may look very surprising =, -0.8 -
at a first glance, because this state is suspected to be &
Efimov state, and consequently, it is expected to be strongly”
affected by any minimum variation of the pairwise interac-
tion. Following Refs[16,17,27, we studied the behavior of
“He} as a function of the strength of the pairwise interac-
tion. In Fig. 5, we plotted the energy differenEg-E4 of the
system as a function of the parametedefined by 16 \ -
0.95 1.05 1.15 1.25

ViHe-He=AVL, (21 A
FIG. 5. The energy differende, — E4 as a function oh. In the
whereV, is the LM2M2 potential. We found that this state small frame, the positions in the curve of the different values\for
disappears both increasing and decreasdingn agreement calculated as explained in the text are given.
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% celerating the rate of convergence of the expansion basis. In

f Vy particular, the CHH basis combines a Jastrow correlation fac-

= x , (22)  tor with the HH basis. The CHH basis has been used before
J"”V in the description of nuclear systers8] in order to take

oL L into account the strong repulsion of the nucleon-nucleon in-

teraction at short distances. Here, the CHH basis has been
with x=L,T,H,S1,S2 in accordance with the LM2M2, TTY, used to study five different interactions in the description of
HFDB, SAPT1, and SAPT2 interactions and is the inter-  the trimer. The pattern of convergence for the bound and
particle distance where the considered potential changesxcited state has been studied by increasing the number of
sign, i.e.,Vy(oy)=0. In the smaller frame of Fig. 5, we basis elements. With a sufficient number of elements, the
reported the different values f, . It is worth to observe that dependence on the nonlinear paramgtégs smooth. There-
the potentials do not differ so much to show dissimilar re-fore, it is possible to obtain a simultaneous description of the
sults, as all the points lie in a small intervalgf=1. In fact,  bound states with high accuracy. The results are collected in
a plot in function of\ for the other interactions shows that in Tables IlI-IV and are in close agreement with previous re-
all cases the physical cage=1 is on the left of the mini- sults obtained by different groups using the HFDB, LM2M2,
mum of the curve, as for the LM2M2 potential. and TTY interactions. The estimates for the binding energy
The most peculiar feature of an Efimov-like system is thatare upper bounds to the exact levels and show that the varia-
it disappears tightening the interaction among its compotional method can be used to describe strongly correlated
nents. Physically, such a behavior could be explained by picsystems, as helium trimer, with results that are believed to be
turing the system like composed by a third-particle orbitingamong the most accurate ones at present.
around a two-particle sub-system. Increasing the strength of Some interesting aspects of the wave function have been
the pairwise interaction makes the two particles tighter tostudied. Its asymptotic behavior in a configuration where one
each other, and the third one evaporates as a result of its veatom is moving away from the other two is given in E48).
weak bound. In Fig. 3 this behavior is shown for the two bound states.
From this study the asymptotic constawctshave been ex-
IV. CONCLUSIONS tracted. In some particular systems, the asymptotic constants
) ] ] can be measurefB0]. Moreover, the probabilityP, of a
In the present paper, the helium trimer has been investigimeriike structure inside the trimer has been calculated.

gated using the most recent helium-helium potential modelsris quantity gives a clear idea of the spatial structure of the

Tptehheclitﬁr:'tkr)im.erv%/%ve futﬂction has beer;lexpanc]iced i? M olecule. For the ground state, we obtainB§~0.35
orthe asis. 2nen, e Energies and wave MUNCUONs Qq pqraas for the excited stat®}~0.70. This latter result
the ground and excited state have been obtained by solving a . . : . :

. X . Ysuggests a configuration of two atoms in a dimerlike state
generalized eigenvalue problem. The Hylleraas-Undheim=

MacDonald’s theorem assures that the obtained results fov?”th a third atom orbiting. : ' .
The present paper should be considered as a first step in

the energy of the levels represent upper bounds to the exaﬁ%e use of the variational technique with correlated basis

values. . _ . .
The strong repulsion of the He-He potential at short Olis_funcuons for describing small helium clqsters. The extension
e _ of the method to study larger systems is feasible. The study
tances engenders some difficulties in the description of the ;
. ; . of the bound states of the tetramer is at present underway and
three-atoms system in terms of an expansion basis. Ver‘Xl. . :
. . . ill be the subject of a forthcoming paper.
large bases are then necessary in order to obtain a satisfac-
tory description of the structure of both bound states. The
structure is such that the probability of finding two atoms at ACKNOWLEDGMENT
short distances is close to zero and this type of behavior is
difficult to describe using, for example, a polynomial expan- The authors would like to acknowledge Professor L.

sion. Correlation factors naturally introduce this behavior acBruch for helpful discussions.
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