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QED calculation of the interelectron interaction in two- and three-electron ions
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Accurate QED evaluations of the one- and two-photon interelectron interaction for the configurations
15,5251, 1Sy and 15,5254, 3S; in He-like ions and for the configurationsg)£2s,,, and (1s)?2p,, in Li-like
ions with nuclear charge numbers8@<92 are performed. The three-photon interaction is also partly taken
into account. The QED theory of these corrections is provided by the adi&gatidrix and by the line-profile
approach. The Coulomb gauge is employed. The results are compared with available experimental data and
with different calculations.
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[. INTRODUCTION plication of this approach to the bound-state QED are pro-
vided in[33,34,21].

The energy levels of two-electron ions are currently under It is essential to distinguish the contributions of the “irre-
intensive experimental investigatioh—8|, as are those of ducible” and “reducible” graphs. In the irreducible graphs,
three-electron ion§9—11]. The deduced experimental data the initial or “reference” state is omitted in the summations
[9] for the splitting between the energy levelss(})?2s;,, over intermediate atomic states. The contribution of the “ref-
and (1s,,)%2py, in Li-like U are very accurate and therefore erence” states is described by the reducible graphs. The re-

imply an excellent opportunity for tests of QED in the strongducible graphs are singular and for their regularization a spe-
electric field of the nucleus. A considerable number of theoCi@l procedure is needed. In the framework of the adiatstic
matrix approach, this procedure was described3h,21].

retical investigations was devoted to the evaluation of differ—F ¢ loct ‘ h luati ¢ ref at

ent QED corrections to the energy levels of He-like and Li-"~©F 'eW-€l€ctron atoms, the evajuation of reference-state cor-
like iQons. A two-electron charact%; displays the Lamb shi1"[re(.:t'0.ns(RSQ is simpler when the energies of both ele_ctrons
screening corrections and the interelectron interaction correc%)r'Tﬁfi;%f%?ig;agﬁﬁgﬁ etl)sgt(: g?]eznrgtg;ggg g?aTe)ps“rnated
tions. The Lamb S.hift screen_ing corrections, i.e., elgctrpqhe latter case, the direct adiabatcmatrix approach is
self-en_ergy screening corrections and vacuum po@'zat'oﬂardly applicable. Therefore, for the evaluation of the RSC
screening corrections, were c_alculate(ﬂiﬁ—llﬂ for He-like for nonequal energies we will use in this paper the “line
ions and in[15-2Q for Li-like ions. profile approach” developed if86].

The dominant two-electron contribution results from the' Reference-state corrections for two-electron atoms were
first-order interelectron interaction. The QED evaluation Offirst introduced in[37]. An explicit expression for the

the first-order interelectron interaction correction is trivial; coulomb-Breit “box” correction for equal energids.g., for
see, for examplg21]. The second-order correction is much the ground state of the two-electron atowas obtained in
more intricate. Many theoretical results for two- and three{35], and for nonequal energies[ig8—40. In the latter case,
electron ions were obtained within the framework of relativ-the line profile approach has been employed.
istic many-body perturbation theofRMBPT) [22—-24 and The corresponding expressions for the RSC in the Feyn-
its generalizations, namely the relativistic all-order many-man gauge and within the Green-function approach were ob-
body theory(AO) [25]. Compared to the full QED calcula- tained in[41] for equal energies and if¥2] for nonequal
tion, the following contributions are omitted in RMBPT and energies. Numerical calculations of the RSC for the ground
AO: (i) negative-energy intermediate stat@, crossed pho- state of two-electron ions in the Feynman gauge were pre-
ton interaction, andiii) exact treatment of retardation. On sented in [26,27. The numerical calculations of the
the other hand, AO partly takes into account retardation an€oulomb-Breit RSC for the &,,2S1/, 'Sy, 1S1,2P1/ Py,
higher-order interactions, which may be important even forand 1s,,,2s;/, 33, two-electron configurations and partly for
very highZ ions. the (1s)?2s,,, and (1s)?2p,, three-electron configurations
Full QED calculations of the second-order interelectronwere performed in39,40. The numerical results for the
interaction were accomplished in recent years only for theRSC for three-electron configurations are also givef2Bi.
ground state of He-like iong26,27. Recently, the full QED For the sake of accuracy, we reproduced the results for the
approach was applied also to thes(})?2py-(1512)%2s;,  ground (Is,,)? state and made a detailed comparison with
splitting in Li-like U [28,29 and ton=2 triplet states in the corresponding results [27], where the Coulomb gauge
He-like ions[30]. was also used. The Coulomb-Coulomb interaction was repro-
For the evaluation of the interelectron interaction correc-duced with an accuracy of 0.01% for afl values. The
tions within the QED theory, we employ the adiaba&@ima-  Coulomb-Breit part has been reproduced with an accuracy of
trix approach[31,37 in the Furry picture and the Feynman 0.05% and the Breit-Breit part is reproduced with an accu-
graph techniques for the bound electrons. Details of the apracy of 0.1%. The small deviations are due to the different
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numerical methods: ifi27] the method of discretization of wheree, are the one-electron energies. The zero-order wave

the radial Dirac equations was employed, while we used théunction of the atom(ion) in the nondegenerate case is the

B-spline approach in this paper. Slater determinant built from the one-electron functiahs
The paper is organized as follows. In Sec. Il, a genera(n=1,... N), where N is the number of electrons. The

description of the adiabati® matrix approach is given and zero-order energy of the atom is the sum of the one-electron

its historical background is briefly indicated. In Secs. Ill andenergies

IV, the formulas for the irreducible contributions to the inter- N

electron interaction in two- and three-electron ions are pro- 0)_

vided. In Sec. V, the line profile QED approach is formulated E _nzl €n- ©

and its application to the evaluation of the reducible contri-

butions to the interelectron interaction is described. In Sec. The adiabaticS-matrix formalism is based on the use of

VI, the formula; for the red_ucible con_tributior)s in two- and tne adiabatic evolution operat&g(t,t’). This operator is

three-electron ions are derived. Section VIl is devoted to %xpressed as

discussion of the results and to a comparison with experi-

mental data and with different theoretical calculations. In . <

Appendix A, the application of th&matrix theory to irre- S\(tt)=1+2> S"(t,t"), )

ducible Feynman graphs is rigorously formulated. Some de- n=1

tails of the numerical procedure and the accuracy estimates

t
are presented in Appendix B. AS(A”)(t,t’)z(—i)”e”f HM(t))dt,
t/
Il. ADIABATIC S-MATRIX APPROACH EPON -1y
| | < [MAaaa - [T AR, ©
For the calculations of the corrections to the energy lev- ' t'

els, we use the adiabatf&matrix approach first developed ~ ) Botry o ifiota [

by Gell-Mann and Low{31] and generalized to a form suit- HO) (1) =eMotH e~ Hote A, )
able for QED calculations by Suchfg32]. This approach is _ _ . -

based on the Furry pictuf@3], which describes the many- HereA>0 is the adiabatic parameter aR{)(t) denotes the
electron atom as a set of electrons, moving in the field of th@diabatic interaction Hamiltonian in the interaction represen-
nucleus and interacting with one another through the intertation. Formulas(7)—(9) present the adiabatic_perturbation
action with the electromagnetic field. The Hamiltonian of antheory in powers of the interaction constant Ja ( is the

atom in the second quantization representation is fine-structure constant
Gell-Mann and Low[31] derived a formula which yields
H=Hy+H,, (1)  the energy shift due to the interactid¢8) in terms of the

operatorS, (0,—«). Later Suchef32] derived a symme-

R T F00d 5 trized version of the energy shift formula, containing the
Ho= f O)hp () ¥ (x)dr, @ matrix elements of the operatBte, — ) and which is more
suitable for the renormalization procedure. The energy shift
. N ~ is determined by
Hint: - JM(X)AM(X)drv (3)
J ~
. ) . ,\ i e D[Sy (%, —2)|D,)
whereW, W™ are the electron-positron field operators &pd AE.= lim I—)\e e (10)
is the one-electron Dirac operatét;, defines the interaction ? 0?2 (D, S\ (0, —0)|D,) ’

of the electrons with the electromagnetic fieig,is the op-

erator of the electron-positron current, a&g is the operator
of the 4-vector potential of the electromagnetic field.

where |®,) is the state vector for the noninteracting
electron-positron and electromagnetic fields.
Formula(10) enables one to extend the well-known tech-

The Dirac operatohy, is given by nique of calculating theSmatrix elements in QED to the
. energy shift calculations. Practically, this means that the
hp(r)=ap+pm—eU(r), (4 Feynman graph technique in the Furry representation can be

used for the calculation of the matrix elements of the adia-
wherea, 8 are Dirac matriceqp=—iV, U(r) is the nuclear  patic Smatrix in Eq.(10). All the time integrations should be
Coulomb potential, anch,e are the mass and the charge of done explicitly, and unlike the standard QED for the free
the electron, respectively. We use the uditsc=1. electrons each vertex should contain the adiabatic exponent.
Equations(3) and (4) define the Coulomb zero-order ap- This program was first realized if33] where the QED

proximation. This approximation is most adequate for highlytheory of the interelectron interaction in many-electron at-
charged, few-electron ions. The basis set of the one-electragims was considered.

wave functions is defined by the wave equation For actual calculation it is convenient to expand Exf)
R in powers ofe. The corresponding expansion up to fourth
NoYn=enthn, (5 order was given if33]:
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al b/ al bl al bl
o g 1Y Tio
a b a b a b
FIG. 1. A Feynman graph, describing the first-order interelec- (a) (b)

tron interaction. The double solid line corresponds to bound elec- . .
trons in the field of the nucleus, the wavy line corresponds to the F!C- 2. Notations are the same as in Fig. 1.i8yn, the sum-
sum of the Coulomb and Breftransversgphotons. Ifa’ =a and mation over the intermediate states is denoted. G(apis called a
b’=b, the graph is called “direct”; whem’ =b, b’=a we call it P°0X" and graph(b) is called a “cross” graph.
an “exchange” graph. The latter name should be understood in . . ., . .
connection with permutation symmetry. man graphs are depicted. The “box” grapkig. 2(a)] is
reducible. They have singularities whep +&, =¢ea+&p.
1 a0 ~2) In this section we will consider only the “irreducible” part of
AE,= lim SiIM(®4[S7| @) +[2(Po|S7[ D) these reducible graphs, that is, the contribution frep
M0 ten,Featep. The “crossed” graph in Fig. 2 is irreducible.
—( DSV D)2 +[3(D,|SP|D,) —3(P,|SP| P,y  However, usually one extracts the terms with +&,,=¢,
(1) 21) 3 2(4) +¢&yp (which are not singularfrom this graph and considers
X (D4 S\ Do) + (Do ST a) 1+ [ 4P| S| Pa) these terms together with the “reducible” parts of the “box”
3 &(3) (1) &2) graph. One of the reasons is that the Coulomb-Breit reduc-
KD SV PN P|S)7| Do)+ KDL S| D) ible corrections for the “box” and “crossed” graphs cancel
A \2_ a2 \2 each other in the case of equal enerdig®mund state We
X (D[ S| Pa)*— 2P| S| D) will follow this tradition in our paper and thus we divide the
(D 1&D P VA 11 contr|b.ut|ons of the “crossed” graphs into “irreducible” and

For irreducible matrix elements the procedure of the evalua- According to the correspondence rules for Feynman
tion of the limit A\—0 can be avoided and the adiabatic for- 9"aphs in bound-state QE[21,34, the electron propagator

mula can be replaced by a simpler ddd,21], can be expressed 48]

AEgn,irl’):<q)a|U(n)|cI)a>, (12 S(Xy.Xy) = ifm do eiw(tl,tz)z ¢n(rl)En(r2)

. . ) . L2 o) s n en(1-10)+w’
where the “effective potential energyd(" is defined as (14

(@S| D )i =—2mi S(EL—EL)(Dy|UM|D,).

(13 wherex=(r,it), ¢, is the Dirac conjugate function, and the

summation extends over the whole Dirac spectrum for the
A simple proof of Egs(12) and(13) is given in Appendix A.  Pound electron.

In principle, Eqs.(10) and(11) are valid for nondegener- The photon_ propagators for the Coulomb and transverse
ate states only. For the generalization to the degenerate ca$¥1otons are given bj21,34
we refer to[21]. However, the formulag10)—(13) remain .
unchanged in the most important case where the degenerate pc.t (X1, Xp) = if dQ 1%t (Q,r,)eMtit)
states differ by symmetry. Hik2 2 ) - Kk

Details of the Feynman graph techniques for bound elec- (15
trons can be found if21,34. Different QED approaches to
the calculations with bound electrons in atoms, based on th&ith
Green-function method, were formulated[#4b] and[41,46]

two-times Green-function methdd7)). 1,404
( aer 1, (T 10) = % r2=ri=rol (16)
I1l. IRREDUCIBLE CONTRIBUTIONS
TO THE INTERELECTRON INTERACTION and
IN TWO-ELECTRON IONS
Oy 1 1—¢ll@lre

The first-order interelectron interaction for two-electron |t o) | 2
. . . . . g L ( 1r12)
configurations is described by the Feynman graph of Fig. 1.2 r2
This graph is irreducible.

In Fig. 2, the second-order interelectron interaction Feyn- X(1=0,,4)(1=8,0)- 17

i1Qlr
Y Vo, o
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Two-electron configurations are described by the wave  AE(1s2sS))=Fiq 25 15 2s. —F1s.2s ‘15 2s. -
function -2, ;1s_2s, +25_;1s_2s, 1

The graph in Fig. 1 is irreducible and one can apply the
formulas(12) and(13) for the evaluation of the energy cor-
rections. Then using the correspondence rules for the bound-
=N, Clllz (MaM) L5 1 m (F) i1 (T2) state QED, inserting the expressions for the propagators into

mimy re zere the Smatrix elements, and integrating over the time and fre-
quency variables one obtains

=i m (T2 ¥y m (T ], (18)

WMyl (F1:72)

FO, 19(£ 4~ &2)a’b’ab - 22
whereN = 1/2 for equivalent electrons amt= 1/\/2 for non- brab 2 (e~ alarba @

equivalent eIectronsCJlJZ(mlmz) 's a Clebsh-Gordan sym Here we have introduced the following abbreviatifsee
bol. It follows from Eq.(18) that for configuration $2s 3S; definitions(16) and (17)]:

the energy corrections are given directly by the following
formula witha,b=1s,,2s,, where* denote the two dif-

ferent projections of the total electron angular momentum: 19,,,.,(Q)= 2 | %ar(ry) ¢ (r2) YOS L (1)
MM
AE(1525 °S))=Fis 26, 116,25, (19 X WelT) gilr2)dradrz, &

where the Dirac matrlces(" are acting on the wave func-

where tions depending on the varlable,s Theng=c,t. Forg=c,
Eq. (22) determines the first-order Coulomb correction and
for g=t we obtain the first-order Breit correction.

The same sequence of operations that was used for the
derivation of the first-order correctiofthe correspondence
Fab... is a function of one-electron states, which are de-rules for the graphs Fig. 2, time and frequency integrations,
scribed by wave functiong/,,#,, ... . The form of the use of Eqs(12) and(13)] should be repeated for the evalu-
function F depends on the type of the considered Feynmamtion of the irreducible contributions of the second-order cor-
graph(see below. For the configuration 42s 1S, the energy  rections.

correction is given by For the “box” and “cross” corrections, the results are

Fab;cd:Fabcd_ Fbacds (20

F@boxin_ 5\ S i foc 1(Q)arnnynyl® (2= ear+ea)nynyan 40
Ib/ b = A _ .
aba gg’ NNz 2 *°°(8a+Sb_snl_snz)(ﬂ_snz"'sb""'08n2)
i (= Ig(Q)b’a’nlnzlg (Q_8a+8a’)n1n2ba
P - Qr, (24)
™ foc(sa-l-sb—snl—gnz)(ﬂ—sn2+sar+|08n2)
F@)(eossim_ 5\ S i f“ 19(Q)prnyn,al? (A= ear+ea)narbn, 40
a’b’ab gg’ NNz 2w fw(snz—snl—sa-i-sbr)(ﬂ—snz-i-sa-i-iOsnz)
i (= IQ(Q)nlb’anzlg (Q_3a+3a’)a’n2nlb q (25
2m —=(&n,~&n, tea—ep)(Q—e&n +ep +i0z,) ’

where the prime at the sum symbols means that the summa=b’ andn;=n,, one has either to take the limit;—n,
tion runs overn;,n, except for the case when;=a,n, for both terms on the right-hand side of the equatitre
=b or n;=b,n,=a (reference stateslt should be stressed singularities cancglor to use the formulas given in Sec. VI.
that in order to avoid division by zero in E5) in the case Wheng=g'=c, we have the Coulomb-Coulomb correction,
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when g=g’=t we have the Breit-Breit, and the cage sufficient to take into account only the dominant part of this
=c,g'=t or g=t,g’=c corresponds to the Coulomb-Breit contribution, that is, the third-order Coulomb and unretarded
Interaction. Breit “box” corrections. The corresponding Feynman graph

In some casegsee Sec. VIl the accuracy of the experi- . . - ) .
ments requires the inclusion of the third-order interelectrorl> displayed in Fig. 3. The formula for the irreducible part of

interaction corrections in the theoretical evaluations. Still thehe third-or_der “box” correction, derived in the same way as
third-order contribution for higlZ ions is small and it is the correctiong22) and(24), can be expressed as

’
(box,irm) ' 2 b'ngn! Tangnyng! nana
Fa’b’yab: 2 2 1 (26)

99'g” MN2Nshe  (en,+€n,—&ar—&p/)(&n, T En,~€a—&p)

where the prime indicates that the summation is not running AE pc=Fapabt Fpebet Feacas (27)
over the reference states.
whereF .4 is given by Eqs(23), (22), (24), (25), and(26).
The contributions of the “step” graphs in Fig. 4 can be

IV. IRREDUCIBLE CONTRIBUTIONS obtained by the formula
TO THE INTERELECTRON INTERACTION
IN THREE-ELECTRON IONS
AEappe= 2 €irjric €ikFirjriijio (28)
) . . L i’ k=123
The first-order interelectron interaction in three-electron i,j,k=1,2,3

ions is described again by Fig. 1. The second-order interac- )

tion partly is described also by the same graphs, Fig. 2, as fo¥here the statea,b,c are denoted as 1,2,3 ang is the
the two-electron case. We will consider two three-electrortNit antisymmetric tensor. Equati¢@g) includes the contri-
configurations: the ground state €1)22s,,, and the first bution of the “direct” and all the possible “exchange

excited state (43,)22py,. In the former case, the indicas ~ 9raphs in the three-electron case. The quarft e s
b run over the setd, ,1s_,2s, and in the latter case they defined as

run over the set4, ,1s_,2p4». , wherex denote the total ,

angular momentum projections. Apart from the graphs in E(stepin) _E 2, 19(e,—&a)narbal ® (8¢ —€6)brerne
Fig. 2, for three-electron ions we have to consider the “step” * a’b’c’abc™ i £atep—Eq—En '
graphs depicted in Figs. 4 and 5. For the “step” graph in the (29)

case of the configuration §1,,)?2s,,,, the indicesa,b,c run
over the set &, ,1s_,2s,, and in the case of the configu- where the prime at the sum means that the summation runs
ration (1sy)?2py, the indicesa,b,c run over the set over alln except the case when the set of one-electron states
1s,,1s_,2pyp; - {a’,n,c} is equivalent to the sdia,b,c} (the case of refer-
The first-order contribution, as well as the second-ordeence statgs This leads to the conditios,+&,—e5 —&p
“box,” “cross,” and third-order “box” contributions, can be  #0. Thus we omit the singular term in tmessummation(see
represented as Fig. 4) that gives rise to the “reducible” contribution. As in
Sec. lll, hereg,g’ =c,t. The reducible contribution does not
arise forg=g’'=c.
It remains to consider the third-order Coulomb and unre-
tarded Breit corrections for three-electron ions. The corre-

a v
a o d
3| N
n
1] Mo n
a b
a b c

FIG. 3. The third-order “box” Feynman graph. The notations
are the same as in Figs. 1 and 2. Here the wavy line with the cross FIG. 4. The second-order “step” graph for three-electron atoms.
denotes the sum of the Coulomb and unretarded Breit interactionThe notations are the same as in Figs. 1 and 2.
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sponding “step-box” graphs that yield the main contribution contributions of graphs Figs(» and 5c) are equal. There-
to the three-electron interaction are depicted in Fig. 5. Thdore, we will consider the contributions of these graphs as the
contribution of these graph8E($®Pis described by the doubled contribution of a graph, Fig.(t5. The quantity

same formula28) asAESSP). It is easy to find out that the FSEP0%Mis given by the formula

19 19, 19
a’b’nyns nac’nyc nynyab

(3)(stepbox,irr) __ 4
Fa’b’c'abc - 2 Z
gg’g” MN2n3 (3n1+8n3_Sa’_sb’)(8n1+8n2_8a_8b)

"
|Q

19, ol
b’c’nsc

a’ngnyn, Ninyab

2> >

gg’'g” MN2ns (8n1+8n2_8a_8b)(3n3+8a'_ea_eb)

! "
IS\’c’nln3 g’n3n2c glnzab
!
+ X , (30)

gg’g” N1N2n3 (3n1+8n2_8a_8b)(8n1+8n3_8a’_Sc’)

where the prime at the sum symbols indicates that the firdiormulated for one-electron atoms by Ld&0]. In [50], the
summation does not run over the states for which either theappearance of the Lorentz profile in the resonance approxi-
set{ny,n,,c} or the sefn,,n5,c’} are equivalent to the set mation within the framework of QED was described and the
{a,b,c}, the second summation does not run over the statesonresonant corrections were estimated. Later the line profile
for which the setgn,;,n,,c} or{a’,ns,c} are equivalent to QED theory was modified also for two-electron atofb4]
the set{a,b,c} and the third summation does not run over (see alsq21,34)) and applied to the theory of overlapping
the states for which the sef®,,n,,c} or {n;,n3,b’} are  resonances in two-electron highly charged if52,53. An-
equivalent to the sefa,b,c} (the cases of reference states other application was provided to the theory of nonresonant
corrections in highly charged iori§4,55|.
It was found in[36] that the line profile approactiLPA)
V. LINE PROFILE APPROACH provides a convenient tool for calculating the energy correc-
tions. It clearly indicates the limits up to which the concept

The problem of the natural line profile in atomic physics £ th £ h ited states h hvsical !
was considered first in terms of quantum mechanics by weid! the energy of the excited states has a physical meaning,

; - : that is, the resonance approximation. The exact theoretical
skopf and Wignef49]. In terms of modern QED, it was first value for the energy of the excited state defined, for example,

by the Green-function pole can be compared directly with

! bl ! ? bl / . . .
a ¢ a ¢ the measurable quantities only in the resonance approxima-
tion when the following line profile is described by the fol-
ns3 N3 lowing two parameters: enerdy and widthI". Beyond this
n
o n o A A
NN K, e o = ol VRN K€
a b c a b c >
(a) (b)
a' b d a o d n=a
ng ns np=a
NN ke N ke
g1
™ o A A
(a) (b)
a b c a b c FIG. 6. The lowest-order amplitude of the photon scattering on
(c) (d) the atomic electron in the resonance approximatimand insertion

of the self-energy part into the photon scattering graph in the reso-
FIG. 5. The third-order “step-box” graphs. The notations are thenance approximatiotb). The wavy lines with the arrows denote the
same as in Figs. 1, 2, and 3. The wavy line with the cross denoteabsorption or the emission of the photon with momenturand
the sum of the Coulomb and unretarded Breit interactions. polarizatione.
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approximation, the evaluation & andI" should be replaced a A
by the evaluation of the line profile for the particular process. AR K e
Moreover, the line profile approach was found to be very ng = a €

useful for the evaluation of the reference-stéateducible
correction in the case of two-electron atoms. In the nonequal
energy case, the use of the line profile theory appeared to be
much simpler than the employment of the adiabatic formula
(12).

Consider first the simplest process of photon scattering on n=a 2 # 0

the one-electron iofFig. 6(a)], which is assumed to be in its

ground stateA. Using the correspondence rules, we obtain

the expression for the scattering amplitude,

! /% J—
U(Az):eZE [’)/VAI/(k € ) ]An[‘yiLA,u(kve)]nA, (31) n=a W k e
n EnTEAT W

a A

whereA ,(k,€) is the potential of the electromagnetic field. (a) (b)

The frequencies of the absorbed and emitted photonsare

=|k| and o’ =|k’| = w, respectively. We will consider the FIG. 7. Reducible Feynman graph SE8Eop after loop (a)
resonance case when the frequencys close to the value that gives rise to the correction in E(4)(a) and the Feynman
w®=g,— 5+ 0(a), wherea is one of the excited states of graph(b) representing the higher-order electron self-energy correc-
an atom. In the framework of this resonance approximationtion within the line profile approactSESE, loop after loop, irre-
we have to retain only one term in the sum ovein Eq.  ducible.

(31): n=a. This is shown in Fig. 6a. Then

ez[’)’VAV(k, !e,)* ]Aa[ ’yluAp,(kae)]aA

Eq— EpT O

dW(w)

(32 1 Iaa q
27 [g,—ept Re[vi(0)} —w]P+[IM{v(w)}]?

2) _
U=

To obtain the Lorentz contour, one has to insert the elec-
tron self-energy part in the internal electron line in Fi¢p)6 (37)

For simplicity, we neglect the vacuum polarization part. Inyere gy ) is the probability of the photon absorption in
lowest order this leads to Fig(l§ and the expression for the the frequency intervab, o+ dw andl, is the partial width

scattering amplitude in the resonance approximation will b%f the levela. connected with the transitica— A

Taking into account the graph Fig(l8, we improve the

2)_—vi(@) (33)  position of the resonance,

(4)—
UAa_ UAaSa_sA_ o'
0®=g,—epTRev1(s,—£a)} +O(a?). (39
where
R We define the energy shift as the shift of the resonance. Then
vi(w)=eSr(w+ep)]aa- (34)  the real part of the matrix elemefBg(e,)].a gives the
A lowest-order contribution to the Lamb shift, and the imagi-
Here3 r(w) is the renormalized electron self-energy opera-nary part which is finite and not subject to renormalization
tor. The lower index at the functianindicates the order ia gives the total radiativésingle-quantumwidth of the level
for the graphs which contribute to this function. Repeatinga:
these insertions in higher orders, we can obtain the geometric

: . - i
progression with theth member, AESE=[Sn(e0) Jaa=LSE- Era' (39)
) _Ul(w) .
dn=Uxa PoPy— (39 The other contribution to the lowest-order Lamb shif®

originates from the vacuum polarization graph. This graph
Summing up this progression, we will get gives no contribution to the width', [21].
The insertion of the Lamb shift,, corresponding to the
ez[%Av(k',e')*]Aa[ YuP (K €) Jan ground stateA into the Lorentz profilg37), is a more com-
ga—eptvi(w)—w '

Una=

(36) plicated problem, but can also be done within the approach

developed in51]. The line profile for the emission process
Taking the square modulus of the amplitu86), integrat- a—A is described again by E¢37).
ing over the directions of the absorbed and emitted photons, If we were to study the higher-order Lamb shift in one-
and summing over the polarizations we obtain the Lorentzlectron atoms by the line profile approach, we would have
profile for the absorption probability, to consider next the Feynman graph in Fi¢g)4for simplic-
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ity, we will not consider the other second-order graphf
n;=ns=a andn,#a, the graph of Fig. {& can be consid-
ered as a complicated insertion represented by Fig. in
the graph of Fig. @) in the resonance approximation. We
get the following expression for the scattering amplitude:

—vy(w)
U(ﬁ)zu(Z)—’ 40
Aa Aasa_ EA— ( )
where FIG. 8. First-order interelectron interaction correction to the
) ) scattering amplitude in the resonance approximation. Gréghs
. [Sr(w+ep)]anl2r(0+ ) ]na and(b) correspond to “direct” and “exchange” insertions.

va(w) =€ - (41)

za Ep—EptTw

second-order electron self-eneryESH corrections are ir-

Note that the singular term=a is not included here by reducible[56]. The calculation of all these corrections is not

definition. This term was taken into account in the geometric@ Subject of this paper. _
progression described above and presents exactly the secondNOW We can address the two-electron graphs. At first we
member of this progression. Then repeating the evaluationgonsider the first-order interaction represented by Fig. 1.

leading to Eq(37) with Within the framework of the line profile approach, this graph
should be inserted into the graph in Figag In the reso-

@ —v(w)—vy(w)\" nance approximation, this is depicted in Fig. 8. To follow the

an=Uxa W ; (42 LPA rigorously, we have to take into account simultaneously

the first-order self-energy, vacuum polarization, Coulomb,
we obtain the new resonance condition, and Breit graphs. Then the functien(w) contains the sum
of corresponding contributions. In principle, in the next order
ea—eatRe[v(w)+vy(w)}+0(e®)~w=0. (43  we have to take into account the graphs describing self-
energy and vacuum polarization screening. These corrections
are, however, beyond the scope of the present work. So we
consider only two-electron one- up to three-photon exchange
0"=g,—ept R% vi(ea—ep)TUo(ea—€p) “box” graphs. The contribution of the “cross” graphs will be
discussed below in Sec. VI. Following the procedure de-
scribed above for the one-photon exchange, we get

Resolving Eq(43), we find

()
Jw

+vi(ea—ea)

W=EqTEp

} +0(a®). (44
Ul:ezg;t Ig(sa_sA)abab- (45

The termuv,(e,—€,) is the contribution of the irreducible

part of graph Fig. @). The term with the derivative coin- Herev; does not depend om.

cides with the reducibléor reference-stajecorrection that For two-photon exchange in two-electron ions, we have to
arises from the Feynman graph in Figaj7after the applica- consider a complicated insertion represented in Fig. 9. Then
tion of the adiabaticSmatrix formula(11) [56]. The other the LPA yields

J’w Ig(Q)abn3n4|g,(_Q)n3n4ab

_e“i 5
vo(@) =52 [0, (1=10) + Q—ep[en,(1=10)— O —ep—w] da

gg’ sn3+en4¢ea+eb

e4i J‘oo |g(Q)abn3n4| ’ (_Q)”3”4ab (46)

77 2 i rny | o 1006 ][ep(A-10)- 0= ep— 0]
The second term in Eq46) represents the remainder after the subtraction of the reference-state singularity fr@6) Ethis
subtraction was done when the geometric progression with the one-photon exchange graphs was generated. In the one-electrol
case, the reference-state termvj{w) was absenftsee Eq(41)] and appeared only as a term with a derivative in @4¢). In
the two-electron caséor photon exchange the situation is different. In this case, there is a reference-state contribution
directly inv,(w) [see Eq(46)], and sincev; does not depend om, a term with a derivative does not arise.

Considering the three-photon exchange and disregarding the retardation, we ggtfpthe expression

"

| g

| |
abngn,' nanynyn,’ nynyab

va(w)= 2 X

gg’g” NN2N3ng

(47

(8n3+ 8n4—8A—8b—w)(8n1+ &n,~ EAT Ep— w)’
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It should be stressed that if we were to include in the LPA
also the first- and second-order radiative corrections as well
as screened radiative corrections, we should use {6®)
the sum of Egs(34) and (45 and a vacuum polarization
part. Forv,(w), we should use the sum of Ed4.1) and(46)
plus all the contributions for second-order radiative correc-
tions and screened corrections. Then instead of the formula
(49), we would have

FIG. 9. Second-order interelectron interaction correction to the

scattering amplitude in the resonance approximation. Gréghs
and (b) correspond to “direct” and “exchange” insertions.

0®=g,—eptRe vi(ea—ep) TUa(ea—8a) tV1(Ea—ER)

where the prime indicates that the summation is not running

over the reference states.

All the geometric progressions considered above for two-
electron graphs should be combined into one. Following this

approach, we obtain the resonance condition

ga—eptRev(0)+vy(w)+vg(w)}+0(a*)—w=0.
(48)

We note that for two-electron graphs, describing photon ex-

changev, does not depend om. So solving Eq.(48) with
v1, Uy, anduvg given by Eqs(45), (46), and(47), we get

w'=g,—ept RE‘{ vi(ea—ea) Tva(ea—en) tvs(ea—en)

()
Jw

+vi(ea—en)

} +0(a). (49)

“’=8a78A

The termuv(e,—ea) gives the contribution of the one-
photon exchange graph of Fig. 1. The tevg{e,—¢&,) pre-

(?Ul((l)) 1 5
X e | +US(8a_£A)+§U1(8a_8A)
U)*Sa*SA
y &zvl(a)) o ) () 2
—_— vi(eg—e
dw? e n¥a “A Jw wmey e
a A
I y(w)
+vi(ea—en) E +vy(ea—en)
LL):Sa*SA
()
x| —= +0(a%). (50)
Jw 7
w*Ea_EA

Note that the presence of the derivatiy@s ;(w)/dw] does
not distort the Lorentz line shape while the term
[0%v41(w)/ dw?] leads to a small distortiof0].

Finally, if we were to extend the LPA for the three-
electron case, we would get the same formss and (50)

sents the contribution of the two-photon exchange graphs Gfhere the functionw,(w) and vs(w) should contain also
Fig. 2. This term includes also the reference-state part ofne contribution of the three-electron graphs of Figs. 4 and 5.

these graphs. The teroy(e,—€,) gives the contribution of

the three-photon exchange graph of Fig. 3. Here this term

does not include the contribution of the reference states be-
cause we consider the three-photon exchange in the frame-

work of RMBPT. The term with a derivative in E¢49), as
the term with a derivative in Eq44), does not correspond to
any certain graphs. As in the case of E44), it is again
connected with the reducibleeference-stajecontribution of
the graphs in Fig. 3.

VI. REDUCIBLE CONTRIBUTIONS
TO THE INTERELECTRON INTERACTION
IN TWO- AND THREE-ELECTRON IONS

From the derivations in the preceding section, we obtain
the following expression for the “box” reducible contribu-
tion in two-electron atoms:

’
(Q)a’b’nlnzl 9 (Q — &gy + Sa)nlnzab

(Q—8n2+ 8b1+i08n2)2

(Q—eg,+ 8a’)nlnzba\

I:(2/)(,box,red): _ = 4 _f
a’'b’ab 2 QEQ, nlEnz 27 o
N I_ ] Ig(Q)b’a’nlnzlg
27 ) —»

: (51)

(Q—gn,tea +i08,)°
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TABLE II. Different contributions to the third-order interelec-
tron interaction for a two-electron configuratios;12s,,,'S, (eV).
The numbers in the table present the ionization energy of thg 2
electron with the opposite sign.

Contribution Z=30 70 80 92
Coulomb-Coulomb-Coulomb 0.010 0.007 0.012 0.016
Coulomb-Coulomb-Breit 0.006 0.015 0.016 0.022
Coulomb-Breit-Breit 0.001 0.006 0.008 0.012
Breit-Breit-Breit 0.000 0.000 0.002 0.002
Total AE 0.017 0.029 0.038 0.052

(2)(cress,irr)
Fa’b’ab

2

Sk

gg’ NNz

kS |g(Q)b’n2n1a| g/(Q —eagt Sa)nla’bnz
| e
Q- &n, T a‘a-l-IOsnz)2

—o0

FIG. 10. The second-order interelectron interaction correction to

the scattering amplitude in the resonance approximation for three-

electron ions.

(52

where the summation runs over the states which are not in-

where the double dash indicates that the summation runguded in the summation in Eq25). The contributions of
over states which are not included in the summation in Eg:box” and “cross” graphs for two-electron ions are de-
(24). The “cross” reducible corrections can be obtained infinedby Eq.(20). From Egs.(51) and (52), it follows auto-

the same way as the “box” corrections, though, in principle,
they can be derived also in a simpler way directly by formu-

matically that the corrections vanish fge=g'=c.
For the “box” and “cross” reducible contributions in

las (12) and (13). The corresponding expression is given by three-electron ions, E@27) holds. So it remains to consider

TABLE |. Different contributions to the second-order interelec-
tron interaction for a two-electron configuratios;12s,,,'S, (eV).
The numbers in the table present the ionization energy of thg 2
electron with the opposite sign.

TABLE IIl. Different contributions to the second-order inter-
electron interaction for a two-electron configuratios;12s;,,°S,
(eV). The numbers in the table present the ionization energy of the
2s,, electron with the opposite sign.

Contribution Z=30 70 80 92 Contribution Z=30 70 80 92
Coulomb-Coulomb Coulomb—-Coulomb
AEPoxir —3.290 —4.317 -—4.845 —5768 AEPoxIr —1.345 -1643 -—1.785 —2.017
AECossI 0.003 0.030 0.046 0.074  AECoOssIT 0.000 0.003 0.005 0.009
AE(total) —3.287 —4.286 —4.799 —5.695 AE(total) —1.345 -1641 —1.780 —2.009
Coulomb-Breit Coulomb-Breit
AEDPOXT —-0.277 —1.702 -—2.375 —3.499 AEPOxIT —0.002 -0.008 -0.010 -0.012
AEPoxred 0.103 0.724 1.038 1.569 AEboxred —0.000 —0.004 -0.006 -0.011
AECossir 0.002 -0.088 -0.108 —0.140 AECrossir —-0.001 -0.005 -0.009 -0.015
AECrossred —0.006 —0.517 —0.147 —0.242 AECrossred 0.000 0.001 0.002 0.004
AE(total) -0.179 -1.159 -1.592 -—2.312 AE(total) —0.003 -0.016 -—0.024 -0.033
Breit-Breit Breit-Breit
AEPoxI -0.010 -0.179 -0.302 -0.524 AEPoxIr —0.000 0.003 0.004 0.005
AEPoxred 0.002 0.071 0.127 0.239  AEPoxred 0.000 0.000 0.000 0.000
AECossI 0.000 0.032 0.056 0.096  AECOssIT —0.001 0.007 0.011 0.018
AECrossed 0.000 0.003 0.007 0.014  AECossred 0.000 0.000 0.001 0.002
AE(total) —0.008 -0.073 -0.113 -0.178 AE(total) —0.001 0.010 0.016 0.024
Total Total
AE —-3.473 -5519 -6.504 -—8.184 AE —1.348 -—1.647 —1.789 -—2.018
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TABLE |V. Different contributions to the third-order interelec-
tron interaction for a two-electron configuratios; 12s;,,°S; (€V).
The numbers in the table present the ionization energy of thg 2
electron with the opposite sign.

Contribution Z2=30 70 80 92

Coulomb-Coulomb-Coulomb —0.004 —0.001 —0.001 0.000

Coulomb-Coulomb-Breit 0.000 0.001 0.001 o0.001
Coulomb-Breit-Breit 0.000 0.000 0.000 0.000
Breit-Breit-Breit 0.000 0.000 0.000 0.000
Total AE —0.004 0.000 0.000 0.001

the reducible “step” contributions for three-electron ions. In

principle, this contribution is simpler than the “box” one and
hence the adiabatic formuld1) can be applied. However,

the line profile approach is also applicable in this case and
we will demonstrate how it works. To employ this approach,
we have to consider the Feynman graph for the scattering

amplitude depicted in Fig. 10.
The “step” reducible contribution to the three-electron
atom is

F(Z)(step red)

a’'b’c’abc

n a g
2 En: %I (ea—&ar T ®)naba

Xlg’(Scr (53)

_Sc+w)b'c'nc|w=01

PHYSICAL REVIEW 44 042513

where the summation runs over the states which are not in-
cluded in the summation in E¢29).

The formula for the reducible part of the third-order Cou-
lomb and unretarded Breit “box” corrections can be ex-
pressed as

(3)(box red)

Ig Ig/ Igrr
a’b’ab

a’b’ngn, Ngnyniny’ nynyab

> X

gg’g” NiN2N3ng

(-1
X
2(8n3+8n4—8

2
a’ ~€p’)

a~ sb)z] ,

where the double dash indicates that the summation is run-
ning only over the reference states. The terms with zero de-
nominators in Eq(54) should be omitted. The third-order
“step-box” reducible correctiongsee Fig. % are given by

the formula

(-1)
2(8n1+8n2—8

+ (54)

TABLE V. The different contributions to the total energy of the two-electron configuratigp2s,, 1S,
(eV). The numbers in the table present the ionization energy of $hg @ectron with the opposite sign.

Contribution Z=30 70 80 92 Ref.
Zero-order —3108.3209 —18250.3701 —24622.1720 —34215.4976 TW
Nuclear size(NS) 0.0145(5) 3.10(5) 9.34(14) 37.76(6) TW
First-order
interelectron 196.0797(5) 542.484(5) 665.38(1) 850.116(5) T™W
interaction
Second-order
interelectron —3.758(3) —5.519(3) —6.504(3) —8.184(3) TW
interaction
Third-order
interelectron 0.017(1) 0.029(3) 0.038(4) 0.052(5) TW
interaction
SE with NS 0.9674 20.5890 35.3911 65.4183 [58,59
VP with NS —0.0834 —3.419(1) —6.900(2) —15.658(3) [57,6Q
Recaoil 0.0269 0.0674 0.0870 0.1279 [61]
Total —2915.057(4) —17693.04(6) —23925.34(16) —33285.87(8) T™W
AO —2914.8875 —17693.7864  —23926.3243  —33288.4601 [25]
uT —2914.8326 —17692.9476  —23924.7251  —33284.7190 [62]
aTW, this work.
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TABLE VI. The different contributions to the total energy of the two-electron configurat&gp2s,,°S;
(eV). The numbers in the table present the ionization energy of $hg €ectron with the opposite sign.

Contribution Z=30 70 80 92 Ref.
Zero-order —3108.3209 —18250.3701 —24622.1720 —34215.4976 TW
Nuclear size(NS) 0.0145(5) 3.10(5) 9.34(14) 37.76(6) TW
First-order
interelectron 156.5068(5) 402.905(5) 480.13(1) 588.169(5) TW
interaction
Second-order
interelectron —1.348(3) —1.647(3) —1.789(3) —2.018(3) ™
interaction —1.3483 —1.6548 —1.7956 —2.0203 [30]
Third-order
interelectron —0.004(1) 0.000(1) 0.000(1) 0.001(1) TW
interaction
SE with NS 0.96737 20.5890 35.3911 65.4183[58,59
VP with NS —0.0834 —3.419(1) —6.900(2) —15.658(3) [57,6Q
Recaoll 0.0269 0.0674 0.0870 0.1279 [61]
Total —2952.241(5) —17828.78(6) —24105.91(15) —33541.70(7) T™W
AO —2952.3165 —17829.3421 —24106.6213 —33543.8853 [25]
uT —2952.2890 —17829.1872 —24106.3346 —33543.1669 [62]

TABLE VII. Different contributions to the second-order interelectron interaction for a three-electron
configuration ()%2py,, (€V). The numbers in the table present the ionization energy of the 2lectron

with the opposite sign.

Contribution Z=30 70 80 92
Coulomb-Coulomb
AEDPOXIT —12.284 —8.551 -9.312 —10.968
AECrossir 0.001 0.024 0.043 0.082
AEStepir 1.478 —-6.513 —7.985 —10.309
AE(total) —10.804 —15.040 —17.254 —21.195
Coulomb-Breit
AEPoxir 0.843 —-0.132 —0.619 —1.447
AEPoxred 0.004 0.035 0.051 0.081
AECossr —0.006 —0.044 —0.060 —-0.078
AECrossred —0.008 -0.071 —0.105 —0.166
AEStpir —1.220 —-2.088 —2.524 —3.269
AEStep.red —0.016 -0.114 -0.173 —0.291
AE(total) —0.403 —2.414 —3.430 —-5.170
Breit-Breit
AEPoxir —0.038 —0.184 —0.389 —0.585
AEPoxred 0.000 0.003 0.005 0.012
AECossir 0.001 0.031 0.056 0.112
AECrossred 0.000 0.004 0.009 0.018
AEStepiT 0.037 0.145 0.168 0.191
AEStepred 0.000 0.005 0.009 0.014
AE(total) 0.001 0.004 —-0.143 —-0.237
Total
AE —11.206 —17.450 —20.827 —26.602
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I:(3)(stepbox,red): 2 2" Ig Ig’ Ig” (_1) n (_1)
a’'b’c’abc a’b’nyns nac’nyc nynyab 2 2
gg'g” NiM2N3 2(8n1+8n3_8a’_8b') 2(8n1+8n2_8a_8b)

’ ” (_ 1) (_1)
" g g g
+2 Z Ib’c'n3c|a’n3nln2I n1n2abl +

ninong 2(8n1+8n2—£a—8b)2 2(8n3+8a’_£a_8b)2

" ! " (_1) (_1)
g 9
+ 2 Ia’c’n1n3|b’n3n2c|gln2ab[ + 2( (55

ningng 2(8n1+8n2—sa—sb)2 2(8nl+8n3_8ar_8cr)

where the first summation runs over the states for which % . 5
either the sefn;,n,,c} or the sefn,,n;,c’} are equivalent 47Tf0 p(r)rtdr=(re, (58
to the sefa,b,c}, the second summation runs over the states

for which the setgn,,nz,C} or {a’,ns,C} are equivalent to where (r2)2 is the root-mean-square nuclear radius. The

the set{a,b,c}, and the third summation does not run over. ; ! . .
. , interelectron interaction corrections were also calculated in
the states for which the sef{®,,n,,c} or {n,,n;,b’} are

equivalent to the sdfia,b,c} (the reference-state cages t_his work for extended n_ucle_i. In order to calculate zero- and

T first-order corrections with higher accuracy, we took the val-
ues for(r2)¥2 and the corresponding estimates for the accu-
racy from[20]. For the second- and third-order corrections,

The results of the calculations for two-electron ions areVe used the empirical expressifi]
given in Tables 1-VI. In Tables | and lll, the different con- o1/ s
tributions to the second-order interaction for the configura- (r)**=(0.836A**+0.570 fm, (59
tions 18;,,251, 1Sy and 1s;,2s,, 3S, are listed. In Tables V
and VI, the total energies of the two-electron configurationgvhereA is the atomic number.
are given in comparison with other calculations. The zero- The electron self-energdSE) correction with the nuclear
order values in Tables V and VI correspond to the Sommersize taken into account was taken fr¢58] and[59], and the
feld binding energy for the €, electron. Nuclear size cor- vacuum polarizatioiiVP) correction was fron57] and[60].
rections are calculated in this work with the Fermi For the recoil correction, we used the data given6d].
distribution for the nuclear charge. We solved the DiracThere are no screening corrections to SE and VP in the lit-
equation with the potential that originates from a Fermierature, evaluated directly for the two-electron configura-

VIl. RESULTS AND DISCUSSION

nuclear density distribution tions. So we omitted these corrections in Tables V and VI.
The total result is compared with the relativistic all-order
N theory (AO) [25] and the unified theoryUT) [62]. Com-
p(r)= 1+exd(r—c)/a]’ (56) pared to the QED approach, these theories are migsing

negative energy state@i) crossed photons contribution, and
whereN is the normalization constant and which is defined(iii) exact retardation effects. AO takes partly into account
by retardation and higher-order interelectron interactions. UT

starts from the nonrelativistic Schtimger equation and takes

47-rfmp(r)r2dr=ez (57) into account accurately interelectron i_nteraction. Howeve_r,

0 ' relativistic and QED effects are considered only approxi-
mately.

The parametera=0.5350 fm andc is defined from the In this paper in the framework of the RMBPT based on

condition the Coulomb functions, we calculated also the third order of

TABLE VIII. Different contributions to the third-order interelectron interaction for a three-electron con-
figuration (1s)22py,, (eV). The numbers in the table present the ionization energy of thg &lectron with
the opposite sign.

Contribution Z=30 70 80 92
Coulomb-Coulomb-Coulomb —0.061 0.019 0.041 0.083
Coulomb-Coulomb-Breit 0.019 0.059 0.084 0.119
Coulomb-Breit-Breit —0.030 0.012 0.017 0.031
Breit-Breit-Breit 0.000 0.000 0.002 0.000
Total AE —-0.072 0.090 0.144 0.233
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TABLE IX. Different contributions to the second-order interelectron interaction for a three-electron
configuration (%)22s,,, (eV). The numbers in the table present the ionization energy of $hg &lectron

with the opposite sign.

Contribution Z=30 70 80 92
Coulomb-Coulomb
AEPoxr —3.662 —4.623 —5.100 —5.910
AECrossir 0.002 0.019 0.030 0.050
AEStpir —3.490 —4.370 —4.802 —5.526
AE(total) —7.150 —-8.975 -9.872 —11.386
Coulomb-Breit
AEPoxIr -0.141 —-0.863 —1.202 -1.771
AEPoxred 0.051 0.356 0.509 0.768
AECossir 0.001 —0.052 —0.069 —0.092
AECrossred —0.003 —0.045 —-0.071 -0.115
AEStepir —0.040 —0.242 —0.330 —0.465
AEStepred —0.008 —0.063 —0.094 —0.149
AE(total) —0.140 —0.909 —1.256 —1.824
Breit-Breit
AEPoxir —0.005 —0.088 —-0.143 —0.253
AEPoxred 0.001 0.035 0.064 0.120
AECossir —0.002 0.027 0.044 0.075
AECossred 0.000 0.002 0.004 0.009
AEStepir 0.001 0.015 0.027 0.052
AEStepred —0.001 —0.006 —0.010 —0.020
AE(total) —0.005 —-0.014 —-0.015 -0.017
Total
AE —7.295 —9.898 —11.143 —13.228

the interelectron interaction. The results are given in Tables In Table XIIl, we give the different contributions to the
Il and IV. For these data, we give 10% inaccuracy. Thissplitting 2pq/,-2S4,, in Li-like uranium. The full set of the
estimate follows from27], where the comparison was made second-order radiative correction is not known faeg,2and

between QED and RMBPT calculations for thes{4)? con-

2p4» States. The unknown corrections are second-order self-

figuration of He-like ions withz=92. Since the fourth-order energy corrections. For the ground state of H-like U, the

interelectron interaction is approximately times smaller

values for these corrections were reported recentlf6B;.

than the third-order interaction, we can assume that th&valuating the ratio of these corrections to the loop-after-
higher-order contributions are smaller than the third-ordetoop correction [Fig. 7(b)] for the ground stater=
—1.28/0.97, assuming that this ratio is approximately the
In Tables VII, VIII, IX and X, the different contributions same for the &;,, state, using the known value for the loop-
to the second-order interaction for the three-electron configuafter-loop correction for &, [64], and neglecting the con-
rations (1s)22s,,, and (1s)%2p,,, are listed and the different tribution of the 2, state[65], we obtain the estimate given
contributions to total energies of the three-electron configuin Table XIIl. We assume the inaccuracy of such a rough
rations are provided in comparison with other calculations inestimate to be as high as 100%. Finally, in Table XIV the
different theoretical and experimental data fop;2-2s:,,

inaccuracy.

Tables X| and XII.

TABLE X. Different contributions to the third-order interelectron interaction for a three-electron configu-
ration (1s)?2s,,, (V). The numbers in the table present the ionization energy of she @ectron with the

opposite sign.

Contribution Z=30 70 80 92
Coulomb-Coulomb-Coulomb -0.017 0.007 0.015 0.026
Coulomb-Coulomb-Breit 0.005 0.018 0.021 0.029
Coulomb-Breit-Breit 0.000 0.004 0.005 0.012
Breit-Breit-Breit 0.000 —0.001 0.001 0.001
Total AE —-0.012 0.028 0.042 0.068
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TABLE XI. The different contributions to the total energy of the three-electron configuratisyf2p,,
(eV). The numbers in the table present the ionization energy of the 2lectron with the opposite sign.

Contribution Z=30 70 80 92 Ref.
Zero-order —3108.3209 —18250.3701 —24622.1720 —34215.4976 TW
Nuclear size(NS) 0.0001 0.18(5) 0.75(14) 4.42(6) T™W
First-order
interelectron 394.9471(5) 1078.213(5) 1317.19(1) 1676.142(5) TW
interaction
Second-order
interelectron —11.206(3) —17.450(3) —20.827(3) —26.602(3) TW
interaction —11.186(5) —17.546(5) —20.828(5) —26.597(5) [28,29,61
Third-order
interelectron —0.072(7) 0.090(9) 0.144(14) 0.233(23) TW
interaction(RMBPT) —0.047(15) 0.086(45) 0.131(65) 0.209(100) [66]
SE with NS —0.0219 1.1371 3.2341 9.5504 [58,59
VP with NS —0.0011 —0.297(1) —0.831(2) —2.704(3) [57,60
SE screening —0.0283 —0.4977 —0.9305 —-1.9774 [20]
VP screening 0.0031 0.0948 0.2034 0.5216 [19]
Recoil 0.0106 0.0295 0.0386 0.0560 [61]
Nuclear
polarization —0.0039(10) [70]
Total —2724.68(1) —17188.87(7) —23323.20(15) —32555.86(7) TW
RMBPT —2724.5877 —32561.2268 [22]

splitting are presented.

all Z values not more than by 0.0003 a.u. Our numerical
Comparing our results with the other calculations knownprocedure should give an error less then48.u. The three-

for 15,,,2815'Sy and 1s,,,2s,,,°S; states of He-like ions, we photon QED exchange was not taken into accour{t3.

find that the full QED evaluation of the two-photon exchangeThe details of the numerical procedure and accuracy esti-

for 1s,,,2s,,,°S, states in30] deviates from our results for mates are given in Appendix B.

TABLE XII. The different contributions to the total energy of the three-electron configuratiey?2%,,
(eV). The numbers in the table present the ionization energy of $hg @ectron with the opposite sign.

Contribution Z=30 70 80 92 Ref.
Zero-order —3108.3209 —18250.3701 —24622.1720 —34215.4976 ™
Nuclear size(NS) 0.0145(5) 3.10(5) 9.34(14) 37.76(6) TW
First-order
interelectron 332.7995(5) 875.600(5) 1052.88(1) 1307.310(5) W
interaction
Second-order
interelectron —7.295(3) —9.898(3) —11.143(3) —13.228(3) TW
interaction —-7.297 —9.899(5) —11.147(5)  —13.226(5) [28,29,67
Third-order
interelectron —0.012(1) 0.028(3) 0.042(4) 0.068(7) TW
interaction(RMBPT)  —0.011(7) 0.039(20) 0.055(28) 0.078(40)  [66]
SE with NS 0.9674 20.5890 35.3911 65.4183 [58,59
VP with NS —0.0834 —3.419(1) —6.900(2) —-15.658(3)  [57,60
SE screening —0.1282 —1.3158 —2.0627 —3.5017 [20]
VP screening 0.0109 0.2249 0.4182 0.8815 [19]
Recoil 0.0269 0.0674 0.0870 0.1279 [61]
Nuclear
polarization —0.0377(94) [70]
Total —2782.020(5) —17365.39(6) —23544.12(15) —32836.36(8) TW
RMBPT —2782.7867 —32884.3689 [22]
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TABLE XIll. Different contributions to the splitting B1,,-2S,,, in Li-like uranium.

Correction Numerical Reference
value (eV)

Nuclear finite size correction to

the binding energy —33.35(6) [71]
Interelectron interaction first order 368.83 This work
QED-INT second order —-13.37 This work
—-13.37 [28]
third order 0.17(2) This work
0.14(7) [28]
Electron self-energy including
nuclear size correctiofSE) —55.87 [59]
Vacuum polarization including
nuclear size correctiofVP) 12.94 [72]
Electron self-energy screening 1.52 [20]
Vacuum polarization screening -0.36 [19]
Second-order radiative SESE 0.10 [64]
corrections SESE —0.13(13) Estimate, TW
VPVP 0.13 [65]
SEVP -0.21 [65]
Nuclear recoil —-0.07 [61]
Nuclear polarization 0.03 [73]
Total theory QED 280.36(21) This work
QED 280.44(20) [28]
RMBPT 280.54(15) [16]
Experiment 280.59(9) [9]

8 oop after loop, irreducible.
®_oop after loop reducible and other SESE.

In the tables, in which only the data calculated in thisevaluation of the two-photon exchange for the three-electron
work are presented, the error is not indicated. It is clear thatonfigurations ($)22s,,, and (1s)22p,, coincides with ear-
rounding off numbers provides a certain error. So in thelier calculations in[28] at least within four digits for the
tables containing a large number of contributions, the totalaluesZ=80 and 92 calculated ifi28]. The three-photon
values may differ slightly from the sum of the contributions exchange corrections for the same configurations made in the
due to this rounding off. framework of the RMBPT coincide with the results given in

The full QED evaluation of the two-photon exchange and[66] within the quoted error bars. Note that[i®6] only one
the approximate QED evaluation of three-photon exchang8reit interaction was taken into account. In our work, we
for the state $,,25,,'S, are done for the first time to our considered one, two, and three Breit interactions. As follows
knowledge in our paper. The disagreement of the total energiyom Tables VIII and X, the contribution of the Coulomb-
of 15,,251,'Sy and 1s,,25,,°S; states with the earlier AO  Breit-Breit interaction graphs is comparable with the contri-
and UT calculations is about12 eV. This may be caused by butions of the Coulomb-Coulomb-Coulomb and Coulomb-
the absence of the SE and VP screening corrections, not y&oulomb-Breit graphs. It should be mentioned that as
calculated in the QED framework. Approximately these cor-follows from Tables VIII, X, and XIV, omitting the two and
rections were taken into account in UT and AO methods. Thehree Breit photons within RMBPT yields a better agreement

TABLE XIV. Different theoretical and experimental data for thp,;2-2s,,, splitting in Li-like ions.

Blundell Kim et al. Yerokhinet al.
4 This work Ref.[74] Ref.[75] Ref. [67] Experiment
30 57.34(1) 57.389(2) 57.381 57.384(4) 57.384(3) Staatdd., Ref.[76]

70  176.52(7) 176.56(2)  176.567 176.44(6)
80  220.92(15) 220.99(3)  221.028 220.93(15)
92  280.36(21) 280.83(10)  280.677 280.44(20)  280.59(9) Schwepak Ref.[9]
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with experiment, for example faZ=30[67]. However, this  Here we took into account that for the reducible contribution,

means only that in these cases the QED interaction beyoritie denominator in Eq(A3) cannot be equal to zero and

RMBPT should be taken into account precisely. therefore it is possible to pat=0 in this denominator. Con-
For the configuration (4)?2s,,,, our total energy differs tinuing the integration over time variables, we obtain

from the value obtained if22] by 48 eV. In[22], the

RMBPT approach based on zero-order Hartree-Fock func- . A

tions was employed. However, our results for the splitting (¢, |5 |, ), = _ien<¢a|f e ira=Hoti=mtlge .

2P 28y in Li-like uranium agree well with experimental —

data and with other theoretical values.

X

1 n—-1
H Him) |(Da>irr- (A4)
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Here all the operators are written in Sctimger representa-

APPENDIX A tion. Inserting Eq(A5) into Eq. (A1), we have

The irreducibleS-matrix elements in Eq(11) can be de-
fined as the matrix elements that cannot be reduced to the
products of two or more matrix elements of the type AEi(r?):e”@)a“:'im( ;Al:hm
(®y]- -+ |®,). Thus in Eq.(12) only the first terms in each
set of square brackets could be irreducible. However, in these
terms the reducible parts can also arise. . )

Thus for the evaluation of the irreducible contribution in- N Ed- (A6), the limitA—0 is already done. .
stead of Eqs(10) and(11) one can use the formula Now we will evaluate the energy shifE{") in another
way. Consider the irreducible part of the nondiagonal matrix
element of the operatds"”)(=,— ) between two different
statesb, and®, with different energies, andey, . Then we
can repeat all the integrations ouvgyr, ..., t,_; as before
and only the last integration ovey will be different:

n—-1
|q)a>irr- (A6)

€a 0

. ~ink .
AELMT= lim —— (04| S| @) (A1)
A—0

In Eqg. (Al), the limit A—0 can be done explicitly. For this
purpose we use the adiabaSanatrix expressior{8):

- > . lim (@ | S| D )i = —i (D F e i(ea=Ho)ti—M\tal gt Fy.
Sg\n)(oo,_oo):(_i)nenj' Hint(tl)ei}\ltl‘dtlflHim(tz) )\_}0< b|S)\| a>|rr < b| . 1Mint

©

1 n—-1
- .
Xef}‘ltz‘dtz .. f " lﬂint(tn)ei)\‘tnldtn- X - _HOHint) |Pa)ire
_ a
(A2) =—278(g,— £p)(Dy|
n-1

Acting by the operatoB{")(=,— ) on the state vectd,) < B _ Al [P (AT)
and integrating ovet,,, we obtain " ea—Hp " a

tn— ~
J lHim('tn)e_”'t“‘dtn|¢>a) Note that in Eq(A7) we can put\=0 from the beginning.
- Then, comparing Eq(A7) with Eqg. (A6) we arrive at the
thoq - R formulas(12) and (13) given in the text.
= f e'(HO_Sa)tn_Mtnldthint|(I)a>

APPENDIX B

=g/(Homealtn-17 M| —i(I3| - )Hint|q)a>' Here we give some details of our numerical procedure
0~ €a and the accuracy estimates. The main problem in the numeri-
(A3)  cal evaluation of the two- and three-photon exchange graphs
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is the summation over the complete Dirac spectrum for the Q:ﬁnz,ﬁnzzgnz_sb, . (B2)
intermediate states. For this purpose we employed the

B-spline approach68], in particular the version developed
in [69]. As in [69], we use the following grid to construct
B-splines. The ion is inserted into a box with the radRis
=55/Z a.u., whereZ is the charge of the nucleus. The inter-
val R is divided intoJ parts{t;} given by

If Bn, & A, the corresponding term of the sum overis not
singular withinA . The numerical integration of such terms
will be discussed below. We will designate the singular terms
with an asterisk at the sum symbol. Consider the following

identity:
1 . f(Q)
tj=RexL{13(‘]m—1”, j=1,...3. (@Y JAK 2" G g 0,00
[T —1(B,) f(Bn,)

Then, adding to these grid points 10 point§=0,j= B Lk Aany Q—,an * Q—,Bn2+i Oen, df2,
—9,...,0)[68], we get the grid on which we construct the
set of B-splines of order 10. The program generating the (B3)
Dirac spectrum was tested by changing the number of grid
points(J) when calculating “step” graphs with Coulomb and \yere
transverse photons and “box” and “cross” graphs with Cou-
lomb photons. The number of generated energies was varied
between 50 and 70 for positive and for negative parts of the 19(Q) 19 (Q— 6. +e,)
spectrum. The variations led to an error less teanl0 * f)=3 '_ a’b’nin, a’ T ¥a/ningab
a.u. 90’ 2 (eatep—en,—&n,) '

In order to separate the angular variables for the calcula- (B4)

tion of the matrix element?(Q) 4pcq, the operatot9I(Q,r4,)

[see Eqs(16), (17), and(23)] is expanded in partial waves. ) ) . .
: L ; : . _The first term in the curly brackets on the right-hand side of
The angular integration is done analytically. The integration . . o .
gutar integration 1S ylcaty ntegrat Eqg. (B3) is nonsingular withinA, and can be integrated to-

over |r4| and|r,| is done numerically. The interval of inte- : :
gration[ O,R] is divided into four parts, which are defined by gether with the termsgn, ¢ Ak The second term was inte-

Eq. (B1) with J=4, and on each part the integration is per-9rated analytically. , _

formed using the Gauss ruléwith a Legendre polynomial 't @Ppeared to be convenient to add poifig,} to the

of order 30-40). In the expansion of the operat8ronly the  integration grid to make the first term on the right-hand side
first 10 partial waves for the two-photon exchange and thef Eq.(B3) continuous with the flrst derivative. We designate
first three partial waves for the three-photon exchange wer1€ new intervals ag;, andl varies betweeia, andl min,
rigorously taken into account. In the case of the two-photorf?hich are defined by the condition that the intervils}
exchange, the remainder of the expansion was evaluated U&2MPOSe the same interval of integration as the intervals

ing its asymptotic form. We suppose that the terms of the =k-

partial wave expansion drop down ak’/wherek is the In order to evaluate the integrals in Eq&4) and (25)

. . — 104
number of the partial wave. For the three-photon case thg\”th the desired accuracy 10 » WE have to calculate the

. m&egral on every new interval, with the accuracy
remainder appeared to be smaller than the accepted error an

was omitted.
To perform the integration ove in the singular integrals
presented in Eqgs(24) and (25), a special procedure was = |Fil (B5)
used. Since the integral is convergent for lafyealues, we ' max '
limit the integration by some finite interval. Then we divide ,2 [Fi|
this interval into intervala\ ,=[ 10k, 10(k+ 1)], wherek var- 1"=lrmin

ies betweerk.x and ky,,. The values ok, and Ky, in
each case are defined by the condition that the contributiofnereF, is the estimate of the contribution of intervé.

of the intervalsA,  andA is smaller than the accepted Thjs estimate can be given roughly by the integration with
error of the calculation=10 * a.u). two grid points(the end points o8)) in which the integrated

The integration over the arbitrary interval, was per- function in any case has to be calculated. Due to the neces-
formed as follows. Interchanging the order of the summatiorsity of monitoring the accuracy for every interval of integra-
and integration in Eq(24), we obtain the integral where the tion, the Simpson method of integration was used. The num-
integrand contains many singularities defined by the condiber of grid points was increased unless the accueaayas
tions achieved.

042513-18



QED CALCULATION OF THE INTERELECTRON.. .. PHYSICAL REVIEW A4 042513

[1] R. Marrus, A. Simionovici, P. Indelicato, D. Dietrich, P. [27]I. Lindgren, H. Persson, S. Salomonson, and L. Labzowsky,
Charles, J.P. Briand, K. Bosch, D. Liesen, and F. Parente, Phys. Phys. Rev. A1, 1167(1995.
Rev. Lett.63, 502(1989. [28] V.A. Yerokhin, A.N. Artemyev, V.M. Shabaev, M.M. Sysak,
[2] B. Birkett, J.P. Briand, P. Charles, D. Dietrich, K. Finlayson, P. O.M. Zherebtsov, and G. Soff, Phys. Rev. Le85, 4699
Indelicato, D. Liesen, R. Marrus, and A. Simionovichi, Phys. (2000.

Rev. A47, R2454(1993. [29] V. A. Yerokhin, A. N. Artemyev, V. M. Shabaev, M. M. Sysak,
[3] E.G. Myers, J.K. Thomson, E.P. Gavathas, N.R. Claussen, J.D.  O. M. Zherebtsov, and G. Soff, Philos. M&gp be published
Silver, and D.J.H. Howie, Phys. Rev. Lef5, 3637(1995. [30] P.J. Mohr and J. Sapirstein, Phys. Rew62 052501(2000.
[4] R. Marrs, S.E. Elliot, and T. Skdker, Phys. Rev. A2, 3577 [31] M. Gell-Mann and F. Low, Phys. Re®4, 350 (195J.
(1995. [32] J. Sucher, Phys. ReSkQ?, 1448(1957.
[5] T. Stchlker and A.E. Livingston, Acta Phys. Pol. 87, 441  [33] L.N. Labzowsky, Zh. Ksp. Teor. Fiz.59, 167 (1970 [Sov.
(1996. Phys. JETF32, 94 (1970].
[6] J.K. Thomson, D.J.W. Howie, and E.G. Myers, Phys. Rev. A[34] L.N. Labzowsky, J. Phys. B6, 1039(1993.
57, 180(1999. [35] T.E. Timofeeva and L.N. Labzowsky, Izv. Akad. Nauk SSSR,

[7] S.D. Bergeson, A. Balakrishnan, K.G.H. Daldwin, T.B. Luca- Ser. Fiz.40, 2390(1981).
torto, J.P. Marangos, T.J. Mcllrath, T.R. O’Brian, S.L. Rolston, [36] L. Labzowsky, V. Karasiev, I. Lindgren, H. Persson, and S.
C.J. Sansonetti, J. Wen, N. Westbrook, C.H. Cheng, and E.E. _ Salomonson, Phys. Scf46, 150 (1993.
Eyler, Phys. Rev. Leti80, 3475(1998. [37] M. Braun and V. Shirokov, Izv. Akad. Nauk SSSR Ser. Bit,

[8] E.G. Myers, H.S. Margolis, J.K. Thompson, M.A. Farmer, J.D. 2585(1977 [Bull. Acad. Sci. USSR, Phys. S¢Engl. Trans))

Silver, and M.R. Tarbutt, Phys. Rev. Le&2, 4200(1999. 38 ill’\lz‘rl’_Sslo(lg??)k]' d MA. Tok 3. Ph o8 3717
[9] J. Schweppe, A. Belkacem, L. Blumenfeld, N. Claytor, B.[ ] L.N. Labzowsky an A Tokman, J.Ehys. Bo

) . (1995.
Feinberg, H. Gould, V.E. Kostroun, L. Levy, S. Misava, J.R.
Mowat, and M.H. Prior, Phys. Rev. LeB6, 1434 (1991. [39] L.N. Labzowsky and M.A. Tokman, Opt. Spektro$2, 240

(1997 [Opt. Spectrosc82, 216(1997)].
[10] C. Brandau, F. Bosch, G. Dun"n, B. Franzke, A. Hoffkr.1echt, C'[40] L.N. Labzowsky and M.A. Tokman, Adv. Quantum CheBq,
Kozhuharov, P.H. Mokler, A. Miler, F. Nolden, S. Schippers, 393 (1998
Z. Stachura, M. Steck, T. Stiker, T. Winkler, and A. Wolf, [41] V.M. Shabaev, Teor. Mat. Fiz82, 83 (1990 [Theor. Math.

Hyperfine Interact114, 45 (1998. Phys.82, 57 (1990].
[11] P. Beiersdorfer, A.L. Osterfeld, J.H. Scofield, J.R.C. Lopez-[42] V. Shabaev and I. Fokeeva, Phys. Revid\ 4489(1994}.
Urrutia, and K. Widmann, Phys. Rev. Le&0, 3022(1998. [43] W.H. Furry, Phys. Rew81, 115 (1951).
[12] V.A. Yerokhin and V.M. Shabaev, Phys. Lett. 207, 274  [44] M. G. Veselov and L. N. Labzowskieorija Atoma. Strojenie
(1995. Elektronnykh Obolochek(English translation: Theory of
[13] V.A. Yerokhin, A.N. Artemyev, and V.M. Shabaev, Phys. Lett. Atoms. The Structure of the Electron She{auka, Moscow,
A 234, 361(1997). 1986 (in Russian.
[14] A.N. Artemyev, V.M. Shabaev, and V.A. Yerokhin, Phys. Rev. [45] M. A. Braun, A. D. Gurchumelia, and U. I. SafronovRelja-
A 56, 3529(1997. tivistskaya Teorija AtomaEnglish translation: Relativistic
[15] S.A. Blundell, Phys. Rev. A6, 3762(1992. Theory of Atoms(Nauka, Moscow, 1984(in Russian.
[16] I. Lindgren, H. Persson, S. Salomonson, and A. Ynnerman[46] V.M. Shabaev, Phys. Rev. B0, 4521(1994).
Phys. Rev. A7, R4555(1993. [47] V. M. Shabaev, Phys. Rep(to be publisheg e-print
[17] H. Persson, I. Lindgren, S. Salomonson, and P. Sunnergren, physics/0009018.
Phys. Rev. A48, 2772(1993. [48] A. I. Akhiezer and V. B. BerestetskiQuantum Electrodynam-
[18] V.A. Yerokhin, A.N. Artemyev, T. Beier, V.M. Shabaev, and G. ics (Wiley Interscience, New York, 1965
Soff, J. Phys. B31, L691 (1998. [49] V. Weisskopf and E. Wigner, Z. Phy&3, 54 (1930.
[19] A.N. Artemyev, T. Beier, G. Plunien, V.M. Shabaev, G. Soff, [50] F. Low, Phys. Rev88, 53 (195J).
and V.A. Yerokhin, Phys. Rev. A0, 45 (1999. [51] L.N. Labzowsky, Zh. Ksp. Teor. Fiz.85, 869 (1983 [Sov.
[20] V.A. Yerokhin, A.N. Artemyeyv, T. Beier, G. Plunien, V.M. Sha- Phys. JETP8, 503(1983)].
baev, and G. Soff, Phys. Rev.60, 3522(1999. [52] V.G. Gorshkov, L.N. Labzowsky, and A.A. Sultanaev, Zh.
[21] L. Labzowsky, G. Klimchitskaya, and Yu. DmitrieRelativis- Eksp. Teor. Fiz96, 53(1989 [Sov. Phys. JETBY, 28(1989].
tic Effects in the Spectra of Atomic Systeimstitute of Phys-  [53] V.V. Karasiev, L.N. Labzowsky, A.V. Nefiodov, V.G. Gorsh-
ics, Bristol, 1993. kov, and A.A. Sultanaev, Phys. Sd6, 225(1992.
[22] W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A54] L. Labzowsky, V. Karasiev, and |. Goidenko, J. Phys2B
37, 2764(1988. L439 (1994).

[23] Y. Ishikawa and H.M. Quiney, Phys. Rev.4¥, 1732(1993. [55] L.N. Labzowsky, I.A. Goidenko, and D. Liesen, Phys. S&.
[24] A. Ynnerman, J. James, H. Persson, and S. Salomonson, Phys. 271 (1997.

Rev. A50, 4671(1994). [56] L.N. Labzowsky and A.O. Mitrushenkov, Phys. Rev.58,
[25] D.R. Plante, W.R. Johnson, and J. Sapirstein, Phys. Rd9, A 3029(1996.

3519(1994. [57] W.R. Johnson and G. Soff, At. Data Nucl. Data Tal88s405
[26] S. Blundell, P.J. Mohr, W.R. Johnson, and J. Sapirstein, Phys.  (1985.

Rev. A48, 2615(1993. [58] P.J. Mohr, Phys. Rev. A6, 4421(1992.

042513-19



ANDREEYV, LABZOWSKY, PLUNIEN, AND SOFF PHYSICAL REVIEW A64 042513

[59] P.J. Mohr and G. Soff, Phys. Rev. Lef0, 158 (1993. [68] W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys. Rev. A
[60] G. Soff and P.J. Mohr, Phys. Rev.38, 5066(1988. 37, 307 (1988.
[61] A.N. Artemyev, V.M. Shabaev, and V.A. Yerokhin, Phys. Rev. [69] L.N. Labzowsky and I.A. Goidenko, J. Phys.3B, 177(1997.

A 52, 1884(1999. [70] P.J. Mohr, G. Plunien, and G. Soff, Phys. Regj93 227
[62] G.W. Drake, Can. J. Phy§6, 586 (1988. (1998.

[63] I. Goidenko, L. Labzowsky, A. Nefiodov, G. Plunien, G. Soff, [71] T. Franosch and G. Soff, Z. Phys. D: At., Mol. Clust&g 219
and S. Zschocke, in Proceedings of Hydrogen Atom II: Preci- (1991).

sion Physics of Simple Atomic Systems, edited by S. G.r771 1. persson, I. Lindgren, S. Salomonson, and P. Sunnergren,
Karshenboim, R. Pavone, G. Bassani, M. Inguscio, and T.W. Phys. Rev. A52, 1884(1995.

Hansph(Springer, Berlin, in pregs . [73] A.V. Neviodov, L.N. Labzowsky, G. Plunien, and G. Soff,
[64] A. Mitrushenkov, L. Labzowsky, I. Lindgren, H. Persson, and Phys. Lett. A222, 227 (1996

S. Salomonson, Phys. Lett. 200, 51 (1995.
[65] T. Beier, P.J. Mohr, H. Persson, G. Plunien, M. Greiner, and G[74] SA. B_Iundell, Phyg. Rev. M?,. 1790(1993.
[75] Y.K. Kim, D.H. Baik, P. Indelicato, and J.P. Desclaux, Phys.

Soff, Phys. Lett. A236, 329(1997.
[66] O.M. Zherebtsov, V.M. Shabaev, and V.A. Yerokhin, Phys. Rev. A44, 148 (199].

Lett. A 277, 227 (2000 [76] U. Staude, P. Bosselmann, R.'tBwer, D. Horn, K.H. Schart-
[67] V. A. Yerokhin, A. N. Artemyev, V. M. Shabaev, M. M. Sysak, ner, F. Folkmann, A.E. Livingston, T. Ludziejewski, and P.H.
O. M. Zherebtsov, and G. Softinpublisheil Mokler, Phys. Rev. /68, 3516(1998.

042513-20



