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Forbidden transitions in the helium atom
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Nonrelativistically forbidden, single-photon transition rates between low-lying states of the helium atom are
rigorously derived within quantum electrodynamics theory. Equivalence of velocity and length gauges, includ-
ing relativistic corrections is explicitly demonstrated. Numerical calculations of matrix elements are performed
with the use of high-precision variational wave functions and compared to former results.
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The existence of nonrelativistically forbidden transitions The single-photon transition amplitudebetween two eigen-
in helium, for example between the singlet and triplet statesstates¢ and ¢, in the electric dipole approximation is
indicates the presence of relativistic effects. The calculation
of these effects in atoms or ions is a highly nontrivial task. i
Dependi . ] [ | (P1tP2) . i

pending on the magnitude of nuclear charfgene per T'={ ¢| ——=—|¢) =i(E4—E)(#|(r1+12)|9),
forms various approximations. Here we study light atoms, so m
the expansion in the small paramekew is the most appro-
priate. Forbidden transitions have already been studied for
many light atoms and especially for heliufor a review, see and the transition probabilityl is
[1]). Historically, the first but approximate calculationsSf
P forbidden transitions were performed by Elton [ig].

Since the dominant part comes frontR; and 2'P; mix- _ -y
ing, he included in the calculation only these states. Drake A=2a|E,—E,|TT
and Dalgarno ir{ 3] were the first to include higher excited

states, which led to much higher precision. Moreover, Drake

later [4] accounted for corrections ®state wave functions. In the effective Hamiltonian approach, relativistic correc-
Although these calculations were correct, there was no prodions enter in two ways, as corrections to the wave functions
that they are complete. As an example, may serve 82 ¢ and ¢ and the correctiorﬁf to the currenlﬁ/m

—11S, M1 transition. Feinberg and Suchié] derived an
effective operator for this transition and showed the cancel-

(2

KK
6"—7). (3

lation of electron-electron terms. However, the calculations = > p1tp2 1

of Drake in[6] were performed earlier with the implicit as- T:<¢|5J|¢>+< ¢ m (E—H)' 5H‘ 'ﬂ>
sumption that these terms are absent. In a completely differ-

ent approach based on relativistic many-body perturbation p1+ P,

theory (RMBPT), Johnsonet al. [1] and Dereviankeet al. +{ ¢ 5HW - . (4

[7] studied forbidden transition in both velocity and length
gauge. They pointed out the significance of negative energy
states. However, not all results were in agreement with thghe correction to the wave function is given by the Breit

nonrelativistic approach based on the Breit Hamiltonian. It isqamiltonian. The part responsible for singlet-triplet transi-
the purpose of this paper to systematically derive matrix elyjgn is

ements for forbidden transitions in helium within quantum
electrodynamics theory. The equivalence of length and ve-

locity gauges folE1 transitions, including relativistic correc- Za Fl I P, a T
tions, is explicitly shown. With the use of optimized numeri- OH=|——| S Xp1— 5 Xp2 |+ —5 =
cal wave functions, the amplitudes and transition Amiry 2 Am-r
probabilites for 2P,—11s,, 23P,—-1's,, 2P, -
—23s,, 235,—11s,, and 33S;,—23S; are calculated with X(py+ ) | ———
high precision and compared to former results. 2
The nonrelativistic helium atom interacting with the elec- - -
tromagnetic field is describped by the Sctiirger-Pauli _F. 01703 ®)

Hamiltonian 2

5 —e A2 (P—e A2 7 7 Corrections to the current are given by several time-ordered
H= (P1 + P2 L2 e 2o (1)  diagrams, shown in Fig. 1. The corresponding expression is
2m 2m rrgrp calculated as follows. The first diagram is
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: : The remaining diagrams in Fig. 1 involve electron-electron
X S S terms. The last two diagrams are of higher order, so they will
not be considered here. The expression for diagram 3 can be

4 5 6 obtained from Eq(9) by the replacements Z a— «. In this
way, one obtains
- 1 a.
Z_L. ?é 5j3=——r><0' e KTy (152), (11
2m?

FIG. 1. Time-ordered diagrams for corrections to the current,, .o o denotes here—rlz r1 r2 The (Z @)2 correction
The dashed line is a Coulomb photon; the wavy line is the transIS

verse photon.

- 1 a. .
s - L 3= X (01- a2). (12
— gt ’ — ’ _ r_
oJa=u"(pau(p)=5(p'+p)— 5 -[(p'—p) X 0] 2m?

The expression for diagram 4 in Fig. 1 is

- (p'?+3p)(p+ipxa)— ! (p?+3p’?)

16m? 16m? _ 1 e?
- - - 5]':

X(p'—ip' X&), ) to2mg

X[a'A _(py+q)ad+adA_(pj—q)a'lu(p;)

Slk— qqq) “(pp)au(p)u” (py)

whereu(p) is a normalized plane-wave solution of the free

Dirac equation. For considered transitions, one may leave +(1<2). (13
spin-dependent terms only. In position representation, it
takes a form The term in the second line equalss? and that in the first
line has already appeared in E), so it becomes
o - -
3J1=5 ——ax[p,e* 'K Tp?+3p I 1 a.
m 5j4=——q><0'2+(1H2)—>——r><0'26'krl
L L L 2m g2 2m?
X op?e K'—p%e'* 'pxg—3e kT pxap?l. (7)
+(1<2). (14)
The photon momenturk is of orderm(Z @)?, whiler is of h ) tion i
order (m Ze) L. This means tha¢' ' can be expanded in ' ¢ (2 @)” correction is
powers ofk-r. After adding contributions from both elec- 1 a
trons, the Z a)? correction takes the form 8J4=— —— —Fx(&l o), (15)
2m?
R T . . .
5]1=m(k- rkxoq+ ﬁ(k' ro)kXo,. (8) and cancels out with that from diagram 3, E&R). The final

expression for the relativistic correction to the current of or-

2
The next diagram involves one electron-positron pair and the derO(Z )" is the sum of Eqs(8) and (10

corresponding expression is 1 1
6] —(k rl)k><crl+—(k rz)anz

. zeé 1 . .-
512——?ﬁu (Pl A _(p+a)+A_(p'—q)a]u(p) 1 Za. . 1 Za. .
- 3rl>< 1__2_3r2><0'2. (16)
) 2m? r3 2me r3
o iozel . 1 zaaxa Qi ©
Com? q? 24X 2 m? r3r o This 6] could be also derived through the Fouldy-

Wouythusen transformation of €' ¥", however, in this way,
where A _ is a projection operator into the negative energypossible electron-electron terms are omitted, which happens
subspace and is a momentum exchange between electrorto be correct for just this case. Havidy and 6H, the tran-
and the nucleus. TheZ(a)? correction from both electrons sition amplitudeT' in Eq. (4) will be transformed to the
becomes length gauge with the use of identity
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P1+ P2

=i[H,ry+r.
m [11 2]1

17

and the fact the terms ifi' proportional tok' do not contrib-
ute to the transition rate, as can be seen from(Bg.After
performing simple algebraic transformations, the result is

T'=i(E,~E ri+ry)————3H
(Ey ¢)|<¢|(1 2(E¢,—H)’ )
5 I i
+(¢| H—(Ew_H),(r1+r2)|¢>}
1 _
+me"k<¢|kJTk'k'|z//>, (18)
where
1| (o1=0)  (oy—o)* 2 (010
-|—|<|_E rk 5 +r! 5 —§5k'r-—2
(19

The first term in Eq(18) corresponds to electric dipole, and
It is
worth noting that for electric dipole transitions, as given in
length gauge, relativistic corrections enter only through cor-

the second one to magnetic quadrupole transitions.

rections to the HamiltoniagH .

So far, we have considered only forbidden transitions with

spin change betwee® and P states, namely 2P,—11S,,
23%P,—11s, and 2'P,—23S,. However, even more for-
biddenM 1 transitions 2S,—1 1S, and 33S,— 23S, arrive

at the orderO(Z «)3, so they are not described by the ex-
pression in Eq(16). No second-order type of terms contrib-
ute and in the calculation ofjy,, one takes the next corre-

sponding term in the expansion@f'" in Egs.(6), (9), (12),
and(16)

(k2. .

> [

5JM=mTkX0’1+ plkXO'l
+—i (K- py)py X —i (E*)Za*x*
. 0' — r r g
2 P1)P1x 07 P 1 3 17X 01
+ ! K1) i o+ (12 20
m( 'r)?f o1+ (1<2). (20)

This result agrees with the former one, obtained by Feinberg

and Sucher in5]. For M1 transition between %S, and
11s, it could be further simplified to

. L (oma) K, L, 1
R KV A 2
1 (Za Za o1
Temln T, @

k? in the above can be replaced by
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2 «a.

27 -
k2r2—[H,[H,r3]]= — ——-—p3— — 5 (22
1 r

in this way, one obtains fofj,, another simple expression

|_) (5’1_5'2) 1 a
R  —— (pE- )~ g (1T,

oJm= 6m2 6m 3

(23

The analogous expression for the?®—23S, transition
reads

i (0'1+ 0'2)

Za Za 1l «a
3mlr, "r,) 6mr/

(24)

We now consider the spin algebra in the calculation of the
transition probability, as given by Eg$3) and (18). One
sums up over final states and averages out over initial states.
The appropriate formulas are

2
scsi=Pocs(i-3). @9
1 s?
3 2 I’SLm)sy,ml=*9)°sl, (26)
2
Po)Po= )P 515 9|, @7
1 . 1
32 PPLm)CPym[=P)(PIZs's, (28

1 o
5 S [P0 m)CPym|= PP (25250 38
m

+25sls'), (29

2
% Em: |1pl,m><1pl,m|:|1pi><3pi|5ii<1_ %) (30

wheres=o,/2+ 0,/2 and the following normalization is uti-
lized: (P'|P!y=8"/3. Moreover, for these calculations one
needs two formulas for spin product

. s? . - o
(0'1—0'2)'( 1- 5) (01— 0,)=2681s?—4sls', (31)

2
_ . N s
(0'1_0'2)'52(0'1_0'2)':85”(1—E \ (32
and the following set of formulas for spin traces:
Trs'=0, (33
Trs'si=246", (34)
Trs'sisk=jelk, (35)
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Trs'sisks' = ' sk + sik sl (36) TABLE |. Transition rates in helium in units’s; [n]=10".

With the help of the above formulas, one obtains for transitransition AE in atomic units rated
tion probabilities(for simplicity we putm=1) the following E1+M2: 21P,2%S, 0.051 386 291 7 1548 945

expressions. El: 23p,—1'S, 07705606863 17757
) 1 _ M2: 2°P,—1'S, 0.7705606863  3.2703p61]
ACP,— 180 =2 a k® e”k<3Pk h' E (ri+ry)! M1: 235,—-11s, 0.7284949988  1.2724p6 4]
P M1: 335,—23%s; 0.1065403108 6.484 6p6 9]
2
+(r1+r2)jE _Hhi 1S> , 37
S for checking convergence. The advantage of this basis set is
1 simplicity of matrix elements, which are expressed in terms
ACPy— 1Sp) = 20 a KICPIIFI*S) P, (3g)  of integral
1 e—arl—Bl’z—yr 1
1 3 2 ol k] 1pK i ' f d3r,dr, = .
A(*P1— °S) = g ak’|e’( “P¥h (rytry) 16 72 rafof (a+B)(B+y)(y+a)
9 Ep—H 45
+(rytry) E-—H h' 3S> For some more singular matrix elements, an additional inte-

gral with respect to corresponding parameters has to be per-
R T formed. The disadvantage of this basis set is the necessity of

+1gak [P PS) 2, (39 using quadruple precision foN>100. Moreover, the

second-order terms require more careful tuning of param-

4 1 eters ?ue to the singularity GﬁH _and large mixing (_)f 2P, .
A(S,— 15y = J@ K3 < 1ig g(pi_ p2) and 2*P, states. These, which involve odd parity intermedi-
ate P states, are much larger than those that involve even
5 parity P states, by approximately three orders of magnitude.
il S 3S> (40) It is due to the fact that energies of even paitystates lie
6,3 1 '2 ' beyond the ionization level. Most often, these small second-

order terms were neglected in the former calculations. How-

4 11Za Za\ 1a 2 ever, they are not neglected here. Our numerical results for
ACGS,—3S)=za k3| %S|z | —+—|— = —|33)]|, forbidden transitions between low-lying states are presented
3 3lr e 6r in Table I.

In the comparison with former work, we start with the

where k=|AE|, and h' is defined by Eq.(5). It is worth M1 transition 25,—11s,. This transition was measured
noting that *P;— 3S; is not only aE1 transition but also Py Moos a”q4W9?dW0rth in[9] with the result A
M2, which has not yet been recognized in the literature. = 1.10(33)<10™% s*~ and Berry from Notre Dame is cur-
Once transition probabilities are expressed in terms ofently preparing a more precise measurenj@aj. The first
matrix elements between nonrelativistic wave functions, theyCorrect theoretical result obtained by Drake [6] 1.272

. o L 4 o1 i i i ;
can be calculated numerically with high precision. In theX10°" s™* is in agreement with the experimental value.

numerical calculation, we follow an approach developed by1owever, as pointed out by Feinberg and SuchefSh
Korobov [8]. The wave function is expressed in terms of Drake has not considered electron-electron terms, which hap-

exponentials pened to cancel out for this transition. Later, Johnebal.
[1] used RMBPT to calculate forbidden transitions for any
o heliumlike ions and obtained a result f@r=2, which is
d)S:Z cile” @Al (1 ory)], (42 1.266<10°4 s 1. It differs slightly from the result obtained
here, 1.27242810 % s !, due to inclusion iff1] of some
higher-order terms, while electron correlations were not well
bp=, C[re @1 AT (1 ety (43)  accounted for. Moreover, there are unknown radiative correc-
i tions and exchange type of diagrams of ordé(2 =), the
last two in Fig. 1, to any of these transitions. Therefore, only
the first three digits are physically significant. Numerical re-
sults are presented with higher precision for the purpose of
comparison with former results. Next, tHd1 transition
The parametersa;,;,y; are chosen randomly between 33S,—23S, rate was obtained only by Dereviankbal. in
some minimal and maximal values, which were found by[7]. Their result, 1.1710% s !, disagrees with ours,
minimization of energy of a specified state. The maximal6.48469010° s 1. The reason of this discrepancy is left
dimension of this basis set was 600. Lower values were usegnexplained. It may indicate the loss of accuracy of RMBPT

<Zp+=2 CifyXTole @ A W (reary)]. (44)
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due to strong numerical cancellation. This discrepancy doegur result isA=1.548945 s' and the magnetic transition
not have an experimental impact since this rate is too smahappened to be negligible, 0.000019, due to small energy
for Z=2 to be measured. However, calculations should beplitting.

verified for higherZ, where this transition rate grows with In summary, we have presented a rigorous derivation of
Z'% and becomes measurable at some valug.dfhe next rates for nonrelativistically forbidden transitions. We demon-
considered transition iM2: 23P,—11S,. It was first ob-  strated equivalence of length and velocity gauges including
tained by Drakeg4]: A=0.327 s*!, and later by Johnson relativistic correction for forbidden transitions. We confirmed
etal. [1] A=0.3271 S, in agreement with our resultt ~ the commonly used fact that in the length gauge, relativistic

=0.3270326 sl. The calculation of the intercombination Corrections enters only through corrections to wave function
E1 transition 2P, — 1S, was a little more elaborate, since 25 diven by the Breit Hamiltonian. We verified that thi

1 3 N ;
it involves infinite summation over intermediate states. In2 P12 °S; transition is much smaller thal, which was

former works, the second term in E(87) involving even implicitly assumed in former works. Our numerical calcula-
parity P states was neglected. Indeed, calculations show it i§ONS Using simple exponential functions confirmed former

smaller than 1%. The first complete result by Drdkgis  'eSults with the exception of the 8,278, transition,
A=176.4 s'. RMBPT calculations of Johnsoet al. [1] ~ Where our result is approximately twice as smallak

including negative energy states #=175.7 s* and our
result. A=177.5771 s! agrees within 1%. The last transi- ACKNOWLEDGMENT
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