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Momentum density and its Fourier transform: Relation to the first-order density matrix
and some scaling properties
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Density-functional theory requires knowledge of the kinetic-energy densityt(r ) in terms of the ground-state
densityr(r ). Of course, the direct route to total kinetic energy is from the momentum densityn(p), which in
turn is directly related by Fourier transform to the first-order density matrixg(r ,r 8). Here, an alternative route
to calculate the total kinetic energy is explored, via the Fourier transformñ(r ) of the momentum densityn(p).
It is shown thatñ(r ) is related to the density matrixg through its contracted form*g(r 82r ,r 8)dr 85ñ(r ). As
examples, bare Coulomb field and harmonic confinement for arbitrary numbers of closed shells are treated.
Finally, a localized potentialV(r ) embedded in an initially uniform electron gas is considered, but now to low
order in a perturbation series inV(r ).
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I. INTRODUCTION

Density-functional theory, having its origins in th
Thomas-Fermi~TF! statistical theory@1,2#, requires knowl-
edge of the kinetic energyt(r ) in terms of the ground-stat
electron densityr(r ). In the range of validity of the TF
method@3#, the kinetic-energy densitytTF(r ) is given by

tTF~r !5ck$r~r !%5/3, ck5
3h2

10me
S 3

8p D 2/3

. ~1.1!

In early work @4,5#, it was shown that this statistical theor
allowed direct calculation of the momentum densityn(p).
Then the total kinetic energy is readily obtained from t
second moment̂p2& of n(p). In turn, the moments ofn(p)
can be directly related to integrals onr(r ) in the Thomas-
Fermi limit.

One of us@6# showed, for the model of closed shells in
bare Coulomb field, using a result going back to Fock@7# for
the momentum densitynm(p) of the mth closed shell,
namely,

nm~p!5
16m2pm

5

p2~p21pm
2 !4 ; pm5Z/m, ~1.2!

that one could connect, in this specific example, fu
quantum-mechanical results with the semiclassical
theory.

Of course, it is well known@8,9# that one route to the
momentum densityn(p) is via the first-order density matrix
g(r ,r 8). Unfortunately, to date, there are only a very limite
number of examples, even for independent Fermions
which g is an idempotent matrix, in which closed analyt
forms of g(r ,r 8) can be written. One example, namely, ha
monic confinement in one dimension, goes back to Hus
@10,11#. Another, the so-called Bardeen model@12,13# of a
metal surface in which otherwise free electrons are confi
by an infinite~planar! barrier, has ag(r ,r 8) which has been
utilized recently@14# to obtain t(r ) and the corresponding
exchange energy density in analytic form.
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Here, we shall explore first an alternative route to the to
kinetic-energyT, via the Fourier transform of the momentu
densityn(p). This route is set out in Sec. II below. Sectio
III considers the relatively simple example of isotropic ha
monic confinement in three dimensions for an arbitrary nu
ber of closed shells, while Sec. IV deals with the correspo
ing problem for a bare Coulomb field, motivated by Fock
result ~1.2!. Following these two soluble bound-state pro
lems, the case of a localized potential energyV(r ) inserted
into an initially uniform electron gas is considered in Sec.
but now only to lowest order in a perturbative developme
in V(r ). Section VI constitutes a summary, plus some p
posals for further work while in Appendix A, the two
electron Hookean atom, introduced by Kestner and Sina
glu @15#, is considered within the present framework,
probably the simplest example where electron-electron in
action can be handled analytically for special values of
Hooke’s Law force constant.

II. FOURIER TRANSFORM OF THE MOMENTUM
DENSITY n„p… AND ITS RELATION TO THE

FIRST-ORDER DENSITY MATRIX g„r,r 8….

The scattering factorf (k), as is well known, is related to
the ground-state densityr(r ) by the Fourier transform rela
tion

f ~k!5E r~r !exp~ ik•r !dr . ~2.1!

For closed-shell atoms like He or Ne,f (k) is accessible ex-
perimentally via x-ray diffraction. As to the momentum de
sity n(p), for similar closed-shell atoms it is also experime
tally accessible by measuring the shape of the Compton
in x-ray scattering. A suitable reduced form, going back
Duncanson and Coulson@16#, describes the line shape by
functionJ(q), which is related to the probabilityI (p)dp that
an electron in such a closed-shell atom will have a mom
tum of magnitude lying betweenp and p1dp. The precise
relation is
©2001 The American Physical Society09-1
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J~q!5
1

2 Eq

` I ~p!

p
dp. ~2.2!

Motivated by Eqs.~2.1! and ~2.2! with the addition

I ~p!54pp2n~p!, ~2.3!

we now introduce the Fourier transformñ(r ) of n(p)
through the definition

ñ~r !5E n~p!expS i
p•r

\ Ddp. ~2.4!

Because of the importance of the kinetic-energy densityt(r )
in current density-functional theory, we shall also consid
the definition

t~p!5
p2

2me
n~p! ~2.5!

with m the electron mass. Thus,

n~p!52me

t~p!

p2 ~2.6!

and defining the Fourier transform oft(p) by t̃ (r ) through

t̃ ~r !5E t~p!expS i
p•r

\ Ddp ~2.7!

we have, by taking the Fourier transform of Eq.~2.6!,

ñ~r !5
me

2p E t̃~r !

ur2r 8u
dr 8, ~2.8!

where the convolution property of the Fourier transform o
product has been utilized. Invoking at this stage the anal
between Eq.~2.8! and the solution of Poisson’s equation
electrostatics for the potential in terms of the charge den
we readily obtain the relation~from this point, we work in
atomic units throughout!

t̃ ~r !52
1

2
¹2ñ~r !. ~2.9!

We shall exemplify this relation in Secs. III and IV fo
both harmonic confinement and the bare Coulomb poten
However, let us conclude this section by relatingñ(r ) to the
first-order density matrixg(r ,r 8). We have the usual relatio
@8,9#

n~p!5E g~r ,r 8!exp@ ip•~r2r 8!#dr dr 8 ~2.10!

and, hence, it follows directly that

ñ~r !5E g~r 82r ,r 8!dr 8. ~2.11!
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This ‘‘contracted’’ form of the first-order density matri
therefore determines the Fourier transformñ(r ) of the mo-
mentum density. Evidently, puttingr50 in Eq. ~2.11!, we
find

ñ~0!5E g~r 8,r 8!dr 85E r~r 8!dr 85N, ~2.12!

whereN is the total number of fermions. Similarly, returnin
to Eq. ~2.7!, we see that

t̃ ~0!5E t~p! dp5T, ~2.13!

whereT is the total kinetic energy.
The following three sections will be focused on givin

explicit examples of theser -space quantitiesñ(r ) and t̃ (r ),
which are related by the basic Eq.~2.9!. In Appendix B, we
explicitly relate the Compton profileJ(q) to ñ(r ).

III. ISOTROPIC HARMONIC CONFINEMENT

For the case ofN independent Fermions in an isotrop
three-dimensional harmonic potentialV(r )5(1/2)mv2r 2,
we have recently shown@17# that the total Fermion density
r(r ) for (M11) closed shells can be expressed in terms o
relatively simple finite series. The symmetry of the Hamilt
nia means that the wave functions for the three-dimensio
harmonic oscillator have the same functional form inp andr
space@18#; therefore, the total densityn(p) in p space for
(M11) closed shells must have the same functional form
r(r ) in r space. So we may write~in atomic units!

n~p!5
Nv23/2

2p
exp~2p2/v!

(
n50

M

a~n!~p2/v!n

(
n50

M

a~n!G~n13/2!

,

~3.1!

where thea(n) are related by

05a~n12!F ~n12!~2n15!

2 G1a~n11!@2~M11!

23~n11!#1a~n!F2~n2M !

~n11! G , a~M !52M, ~3.2!

and the total fermion numberN5(M11)(M12)(M
13)/6. It is then possible to transformn(p) to find ñ(r ) as

ñ~r !5N

(
n50

M

a~n!G~n13/2!M ~n13/2,3/2,2v2r /4!

(
n50

M

a~n!G~n13/2!

,

~3.3!

where M (a,b,z) is Kummer’s M function @19#, and t̃ (r )
follows from Eqn.~2.9!. Note thatM (a,b,z)→1 asz→0, so
9-2
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MOMENTUM DENSITY AND ITS FOURIER . . . PHYSICAL REVIEW A 64 042509
that ñ(0)5N as required. The Compton profileJ(q) can
likewise be calculated analytically; with the momentum d
tribution I (p)54pp2n(p) determined by Eq.~3.1!, we can
evaluateJ(q) as

J~q!52
Nv21/2

2
exp~2q2/v!

3

(
n50

M

a~n!~q2/v!n11M ~1,n12,q2/v!/~n11!

(
n50

M

a~n!G~n13/2!

1
Nv21/2

2

(
n50

M

a~n!G~n11!

(
n50

M

a~n!G~n13/2!

, ~3.4!

whereM (a,b,z) is as in Eq.~3.3!. Equations~3.3! and~3.4!
are clearly amenable to numerical study for small values
M. Also, we note that these two results forñ(r ) andJ(q) are
related by the cosine transform exhibited in Eq.~B5!.

IV. CLOSED SHELLS IN A BARE COULOMB FIELD:
ESPECIALLY SCALING PROPERTIES

While Fock’s expression fornm(p) @Eq. ~1.2!# can be
summed overm from one toN for N shells in terms of the
polygamma functions, as we have shown elsewhere@20#, we
have subsequently obtained the limitN→` in terms of func-
tions of q5p/Z. The result is

n`~q,Z!5 (
m51

`

nm~q,Z!5
Z23

3p2 q25 Re@2q2c98~ iq !

13qc9~ iq !23c8~ iq !#, ~4.1!

~compare ther -space density given by Heilmann and Lie
@21#! wherec(z)5]@ ln G(z)#/]z is the Psi~Digamma! func-
tion, and primes denote differentiation with respect toq.

The property of this exact limiting result~4.1! that we
wish to stress immediately is thatn`(q,Z) takes the form

n`~p,Z!5Z23f `~q!. ~4.2!

Thus, by simple scaling with atomic numberZ, a function of
the variablesp and Z is essentially reduced to the singl
variable functionf `(q), which is immediately written down
from Eq. ~4.1!. Motivated by this, we have returned to th
expression for an arbitrary numberN of closed shells, and
can show that it exhibits the scaling property

n~N,Z,p!5
16Z23

p2 f ~N,q!, ~4.3!

which, as for the limitN→` reported in Eq.~5! above,
demonstrates that one thereby reduces a function of t
variables, after scaling withZ, to what is essentially a func
04250
-

f
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tion of only two. We note that it follows from summing Eq
~1.2! over N shells that in the limitq→0, f (N,0)5N2(N
11)2(2N212N21). Likewise, in the limitq→`,

f ~N,q→`!;
1

q8 Fz~3!1
1

N3 1
c2~N!

2 G . ~4.4!

Given Eq. ~4.3!, we can readily write a sum rule fo
f (N,q) since the total kinetic-energyT, from the virial theo-
rem T52E for a Coulomb field, is

T5Z2N. ~4.5!

But in terms ofn(N,Z,p)

T5E
0

`

n~N,Z,p!
p2

2
4pp2dp5

32

p
Z23E

0

`

Z5f ~N,q!q4dq,

~4.6!

showing from comparison of Eqs.~4.6! and ~4.7! that

E
0

`

f ~N,q!q4dq5
p

32
N. ~4.7!

Other finite moments off can also be calculated from know
results @see, for example, Ref.@22# and other reference
given there# and are listed in Table I.

It hardly needs emphasis that asN→`, the result~4.7!
shows that this moment off (N,q) diverges, which in fact is
due to the singular behavior off `(q) at q50. However,
some higher moments remain finite in this limit.

To conclude, let us mention in this context that the Four
transform ofnN(p), namely,ñN(r ), can be evaluated in the
present case. ForN closed shells, we find

ñ~r !52F12r
]

]r
1

r 2

3

]2

]r 2G (
m51

N

m2@exp~2Zr !#1/m.

~4.8!

We illustrate in Fig. 1ñ(r ) for the caseZ592, N510 pre-
viously considered in some detail in Ref.@20#. Evaluation of
t̃ (r ) from Eq. ~2.7! gives

t̃ ~r !5F12r
]

]r
2

r 2

3

]2

]r 2G (
m51

N

Z2@exp~2Zr !#1/m.

~4.9!

TABLE I. Moments of f (q) for N filled shells.

n ^qn&

22 N(6N4115N3110N221)p/192
21 @N(N11)#2/24

0 N(N11)(2N11)p/192
1 N(N11)/24
2 Np/32
3 @g1c1(N11)#/6
4 5p2@126c1(N11)/p2#/192
9-3
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Making use of Eq.~4.8!, we can easily verify thatt̃ (r ) sat-
isfies Eq.~2.9!.

V. PERTURBATIVE TREATMENT OF A LOCALIZED
POTENTIAL V„r … IN AN INITIALLY UNIFORM

ELECTRON GAS

In their early work, March and Murray@23# were con-
cerned with calculating the ‘‘displaced’’ electron dens
Dr(r ) defined by

Dr~r !5r~r !2r0 , ~5.1!

wherer0 is the density of the initially uniform electron ga
while r(r ) is the density after introducing the ‘‘perturbing
potentialV(r ), which is assumed to be localized such th
*V(r )dr through the whole of space exists. Their result
first order inV(r ) was

Dr1~r !52
kF

2

2p2 E V~r 8! j 1~2kFur2r 8u!
ur2r 8u2

dr 8, ~5.2!

where kF is the Fermi wave number of the electron ga
related to the uniform densityr0 by

r05
kF

3

3p2 . ~5.3!

The perturbed first-order density matrixDg(r ,r 8) was also
obtained by March and Murray@23# in a perturbation series
to all orders inV(r ), namely,

Dg~r ,r 8!5(
j 51

`

Dg j~r ,r 8!. ~5.4!

Below we consider their explicit first-order form,

Dg1~r ,r 8!52
kF

2

2p2 E V~r 9! j 1~kF$ur2r 9u1ur 92r 8u%!

ur2r 9uur 92r 8u
dr 9,

~5.5!

FIG. 1. The Fourier transformñ(r ) of n(p) for the caseZ
592, with ten electrons in a bare Coulomb field~see also Ref.
@20#!.
04250
t
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Dg1~r 82r ,r 8!

52
kF

2

2p2 E V~r 9! j 1~kF$ur 82r 92r u1ur 92r 8u%!

ur 82r 92r uur 92r 8u
dr 9.

~5.6!

Then it follows that

Dñ~r !5E Dg1~r 82r ,r 8!dr 8

52
kF

2

2p2 E dr 9V~r 9!E dr 8

3
j 1~kF$ur 82r 92r u1ur 92r 8u%!

ur 82r 92r uur 92r 8u
, ~5.7!

or

Dñ~r !52
kF

2

2p2 E dr 9V~r 9!E dR
j 1~kF$uR2r u1R%!

uR2r uR

52
kF

2

2p2 f ~r !E dr 9V~r 9!. ~5.8!

What seems remarkable here is that ther -space form of
Dñ(r ) is independent of the detailed shape of the localiz
potentialV(r ), which simply fixes the magnitude ofDñ(r ).
It would, of course, be important for the future if such sim
plification could be proved to occur also in higher terms
the March-Murray perturbation theory.

VI. SUMMARY AND FUTURE DIRECTIONS

Conventional approaches to kinetic energy are~i! density-
functional theory and~ii ! via momentum space, or equiva
lently via the first-order density matrixg(r ,r 8) using the
Fourier transform relation~2.10! with n(p). Here, we have
introduced a third approach via the quantitiesñ(r ) and t̃ (r )
defined in Eqs.~2.4! and~2.7!, respectively, and related via
‘‘Poisson-like’’ Eq. ~2.9!. This equation strongly sugges
that t̃ (r ) will be simpler thanñ(r ) just as in Poisson’s equa
tion, the charge density is~usually! simpler than the electro
static potential it generates.

As examples of the present approach, we have discu
in turn isotropic harmonic confinement and Fermions mo
ing in a bare Coulomb field, both these examples be
treated for an arbitrary number of closed shells. Followi
these two cases dealing with bound states, the third a
taken is that of a localized potentialV(r ) introduced into an
initially uniform electron gas, using the perturbative theo
of March and Murray calculated to all orders inV. We show
explicitly to first order that the present route usingñ(r ) and
t̃ (r ) is remarkable in its analytical simplicity.

Of course, it is very important for the future that on
transcends the examples considered of independent Fe
ons. Therefore, in Appendix A, we have considered the tw
9-4
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MOMENTUM DENSITY AND ITS FOURIER . . . PHYSICAL REVIEW A 64 042509
electron Hookean atom, for which the first-order density m
trix g(r ,r 8) is known in integral form in the presence o
electron-electron interactions. This allowsñ(r ) to be also
expressed in integral form but, so far, we have not succee
in evaluating the integrals. However, there should be no
ficulty in evaluatingñ(r ), should the need arise in the futur
by numerical multidimensional integration. Furthermore, o
can form“ r

2ñ(r ) by interchanging the order of the operatio
“ r

2 and the multidimensional integration involved to fin

ñ(r ). Hence, using the Poisson-like form~2.9! relating t̃ (r )
and“ r

2ñ(r ), the calculation oft̃ (r ) should also be feasible
if needed in the future. Also, it would be of interest, w
believe, to extend the results of the Appendix to the He-l
series of atomic ions with nuclear charge Ze, but then
must have recourse to correlated wave functions si
g(r ,r 8) is no longer known, in contrast to the two-electro
Hookean atom, in closed form.
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APPENDIX A: HOOKEAN ATOM WITH FORCE
CONSTANT kÄ1Õ4

The single-particle density matrixg(r ,r 8) for the
Hookean atom with force constantk51/4 has been used b
March, Amovilli, and Klein @24# to show that the electron
densityr(r ) is determined by the pair functionn2(r ,r 8) at
coincidence, i.e.,r 85r . Here, we utilizeg(r ,r 8) to find the
quantity ñ(r ) defined in Sec. II, namely, the Fourier tran
form of the momentum density.

The explicit form of g(r ,r 8) is ~see, for example, Ref
@25#!

g~r ,r 8!52C2 expS 2
r 21r 82

4 D E S 11
ur2r 9u

2 D
3S 11

ur 82r 9u
2 DexpS 2

r 92

2 Ddr 9, ~A.1!

where C5@2p5/4(5Ap18)1/2#215.0291 122 a.u. Since
from Eq.~2.11!, ñ(r ) is a contracted form ofg(r 82r ,r 8) we
note first that this latter quantity is explicitly

g~r 82r ,r 8!52C2 expS 2
ur 82r u21r 82

4 D
3E S 11

ur 82r2r 9u
2 D S 11

ur 82r 9u
2 D

3expS 2
r 92

2 Ddr 9. ~A.2!
04250
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If we put R5r 92r 8 in Eq. ~A2! we find

g~r 82r ,r 8!52C2 expS 2
ur 82r u21r 82

4 D E S 11
ur1Ru

2 D
3S 11

R

2 DexpS 2
~r 81R!2

2 DdR. ~A.3!

We assume we can interchange the order of integration
write

ñ~r !5E gr 82r ,r 8 dr 8

52C2E dRS 11
ur1Ru

2 D S 11
R

2 D E dr 8

3expS 2
ur 82r u21r 82

4 DexpS 2
~r 81R!2

2 D .

~A.4!

PuttingS5R1r 8, we can write the second integral appea
ing in Eq. ~A4!, denoted byI (r ,R) below, as

I ~r ,R!5E dSexpS 2
$S2R2r u21uS2Ru2%

4 Dexp~2S2/2!,

~A.5!

so that

ñ~r !52C2E dRS 11
ur1Ru

2 D S 11
R

2 D I ~r ,R!. ~A.6!

This quite explicit expression forñ(r ), by numerical integra-
tion, could be compared with the harmonic confinement
sult ~3.3! for M50 should it prove useful in the future, bu
naturally with the same Hookean force constant.

APPENDIX B: RELATION OF J„q… to ñ„r …

Making use of Eq.~2.2! in Eq. ~2.3!, we have

J~q!52pE
q

`

pn~p!dp. ~B.1!

Since we can writen(p) in terms ofñ(r ) as

n~p!5E ñ~r !exp~ ip•r !dr , ~B.2!

J(q) is just
9-5
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J~q!58p2E
q

`

pdpE
0

`

ñ~r !
sin~pr !

pr
r 2dr

58p2E
0

`

rñ~r !F E
q

`

sin~pr !dpGdr. ~B.3!

If we let

F~q,r ,l!5E
p

`

sin~pr !exp~2lpr !dp, ~B.4!
e

nd
n

04250
then liml→0 F(q,r ,l)5cos(qr)/r, so that

J~q!58p2E
0

`

ñ~r !cos~qr !dr. ~B.5!

As for n(p), this equation shows thatñ(r ) is directly acces-
sible from an experimentally measured Compton profile.
on-
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