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Variational description of the helium trimer using correlated hyperspherical
harmonic basis functions
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A variational wave function constructed with correlated hyperspherical harmonic functions is used to de-
scribe the Helium trimer. This system is known to have a deep bound state. In addition, different potential
models predict the existence of a shallow excited state that has been identified as an Efimov state. Using the
Rayleigh-Ritz variational principle, the energies and wave functions of both bound states have been obtained
by solving a generalized eigenvalue problem. The introduction of a suitable correlation factor reduces consid-
erably the dimension of the basis needed to accurately describe the structure of the system. The most recent
helium-helium interactions have been investigated.
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I. INTRODUCTION

The system He-He is greatly interesting both from a t
oretical and an experimental point of view, and it has be
the object of intense investigations in the last years. Des
its simplicity, it is not easy to determine whether it suppo
or not supports a bound state. Experimentally, usual spec
copy techniques are not suitable to its study, and only
cently @1–4#, diffraction experiments proved its existenc
with a direct measurement of its bond length^R&. Its binding
energy has been estimated through the relationuEbu
'\2/4m^R&2 and thes-wave scattering length has been e
timated asa0'2^R&. The most recent values for these qua
tities have been quoted in Ref.@4# after a new determination
of the bond length by diffraction from a transmission gratin
They are^R&59868 a.u., uEbu51.110.3/20.2 mK, and
a05197115/234 a.u..

Theoretically, difficulties in the description of the4He2

arise because the He-He interaction results from the sub
tion of the huge energies of the separated atoms, which
only slightly different. Moreover, a 1% decrease of t
strength of the interaction makes the system unbound. A
result of the continuous refinement in the past years of b
experimental data and electronic structure computatio
techniques, several potential curves for He-He appeare
literature. Most of them are presented and compared in
article review by Janzen and Aziz@5#. However, due to the
vivid interest in 4He2, and to the difficulties in making a
really accurateab initio potential, newer and more accura
potentials have recently appeared in literature. Among
ones described in Ref.@5#, the potentials called HFDB@6#,
LM2M2 @7#, TTY @8# have been widely used in helium clu
ter calculations. Furthermore, two more up-to-date curv
namely SAPT1 and SAPT2@9# are now available. The latte
is believed to be the most accurate characterization of
He-He interaction yet proposed. These potentials are c
structed on completelyab initio calculations made by Ko
rona et al. @10#, using infinite order perturbation theor
1050-2947/2001/64~4!/042514~9!/$20.00 64 0425
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~SAPT! and a very large orbital basis set. In addition, r
tarded dipole-dipole dispersion interaction is included o
the range 0–100 000 a.u.~SAPT1!, or the more appropriate
10–100 000 a.u.~SAPT2!.

All these five interactions support only a single bou
state of zero total angular momentum. In Table I, we su
marize the different characteristics of each potential, as w
as salient properties of the associated bound state. The l
has been computed solving the two-body Schro¨dinger equa-
tion by means of the Numerov algorithm. We used the va
\2/m543.281 307 K a.u.2. From the table, we can immed
ately see that the five potentials do not differ qualitative
among each other, though there is a spreading in the bin
energy of the dimeruEbu of 0.51 mK. The SAPT potentials
predict the highest-binding energies whereas the LM2
and TTY predictions are very close to each other and are
lowest ones. The differences observed in the binding ene
are reflected in the mean values of the radius^R& and^R2& as
well as in the scattering length a0. The estimate bond length
^R& can be directly compared to the experiment and can
also used for an estimation of the binding energyuEbu and
the scattering length a0 through the relations given in the firs
paragraph. Those values are shown in the last two row
Table I and reasonably agree with the estimation of Ref.@4#,
in particular the results obtained with the LM2M2 and TT
potential are inside the quoted errors. We can also obs
that the system is strongly correlated as its binding ene
uEbu results from a large cancellation between the kinetic^T&
and potential energŷV&. Its spatial extension is conside
ably bigger than the range of the potential, as shown in F
1 where the LM2M2 potential and the dimer bound-sta
wave functionFd are plotted. Finally, the scattering leng
a0 of the system is bigger than the range of the potential
an order of magnitude. All these features characterize
4He2 as the weakest, as well as the biggest, diatomic m
ecule found in nature so far. Moreover, the bound state
practically zero energy suggests the possibility of observ
an Efimov-like state in the triatomic compound@11,12#.
©2001 The American Physical Society14-1
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TABLE I. Characteristic values of the different potentials and their relative bound states.R represents the
He-He distance,e is the strength of the potential at its point of minimumr m , ands is the distance at which
the potential changes sign.

HFDB LM2M2 TTY SAPT1 SAPT2 Ref.@4#

e ~K! 10.95 10.97 10.98 11.05 11.06
r m ~a.u.! 5.599 5.611 5.616 5.603 5.602
s ~a.u.! 4.983 4.992 5.000 4.987 4.987
uEbu ~mK! 1.685 1.303 1.313 1.733 1.816
^T& ~mK! 112.2 99.43 99.93 115.0 117.8
2^V& ~mK! 113.9 100.7 101.2 116.8 119.6
^R& ~a.u.! 87.81 97.96 97.62 86.04 84.24 9868
A^R2& ~a.u.! 119.0 132.9 132.5 116.5 114.0
a ~a.u.! 170.5 191.4 190.7 166.9 163.2
\2/4m^R&2 ~mK! 1.403 1.127 1.136 1.462 1.525 1.110.3/20.2
2^R& ~a.u.! 175.6 195.9 195.2 172.1 168.5 197115/234
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Along with the observations of small clusters of heliu
atoms, different theoretical methods have been used to s
the properties of such systems. From the beginning, it
been clear that standard techniques could have problem
describe those highly correlated structures and, accordin
more sophisticated methods have been applied. In Ref.@13#,
the diffusion Monte Carlo~DMC! method was used to de
scribe the ground state of He molecules up to 10 atoms.
4He3 has been extensively studied by different methods~see
Ref. @14# and references therein!. Theoretically, it has been
shown that the trimer has a deep ground state of about
mK and a singleL50 excited state of about 2 mK. There a
not bound states withL.0 @15#. In Refs.@16,17#, theL50
excited state has been studied, in particular looking at th
characteristics identifying an Efimov state. In fact, this st
has the property of disappearing when the interact
strength is tuned with a parameterl. For example, the ex
cited state exists in the very narrow interval 0.97&l&1.2 for
the LM2M2 potential. Though with slightly different value

FIG. 1. The LM2M2 potentialV, its corresponding ground-stat
wave functionFd , as well as the correlation functionf as a func-
tion of the interparticle distancer.
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of l, the same property holds for the other potentials m
tioned above. Therefore, the helium trimer gives the uniq
possibility of observing the Efimov effect, as the narro
range inl where the excited state4He3* appears contains th
physical casel51.

In the present paper, a set of correlated basis function
used to describe the4He3 molecule. The correlated hype
spherical harmonic~CHH! basis has been applied succes
fully in the ground-state description of light nuclei@18#.
Similarly to the cluster of helium, these systems are stron
correlated due to the high repulsion of the nucleon-nucle
potential at short distances. Essentially, the method con
in a decomposition of the wave function in terms of t
hyperspherical harmonic~HH! basis multiplied by a suitable
correlation factor that takes into account the fact that
probability of finding any pair of atoms at distances smal
than 3 a.u. is practically zero. The correlation factor has b
taken as product of one-dimensional correlation functio
f (r ) ~Jastrow type!. In Fig. 1, f (r ) is compared to the dime
wave function, showing that both have the same short-ra
behavior.

The variational description of the trimer using the CH
basis is twofold. First, we would like to evaluate the cap
bility of the correlated basis functions to describe a stron
correlated system. Special attention will be given to the c
vergence pattern of the energy for both the ground and
cited states. In Ref.@14#, calculated binding energies of th
ground and excited states of the trimer obtained by differ
groups are given in correspondence with different inter
tions. The solutions of the Faddeev equations, as wel
variational methods and adiabatic approaches, have b
used in those calculations. For the very shallow excited s
of the trimer, only few results using the variational meth
have been reported so far, showing the difficulty of descr
ing this state with the required accuracy using such a te
nique. In the present paper, we will show that it is possible
obtain high-precision upper-bound estimates and wave fu
tions for both the ground and excited states by solving
generalized eigenvalue problem. Moreover, a detailed st
of the wave function will be performed. In particular, the ta
4-2
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VARIATIONAL DESCRIPTION OF THE HELIUM . . . PHYSICAL REVIEW A64 042514
of the wave function will be analyzed with the extraction
the asymptotic constants. The second motivation of
present paper regards the extension of the method to des
larger systems. In fact, a complete study of the ground s
and excited states of the tetramer has still to be performed
this context, the variational technique is promising and
present study should be considered a first step along
direction.

The paper is organized as follows. In the next section
discussion of the CHH basis for the systems of three atom
given. The numerical results for the binding energy of t
two bound states are given in Sec. III. Some properties of
wave functions and the asymptotic constants are calcul
in Sec. IV whereas the main conclusions as well as so
perspectives for the extension to larger systems are give
the last section.

II. CHH BASIS

In the present paper, the interaction between three he
atoms is taken as a sum of three pairwise potentials.
Hamiltonian of the system will be

H5T1(
i , j

V~ i , j !, ~1!

where T is the kinetic-energy operator andV( i , j ) is the
He-He interaction that in the present paper will be taken
one of the potentials mentioned in the previous section.

Considering the helium atom as a spinless boson,
wave function for three identical spinless bosons can be w
ten as a sum of three Faddeev-like amplitudes

C5c~x1 ,y1!1c~x2 ,y2!1c~x3 ,y3!, ~2!

where the sets of Jacobi coordinates (xi ,yi)( i , j ,k51,2,3 cy-
clic! are

xi5
1

A2
~r j2r k!,

yi5
1

A6
~r j1r k22r i !. ~3!

Each i amplitude has total angular momentumLM and can
be decomposed into channels

c~xi ,yi !5(
a

Fa~xi ,yi !@Yl a
~ x̂i !YLa

~ ŷi !#LM . ~4!

A symmetric wave function requiresl a to be even. More-
over, l a1La should be even for positive parity states.

Let us introduce the hyperspherical variables

xi5r cosf i , yi5r sinf i , ~5!
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wherer is the hyperradius that is symmetric under any p
mutation of the three particles andf i is the hyperangle. In
terms of the interparticle distancesr i j 5ur i2r j u the hyperra-
dius reads

r5
1

A3
Ar 12

2 1r 23
2 1r 31

2 . ~6!

Using the set of coordinates@r,V i #[@r,f i ,x̂i ,ŷi #, the
volume element is

dV5r5dr dV i5r5dr sin2 f i cos2 f i df i dx̂i dŷi .

The two-dimensional radial amplitude of Eq.~4! is now
expanded in terms of the CHH basis

Fa~xi ,yi !5r l a1La f ~r 12! f ~r 23! f ~r 31!

3F(
k

uk
a~r!(2)Pk

l a ,La~f i !G , ~7!

where the hyperspherical polynomials are given by@19#

(2)Pk
l a ,La~f i !5Nk

l a ,La~cosf i !
l a~sinf i !

LaPk
l a11/2,La11/2

3~cos 2f i !, ~8!

with Nk
l a ,La a normalization factor andPk

a,b a Jacobi poly-
nomial. The quantum numberk is a non-negative intege
related to the grand orbital quantum numberK5l a1La
12k. The product of the hyperspherical polynomial defin
in Eq. ~8! times the spherical harmonics coupled toLM in
Eq. ~4! gives a standard three-body hyperspherical harmo
~HH! function with defined total angular momentum.

The other ingredient in the expansion of Eq.~4! is the
correlation factor, taken in the present paper of the prod
~Jastrow! type. Its role is to speed the convergence of t
expansion describing those configurations in which two p
ticles are close to each other. The use of Jastrow correla
factors has a long tradition in the description of infinite sy
tems as nuclear matter or liquid helium@20#, as well as in the
description of light nuclei@18#. The wave function describ
ing strongly interacting structures, in which the interaction
highly repulsive at short distances, is practically zero wh
the distance between any pair of particles is smaller than
repulsive core of the potential. The correlation factor im
poses this behavior as can be seen from the specific form
the correlation functionf (r ) given in Fig. 1. The short-range
behavior of f (r ) is governed by the two-body potentia
whereas its medium and long-range form is not critical sin
the structure of the system will be constructed by the H
basis. A simple procedure to determine the correlation fu
tion for states in which the pair (i , j ) is in a relative state
with zero angular momentum is to solve the following zer
energy Schro¨dinger-like equation@21#

F2
\2

m S ]2

]r 2 1
2

r

]

]r D1V~r !1W~r !G f ~r !50, ~9!
4-3
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P. BARLETTA AND A. KIEVSKY PHYSICAL REVIEW A 64 042514
whereV(r ) is the He-He interaction used in the Hamiltonia
of Eq. ~1!. The additional termW(r ) is included to allow the
function f (r ) to satisfy an appropriate healing condition. It
chosen as

W~r !5W0 exp~2r /g!. ~10!

The specific value ofg is not important provided that th
ranges of the additional potentialW(r ) andV(r ) are compa-
rable @21#. Hereafter, its value has been fixed tog55 a.u.
The depthW0 is fixed requiring thatf (r )→1 for values ofr
greater than the range of the potentialV(r ).

The hyperradial functionsuk
a(r) of Eq. ~7! are taken as a

product of a linear combination of Laguerre polynomials a
an exponential tail:

uk
a~r!5(

m
Ak,m

a Lm
(5)~z!expS 2

z

2D , ~11!

wherez5br andb is a nonlinear variational parameter. L
ua,k,m& be a correlated completely symmetric element
the expansion basis, wherea denotes the angular channe
andk,m are the indices of the hyperspherical and Lague
polynomials, respectively. In terms of the basis elements,
wave function~2! results

C5 (
a,k,m

Ak,m
a ua,k,m&. ~12!

The problem is to determine the linear coefficientsAk,m
a . The

wave function and energy of the different bound states
obtained by solving the following generalized eigenva
problem

(
a8,k8,m8

Ak8,m8
a8 ^a8,k8,m8uH2Eua,k,m&50. ~13!

The dimensionN of the involved matrices is related to thre
indices: the number of angular channelsNa , the number of
hyperspherical polynomials per channelKa , and the number
of Laguerre polynomials per channelMa . According to the
Hylleraas-Undheim-MacDonald’s theorem@22,23#, there ex-
ists a one-to-one correspondence between the approxi
energy levelsEi(N) and the exact levelse i[Ei(`), the i th
approximate level being an upper bound to thei th exact
level. Mathematically, the following relations hold:

Ei 11~N11!>Ei~N!>Ei~N11! ~14!

and

lim
N→1`

Ei~N!5e i . ~15!

The implementation of the method in the specific case of
helium trimer in which two bound states are known to ex
consists in solving the generalized eigenvalues problem
increasing values ofN, until a convergence is achieved in th
estimates of the ground stateE0 and excited stateE1. More-
04251
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over, an optimum choice of the nonliner parameterb can be
used to improve the pattern of convergence.

III. BOUND-STATE CALCULATIONS

The generalized eigenvalue problem of Eq.~13! can be
solved to find bound states of general value of total angu
momentumLM . Here we are interested in the ground a
excited state of the helium trimer both having total angu
momentumL50. In such a case, the angular dependence
eachi amplitude of the wave function reduces to a Legen
polynomial Pl(m i) with m i5 x̂i• ŷi . Moreover, the angular
channel withl a5La50 is, by far, the most important and
has been the first one to be considered. Contributions f
successive channels, withl a5La.0, are highly suppresse
due to centrifugal barrier considerations and can be sa
disregarded as it will be discussed later.

The matrix elements defined in Eq.~13! have been ob-
tained numerically. In general, as the dimension of the m
trices increases, numerical problems could arise from in
grals containing polynomials of high degree. In fact, a hi
number of basis functions is expected in order to desc
simultaneously both the ground and excited state, wh
have a completely different spatial extent. On the other ha
the correlation functions introduce a complicated structure
short distances. Therefore, a dense grid of integration po
is necessary. The integrals have been performed in the s
coordinates@r,f3 ,m3# using a Gauss formula in the variab
m3 and a Chebyshev Lobatto formula in the variab
cos(2f3). Grids of 300 points for the first case and 3000 f
the second have been used. In the variabler, the integrals
have been performed on a scaled grid

H r05h,

rn5xrn21 ~n51,nmax!,
~16!

with the choiceh50.07 a.u., x51.008, andnmax'800,
covering the range 0–5000 a.u. A numerical accuracy
1023 mK has been obtained in the calculation of the bindi
energies.

The convergence of the eigenvalues has been studie
creasing the number of basis elements, restricting the dis
sion to one channel, namely, thel a5La50 channel. In this
case, a totally symmetric wave function can be construc
for values of the quantum numberk50,2, . . . ,kmax ~no sym-
metric function exists fork51). Therefore, the number o
hyperspherical polynomialsK0 included in a specific calcu
lation is kmax, except forkmax50, which correspondsK0
51. The number of Laguerre polynomials isM05mmax
11 with mmax the maximum degree considered. The to
dimension of the problem to be solved isN5K03M0.

In Table II, the convergence ofE0 andE1 is shown as a
function ofkmax,mmax for the LM2M2 potential. We observe
that, while the ground-state energyE0 converges with a
rather small basis set, for the excited stateE1, it is needed a
much bigger basis~about one order of magnitude bigger!.
The ground state converged to the valueE05
2126.36 mK withkmax520 andmmax520 whereas the ex
cited state converged toE1522.27 mK withkmax580 and
4-4
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VARIATIONAL DESCRIPTION OF THE HELIUM . . . PHYSICAL REVIEW A64 042514
mmax532. In order to speed the convergence with respec
the Laguerre polynomials, the value of the nonlinear para
eterb has been optimized. For the ground and excited s
we have usedb50.40 a.u.21 and b50.10 a.u.21, respec-
tively.

After the convergence of the first channel is achieved,
contribution of the channell a5La52 can be evaluated
The first four linearly independent totally symmetric ba
elements belonging to the second channel correspond to
ues of the grand angular quantum numberK512,16,18,20.
The inclusion of these elements gives extremely small c
tributions to the binding energy of the two states and d
not change the estimates given above. It is important to
tice that the Jastrow correlation factor introduced contri
tions from channels withl a5La>2 already in a calculation
limited to the first channel.

TABLE II. Convergence of the LM2M2 ground-state energyE0

and excited-state energyE1 for increasing values of the order o
hyperspherical polynomialskmax and Laguerre polynomialsmmax.
In the last column, the convergence for the kinetic energy is sho
Basis states withl a5La50 have been considered. The nonline
parameterb has been fixed to 0.40 a.u.21 for the ground state and
0.10 a.u.21 for the excited state.

Ground state
kmax 5 10 15 20
mmax E0 (mK) E0 (mK) E0 (mK) E0 (mK) T0 (mK)

4 2120.376 2120.689 2120.726 2120.737 1769.481
8 2126.080 2126.274 2126.286 2126.288 1662.829
12 2126.143 2126.337 2126.348 2126.349 1660.232
16 2126.148 2126.342 2126.353 2126.354 1660.185
20 2126.149 2126.343 2126.354 2126.355 1660.186
24 2126.149 2126.343 2126.354 2126.355 1660.187

Excited state
kmax 20 40 60 80
mmax E1 (mK) E1 (mK) E1 (mK) E1 (mK) T1 (mK)
8 21.168 21.579 21.612 21.622 139.535
12 21.523 22.097 22.148 22.160 127.139
16 21.555 22.150 22.222 22.237 123.526
20 21.562 22.157 22.237 22.257 122.247
24 21.565 22.160 22.240 22.262 121.943
28 21.567 22.161 22.241 22.264 121.927
32 21.567 22.162 22.242 22.265 121.935
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Special attention has been given to the study of the c
vergence with the nonlinear parameterb. In Fig. 2, we re-
ported the ground- and excited-state energy curves as a f
tion of b for increasing values ofkmax. The number of
Laguerre polynomials has been kept fixed atmmax524. For
the ground-state energy, the upper curve correspond
kmax50, i.e., only one hyperspherical polynomial has be
taken into account, and the lower curve corresponds
kmax520. Results with larger values ofkmax are not shown
since they completely overlap with the result atkmax520.
For the excited-state energy the different curves corresp
to kmax520,40,60,80. We observed that there is a reg
where the variation ofb does not appreciably affect th
binding energies.

The variational method provides, in addition to an upp
bound to the exact energy of the states, a variational estim
of the corresponding wave functions. Through the wa
function, it is possible to calculate a certain number of me
values characterizing the ground and excited state. In Ta
III–IV, we computed the binding energy, the mean value
the kinetic energy, the potential energy, the interparticle d
tancer i j , and the distancer i between thei particle and the
center of mass. The HFDB, LM2M2, TTY, SAPT1, an
SAPT2 interactions have been considered. Other than typ
observables, we also computed the asymptotic normaliza

n.

TABLE III. Binding energy and mean values of the kinetic an
potential energy of the helium trimer ground state calculated
different pairwise interactions. The mean values and square-
mean values of the distancer i of particle i from the CM, and the
interparticle distancer i j are also given. In the last two rows, th
asymptotic constantc0 and the probability of a dimerlike structur
are reported.

HFDB LM2M2 TTY SAPT1 SAPT2

B ~mK! 133.0 126.4 126.4 133.8 135.1
^T& ~mK! 1698 1660 1662 1707 1715
2^V& ~mK! 1831 1787 1788 1841 1850
^r i& ~a.u.! 10.38 10.51 10.49 10.36 10.25
A^r i

2& ~a.u.! 12.11 12.28 12.26 12.09 12.03

^r i j & ~a.u.! 17.98 18.21 18.16 17.95 17.77
A^r i j

2 & ~a.u.! 20.97 20.71 20.71 20.95 20.84

c0 1.22 1.17 1.18 1.24 1.25
Pd

0 0.3614 0.3310 0.3311 0.3619 0.3539
-
y
r
,

e
n

-
d

FIG. 2. The ground-state en
ergy E0 and excited-state energ
E1 as a function of the nonlinea
parameterb. For the ground state
the curves corresponding tokmax

50,20 are shown, whereas for th
excited state, the curves are give
in correspondence to kmax

520,40,60,80. The number of La
guerre polynomials has been fixe
to mmax524 in all cases.
4-5
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constantscn for the two bound states, as defined in Re
@24,25# and briefly described below, and the percentagePd

n

of dimerlike structures in the trimer wave functionsCn (n
50,1).

The variational wave function is constructed in t
present paper as a sum of correlated products of polynom
with an exponential tail in the hyperradius. The short-ran
behavior of the wave function is governed by the correlat
factor whereas in the medium and asymptotic region the
pansion should reproduce the structure of the system.
interesting to evaluate the flexibility of the correlated basis
reproduce correctly the asymptotic behavior. Let us int
duce the asymptotic functionQn(y):

Qn~y!5A2qn

e2qny

y
, ~17!

whereqn5AmuEn2Edu/\2, andEn andEd are, respectively,
the trimer (n50,1) and the dimer binding energies. Herey
denotes the second Jacobi coordinate defined in Eq.~3!. In
the configuration in which one atom is far from the other tw
the trimer wave function~w.f.! for the ground and excited
stateCn behaves asymptotically like

Cn ——→
y→`

cnQn~y!Y00~ ŷ!Fd~x!, ~18!

TABLE IV. Binding energy and mean values of the kinetic a
potential energy of the helium trimer excited state calculated
different pairwise interactions. The mean values and square-
mean values of the distancer i of particle i from the CM, and the
interparticle distancer i j are also given. In the last two rows, th
asymptotic constantc0 and the probability of a dimerlike structur
are reported.

HFDB LM2M2 TTY SAPT1 SAPT2

B ~mK! 2.735 2.265 2.277 2.788 2.885
^T& ~mK! 134.1 121.9 122.4 135.7 137.8
2^V& ~mK! 136.8 124.2 124.7 138.5 141.7
^r i& ~a.u.! 87.24 94.00 93.67 83.07 76.22
A^r i

2& ~a.u.! 103.5 111.1 109.5 96.67 81.00

^r i j & ~a.u.! 145.6 157.0 150.7 139.1 125.0
A^r i j

2 & ~a.u.! 177.7 192.5 183.7 167.5 141.1

c1 1.20 1.24 1.24 1.19 1.09
Pd

1 0.7266 0.7462 0.7461 0.7030 0.581
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whereFd is the dimer w.f., andcn the asymptotic constant
Therefore, the overlap function

On~y!5E Fd* ~x!Y00* ~ ŷ!Cn dŷ dx ~19!

is proportional toe2qny/y as y→`. In Fig. 3, we plot the
overlap functionsOn(y) and the asymptotic functionsQn(y)
for both the ground and excited state. From the figure, i
clear that the two curves approach each other as the dist
y increases. We also observe the very large extension of
excited state. The asymptotic constantscn are obtained
evaluating the ratioOn(y)/Qn(y) at largey values and are
given in Tables III and IV for the different interactions con
sidered. For the ground state, the five interactions prod
similar values ofc0, though the values of LM2M2 and TTY
are slightly smaller. Conversely, for the excited state,
result obtained with SAPT2 is smaller than that obtain
with the other potentials.

The percentagePd of a dimerlike structure inside the tri
mer is defined as

Pd
n5E

0

`

uOn~y!u2y2 dy. ~20!

The results for the ground and excited state are collecte
Tables III and IV for the different interactions. For the trim
ground state, the probability of a dimerlike structure
around 0.35, whereas for the excited state this probab
increases up to 0.75 for LM2L2 and TTY interactions. T
two SAPT interactions predict a lower dimerlike structure,
particular SAPT2. This behavior is related to the sligh
tighter binding predicted by the SAPT potentials for the tw
bound states. As a general remark, the very high value ofPd

1

~nearly 70%, compared to 35% of the ground state! suggests
that the excited state of4He3 can effectively be pictured as
third particle orbiting around a two-particle structure.

In Fig. 4, we plotted some distribution functions releva
to understanding the structure of the two bound states of
trimer. Namely, we plotted the pair distribution functio
p(r i j ), which represents the probability to find the particlei
and j at distancer i j , and the mass distribution functio
m(r i), which is related to the probability to find the partic
i at distancer i from the center of mass of the system.

Our results for the ground state agree quite well with
ones published in literature@16,17,26,28,27#. For the SAPT

r
ot
FIG. 3. Overlap functions
On(y) ~solid line! and asymptotic
functionsQn(y) ~dashed line! for
the ground state (n50) and ex-
cited state (n51).
4-6
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FIG. 4. Distribution functions
p(r i j ) and m(r i) for the ground
and excited state of the helium tri
mer.
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potentials, we find that the bond becomes slightly tigh
~'5%!, as a result of the its more attractive well. But, ba
cally, there are not qualitative differences in describing
trimer with any of the different pairwise interactions. The
is a discrepancy in literature whether the main spatial
rangement of the three particles in the ground state is eith
quasilinear or equilateral configuration@29#. Our results
seem to agree with the latter. In fact, we can try to discrim
nate between the two by looking at the pair distribution a
the mass distribution functions. As shown in Fig. 4, the pro
ability to find any particle in proximity of the c.m. is almos
zero. This strongly suggests that the most probable confi
ration is the equilateral one. Moreover, the ratio betwe
^r i j &/^r i& is very close to the idealA3 of equilateral triangle
for all the potentials we used. Regarding the excited st
the presence of a two-peaks structure in the pair distribu
function agrees with the interpretation of such a state as c
posed by a two-particle core surrounded by the third atom
a larger distance.

For the excited state, the results do not depend qua
tively on the potential we use. This may look very surprisi
at a first glance, because this state is suspected to b
Efimov state, and consequently, it is expected to be stron
affected by any minimum variation of the pairwise intera
tion. Following Refs.@16,17,27#, we studied the behavior o
4He3* as a function of the strength of the pairwise intera
tion. In Fig. 5, we plotted the energy differenceE1-Ed of the
system as a function of the parameterl defined by

VHe2He5lVL , ~21!

whereVL is the LM2M2 potential. We found that this sta
disappears both increasing and decreasingl, in agreement
04251
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with the claim that it is an Efimov state. Our results agr
quite well with Refs.@16,17#, where the peculiarity of such a
behavior has been widely discussed. To summarize it,
observed that the trimer begins to support an excited sta
l'0.975; then, increasingl, the binding energy first in-
creases, until it achieves its maximum atl'1.05, and suc-
cessively decreases, until it dissociates.

In order to compare the different pairwise interactions,
assume that due to the very large extension of the w.f. c
pared to the range of the potential, the particles are not s
sitive to the particular shape of it, but somehow to its av
age strength. Accordingly we define

FIG. 5. The energy differenceE12Ed as a function ofl. In the
small frame, the positions in the curve of the different values forlx

calculated as explained in the text are given.
4-7
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lx5

E
sx

`

Vx

E
sL

`

VL

, ~22!

with x5L,T,H,S1,S2 in accordance with the LM2M2, TTY
HFDB, SAPT1, and SAPT2 interactions andsx is the inter-
particle distance where the considered potential chan
sign, i.e., Vx(sx)50. In the smaller frame of Fig. 5, we
reported the different values oflx . It is worth to observe tha
the potentials do not differ so much to show dissimilar
sults, as all the points lie in a small interval oflL51. In fact,
a plot in function ofl for the other interactions shows that
all cases the physical casel51 is on the left of the mini-
mum of the curve, as for the LM2M2 potential.

The most peculiar feature of an Efimov-like system is t
it disappears tightening the interaction among its com
nents. Physically, such a behavior could be explained by
turing the system like composed by a third-particle orbiti
around a two-particle sub-system. Increasing the strengt
the pairwise interaction makes the two particles tighter
each other, and the third one evaporates as a result of its
weak bound.

IV. CONCLUSIONS

In the present paper, the helium trimer has been inve
gated using the most recent helium-helium potential mod
The helium trimer wave function has been expanded in te
of the CHH basis. Then, the energies and wave function
the ground and excited state have been obtained by solvi
generalized eigenvalue problem. The Hylleraas-Undhe
MacDonald’s theorem assures that the obtained results
the energy of the levels represent upper bounds to the e
values.

The strong repulsion of the He-He potential at short d
tances engenders some difficulties in the description of
three-atoms system in terms of an expansion basis. V
large bases are then necessary in order to obtain a sati
tory description of the structure of both bound states. T
structure is such that the probability of finding two atoms
short distances is close to zero and this type of behavio
difficult to describe using, for example, a polynomial expa
sion. Correlation factors naturally introduce this behavior
@1# F. Luo, C. F. Giese, and W. R. Gentry, J. Chem. Phys.104,
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celerating the rate of convergence of the expansion basi
particular, the CHH basis combines a Jastrow correlation
tor with the HH basis. The CHH basis has been used be
in the description of nuclear systems@18# in order to take
into account the strong repulsion of the nucleon-nucleon
teraction at short distances. Here, the CHH basis has b
used to study five different interactions in the description
the trimer. The pattern of convergence for the bound a
excited state has been studied by increasing the numbe
basis elements. With a sufficient number of elements,
dependence on the nonlinear parameterb is smooth. There-
fore, it is possible to obtain a simultaneous description of
bound states with high accuracy. The results are collecte
Tables III–IV and are in close agreement with previous
sults obtained by different groups using the HFDB, LM2M
and TTY interactions. The estimates for the binding ene
are upper bounds to the exact levels and show that the v
tional method can be used to describe strongly correla
systems, as helium trimer, with results that are believed to
among the most accurate ones at present.

Some interesting aspects of the wave function have b
studied. Its asymptotic behavior in a configuration where o
atom is moving away from the other two is given in Eq.~18!.
In Fig. 3 this behavior is shown for the two bound stat
From this study the asymptotic constantscn have been ex-
tracted. In some particular systems, the asymptotic const
can be measured@30#. Moreover, the probabilityPd of a
dimerlike structure inside the trimer has been calculat
This quantity gives a clear idea of the spatial structure of
molecule. For the ground state, we obtainedPd

0'0.35
whereas for the excited state,Pd

1'0.70. This latter result
suggests a configuration of two atoms in a dimerlike st
with a third atom orbiting.

The present paper should be considered as a first ste
the use of the variational technique with correlated ba
functions for describing small helium clusters. The extens
of the method to study larger systems is feasible. The st
of the bound states of the tetramer is at present underway
will be the subject of a forthcoming paper.
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