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QED calculation of the interelectron interaction in two- and three-electron ions
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Accurate QED evaluations of the one- and two-photon interelectron interaction for the configurations
1s1/22s1/2

1S0 and 1s1/22s1/2
3S1 in He-like ions and for the configurations (1s)22s1/2 and (1s)22p1/2 in Li-like

ions with nuclear charge numbers 30<Z<92 are performed. The three-photon interaction is also partly taken
into account. The QED theory of these corrections is provided by the adiabaticSmatrix and by the line-profile
approach. The Coulomb gauge is employed. The results are compared with available experimental data and
with different calculations.
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I. INTRODUCTION

The energy levels of two-electron ions are currently un
intensive experimental investigations@1–8#, as are those o
three-electron ions@9–11#. The deduced experimental da
@9# for the splitting between the energy levels (1s1/2)

22s1/2

and (1s1/2)
22p1/2 in Li-like U are very accurate and therefor

imply an excellent opportunity for tests of QED in the stro
electric field of the nucleus. A considerable number of th
retical investigations was devoted to the evaluation of diff
ent QED corrections to the energy levels of He-like and
like ions. A two-electron character displays the Lamb sh
screening corrections and the interelectron interaction cor
tions. The Lamb shift screening corrections, i.e., elect
self-energy screening corrections and vacuum polariza
screening corrections, were calculated in@12–14# for He-like
ions and in@15–20# for Li-like ions.

The dominant two-electron contribution results from t
first-order interelectron interaction. The QED evaluation
the first-order interelectron interaction correction is trivi
see, for example,@21#. The second-order correction is muc
more intricate. Many theoretical results for two- and thre
electron ions were obtained within the framework of relat
istic many-body perturbation theory~RMBPT! @22–24# and
its generalizations, namely the relativistic all-order man
body theory~AO! @25#. Compared to the full QED calcula
tion, the following contributions are omitted in RMBPT an
AO: ~i! negative-energy intermediate states,~ii ! crossed pho-
ton interaction, and~iii ! exact treatment of retardation. O
the other hand, AO partly takes into account retardation
higher-order interactions, which may be important even
very highZ ions.

Full QED calculations of the second-order interelectr
interaction were accomplished in recent years only for
ground state of He-like ions@26,27#. Recently, the full QED
approach was applied also to the (1s1/2)

22p1/2-(1s1/2)
22s1/2

splitting in Li-like U @28,29# and to n52 triplet states in
He-like ions@30#.

For the evaluation of the interelectron interaction corr
tions within the QED theory, we employ the adiabaticSma-
trix approach@31,32# in the Furry picture and the Feynma
graph techniques for the bound electrons. Details of the
1050-2947/2001/64~4!/042513~20!/$20.00 64 0425
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plication of this approach to the bound-state QED are p
vided in @33,34,21#.

It is essential to distinguish the contributions of the ‘‘irr
ducible’’ and ‘‘reducible’’ graphs. In the irreducible graph
the initial or ‘‘reference’’ state is omitted in the summation
over intermediate atomic states. The contribution of the ‘‘r
erence’’ states is described by the reducible graphs. The
ducible graphs are singular and for their regularization a s
cial procedure is needed. In the framework of the adiabatS
matrix approach, this procedure was described in@35,21#.
For few-electron atoms, the evaluation of reference-state
rections~RSC! is simpler when the energies of both electro
coincide~ground state! and becomes much more complicat
for the case of nonequal electron energies~excited states!. In
the latter case, the direct adiabaticS matrix approach is
hardly applicable. Therefore, for the evaluation of the R
for nonequal energies we will use in this paper the ‘‘lin
profile approach’’ developed in@36#.

Reference-state corrections for two-electron atoms w
first introduced in @37#. An explicit expression for the
Coulomb-Breit ‘‘box’’ correction for equal energies~e.g., for
the ground state of the two-electron atom! was obtained in
@35#, and for nonequal energies in@38–40#. In the latter case,
the line profile approach has been employed.

The corresponding expressions for the RSC in the Fe
man gauge and within the Green-function approach were
tained in @41# for equal energies and in@42# for nonequal
energies. Numerical calculations of the RSC for the grou
state of two-electron ions in the Feynman gauge were p
sented in @26,27#. The numerical calculations of th
Coulomb-Breit RSC for the 1s1/22s1/2

1S0 , 1s1/22p1/2
3P0,

and 1s1/22s1/2
3S1 two-electron configurations and partly fo

the (1s)22s1/2 and (1s)22p1/2 three-electron configuration
were performed in@39,40#. The numerical results for the
RSC for three-electron configurations are also given in@28#.

For the sake of accuracy, we reproduced the results for
ground (1s1/2)

2 state and made a detailed comparison w
the corresponding results in@27#, where the Coulomb gaug
was also used. The Coulomb-Coulomb interaction was rep
duced with an accuracy of 0.01% for allZ values. The
Coulomb-Breit part has been reproduced with an accurac
0.05% and the Breit-Breit part is reproduced with an ac
racy of 0.1%. The small deviations are due to the differ
©2001 The American Physical Society13-1
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ANDREEV, LABZOWSKY, PLUNIEN, AND SOFF PHYSICAL REVIEW A64 042513
numerical methods: in@27# the method of discretization o
the radial Dirac equations was employed, while we used
B-spline approach in this paper.

The paper is organized as follows. In Sec. II, a gene
description of the adiabaticS matrix approach is given an
its historical background is briefly indicated. In Secs. III a
IV, the formulas for the irreducible contributions to the inte
electron interaction in two- and three-electron ions are p
vided. In Sec. V, the line profile QED approach is formulat
and its application to the evaluation of the reducible con
butions to the interelectron interaction is described. In S
VI, the formulas for the reducible contributions in two- an
three-electron ions are derived. Section VII is devoted t
discussion of the results and to a comparison with exp
mental data and with different theoretical calculations.
Appendix A, the application of theS-matrix theory to irre-
ducible Feynman graphs is rigorously formulated. Some
tails of the numerical procedure and the accuracy estim
are presented in Appendix B.

II. ADIABATIC S-MATRIX APPROACH

For the calculations of the corrections to the energy l
els, we use the adiabaticS-matrix approach first develope
by Gell-Mann and Low@31# and generalized to a form sui
able for QED calculations by Sucher@32#. This approach is
based on the Furry picture@43#, which describes the many
electron atom as a set of electrons, moving in the field of
nucleus and interacting with one another through the in
action with the electromagnetic field. The Hamiltonian of
atom in the second quantization representation is

Ĥ5Ĥ01Ĥ int , ~1!

Ĥ05E Ĉ1~x!ĥD~r !Ĉ~x!dr , ~2!

Ĥ int52E ĵ m~x!Âm~x!dr , ~3!

whereĈ,Ĉ1 are the electron-positron field operators andĥD

is the one-electron Dirac operator.Ĥ int defines the interaction
of the electrons with the electromagnetic field,ĵ m is the op-
erator of the electron-positron current, andÂm is the operator
of the 4-vector potential of the electromagnetic field.

The Dirac operatorĥD is given by

ĥD~r !5a p1bm2eUc~r !, ~4!

wherea,b are Dirac matrices,p[2 i“, Uc(r ) is the nuclear
Coulomb potential, andm,e are the mass and the charge
the electron, respectively. We use the units\5c51.

Equations~3! and ~4! define the Coulomb zero-order ap
proximation. This approximation is most adequate for hig
charged, few-electron ions. The basis set of the one-elec
wave functions is defined by the wave equation

ĥDcn5«ncn , ~5!
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where«n are the one-electron energies. The zero-order w
function of the atom~ion! in the nondegenerate case is t
Slater determinant built from the one-electron functionscn
(n51, . . . ,N), where N is the number of electrons. Th
zero-order energy of the atom is the sum of the one-elec
energies

E(0)5 (
n51

N

«n . ~6!

The adiabaticS-matrix formalism is based on the use
the adiabatic evolution operatorŜl(t,t8). This operator is
expressed as

Ŝl~ t,t8!511 (
n51

`

Ŝl
(n)~ t,t8!, ~7!

Ŝl
(n)~ t,t8!5~2 i !nenE

t8

t

Ĥ int
(l)~ t1!dt1

3E
t8

t1
Ĥ int

(l)~ t2!dt2•••E
t8

tn21
Ĥ int

(l)~ tn!dtn , ~8!

Ĥ int
(l)~ t !5eiĤ 0tĤ inte

2 iĤ 0te2lutu. ~9!

Herel.0 is the adiabatic parameter andĤ int
(l)(t) denotes the

adiabatic interaction Hamiltonian in the interaction repres
tation. Formulas~7!–~9! present the adiabatic perturbatio
theory in powers of the interaction constante5Aa (a is the
fine-structure constant!.

Gell-Mann and Low@31# derived a formula which yields
the energy shift due to the interaction~3! in terms of the
operator Ŝl(0,2`). Later Sucher@32# derived a symme-
trized version of the energy shift formula, containing t
matrix elements of the operatorŜ(`,2`) and which is more
suitable for the renormalization procedure. The energy s
is determined by

DEa5 lim
l→0

i

2
le

]

]e
^FauŜl~`,2`!uFa&

^FauŜl~`,2`!uFa&
, ~10!

where uFa& is the state vector for the noninteractin
electron-positron and electromagnetic fields.

Formula~10! enables one to extend the well-known tec
nique of calculating theS-matrix elements in QED to the
energy shift calculations. Practically, this means that
Feynman graph technique in the Furry representation ca
used for the calculation of the matrix elements of the ad
baticS-matrix in Eq.~10!. All the time integrations should be
done explicitly, and unlike the standard QED for the fr
electrons each vertex should contain the adiabatic expon
This program was first realized in@33# where the QED
theory of the interelectron interaction in many-electron
oms was considered.

For actual calculation it is convenient to expand Eq.~10!
in powers ofe. The corresponding expansion up to four
order was given in@33#:
3-2
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QED CALCULATION OF THE INTERELECTRON . . . PHYSICAL REVIEW A64 042513
DEa5 lim
l→0

1

2
il$^FauŜl

(1)uFa&1@2^FauŜl
(2)uFa&

2^FauŜl
(1)uFa&

2#1@3^FauŜl
(3)uFa&23^FauŜl

(2)uFa&

3^FauŜl
(1)uFa&1^FauŜl

(1)uFa&
3#1@4^FauŜl

(4)uFa&

24^FauŜl
(3)uFa&^FauŜl

(1)uFa&14^FauŜl
(2)uFa&

3^FauŜl
(1)uFa&

222^FauŜl
(2)uFa&

2

2^FauŜl
(1)uFa&

4#%. ~11!

For irreducible matrix elements the procedure of the eva
tion of the limit l→0 can be avoided and the adiabatic fo
mula can be replaced by a simpler one@44,21#,

DEa
(n, irr)5^FauU (n)uFa&, ~12!

where the ‘‘effective potential energy’’U (n) is defined as

^FbuŜ(n)uFa& irr522p i d~Ea
(0)2Eb

(0)!^FbuU (n)uFa&.
~13!

A simple proof of Eqs.~12! and~13! is given in Appendix A.
In principle, Eqs.~10! and~11! are valid for nondegener

ate states only. For the generalization to the degenerate
we refer to@21#. However, the formulas~10!–~13! remain
unchanged in the most important case where the degen
states differ by symmetry.

Details of the Feynman graph techniques for bound e
trons can be found in@21,34#. Different QED approaches to
the calculations with bound electrons in atoms, based on
Green-function method, were formulated in@45# and@41,46#
~two-times Green-function method@47#!.

III. IRREDUCIBLE CONTRIBUTIONS
TO THE INTERELECTRON INTERACTION

IN TWO-ELECTRON IONS

The first-order interelectron interaction for two-electr
configurations is described by the Feynman graph of Fig
This graph is irreducible.

In Fig. 2, the second-order interelectron interaction Fe

FIG. 1. A Feynman graph, describing the first-order interel
tron interaction. The double solid line corresponds to bound e
trons in the field of the nucleus, the wavy line corresponds to
sum of the Coulomb and Breit~transverse! photons. Ifa85a and
b85b, the graph is called ‘‘direct’’; whena85b, b85a we call it
an ‘‘exchange’’ graph. The latter name should be understood
connection with permutation symmetry.
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man graphs are depicted. The ‘‘box’’ graph@Fig. 2~a!# is
reducible. They have singularities when«n1

1«n2
5«a1«b .

In this section we will consider only the ‘‘irreducible’’ part o
these reducible graphs, that is, the contribution from«n1

1«n2
Þ«a1«b . The ‘‘crossed’’ graph in Fig. 2 is irreducible

However, usually one extracts the terms with«n1
1«n2

5«a

1«b ~which are not singular! from this graph and consider
these terms together with the ‘‘reducible’’ parts of the ‘‘box
graph. One of the reasons is that the Coulomb-Breit red
ible corrections for the ‘‘box’’ and ‘‘crossed’’ graphs canc
each other in the case of equal energies~ground state!. We
will follow this tradition in our paper and thus we divide th
contributions of the ‘‘crossed’’ graphs into ‘‘irreducible’’ an
‘‘reducible’’ parts.

According to the correspondence rules for Feynm
graphs in bound-state QED@21,34#, the electron propagato
can be expressed as@48#

S~x1 ,x2!5
1

2p i E2`

`

dv eiv(t12t2)(
n

cn~r1!c̄n~r2!

«n~12 i0!1v
,

~14!

wherex[(r ,i t ),c̄n is the Dirac conjugate function, and th
summation extends over the whole Dirac spectrum for
bound electron.

The photon propagators for the Coulomb and transve
photons are given by@21,34#

Dm1m2

c,t ~x1 ,x2!5
1

2p i E2`

`

dV I m1m2

c,t ~V,r 12!e
iV(t12t2)

~15!

with

I m1m2

c ~V,r 12!5
dm14dm24

r 12
, r 125ur 12r 2u ~16!

and

I m1m2

t ~V,r 12!5S dm1m2

r 12
ei uVur 121“1m1

•“2m2

1

r 12

12ei uVur 12

uV2u
D

3~12dm14!~12dm24!. ~17!

-
c-
e

in

FIG. 2. Notations are the same as in Fig. 1. Byn1 ,n2 the sum-
mation over the intermediate states is denoted. Graph~a! is called a
‘‘box’’ and graph ~b! is called a ‘‘cross’’ graph.
3-3
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ANDREEV, LABZOWSKY, PLUNIEN, AND SOFF PHYSICAL REVIEW A64 042513
Two-electron configurations are described by the wa
function

CJM j1 j 2l 1l 2
~r1 ,r2!

5N (
m1m2

CJM
j 1 j 2~m1m2!@c j 1l 1m1

~r1!c j 2l 2m2
~r2!

2c j 1l 1m1
~r2!c j 2l 2m2

~r1!#, ~18!

whereN51/2 for equivalent electrons andN51/A2 for non-
equivalent electrons;CJM

j 1 j 2(m1m2) is a Clebsh-Gordan sym
bol. It follows from Eq.~18! that for configuration 1s2s 3S1
the energy corrections are given directly by the followi
formula with a,b51s1,2s1 , where6 denote the two dif-
ferent projections of the total electron angular momentum

DE~1s2s 3S1!5F1s12s1 ;1s12s1
, ~19!

where

Fab;cd5Fabcd2Fbacd, ~20!

Fab••• is a function of one-electron states, which are d
scribed by wave functionsca ,cb , . . . . The form of the
function F depends on the type of the considered Feynm
graph~see below!. For the configuration 1s2s 1S0 the energy
correction is given by
m

04251
e
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n

DE~1s2s 1S0!5F1s22s1 ;1s22s1
2F1s12s2 ;1s22s1

.
~21!

The graph in Fig. 1 is irreducible and one can apply t
formulas~12! and ~13! for the evaluation of the energy cor
rections. Then using the correspondence rules for the bou
state QED, inserting the expressions for the propagators
theS-matrix elements, and integrating over the time and f
quency variables one obtains

Fa8b8ab
(1)

5(
g

I g~«a82«a!a8b8ab . ~22!

Here we have introduced the following abbreviation@see
definitions~16! and ~17!#:

I a8b8ab
g

~V![ (
m1m2

E c̄a8~r1!c̄b8~r2!gm1

(1)gm2

(2)I m1m2

g ~V,r 12!

3ca~r1!cb~r2!dr1dr2 , ~23!

where the Dirac matricesgm i

( i ) are acting on the wave func

tions depending on the variablesr i . Theng5c,t. For g5c,
Eq. ~22! determines the first-order Coulomb correction a
for g5t we obtain the first-order Breit correction.

The same sequence of operations that was used for
derivation of the first-order correction@the correspondence
rules for the graphs Fig. 2, time and frequency integratio
use of Eqs.~12! and ~13!# should be repeated for the evalu
ation of the irreducible contributions of the second-order c
rections.

For the ‘‘box’’ and ‘‘cross’’ corrections, the results are
Fa8b8ab
(2)(box,irr)

5(
gg8

( 8
n1n2

H i

2pE2`

` I g~V!a8b8n1n2
I g8~V2«a81«a!n1n2ab

~«a1«b2«n1
2«n2

!~V2«n2
1«b81 i0«n2

!
dV

1
i

2pE2`

` I g~V!b8a8n1n2
I g8~V2«a1«a8!n1n2ba

~«a1«b2«n1
2«n2

!~V2«n2
1«a81 i0«n2

!
dVJ , ~24!

Fa8b8ab
(2)(cross,irr)

5(
gg8

( 8
n1n2

H i

2pE2`

` I g~V!b8n2n1aI g8~V2«a81«a!n1a8bn2

~«n2
2«n1

2«a1«b8!~V2«n2
1«a1 i0«n2

!
dV

1
i

2pE2`

` I g~V!n1b8an2
I g8~V2«a1«a8!a8n2n1b

~«n2
2«n1

1«a2«b8!~V2«n2
1«b81 i0«n2

!
dVJ , ~25!
I.
n,
where the prime at the sum symbols means that the sum
tion runs overn1 ,n2 except for the case whenn15a,n2

5b or n15b,n25a ~reference states!. It should be stressed
that in order to avoid division by zero in Eq.~25! in the case
a-a5b8 and n15n2, one has either to take the limitn1→n2

for both terms on the right-hand side of the equation~the
singularities cancel! or to use the formulas given in Sec. V
Wheng5g85c, we have the Coulomb-Coulomb correctio
3-4
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when g5g85t we have the Breit-Breit, and the caseg
5c,g85t or g5t,g85c corresponds to the Coulomb-Bre
interaction.

In some cases~see Sec. VII! the accuracy of the experi
ments requires the inclusion of the third-order interelect
interaction corrections in the theoretical evaluations. Still
third-order contribution for high-Z ions is small and it is
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sufficient to take into account only the dominant part of th
contribution, that is, the third-order Coulomb and unretard
Breit ‘‘box’’ corrections. The corresponding Feynman gra
is displayed in Fig. 3. The formula for the irreducible part
the third-order ‘‘box’’ correction, derived in the same way
the corrections~22! and ~24!, can be expressed as
Fa8b8ab
(box,irr)

5 (
gg8g9

( 8
n1n2n3n4

I a8b8n3n4

g I n3n4n1n2

g8 I n1n2ab
g9

~«n3
1«n4

2«a82«b8!~«n1
1«n2

2«a2«b!
, ~26!
e

’’

runs
ates

t

re-
re-

s.
where the prime indicates that the summation is not runn
over the reference states.

IV. IRREDUCIBLE CONTRIBUTIONS
TO THE INTERELECTRON INTERACTION

IN THREE-ELECTRON IONS

The first-order interelectron interaction in three-electr
ions is described again by Fig. 1. The second-order inte
tion partly is described also by the same graphs, Fig. 2, as
the two-electron case. We will consider two three-elect
configurations: the ground state (1s1/2)

22s1/2 and the first
excited state (1s1/2)

22p1/2. In the former case, the indicesa,
b run over the set 1s1 ,1s2 ,2s1 and in the latter case the
run over the set 1s1 ,1s2 ,2p1/21 , where6 denote the total
angular momentum projections. Apart from the graphs
Fig. 2, for three-electron ions we have to consider the ‘‘ste
graphs depicted in Figs. 4 and 5. For the ‘‘step’’ graph in
case of the configuration (1s1/2)

22s1/2, the indicesa,b,c run
over the set 1s1 ,1s2 ,2s1 , and in the case of the configu
ration (1s1/2)

22p1/2 the indices a,b,c run over the set
1s1 ,1s2 ,2p1/21 .

The first-order contribution, as well as the second-or
‘‘box,’’ ‘‘cross,’’ and third-order ‘‘box’’ contributions, can be
represented as

FIG. 3. The third-order ‘‘box’’ Feynman graph. The notation
are the same as in Figs. 1 and 2. Here the wavy line with the c
denotes the sum of the Coulomb and unretarded Breit interact
g

c-
or
n

n
’’
e

r

DEabc5Fab;ab1Fbc;bc1Fca;ca , ~27!

whereFab;cd is given by Eqs.~23!, ~22!, ~24!, ~25!, and~26!.
The contributions of the ‘‘step’’ graphs in Fig. 4 can b

obtained by the formula

DEabc5 (
i 8, j 8,k851,2,3

i , j ,k51,2,3

e i 8 j 8k8 e i jkFi 8 j 8k8 i jk , ~28!

where the statesa,b,c are denoted as 1,2,3 ande i jk is the
unit antisymmetric tensor. Equation~28! includes the contri-
bution of the ‘‘direct’’ and all the possible ‘‘exchange
graphs in the three-electron case. The quantityFa8b8c8abc

(step,irr) is
defined as

Fa8b8c8abc
(step,irr)

5(
gg8

(
n

8
I g~«a2«a8!na8baI

g8~«c82«c!b8c8nc

«a1«b2«a82«n

,

~29!

where the prime at the sum means that the summation
over alln except the case when the set of one-electron st
$a8,n,c% is equivalent to the set$a,b,c% ~the case of refer-
ence states!. This leads to the condition«a1«b2«a82«n
Þ0. Thus we omit the singular term in then summation~see
Fig. 4! that gives rise to the ‘‘reducible’’ contribution. As in
Sec. III, hereg,g85c,t. The reducible contribution does no
arise forg5g85c.

It remains to consider the third-order Coulomb and un
tarded Breit corrections for three-electron ions. The cor

ss
.

FIG. 4. The second-order ‘‘step’’ graph for three-electron atom
The notations are the same as in Figs. 1 and 2.
3-5
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sponding ‘‘step-box’’ graphs that yield the main contributio
to the three-electron interaction are depicted in Fig. 5. T
contribution of these graphsDEabc

(step-box) is described by the
same formula~28! asDEabc

(step). It is easy to find out that the
fir
th
t
at

er

cs
ei
t

he
ot
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e
contributions of graphs Figs. 5~b! and 5~c! are equal. There-
fore, we will consider the contributions of these graphs as
doubled contribution of a graph, Fig. 5~b!. The quantity
Fa b c abc

(step-box,irr) is given by the formula

8 8 8
Fa8b8c8abc
(3)(step-box,irr)

5 (
gg8g9

( 8
n1n2n3

I a8b8n1n3

g I n3c8n2c
g8 I n1n2ab

g9

~«n1
1«n3

2«a82«b8!~«n1
1«n2

2«a2«b!

12 (
gg8g9

( 8
n1n2n3

I b8c8n3c
g I a8n3n1n2

g8 I n1n2ab
g9

~«n1
1«n2

2«a2«b!~«n3
1«a82«a2«b!

1 (
gg8g9

( 8
n1n2n3

I a8c8n1n3

g I b8n3n2c
g8 I n1n2ab

g9

~«n1
1«n2

2«a2«b!~«n1
1«n3

2«a82«c8!
, ~30!
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where the prime at the sum symbols indicates that the
summation does not run over the states for which either
set$n1 ,n2 ,c% or the set$n1 ,n3 ,c8% are equivalent to the se
$a,b,c%, the second summation does not run over the st
for which the sets$n1 ,n2 ,c% or $a8,n3 ,c% are equivalent to
the set$a,b,c% and the third summation does not run ov
the states for which the sets$n1 ,n2 ,c% or $n1 ,n3 ,b8% are
equivalent to the set$a,b,c% ~the cases of reference states!.

V. LINE PROFILE APPROACH

The problem of the natural line profile in atomic physi
was considered first in terms of quantum mechanics by W
skopf and Wigner@49#. In terms of modern QED, it was firs

FIG. 5. The third-order ‘‘step-box’’ graphs. The notations are t
same as in Figs. 1, 2, and 3. The wavy line with the cross den
the sum of the Coulomb and unretarded Breit interactions.
st
e

es

s-

formulated for one-electron atoms by Low@50#. In @50#, the
appearance of the Lorentz profile in the resonance appr
mation within the framework of QED was described and t
nonresonant corrections were estimated. Later the line pro
QED theory was modified also for two-electron atoms@51#
~see also@21,34#! and applied to the theory of overlappin
resonances in two-electron highly charged ions@52,53#. An-
other application was provided to the theory of nonreson
corrections in highly charged ions@54,55#.

It was found in@36# that the line profile approach~LPA!
provides a convenient tool for calculating the energy corr
tions. It clearly indicates the limits up to which the conce
of the energy of the excited states has a physical mean
that is, the resonance approximation. The exact theore
value for the energy of the excited state defined, for exam
by the Green-function pole can be compared directly w
the measurable quantities only in the resonance approx
tion when the following line profile is described by the fo
lowing two parameters: energyE and widthG. Beyond this

es

FIG. 6. The lowest-order amplitude of the photon scattering
the atomic electron in the resonance approximation~a! and insertion
of the self-energy part into the photon scattering graph in the re
nance approximation~b!. The wavy lines with the arrows denote th
absorption or the emission of the photon with momentumk and
polarizatione.
3-6



ss
r

u
o
ul

o
s
ain

d.
re

f
ion

le

In
e
b

ra

in
et

n
nt

n

hen

gi-
on

ph

ach
s

e-
ve

ec-

QED CALCULATION OF THE INTERELECTRON . . . PHYSICAL REVIEW A64 042513
approximation, the evaluation ofE andG should be replaced
by the evaluation of the line profile for the particular proce
Moreover, the line profile approach was found to be ve
useful for the evaluation of the reference-state~reducible!
correction in the case of two-electron atoms. In the noneq
energy case, the use of the line profile theory appeared t
much simpler than the employment of the adiabatic form
~11!.

Consider first the simplest process of photon scattering
the one-electron ion@Fig. 6~a!#, which is assumed to be in it
ground stateA. Using the correspondence rules, we obt
the expression for the scattering amplitude,

UA
(2)5e2(

n

@gnAn~k8,e8!* #An@gmAm~k,e!#nA

«n2«A2v
, ~31!

whereAm(k,e) is the potential of the electromagnetic fiel
The frequencies of the absorbed and emitted photons av
5uku and v85uk8u5v, respectively. We will consider the
resonance case when the frequencyv is close to the value
v res5«a2«A1O(a), wherea is one of the excited states o
an atom. In the framework of this resonance approximat
we have to retain only one term in the sum overn in Eq.
~31!: n5a. This is shown in Fig. 6a. Then

UAa
(2)5e2

@gnAn~k8,e8!* #Aa@gmAm~k,e!#aA

«a2«A2v
. ~32!

To obtain the Lorentz contour, one has to insert the e
tron self-energy part in the internal electron line in Fig. 6~a!.
For simplicity, we neglect the vacuum polarization part.
lowest order this leads to Fig. 6~b! and the expression for th
scattering amplitude in the resonance approximation will

UAa
(4)5UAa

(2) 2v1~v!

«a2«A2v
, ~33!

where

v1~v!5e2@ŜR~v1«A!#aa . ~34!

Here ŜR(v) is the renormalized electron self-energy ope
tor. The lower index at the functionv indicates the order ina
for the graphs which contribute to this function. Repeat
these insertions in higher orders, we can obtain the geom
progression with thenth member,

qn5UAa
(2)S 2v1~v!

«a2«A2v D n

. ~35!

Summing up this progression, we will get

UAa5e2
@gnAn~k8,e8!* #Aa@gmAm~k,e!#aA

«a2«A1v1~v!2v
. ~36!

Taking the square modulus of the amplitude~36!, integrat-
ing over the directions of the absorbed and emitted photo
and summing over the polarizations we obtain the Lore
profile for the absorption probability,
04251
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dW~v!

5
1

2p

GaA

@«a2«A1Re$v1~v!%2v#21@ Im$v1~v!%#2
dv.

~37!

Here dW(v) is the probability of the photon absorption i
the frequency intervalv, v1dv andGaA is the partial width
of the levela, connected with the transitiona→A.

Taking into account the graph Fig. 6~b!, we improve the
position of the resonance,

v res5«a2«A1Re$v1~«a2«A!%1O~a2!. ~38!

We define the energy shift as the shift of the resonance. T
the real part of the matrix element@ŜR(«a)#aa gives the
lowest-order contribution to the Lamb shift, and the ima
nary part which is finite and not subject to renormalizati
gives the total radiative~single-quantum! width of the level
a:

DEa
SE5@ŜR~«a!#aa5La

SE2
i

2
Ga . ~39!

The other contribution to the lowest-order Lamb shiftLa
VP

originates from the vacuum polarization graph. This gra
gives no contribution to the widthGa @21#.

The insertion of the Lamb shiftLA , corresponding to the
ground stateA into the Lorentz profile~37!, is a more com-
plicated problem, but can also be done within the appro
developed in@51#. The line profile for the emission proces
a→A is described again by Eq.~37!.

If we were to study the higher-order Lamb shift in on
electron atoms by the line profile approach, we would ha
to consider next the Feynman graph in Fig. 7~a! ~for simplic-

FIG. 7. Reducible Feynman graph SESE~loop after loop! ~a!
that gives rise to the correction in Eq.~44!~a! and the Feynman
graph~b! representing the higher-order electron self-energy corr
tion within the line profile approach~SESE, loop after loop, irre-
ducible!.
3-7
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ANDREEV, LABZOWSKY, PLUNIEN, AND SOFF PHYSICAL REVIEW A64 042513
ity, we will not consider the other second-order graphs!. If
n15n35a andn2Þa, the graph of Fig. 7~a! can be consid-
ered as a complicated insertion represented by Fig. 7~b! in
the graph of Fig. 6~a! in the resonance approximation. W
get the following expression for the scattering amplitude:

UAa
(6)5UAa

(2) 2v2~v!

«a2«A2v
, ~40!

where

v2~v!5e4(
nÞa

@ŜR~v1«A!#an@ŜR~v1«A!#na

«A2«n1v
. ~41!

Note that the singular termn5a is not included here by
definition. This term was taken into account in the geome
progression described above and presents exactly the se
member of this progression. Then repeating the evaluat
leading to Eq.~37! with

qn5UAa
(2)S 2v1~v!2v2~v!

«a2«A2v D n

, ~42!

we obtain the new resonance condition,

«a2«A1Re$v1~v!1v2~v!%1O~a3!2v50. ~43!

Resolving Eq.~43!, we find

v res5«a2«A1ReH v1~«a2«A!1v2~«a2«A!

1v1~«a2«A!F]v1~v!

]v G
v5«a2«A

J 1O~a3!. ~44!

The termv2(«a2«A) is the contribution of the irreducible
part of graph Fig. 7~a!. The term with the derivative coin
cides with the reducible~or reference-state! correction that
arises from the Feynman graph in Fig. 7~a! after the applica-
tion of the adiabaticS-matrix formula ~11! @56#. The other
04251
c
ond
ns

second-order electron self-energy~SESE! corrections are ir-
reducible@56#. The calculation of all these corrections is n
a subject of this paper.

Now we can address the two-electron graphs. At first
consider the first-order interaction represented by Fig.
Within the framework of the line profile approach, this gra
should be inserted into the graph in Fig. 6~a!. In the reso-
nance approximation, this is depicted in Fig. 8. To follow t
LPA rigorously, we have to take into account simultaneou
the first-order self-energy, vacuum polarization, Coulom
and Breit graphs. Then the functionv1(v) contains the sum
of corresponding contributions. In principle, in the next ord
we have to take into account the graphs describing s
energy and vacuum polarization screening. These correct
are, however, beyond the scope of the present work. So
consider only two-electron one- up to three-photon excha
‘‘box’’ graphs. The contribution of the ‘‘cross’’ graphs will be
discussed below in Sec. VI. Following the procedure d
scribed above for the one-photon exchange, we get

v15e2 (
g5c,t

I g~«a2«A!abab. ~45!

Herev1 does not depend onv.
For two-photon exchange in two-electron ions, we have

consider a complicated insertion represented in Fig. 9. T
the LPA yields

FIG. 8. First-order interelectron interaction correction to t
scattering amplitude in the resonance approximation. Graphs~a!
and ~b! correspond to ‘‘direct’’ and ‘‘exchange’’ insertions.
e-electron

ution
v2~v!5
e4 i

2p (
gg8

(
«n3

1«n4
Þ«a1«b

E
2`

` I g~V!abn3n4
I g8~2V!n3n4ab

@«n4
~12 i0!1V2«b#@«n3

~12 i0!2V2«A2v#
dV

2
e4 i

2p (
gg8

(
«n3

1«n4
5«a1«b

E
2`

` I g~V!abn3n4
I g8~2V!n3n4ab

@«n3
~12 i0!2V2«a#@«n3

~12 i0!2V2«A2v#
dV. ~46!

The second term in Eq.~46! represents the remainder after the subtraction of the reference-state singularity from Eq.~46!. This
subtraction was done when the geometric progression with the one-photon exchange graphs was generated. In the on
case, the reference-state term inv2(v) was absent@see Eq.~41!# and appeared only as a term with a derivative in Eq.~44!. In
the two-electron case~for photon exchange!, the situation is different. In this case, there is a reference-state contrib
directly in v2(v) @see Eq.~46!#, and sincev1 does not depend onv, a term with a derivative does not arise.

Considering the three-photon exchange and disregarding the retardation, we get forv3(v) the expression

v3~v!5 (
gg8g9

( 8
n1n2n3n4

I abn3n4

g I n3n4n1n2

g8 I n1n2ab
g9

~«n3
1«n4

2«A2«b2v!~«n1
1«n2

2«A2«b2v!
, ~47!
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where the prime indicates that the summation is not runn
over the reference states.

All the geometric progressions considered above for tw
electron graphs should be combined into one. Following
approach, we obtain the resonance condition

«a2«A1Re$v1~v!1v2~v!1v3~v!%1O~a4!2v50.
~48!

We note that for two-electron graphs, describing photon
changev1 does not depend onv. So solving Eq.~48! with
v1 , v2, andv3 given by Eqs.~45!, ~46!, and~47!, we get

v res5«a2«A1ReH v1~«a2«A!1v2~«a2«A!1v3~«a2«A!

1v1~«a2«A!F]v2~v!

]v G
v5«a2«A

J 1O~a4!. ~49!

The term v1(«a2«A) gives the contribution of the one
photon exchange graph of Fig. 1. The termv2(«a2«A) pre-
sents the contribution of the two-photon exchange graph
Fig. 2. This term includes also the reference-state par
these graphs. The termv3(«a2«A) gives the contribution of
the three-photon exchange graph of Fig. 3. Here this t
does not include the contribution of the reference states
cause we consider the three-photon exchange in the fra
work of RMBPT. The term with a derivative in Eq.~49!, as
the term with a derivative in Eq.~44!, does not correspond t
any certain graphs. As in the case of Eq.~44!, it is again
connected with the reducible~reference-state! contribution of
the graphs in Fig. 3.

FIG. 9. Second-order interelectron interaction correction to
scattering amplitude in the resonance approximation. Graphs~a!
and ~b! correspond to ‘‘direct’’ and ‘‘exchange’’ insertions.
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It should be stressed that if we were to include in the L
also the first- and second-order radiative corrections as
as screened radiative corrections, we should use forv1(v)
the sum of Eqs.~34! and ~45! and a vacuum polarization
part. Forv2(v), we should use the sum of Eqs.~41! and~46!
plus all the contributions for second-order radiative corr
tions and screened corrections. Then instead of the form
~49!, we would have

v res5«a2«A1ReH v1~«a2«A!1v2~«a2«A!1v1~«a2«A!

3F]v1~v!

]v G
v5«a2«A

1v3~«a2«A!1
1

2
v1~«a2«A!2

3F ]2v1~v!

]v2 G
v5«a2«A

1v1~«a2«A!F]v1~v!

]v G
v5«a2«A

2

1v1~«a2«A!F]v2~v!

]v G
v5«a2«A

1v2~«a2«A!

3F]v1~v!

]v G
v5«a2«A

J 1O~a4!. ~50!

Note that the presence of the derivatives@]v1(v)/]v# does
not distort the Lorentz line shape while the ter
@]2v1(v)/]v2# leads to a small distortion@50#.

Finally, if we were to extend the LPA for the three
electron case, we would get the same formulas~49! and~50!
where the functionsv2(v) and v3(v) should contain also
the contribution of the three-electron graphs of Figs. 4 and

VI. REDUCIBLE CONTRIBUTIONS
TO THE INTERELECTRON INTERACTION

IN TWO- AND THREE-ELECTRON IONS

From the derivations in the preceding section, we obt
the following expression for the ‘‘box’’ reducible contribu
tion in two-electron atoms:

e

Fa8b8ab
(2)(box,red)

52
1

2 (
gg8

( 9
n1n2

H i

2pE2`

` I g~V!a8b8n1n2
I g8~V2«a81«a!n1n2ab

~V2«n2
1«b81 i0«n2

!2
dV

1
i

2pE2`

` I g~V!b8a8n1n2
I g8~V2«a1«a8!n1n2ba

~V2«n2
1«a81 i0«n2

!2
dVJ , ~51!
3-9
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where the double dash indicates that the summation
over states which are not included in the summation in
~24!. The ‘‘cross’’ reducible corrections can be obtained
the same way as the ‘‘box’’ corrections, though, in princip
they can be derived also in a simpler way directly by form
las ~12! and ~13!. The corresponding expression is given

TABLE I. Different contributions to the second-order interele
tron interaction for a two-electron configuration 1s1/22s1/2

1S0 ~eV!.
The numbers in the table present the ionization energy of the 2s1/2

electron with the opposite sign.

Contribution Z530 70 80 92

Coulomb-Coulomb
DEbox,irr 23.290 24.317 24.845 25.768
DEcross,irr 0.003 0.030 0.046 0.074
DE(total) 23.287 24.286 24.799 25.695
Coulomb-Breit
DEbox,irr 20.277 21.702 22.375 23.499
DEbox,red 0.103 0.724 1.038 1.569
DEcross,irr 0.002 20.088 20.108 20.140
DEcross,red 20.006 20.517 20.147 20.242
DE(total) 20.179 21.159 21.592 22.312
Breit-Breit
DEbox,irr 20.010 20.179 20.302 20.524
DEbox,red 0.002 0.071 0.127 0.239
DEcross,irr 0.000 0.032 0.056 0.096
DEcross,red 0.000 0.003 0.007 0.014
DE(total) 20.008 20.073 20.113 20.178
Total
DE 23.473 25.519 26.504 28.184

FIG. 10. The second-order interelectron interaction correctio
the scattering amplitude in the resonance approximation for th
electron ions.
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Fa8b8ab
(2)(cross,irr)

5(
gg8

( 9
n1n2

i

2p

3E
2`

` I g~V!b8n2n1aI g8~V2«a81«a!n1a8bn2

~V2«n2
1«a1 i0«n2

!2
dV,

~52!

where the summation runs over the states which are no
cluded in the summation in Eq.~25!. The contributions of
‘‘box’’ and ‘‘cross’’ graphs for two-electron ions are de
finedby Eq.~20!. From Eqs.~51! and ~52!, it follows auto-
matically that the corrections vanish forg5g85c.

For the ‘‘box’’ and ‘‘cross’’ reducible contributions in
three-electron ions, Eq.~27! holds. So it remains to conside

TABLE II. Different contributions to the third-order interelec
tron interaction for a two-electron configuration 1s1/22s1/2

1S0 ~eV!.
The numbers in the table present the ionization energy of the 2s1/2

electron with the opposite sign.

Contribution Z530 70 80 92

Coulomb-Coulomb-Coulomb 0.010 0.007 0.012 0.01
Coulomb-Coulomb-Breit 0.006 0.015 0.016 0.02
Coulomb-Breit-Breit 0.001 0.006 0.008 0.012
Breit-Breit-Breit 0.000 0.000 0.002 0.002
Total DE 0.017 0.029 0.038 0.052

TABLE III. Different contributions to the second-order inte
electron interaction for a two-electron configuration 1s1/22s1/2

3S1

~eV!. The numbers in the table present the ionization energy of
2s1/2 electron with the opposite sign.

Contribution Z530 70 80 92

Coulomb–Coulomb
DEbox,irr 21.345 21.643 21.785 22.017
DEcross,irr 0.000 0.003 0.005 0.009
DE(total) 21.345 21.641 21.780 22.009
Coulomb-Breit
DEbox,irr 20.002 20.008 20.010 20.012
DEbox,red 20.000 20.004 20.006 20.011
DEcross,irr 20.001 20.005 20.009 20.015
DEcross,red 0.000 0.001 0.002 0.004
DE(total) 20.003 20.016 20.024 20.033
Breit-Breit
DEbox,irr 20.000 0.003 0.004 0.005
DEbox,red 0.000 0.000 0.000 0.000
DEcross,irr 20.001 0.007 0.011 0.018
DEcross,red 0.000 0.000 0.001 0.002
DE(total) 20.001 0.010 0.016 0.024
Total
DE 21.348 21.647 21.789 22.018

o
e-
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the reducible ‘‘step’’ contributions for three-electron ions.
principle, this contribution is simpler than the ‘‘box’’ one an
hence the adiabatic formula~11! can be applied. However
the line profile approach is also applicable in this case
we will demonstrate how it works. To employ this approac
we have to consider the Feynman graph for the scatte
amplitude depicted in Fig. 10.

The ‘‘step’’ reducible contribution to the three-electro
atom is

Fa8b8c8abc
(2)(step,red)

5(
gg8

(
n

9
]

]v
I g~«a2«a81v!na8ba

3I g8~«c82«c1v!b8c8ncuv50 , ~53!

TABLE IV. Different contributions to the third-order interelec
tron interaction for a two-electron configuration 1s1/22s1/2

3S1 ~eV!.
The numbers in the table present the ionization energy of the 2s1/2

electron with the opposite sign.

Contribution Z530 70 80 92

Coulomb-Coulomb-Coulomb 20.004 20.001 20.001 0.000

Coulomb-Coulomb-Breit 0.000 0.001 0.001 0.00

Coulomb-Breit-Breit 0.000 0.000 0.000 0.00

Breit-Breit-Breit 0.000 0.000 0.000 0.000

Total DE 20.004 0.000 0.000 0.001
04251
d
,
g

where the summation runs over the states which are no
cluded in the summation in Eq.~29!.

The formula for the reducible part of the third-order Co
lomb and unretarded Breit ‘‘box’’ corrections can be e
pressed as

Fa8b8ab
(3)(box,red)

5 (
gg8g9

( 9
n1n2n3n4

I a8b8n3n4

g I n3n4n1n2

g8 I n1n2ab
g9

3H ~21!

2~«n3
1«n4

2«a82«b8!
2

1
~21!

2~«n1
1«n2

2«a2«b!2J , ~54!

where the double dash indicates that the summation is
ning only over the reference states. The terms with zero
nominators in Eq.~54! should be omitted. The third-orde
‘‘step-box’’ reducible corrections~see Fig. 5! are given by
the formula
TABLE V. The different contributions to the total energy of the two-electron configuration 1s1/22s1/2
1S0

~eV!. The numbers in the table present the ionization energy of the 2s1/2 electron with the opposite sign.

Contribution Z530 70 80 92 Ref.

Zero-order 23108.3209 218250.3701 224622.1720 234215.4976 TWa

Nuclear size~NS! 0.0145(5) 3.10(5) 9.34(14) 37.76(6) TW

First-order

interelectron 196.0797(5) 542.484(5) 665.38(1) 850.116(5) TW

interaction

Second-order

interelectron 23.758(3) 25.519(3) 26.504(3) 28.184(3) TW

interaction

Third-order

interelectron 0.017(1) 0.029(3) 0.038(4) 0.052(5) TW

interaction

SE with NS 0.9674 20.5890 35.3911 65.4183 @58,59#

VP with NS 20.0834 23.419(1) 26.900(2) 215.658(3) @57,60#

Recoil 0.0269 0.0674 0.0870 0.1279 @61#

Total 22915.057(4) 217693.04(6) 223925.34(16) 233285.87(8) TW

AO 22914.8875 217693.7864 223926.3243 233288.4601 @25#

UT 22914.8326 217692.9476 223924.7251 233284.7190 @62#

aTW, this work.
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TABLE VI. The different contributions to the total energy of the two-electron configuration 1s1/22s1/2
3S1

~eV!. The numbers in the table present the ionization energy of the 2s1/2 electron with the opposite sign.

Contribution Z530 70 80 92 Ref.

Zero-order 23108.3209 218250.3701 224622.1720 234215.4976 TW
Nuclear size~NS! 0.0145(5) 3.10(5) 9.34(14) 37.76(6) TW
First-order
interelectron 156.5068(5) 402.905(5) 480.13(1) 588.169(5) TW
interaction
Second-order
interelectron 21.348(3) 21.647(3) 21.789(3) 22.018(3) TW
interaction 21.3483 21.6548 21.7956 22.0203 @30#

Third-order
interelectron 20.004(1) 0.000(1) 0.000(1) 0.001(1) TW
interaction
SE with NS 0.96737 20.5890 35.3911 65.4183 @58,59#
VP with NS 20.0834 23.419(1) 26.900(2) 215.658(3) @57,60#
Recoil 0.0269 0.0674 0.0870 0.1279 @61#

Total 22952.241(5) 217828.78(6) 224105.91(15) 233541.70(7) TW
AO 22952.3165 217829.3421 224106.6213 233543.8853 @25#

UT 22952.2890 217829.1872 224106.3346 233543.1669 @62#

TABLE VII. Different contributions to the second-order interelectron interaction for a three-elec
configuration (1s)22p1/2 ~eV!. The numbers in the table present the ionization energy of the 2p1/2 electron
with the opposite sign.

Contribution Z530 70 80 92

Coulomb-Coulomb
DEbox,irr 212.284 28.551 29.312 210.968
DEcross,irr 0.001 0.024 0.043 0.082
DEstep,irr 1.478 26.513 27.985 210.309
DE(total) 210.804 215.040 217.254 221.195
Coulomb-Breit
DEbox,irr 0.843 20.132 20.619 21.447
DEbox,red 0.004 0.035 0.051 0.081
DEcross,irr 20.006 20.044 20.060 20.078
DEcross,red 20.008 20.071 20.105 20.166
DEstep,irr 21.220 22.088 22.524 23.269
DEstep,red 20.016 20.114 20.173 20.291
DE(total) 20.403 22.414 23.430 25.170
Breit-Breit
DEbox,irr 20.038 20.184 20.389 20.585
DEbox,red 0.000 0.003 0.005 0.012
DEcross,irr 0.001 0.031 0.056 0.112
DEcross,red 0.000 0.004 0.009 0.018
DEstep,irr 0.037 0.145 0.168 0.191
DEstep,red 0.000 0.005 0.009 0.014
DE(total) 0.001 0.004 20.143 20.237
Total
DE 211.206 217.450 220.827 226.602
042513-12



QED CALCULATION OF THE INTERELECTRON . . . PHYSICAL REVIEW A64 042513
Fa8b8c8abc
(3)(step-box,red)

5 (
gg8g9

( 9
n1n2n3

I a8b8n1n3

g I n3c8n2c
g8 I n1n2ab

g9 H ~21!

2~«n1
1«n3

2«a82«b8!
2

1
~21!

2~«n1
1«n2

2«a2«b!2J
12 ( 9

n1n2n3

I b8c8n3c
g I a8n3n1n2

g8 I n1n2ab
g9 H ~21!

2~«n1
1«n2

2«a2«b!2
1

~21!

2~«n3
1«a82«a2«b!2J

1 ( 9
n1n2n3

I a8c8n1n3

g I b8n3n2c
g8 I n1n2ab

g9 H ~21!

2~«n1
1«n2

2«a2«b!2
1

~21!

2~«n1
1«n3

2«a82«c8!
2J , ~55!
ic

te

e

r
-
ra

n
ro
e

-

a
m

e

he
d in
nd
al-
cu-
ns,

r

lit-
ra-
VI.
er

g
d

unt
UT
s

ver,
xi-

on
r of
where the first summation runs over the states for wh
either the set$n1 ,n2 ,c% or the set$n1 ,n3 ,c8% are equivalent
to the set$a,b,c%, the second summation runs over the sta
for which the sets$n1 ,n2 ,c% or $a8,n3 ,c% are equivalent to
the set$a,b,c%, and the third summation does not run ov
the states for which the sets$n1 ,n2 ,c% or $n1 ,n3 ,b8% are
equivalent to the set$a,b,c% ~the reference-state cases!.

VII. RESULTS AND DISCUSSION

The results of the calculations for two-electron ions a
given in Tables I–VI. In Tables I and III, the different con
tributions to the second-order interaction for the configu
tions 1s1/22s1/2

1S0 and 1s1/22s1/2
3S1 are listed. In Tables V

and VI, the total energies of the two-electron configuratio
are given in comparison with other calculations. The ze
order values in Tables V and VI correspond to the Somm
feld binding energy for the 2s1/2 electron. Nuclear size cor
rections are calculated in this work with the Ferm
distribution for the nuclear charge. We solved the Dir
equation with the potential that originates from a Fer
nuclear density distribution

r~r !5
N

11exp@~r 2c!/a#
, ~56!

whereN is the normalization constant and which is defin
by

4pE
0

`

r~r !r 2 dr5eZ. ~57!

The parametera50.5350 fm andc is defined from the
condition
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4pE
0

`

r~r !r 4 dr5^r 2&, ~58!

where ^r 2&1/2 is the root-mean-square nuclear radius. T
interelectron interaction corrections were also calculate
this work for extended nuclei. In order to calculate zero- a
first-order corrections with higher accuracy, we took the v
ues for^r 2&1/2 and the corresponding estimates for the ac
racy from @20#. For the second- and third-order correctio
we used the empirical expression@57#

^r 2&1/25~0.836A1/310.570! fm, ~59!

whereA is the atomic number.
The electron self-energy~SE! correction with the nuclea

size taken into account was taken from@58# and@59#, and the
vacuum polarization~VP! correction was from@57# and@60#.
For the recoil correction, we used the data given in@61#.
There are no screening corrections to SE and VP in the
erature, evaluated directly for the two-electron configu
tions. So we omitted these corrections in Tables V and
The total result is compared with the relativistic all-ord
theory ~AO! @25# and the unified theory~UT! @62#. Com-
pared to the QED approach, these theories are missin~i!
negative energy states,~ii ! crossed photons contribution, an
~iii ! exact retardation effects. AO takes partly into acco
retardation and higher-order interelectron interactions.
starts from the nonrelativistic Schro¨dinger equation and take
into account accurately interelectron interaction. Howe
relativistic and QED effects are considered only appro
mately.

In this paper in the framework of the RMBPT based
the Coulomb functions, we calculated also the third orde
on-
TABLE VIII. Different contributions to the third-order interelectron interaction for a three-electron c
figuration (1s)22p1/2 ~eV!. The numbers in the table present the ionization energy of the 2p1/2 electron with
the opposite sign.

Contribution Z530 70 80 92

Coulomb-Coulomb-Coulomb 20.061 0.019 0.041 0.083
Coulomb-Coulomb-Breit 0.019 0.059 0.084 0.119
Coulomb-Breit-Breit 20.030 0.012 0.017 0.031
Breit-Breit-Breit 0.000 0.000 0.002 0.000
Total DE 20.072 0.090 0.144 0.233
3-13
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TABLE IX. Different contributions to the second-order interelectron interaction for a three-elec
configuration (1s)22s1/2 ~eV!. The numbers in the table present the ionization energy of the 2s1/2 electron
with the opposite sign.

Contribution Z530 70 80 92

Coulomb-Coulomb
DEbox,irr 23.662 24.623 25.100 25.910
DEcross,irr 0.002 0.019 0.030 0.050
DEstep,irr 23.490 24.370 24.802 25.526
DE(total) 27.150 28.975 29.872 211.386
Coulomb-Breit
DEbox,irr 20.141 20.863 21.202 21.771
DEbox,red 0.051 0.356 0.509 0.768
DEcross,irr 0.001 20.052 20.069 20.092
DEcross,red 20.003 20.045 20.071 20.115
DEstep,irr 20.040 20.242 20.330 20.465
DEstep,red 20.008 20.063 20.094 20.149
DE(total) 20.140 20.909 21.256 21.824
Breit-Breit
DEbox,irr 20.005 20.088 20.143 20.253
DEbox,red 0.001 0.035 0.064 0.120
DEcross,irr 20.002 0.027 0.044 0.075
DEcross,red 0.000 0.002 0.004 0.009
DEstep,irr 0.001 0.015 0.027 0.052
DEstep,red 20.001 20.006 20.010 20.020
DE(total) 20.005 20.014 20.015 20.017
Total
DE 27.295 29.898 211.143 213.228
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the interelectron interaction. The results are given in Tab
II and IV. For these data, we give 10% inaccuracy. T
estimate follows from@27#, where the comparison was mad
between QED and RMBPT calculations for the (1s1/2)

2 con-
figuration of He-like ions withZ592. Since the fourth-orde
interelectron interaction is approximatelyZ times smaller
than the third-order interaction, we can assume that
higher-order contributions are smaller than the third-or
inaccuracy.

In Tables VII, VIII, IX and X, the different contributions
to the second-order interaction for the three-electron confi
rations (1s)22s1/2 and (1s)22p1/2 are listed and the differen
contributions to total energies of the three-electron confi
rations are provided in comparison with other calculations
Tables XI and XII.
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In Table XIII, we give the different contributions to th
splitting 2p1/2-2s1/2 in Li-like uranium. The full set of the
second-order radiative correction is not known for 2s1/2 and
2p1/2 states. The unknown corrections are second-order s
energy corrections. For the ground state of H-like U, t
values for these corrections were reported recently in@63#.
Evaluating the ratio of these corrections to the loop-aft
loop correction @Fig. 7~b!# for the ground stater 5
21.28/0.97, assuming that this ratio is approximately
same for the 2s1/2 state, using the known value for the loop
after-loop correction for 2s1/2 @64#, and neglecting the con
tribution of the 2p1/2 state@65#, we obtain the estimate give
in Table XIII. We assume the inaccuracy of such a rou
estimate to be as high as 100%. Finally, in Table XIV t
different theoretical and experimental data for 2p1/2-2s1/2
figu-
TABLE X. Different contributions to the third-order interelectron interaction for a three-electron con
ration (1s)22s1/2 ~eV!. The numbers in the table present the ionization energy of the 2s1/2 electron with the
opposite sign.

Contribution Z530 70 80 92

Coulomb-Coulomb-Coulomb 20.017 0.007 0.015 0.026
Coulomb-Coulomb-Breit 0.005 0.018 0.021 0.029
Coulomb-Breit-Breit 0.000 0.004 0.005 0.012
Breit-Breit-Breit 0.000 20.001 0.001 0.001
Total DE 20.012 0.028 0.042 0.068
3-14
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TABLE XI. The different contributions to the total energy of the three-electron configuration (1s)22p1/2

~eV!. The numbers in the table present the ionization energy of the 2p1/2 electron with the opposite sign.

Contribution Z530 70 80 92 Ref.

Zero-order 23108.3209 218250.3701 224622.1720 234215.4976 TW
Nuclear size~NS! 0.0001 0.18(5) 0.75(14) 4.42(6) TW
First-order
interelectron 394.9471(5) 1078.213(5) 1317.19(1) 1676.142(5)
interaction
Second-order
interelectron 211.206(3) 217.450(3) 220.827(3) 226.602(3) TW
interaction 211.186(5) 217.546(5) 220.828(5) 226.597(5) @28,29,6
Third-order
interelectron 20.072(7) 0.090(9) 0.144(14) 0.233(23) TW
interaction~RMBPT! 20.047(15) 0.086(45) 0.131(65) 0.209(100) @66#

SE with NS 20.0219 1.1371 3.2341 9.5504 @58,59#
VP with NS 20.0011 20.297(1) 20.831(2) 22.704(3) @57,60#
SE screening 20.0283 20.4977 20.9305 21.9774 @20#

VP screening 0.0031 0.0948 0.2034 0.5216 @19#

Recoil 0.0106 0.0295 0.0386 0.0560 @61#

Nuclear
polarization 20.0039(10) @70#

Total 22724.68(1) 217188.87(7) 223323.20(15) 232555.86(7) TW
RMBPT 22724.5877 232561.2268 @22#
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splitting are presented.
Comparing our results with the other calculations kno

for 1s1/22s1/2
1S0 and 1s1/22s1/2

3S1 states of He-like ions, we
find that the full QED evaluation of the two-photon exchan
for 1s1/22s1/2

3S1 states in@30# deviates from our results fo
04251
all Z values not more than by 0.0003 a.u. Our numeri
procedure should give an error less then 1024 a.u. The three-
photon QED exchange was not taken into account in@30#.
The details of the numerical procedure and accuracy e
mates are given in Appendix B.
TABLE XII. The different contributions to the total energy of the three-electron configuration (1s)22s1/2

~eV!. The numbers in the table present the ionization energy of the 2s1/2 electron with the opposite sign.

Contribution Z530 70 80 92 Ref.

Zero-order 23108.3209 218250.3701 224622.1720 234215.4976 TW
Nuclear size~NS! 0.0145(5) 3.10(5) 9.34(14) 37.76(6) TW
First-order
interelectron 332.7995(5) 875.600(5) 1052.88(1) 1307.310(5) TW
interaction
Second-order
interelectron 27.295(3) 29.898(3) 211.143(3) 213.228(3) TW
interaction 27.297 29.899(5) 211.147(5) 213.226(5) @28,29,67#
Third-order
interelectron 20.012(1) 0.028(3) 0.042(4) 0.068(7) TW
interaction~RMBPT! 20.011(7) 0.039(20) 0.055(28) 0.078(40) @66#

SE with NS 0.9674 20.5890 35.3911 65.4183 @58,59#
VP with NS 20.0834 23.419(1) 26.900(2) 215.658(3) @57,60#
SE screening 20.1282 21.3158 22.0627 23.5017 @20#

VP screening 0.0109 0.2249 0.4182 0.8815 @19#

Recoil 0.0269 0.0674 0.0870 0.1279 @61#

Nuclear
polarization 20.0377(94) @70#

Total 22782.020(5) 217365.39(6) 223544.12(15) 232836.36(8) TW
RMBPT 22782.7867 232884.3689 @22#
3-15
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TABLE XIII. Different contributions to the splitting 2p1/2-2s1/2 in Li-like uranium.

Correction Numerical Reference
value ~eV!

Nuclear finite size correction to
the binding energy 233.35(6) @71#

Interelectron interaction first order 368.83 This work
QED-INT second order 213.37 This work

213.37 @28#

third order 0.17(2) This work
0.14(7) @28#

Electron self-energy including
nuclear size correction~SE! 255.87 @59#

Vacuum polarization including
nuclear size correction~VP! 12.94 @72#

Electron self-energy screening 1.52 @20#

Vacuum polarization screening 20.36 @19#

Second-order radiative SESEa 0.10 @64#

corrections SESEb 20.13(13) Estimate, TW
VPVP 0.13 @65#

SEVP 20.21 @65#

Nuclear recoil 20.07 @61#

Nuclear polarization 0.03 @73#

Total theory QED 280.36(21) This work
QED 280.44(20) @28#

RMBPT 280.54(15) @16#

Experiment 280.59(9) @9#

aLoop after loop, irreducible.
bLoop after loop reducible and other SESE.
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In the tables, in which only the data calculated in th
work are presented, the error is not indicated. It is clear
rounding off numbers provides a certain error. So in
tables containing a large number of contributions, the to
values may differ slightly from the sum of the contributio
due to this rounding off.

The full QED evaluation of the two-photon exchange a
the approximate QED evaluation of three-photon excha
for the state 1s1/22s1/2

1S0 are done for the first time to ou
knowledge in our paper. The disagreement of the total ene
of 1s1/22s1/2

1S0 and 1s1/22s1/2
3S1 states with the earlier AO

and UT calculations is about 122 eV. This may be caused b
the absence of the SE and VP screening corrections, no
calculated in the QED framework. Approximately these c
rections were taken into account in UT and AO methods. T
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evaluation of the two-photon exchange for the three-elect
configurations (1s)22s1/2 and (1s)22p1/2 coincides with ear-
lier calculations in@28# at least within four digits for the
valuesZ580 and 92 calculated in@28#. The three-photon
exchange corrections for the same configurations made in
framework of the RMBPT coincide with the results given
@66# within the quoted error bars. Note that in@66# only one
Breit interaction was taken into account. In our work, w
considered one, two, and three Breit interactions. As follo
from Tables VIII and X, the contribution of the Coulomb
Breit-Breit interaction graphs is comparable with the con
butions of the Coulomb-Coulomb-Coulomb and Coulom
Coulomb-Breit graphs. It should be mentioned that
follows from Tables VIII, X, and XIV, omitting the two and
three Breit photons within RMBPT yields a better agreem
TABLE XIV. Different theoretical and experimental data for the 2p1/2-2s1/2 splitting in Li-like ions.

Blundell Kim et al. Yerokhin et al.
Z This work Ref.@74# Ref. @75# Ref. @67# Experiment

30 57.34(1) 57.389(2) 57.381 57.384(4) 57.384(3) Staudeet al., Ref. @76#

70 176.52(7) 176.56(2) 176.567 176.44(6)
80 220.92(15) 220.99(3) 221.028 220.93(15)
92 280.36(21) 280.83(10) 280.677 280.44(20) 280.59(9) Schweppeet al., Ref. @9#
3-16
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with experiment, for example forZ530 @67#. However, this
means only that in these cases the QED interaction bey
RMBPT should be taken into account precisely.

For the configuration (1s)22s1/2, our total energy differs
from the value obtained in@22# by 48 eV. In @22#, the
RMBPT approach based on zero-order Hartree-Fock fu
tions was employed. However, our results for the splitt
2p1/2-2s1/2 in Li-like uranium agree well with experimenta
data and with other theoretical values.
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APPENDIX A

The irreducibleS-matrix elements in Eq.~11! can be de-
fined as the matrix elements that cannot be reduced to
products of two or more matrix elements of the ty
^Fau•••uFa&. Thus in Eq.~11! only the first terms in each
set of square brackets could be irreducible. However, in th
terms the reducible parts can also arise.

Thus for the evaluation of the irreducible contribution i
stead of Eqs.~10! and ~11! one can use the formula

DEa
(n), irr5 lim

l→0

inl

2
^FauŜl

(n)uFa& irr . ~A1!

In Eq. ~A1!, the limit l→0 can be done explicitly. For this
purpose we use the adiabaticS-matrix expression~8!:

Ŝl
(n)~`,2`!5~2 i !nenE

2`

`

Ĥ int~ t1!e2lut1udt1E
2`

t1
Ĥ int~ t2!

3e2lut2udt2•••E
2`

tn21
Ĥ int~ tn!e2lutnudtn .

~A2!

Acting by the operatorŜl
(n)(`,2`) on the state vectoruFa&

and integrating overtn , we obtain

E
2`

tn21
Ĥ int~ tn!e2lutnudtnuFa&

5E
2`

tn21
ei (Ĥ02«a)tn2lutnudtnĤ intuFa&

5ei (Ĥ02«a)tn212lutn21u 1

i ~Ĥ02«a!
Ĥ intuFa&.

~A3!
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Here we took into account that for the reducible contributio
the denominator in Eq.~A3! cannot be equal to zero an
therefore it is possible to putl50 in this denominator. Con-
tinuing the integration over time variables, we obtain

^FauŜl
(n)uFa& irr52 ien^Fau E

2`

`

e2 i («a2Ĥ0)t12nlut1udt1Ĥ int

3S 1

«a2Ĥ0

Ĥ intD n21

uFa& irr . ~A4!

The last integration overt1 yields

^FauŜl
(n)uFa& irr52

2i

nl
^FauĤ intS 1

«a2Ĥ0

Ĥ intD n21

uFa& irr .

~A5!

Here all the operators are written in Schro¨dinger representa
tion. Inserting Eq.~A5! into Eq. ~A1!, we have

DEirr
(n)5en^FauĤ intS 1

«a2Ĥ0

Ĥ intD n21

uFa& irr . ~A6!

In Eq. ~A6!, the limit l→0 is already done.
Now we will evaluate the energy shiftDEirr

(n) in another
way. Consider the irreducible part of the nondiagonal ma
element of the operatorŜl

(n)(`,2`) between two different
statesFa andFb with different energies«a and«b . Then we
can repeat all the integrations overt2 , . . . , tn21 as before
and only the last integration overt1 will be different:

lim
l→0

^FbuŜl
(n)uFa& irr52 i ^Fbu E

2`

`

e2 i («a2Ĥ0)t12nlut1udt1Ĥ int

3S 1

«a2Ĥ0

Ĥ intD n21

uFa& irr

522pd~«a2«b!^Fbu

3Ĥ intS 1

«a2Ĥ0

Ĥ intD n21

uFa& irr . ~A7!

Note that in Eq.~A7! we can putl50 from the beginning.
Then, comparing Eq.~A7! with Eq. ~A6! we arrive at the
formulas~12! and ~13! given in the text.

APPENDIX B

Here we give some details of our numerical proced
and the accuracy estimates. The main problem in the num
cal evaluation of the two- and three-photon exchange gra
3-17
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is the summation over the complete Dirac spectrum for
intermediate states. For this purpose we employed
B-spline approach@68#, in particular the version develope
in @69#. As in @69#, we use the following grid to construc
B-splines. The ion is inserted into a box with the radiusR
555/Z a.u., whereZ is the charge of the nucleus. The inte
val R is divided intoJ parts$t j% given by

t j5R expF13S j 21

J21
21D G , j 51, . . . ,J. ~B1!

Then, adding to these grid points 10 points (t j50,j 5
29, . . . ,0) @68#, we get the grid on which we construct th
set of B-splines of order 10. The program generating
Dirac spectrum was tested by changing the number of
points~J! when calculating ‘‘step’’ graphs with Coulomb an
transverse photons and ‘‘box’’ and ‘‘cross’’ graphs with Co
lomb photons. The number of generated energies was va
between 50 and 70 for positive and for negative parts of
spectrum. The variations led to an error less thane51024

a.u.
In order to separate the angular variables for the calc

tion of the matrix elementI g(V)abcd, the operatorI g(V,r 12)
@see Eqs.~16!, ~17!, and~23!# is expanded in partial waves
The angular integration is done analytically. The integrat
over ur1u and ur2u is done numerically. The interval of inte
gration@0,R# is divided into four parts, which are defined b
Eq. ~B1! with J54, and on each part the integration is pe
formed using the Gauss rules~with a Legendre polynomia
of order 30240). In the expansion of the operatorI g only the
first 10 partial waves for the two-photon exchange and
first three partial waves for the three-photon exchange w
rigorously taken into account. In the case of the two-pho
exchange, the remainder of the expansion was evaluate
ing its asymptotic form. We suppose that the terms of
partial wave expansion drop down as 1/k3, wherek is the
number of the partial wave. For the three-photon case
remainder appeared to be smaller than the accepted erro
was omitted.

To perform the integration overV in the singular integrals
presented in Eqs.~24! and ~25!, a special procedure wa
used. Since the integral is convergent for largeV values, we
limit the integration by some finite interval. Then we divid
this interval into intervalsDk5@10k,10(k11)#, wherek var-
ies betweenkmax and kmin . The values ofkmax and kmin in
each case are defined by the condition that the contribu
of the intervalsDkmax

andDkmin
is smaller than the accepte

error of the calculation (e51024 a.u.!.
The integration over the arbitrary intervalDk was per-

formed as follows. Interchanging the order of the summat
and integration in Eq.~24!, we obtain the integral where th
integrand contains many singularities defined by the con
tions
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If bn2
¹Dk , the corresponding term of the sum overn2 is not

singular withinDk . The numerical integration of such term
will be discussed below. We will designate the singular ter
with an asterisk at the sum symbol. Consider the followi
identity:

E
Dk

( *
n1n2

f ~V!

V2bn2
1 i 0«n2

dV

5E
Dk

( *
n1n2

H f ~V!2 f ~bn2
!

V2bn2

1
f ~bn2

!

V2bn2
1 i 0«n2

J dV,

~B3!

where

f ~V!5(
gg8

i

2p

I g~V!a8b8n1n2
I g8~V2«a81«a!n1n2ab

~«a1«b2«n1
2«n2

!
.

~B4!

The first term in the curly brackets on the right-hand side
Eq. ~B3! is nonsingular withinDk and can be integrated to
gether with the termsbn2

¹Dk . The second term was inte
grated analytically.

It appeared to be convenient to add points$bn2
% to the

integration grid to make the first term on the right-hand s
of Eq. ~B3! continuous with the first derivative. We designa
the new intervals asd l , and l varies betweenl max and l min ,
which are defined by the condition that the intervals$d l%
compose the same interval of integration as the interv
$Dk%.

In order to evaluate the integrals in Eqs.~24! and ~25!
with the desired accuracye51024, we have to calculate the
integral on every new intervald l with the accuracy

e l5e
uFl u

(
l 85 l min

l max

uFl 8u

, ~B5!

whereFl is the estimate of the contribution of intervald l .
This estimate can be given roughly by the integration w
two grid points~the end points ofd l! in which the integrated
function in any case has to be calculated. Due to the ne
sity of monitoring the accuracy for every interval of integr
tion, the Simpson method of integration was used. The nu
ber of grid points was increased unless the accuracye l was
achieved.
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