PHYSICAL REVIEW A, VOLUME 64, 042509

Momentum density and its Fourier transform: Relation to the first-order density matrix
and some scaling properties
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Density-functional theory requires knowledge of the kinetic-energy det(si}yin terms of the ground-state
densityp(r). Of course, the direct route to total kinetic energy is from the momentum der(g)y which in
turn is directly related by Fourier transform to the first-order density maffixr’). Here, an alternative route
to calculate the total kinetic energy is explored, via the Fourier transigrinof the momentum density(p).
It is shown thafi(r) is related to the density matrixthrough its contracted forrfiy(r’ —r,r’)dr’ =%(r). As
examples, bare Coulomb field and harmonic confinement for arbitrary numbers of closed shells are treated.
Finally, a localized potentid¥(r) embedded in an initially uniform electron gas is considered, but now to low
order in a perturbation series W(r).
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[. INTRODUCTION Here, we shall explore first an alternative route to the total
kinetic-energyT, via the Fourier transform of the momentum
Density-functional theory, having its origins in the densityn(p). This route is set out in Sec. Il below. Section
Thomas-FermiTF) statistical theonf1,2], requires knowl- Il considers the relatively simple example of isotropic har-
edge of the kinetic energt(r) in terms of the ground-state monic confinement in three dimensions for an arbitrary num-
electron densityp(r). In the range of validity of the TF ber of closed shells, while Sec. IV deals with the correspond-
method[3], the kinetic-energy densit;(r) is given by ing problem for a bare Coulomb field, motivated by Fock’s
result (1.2). Following these two soluble bound-state prob-
lems, the case of a localized potential enexfy) inserted
into an initially uniform electron gas is considered in Sec. V,
but now only to lowest order in a perturbative development
In early work[4,5], it was shown that this statistical theory jn V(r). Section VI constitutes a summary, plus some pro-
allowed direct calculation of the momentum dengitfp). posals for further work while in Appendix A, the two-
Then the total kinetic energy is readily obtained from theelectron Hookean atom, introduced by Kestner and Sinano-
second momentp?) of n(p). In turn, the moments afi(p)  glu [15], is considered within the present framework, as
can be directly related to integrals @ifr) in the Thomas- probably the simplest example where electron-electron inter-
Fermi limit. action can be handled analytically for special values of the
One of ug[6] showed, for the model of closed shells in a Hooke’s Law force constant.
bare Coulomb field, using a result going back to Fpckfor

3h2 3 2/3
tTF(r)ZCk{P(r)}5/3. Ck:lOm (g) . (1.1

the momentum densityn,(p) of the mth closed shell, Il. FOURIER TRANSFORM OF THE MOMENTUM
namely, DENSITY n(p) AND ITS RELATION TO THE
> 5 FIRST-ORDER DENSITY MATRIX y(r,r").
16m?py,

Nm(P) = Pm=2/m, (1.2 The scattering factof(k), as is well known, is related to

the ground-state densify(r) by the Fourier transform rela-
that one could connect, in this specific example, fullytion
guantum-mechanical results with the semiclassical TF
theory. .
Of course, it is well knowr[8,9] that one route to the f(k):f p(r)expik-r)dr. 2.9
momentum density(p) is via the first-order density matrix
y(r,r"). Unfortunately, to date, there are only a very limited For closed-shell atoms like He or NEk) is accessible ex-
number of examples, even for independent Fermions foperimentally via x-ray diffraction. As to the momentum den-
which vy is an idempotent matrix, in which closed analytic sity n(p), for similar closed-shell atoms it is also experimen-
forms of y(r,r’) can be written. One example, namely, har-tally accessible by measuring the shape of the Compton line
monic confinement in one dimension, goes back to Husimin x-ray scattering. A suitable reduced form, going back to
[10,11]. Another, the so-called Bardeen modi#éR,13 of a  Duncanson and Coulsdi6], describes the line shape by a
metal surface in which otherwise free electrons are confineéunctionJ(q), which is related to the probability p)dp that
by an infinite(planay barrier, has ay(r,r') which has been an electron in such a closed-shell atom will have a momen-
utilized recently[14] to obtaint(r) and the corresponding tum of magnitude lying betweep and p+dp. The precise
exchange energy density in analytic form. relation is

72(p?+p2)*’
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1 (=1(p)
xm=§LJ§dn

(2.2
Motivated by Egs(2.1) and (2.2) with the addition
I(p)=4mp*n(p), (2.3

we now introduce the Fourier transforf(r) of n(p)
through the definition

ﬁ(r)=f n(p)ex;{i %)dp. (2.4

Because of the importance of the kinetic-energy derigity
in current density-functional theory, we shall also consider

the definition

2

p
t(p)=5o-n(p) 25
with m the electron mass. Thus,
t(p)
n(p)=2me? (2.6

and defining the Fourier transform tffip) by t(r) through

T(r)=f t(p)exp(i %)dp

we have, by taking the Fourier transform of Eg.6),

(2.7

_ome [ )
n(r)—zfmdl’ , (2.9
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This “contracted” form of the first-order density matrix
therefore determines the Fourier transfdmifr) of the mo-
mentum density. Evidently, putting=0 in Eq. (2.11), we
find

“ﬁ(O)zf y(r’,r’)dr’=fp(r’)dr’=N, (2.12

whereN is the total number of fermions. Similarly, returning
to Eq.(2.7), we see that

t(0)=f t(p) dp=T, (2.13
whereT is the total kinetic energy.

The following three sections will be focused on giving
explicit examples of these-space quantitieB(r) andt(r),
which are related by the basic E@.9). In Appendix B, we
explicitly relate the Compton profilé(q) to Ti(r).

lll. ISOTROPIC HARMONIC CONFINEMENT

For the case o independent Fermions in an isotropic
three-dimensional harmonic potenti®(r) = (1/2)mw?r?,
we have recently showfil7] that the total Fermion density
p(r) for (M +1) closed shells can be expressed in terms of a
relatively simple finite series. The symmetry of the Hamilto-
nia means that the wave functions for the three-dimensional
harmonic oscillator have the same functional fornpiandr
space[18]; therefore, the total densitg(p) in p space for
(M +1) closed shells must have the same functional form as
p(r) in r space. So we may writén atomic unitg

M

> a(n)(p%o)"

N 372 n=0

exp(— p?/w) ,
where the convolution property of the Fourier transform of a > amT(n+3/2)
product has been utilized. Invoking at this stage the analogy n=0

n(p)=

m

between Eq(2.8) and the solution of Poisson’s equation of (3.1
electrostatics for the potential in terms of the charge density,
we readily obtain the relatioffrom this point, we work in Where thea(n) are related by
atomic units throughout (n+2)(2n+5)
. O=a(n+2) — +a(n+1)[2(M+1)
ST
t(r) 2V n(r). (2.9 . ) 2(n—M) NN
(n+1)]+a(n) nFD | a(M)=2", (3.2

We shall exemplify this relation in Secs. lll and IV for
both harmonic confinement and the bare Coulomb potentiabng the total fermion numbemN=(M+1)(M+2)(M
However, let us conclu_de this section by relatfig) to tht_a +3)/6. It is then possible to transforn(p) to find Ti(r) as
first-order density matrix/(r,r’). We have the usual relation "

[8,9]
> a(nT(n+3/2M(n+3/2,3/2 w’r/4)

n=0
n(r)=N

n(p)=f y(r,rHexdip-(r—r’)]drdr’  (2.10 M
> a(mT(n+3/2)

n=0

and, hence, it follows directly that (3.3

where M(a,b,z) is Kummer'sM function [19], andt(r)

n(r)=f y(r'=r,rdr. follows from Eqgn.(2.9). Note thatM (a,b,z) —1 asz—0, so

(2.11
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that i(0)=N as required. The Compton profil{q) can TABLE I. Moments off(q) for N filled shells.
likewise be calculated analytically; with the momentum dis-
tribution | (p) =47p?n(p) determined by Eq(3.1), we can

evaluateJ(q) as n a"
N~ 12 -2 N(6N*+ 15N3+ 10N?— 1) /192
Ja)=-— exp(— g%/ ) -1 [N(N+1)]%/24
0 N(N+1)(2N+1)7/192
M 1 N(N+1)/24
> an)(g¥w)" M (1n+2,9% w)/(n+1) 2 N7/32
X0 . 3 _[rtu(N+1)pe
4 57 1— 63, (N+1)/72]/192
a(n)l'(n+3/2
2 a(mT(n+3/2
M tion of only two. We note that it follows from summing Eg.
L 2 a(ml(n+1) (1.2 over N shells that in the limitg—0, f(N,0)=N?(N
No ™7 n=0 +1)%(2N%+2N—1). Likewise, in the limitg— o,
+ 2 M ’ (34)
a(nI'(n+3/2 1 1 4a(N)
2, anr(n+3 (NG=)~ 5 {3+ ot | (44

whereM (a,b,z) is as in Eq.(3.3). Equations3.3) and(3.4)

are clearly amenable to numerical study for small values o
M. Also, we note that these two results Toir) andJ(q) are
related by the cosine transform exhibited in Eg§5).

Given Eq. (4.3, we can readily write a sum rule for
?(N,q) since the total kinetic-energy, from the virial theo-
remT= —E for a Coulomb field, is

T=2Z2N. (4.5
IV. CLOSED SHELLS IN A BARE COULOMB FIELD: _
ESPECIALLY SCALING PROPERTIES But in terms ofn(N,Z,p)

While Fock’s expression fon,(p) [Eg. (1.2)] can be 2

— ” P 2 — -3 ” 5 4
summed ovem from one toN for N shells in terms of the '~ fo nN(N.Z,p) 7 4mpdp= -2 Jo 2°1(N.q)q"da,

polygamma functions, as we have shown elsewh2@g we (4.6)
have subsequently obtained the limNit- o in terms of func-
tions of q=p/Z. The result is showing from comparison of Eq#4.6) and (4.7) that
o0 273 © 4 a
n.(0.2)= 2 Nu(0.2)= 359 *Re -’y (iq) f(N.a)a*dg=55N. @7
m=1 3 0
+3q¢"(iq)—34'(iq)], (4.7 Other finite moments dfcan also be calculated from known

results [see, for example, Refl22] and other references
(compare the-space density given by Heilmann and Lieb given therg and are listed in Table I.
[21]) where ¥(z)=d[InT'(2)]/dz is the Psi(Digamma func- It hardly needs emphasis that Bs—, the result(4.7)
tion, and primes denote differentiation with respectjto shows that this moment dfN,q) diverges, which in fact is
The property of this exact limiting resuf#.1) that we  due to the singular behavior df.(q) at g=0. However,
wish to stress immediately is that.(q,Z) takes the form some higher moments remain finite in this limit.
3 To conclude, let us mention in this context that the Fourier
N.(p,2)=Z""f..(q). (42 transform ofny(p), namelyTiy(r), can be evaluated in the

Thus, by simple scaling with atomic numbg&ra function of present case. Fu closed shells, we find

N

the variablesp and Z is essentially reduced to the single- 2 2

variable functionf .(q), which is immediately written down ) =2/1-r —+ = —| >, mexp—2Zr)]*m.

from Eq. (4.1). Motivated by this, we have returned to the ar 3 artim=1

expression for an arbitrary numbat of closed shells, and (4.9

can show that it exhibits the scaling property We illustrate in Fig. Iri(r) for the caseZ=92, N=10 pre-
1623 viously considered in some detail in Rg20]. Evaluation of

n(N,Z,p)=——7—f(N,a), (4.3 t(r) from Eq.(2.7) gives
. - : ~ g r2 21N

which, as for the limitN—o reported in Eq.(5) 'above, £ )Z[l—f————z Z2[exq_zr)]1/m_

demonstrates that one thereby reduces a function of three ar 3 Jrefm=1

variables, after scaling witl, to what is essentially a func- (4.9
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or
10
Ayi(r'=r,r")
8_
_ k2 V(r”)jl(kF{|r’—r”—r|+|r”—r’|})dr”
- 6 2,”_2 |rr_rr/_r||rr/_r/| .
8 —— FT of n(p) for =92, N=2 | (5.6)
T 4
. Then it follows that
2_
Aﬁ(r)=f Ay (r'=r,r")dr’
0-
000 005 ot0 o1 o020 025 k2
F 14 n !
r(a.u.) =~ dr”V(r") | dr
FIG. 1. The Fourier transforrii(r) of n(p) for the casez i1 (K {|r’—r”—r|+|r”—r’|})
=92, with ten electrons in a bare Coulomb figlsee also Ref. EA .57
[201) |rr_r//_r||r//_r/|
Making use of Eq(4.8), we can easily verify that(r) sat- or
isfies EQ.(2.9). .
%29 ~ K or o Jake{lR=T|+RY)
An(r)z—ﬁ dr"Vv(r") | dR ROTIR
V. PERTURBATIVE TREATMENT OF A LOCALIZED 77 | B r|
POTENTIAL V(r) IN AN INITIALLY UNIFORM K2
ELECTRON GAS =— Z—;Zf(r)f drv(r"). (5.9

In their early work, March and Murraj23] were con- \ypat seems remarkable here is that thepace form of
cerned with calculating the “displaced” electron density 1) is independent of the detailed shape of the localized
Ap(r) defined by potentialV(r), which simply fixes the magnitude &ffi(r).

_ It would, of course, be important for the future if such sim-
A = —Po, 5.1 e ' )
p(N=p(1)=po 6.2 plification could be proved to occur also in higher terms of

wherep, is the density of the initially uniform electron gas the March-Murray perturbation theory.

while p(r) is the density after introducing the “perturbing”

potential V(r), which is assumed to be localized such that VI. SUMMARY AND FUTURE DIRECTIONS
SJV(r)dr through the whole of space exists. Their result to

first order inV(r) was Conventional approaches to kinetic energy @relensity-

functional theory andii) via momentum space, or equiva-
k2 V(r')j,(2ke|r=r']) Iently via the first-ordgr density_matrix/(r,r’) using the
Ap4(r)=— ﬁf TErgE dr’, (5.2 Fourier transform relatio2.10 with n(p). Here, we~have
introduced a third approach via the quantiffigs) andt(r)
where kg is the Fermi wave number of the electron gas,defined in Eqs(2.4) and(2.7), respectively, and related via a

related to the uniform densiwo by “Poisson-like” Eq (29) This equation Strongly SUggEStS
5 thatt(r) will be simpler tharfi(r) just as in Poisson’s equa-
ke tion, the charge density i@isually simpler than the electro-
Po=3 2 (53 static potential it generates.

As examples of the present approach, we have discussed
The perturbed first-order density matrxy(r,r’) was also in turn isotropic harmonic confinement and Fermions mov-
obtained by March and Murrgy23] in a perturbation series ing in a bare Coulomb field, both these examples being
to all orders inV(r), namely, treated for an arbitrary number of closed shells. Following
these two cases dealing with bound states, the third area
taken is that of a localized potentid(r) introduced into an

o0

A”(rvr'):gl Ay(r,r’). (54 initially uniform electron gas, using the perturbative theory
of March and Murray calculated to all orders\th We show
Below we consider their explicit first-order form, explicitly to first order that the present route using) and
2 . , . t(r) is remarka'\bl'e in its gnalytical simplicity.
Ay (r r,):__Ff V() jakeflr=r"[+r"=r"[}) ar” Of course, it is very important for the future that one
' 27 [r—r"||r"—r’] ’ transcends the examples considered of independent Fermi-

(5.5 ons. Therefore, in Appendix A, we have considered the two-
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electron Hookean atom, for which the first-order density maif we putR=r"—r" in Eq. (A2) we find
trix y(r,r’) is known in integral form in the presence of

electron-electron interactions. This allowigr) to be also It —r|2+1'2 Ir+R)|
expressed in integral form but, so far, we have not succeeded,,(r’ —r r’)=2C? eXF{ - —) j (1+

in evaluating the integrals. However, there should be no dif- 4 2

ficulty in evaluatingii(r), should the need arise in the future, R (r'+R)?
by numerical multidimensional integration. Furthermore, one X1+ = exp( - —) dR. (A.3)
can formV () by interchanging the order of the operation 2 z

VZ and the multidimensional integration involved to find
Ti(r). Hence, using the Poisson-like forf®.9) relatingt(r) We assume we can interchange the order of integration to

and VZi(r), the calculation of (r) should also be feasible, V'€

if needed in the future. Also, it would be of interest, we

believe, to extend the results of the Appendix to the He-like

series of atomic ions with nuclear charge Ze, but then one n(r)=f yr'—rridr’
must have recourse to correlated wave functions since

¥(r,r’) is no longer known, in contrast to the two-electron =2C2f dR( 14 Ir+R]
Hookean atom, in closed form. 2

L) [
+E r

p( (r'+R)?
ex —T.

[r"—r|?4r"2
ACKNOWLEDGMENTS Xexp| — —————

I.LA.H. wishes to acknowledge support from the Flemish
Science FoundatioFWO) under Grant No. G.0347.97. We
also thank the University of AntwerfRUCA) for its support
in the framework of the Visiting Professors Program. ThisPuttingS=R+r’, we can write the second integral appear-
work is also supported by the Concerted Action Program ofng in Eq. (A4), denoted byl (r,R) below, as
the University of Antwerp.

(A.4)

{S—R—r|?+|S—R|?} )
APPENDIX A: HOOKEAN ATOM WITH FORCE I(r,R)=| dSexpg — 7 exp—S72),
The single-particle density matrixy(r,r’) for the
Hookean atom with force constakt 1/4 has been used by gq that
March, Amovilli, and Klein[24] to show that the electron
densityp(r) is determined by the pair functiomy(r,r’) at 4R R
coincidence, i.e.r’ =r. Here, we utilizey(r,r") to find the o zf r+
o . . . = + — + = . .
quantityTi(r) defined in Sec. Il, namely, the Fourier trans- n(r)=2C% ] dR| 1 2 ! 2 H(r.R). (A.6)
form of the momentum density.
[25}')he explicit form of y(r,r') is (see, for example, Ref. This quite explicit expression f@r(r), by numerical integra-
tion, could be compared with the harmonic confinement re-
12402 Ir—r| sult (3.3) for M =0 should it prove useful in the future, but
y(r,r')=2C? exp( - f (1+ 5 ) naturally with the same Hookean force constant.

X

’ " "2
r—r r . =
1+ | )exp( )dr”, (A1) APPENDIX B: RELATION OF J(q) to fi(r)

2 2

Making use of Eq(2.2) in Eq. (2.3), we have
where C=[27%45\7+8)Y3~1=.0291122a.u. Since

from Eq.(2.11), Ti(r) is a contracted form of(r’'—r,r') we o
note first that this latter quantity is explicitly J(q)=2m . pn(p)dp. (B.1)
) [r'—r|2+r'2
y(r'—rr)=2Cexp - ——,—— Since we can writei(p) in terms offi(r) as
J, . |r/_r_r//| L |r/_r//
O B L S n(p)zfﬁ(r)exr(ip-r)dr, (B.2)
rr/2
><exp< — T)dr . (A.2) 3(q) is just
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o o sin(pr) then lim,_ o F(q,r,\)=cos@r)/r, so that
J(q)=8w2f pdpf ﬁ(r)Trzdr
q 0

=8772f:rﬁ(r)

Jq Si”(Pf)dP}dr- (B.3) J(q)zswszﬁ(r)cos{qr)dr. (B.5)
0

If we let

F(g,r\)= fm sin(pr)exp(—Apr)dp, (B.4) A_s for n(p), this eql_Jation shows th@i(r) is directly acces-
p sible from an experimentally measured Compton profile.
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