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Quantum and semiclassical analysis of long-range Rydberg molecules
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A recent study suggests the existence of highly polar and nonpolar long-range Rydberg molecules under
temperature and density conditions representative of those found in atomic Bose-Einstein condensates. The
electronic wave functions of these Rydberg molecules are characterized by an elliptically shaped nodal struc-
ture. We use a combination of quantum and semiclassical methods to explore this unique nodal structure and
its correlations with the Born-Oppenheimer potential curves of the molecules. We demonstrate a special
‘‘quasiseparability’’ that arises in elliptic coordinates at certain internuclear separations and give a semiclassical
interpretation of this in terms of quantized Einstein-Brillouin-Keller orbits.
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I. INTRODUCTION

Rydberg states of long-range Rb2 molecules predicted in a
recent study@1# exhibit several striking features. First, th
Born-Oppenheimer potential curves oscillate as a function
internuclear separationR out to distances of at least 102

2104 Bohr radii. Second, some of these molecular Rydb
states possess large electric dipole moments of magni
D'R2(1/2)n2 a.u., wheren is the principal quantum num
ber of the Rydberg state. Third, the electronic wave functi
of these Rydberg molecules have elliptically shaped no
patterns, whose evolution withR is highly correlated with
the oscillating potential curve.

These long-range molecules stand in contrast to more
miliar homonuclear diatomic molecules having bond leng
of a few Bohr radii and no permanent electric-dipole m
ments. Given these differences, it is desirable to have a m
complete understanding of the physics of these molecu
The current paper focuses on one aspect of the molec
physics, namely, the electronic wave function and its relat
to the oscillations in the Born-Oppenheimer potential curv

We develop a simple picture of these molecules using
ingredients: Rydberg states of atomic hydrogen, and the
traction between a slow electron and a ground-state Rb a
At first glance, the molecular states seem to have little
common with atomic Rydberg states. However, a transfor
tion to elliptic coordinates shows that most of the molecu
physics is governed by highly excited atomic states. T
transformation to elliptic coordinates also allows for sem
classical interpretations of these states.

Section II discusses the qualitative features of the e
tronic wave function and Born-Oppenheimer potent
curves of these Rydberg molecules. Particular emphas
placed on the evolution of the electronic states as the in
nuclear separation is changed. Section III shows how m
of the qualitative features can be understood by solving
relevant Schro¨dinger equation in elliptic coordinates. In Se
IV, the underlying simplicity of the quantum-mechanical s
lutions is reproduced and interpreted using semiclass
methods.

II. QUALITATIVE FEATURES

We begin by recapitulating the qualitative features of
electronic wave functions and Born-Oppenheimer poten
1050-2947/2001/64~4!/042508~9!/$20.00 64 0425
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curves. The relevant physics is that of a highly excited
atom (n'30) in the presence of a second, ground-state
atom a distanceR ~we use atomic units unless otherwis
stated! away. The main features discussed in this paper
shown in Figs. 1 and 2, which show the Born-Oppenheim
potential curve and electronic wave function as a function
internuclear separation.

Most importantly, the nodal pattern of the electronic wa
function is elliptically shaped. More specifically, the approx
mate nodal lines lie on confocal ellipses and hyperbo
characteristic of elliptic coordinates@2#. This is surprising
because the Born-Oppenheimer Hamiltonian@Eq. ~3.1!# is
approximately separable in a number of coordinate syst
~spherical, parabolic, elliptic!. Why a strong elliptic characte
~rather than spherical, parabolic, or otherwise! emerges in the

FIG. 1. Born-Oppenheimer potential curve for a highly po
n530 Rydberg state of Rb2. The electronic wave function assoc
ated with this potential~see Fig. 2! shows striking elliptically
shaped nodal patterns. The approximate numbers of nodes in
electronic wave function (nj ,nh) are shown below each minima
Note that the effective quantum numbers (nj ,nh) evolve continu-
ously as a function of internuclear separation, but are integer va
at the minima. This paper gives quantum and semiclassical in
pretations of the oscillating potential curve and associated w
function.
©2001 The American Physical Society08-1
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GRANGER, HAMILTON, AND GREENE PHYSICAL REVIEW A64 042508
FIG. 2. Contour plots ofruC(r,z)u2 of the
Born-Oppenheimer wave functions of a long
range Rb2 molecule at the energy of ann530
Rydberg state. Four internuclear separations
shown (R51575,1382,1234,1110) correspon
ing to the outermost minima in the oscillating po
tential curve~see Fig. 1!. These states are labele
by the approximate numbers of nodes (nj ,nh) in
the two elliptic directions. Although the noda
lines are not exact, the strong antinodes make t
labeling useful. The characteristic ellipticall
shaped nodal pattern is preserved as the nu
get closer together, but the number of nodes
the two elliptic directions get redistributed from
the angularh direction to the radialj direction as
the internuclear separation is decreased.
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molecular states is not initially obvious. Notice, second
that the numbers of approximate nodes in the two ellip
directions~radiuslikej and anglelikeh) are constrained by
the principal quantum numbern of the unperturbed electron
We use effective quantum numbers in elliptic coordinatesnj

and nh) to count the approximate numbers of nodes in
molecular wave function. These effective quantum numb
are then constrained by the principal quantum numben
through the relation

nj~R!1nh~R!5n21. ~2.1!

We think of nj(R) andnh(R) aseffectivequantum numbers
because they depend continuously on the internuclear s
rationR. Again, this relationship is surprising becausenj and
nh characterize the full molecular state, whereasn contains
information only about the unperturbed atomic Rydberg s
of Rb. A third observation is that the nodal structure evolv
in a highly constrained manner as the internuclear separa
is changed. As the internuclear distance decreases, the n
in the angular elliptic directionh disappear one by one, an
are replaced by new nodes in the radial elliptic directionj. A
final observation is that the nodal structure of the electro
wave function is strongly correlated to the oscillations in t
Born-Oppenheimer potential curve. At the minima in the o
cillating potential curve, the nodal structure separa
cleanly, although still only approximately, into an integr
number of excitations in the angular and radial elliptic co
dinates. In other words, at the minima of the potential cur
nj andnh are integers.

As stated previously, Figs. 1 and 2 demonstrate th
qualitative observations by showing the potential curve a
electronic wave function for ann530 Rydberg state of Rb2
as a function of internuclear separationR. Figure 1 shows
how the Born-Oppenheimer potential curve oscillates d
matically out to 1000’s of a.u. The values of the effecti
quantum numbers (nj ,nh) of the molecular state are show
below each minima in the curve. Figure 2 shows cont
plots of the electron probability density at selected mini
(R51575,1382,1234,1110 a.u.) in the potential curve. T
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elliptically shaped nodal structure is maintained as the in
nuclear separation is changed. At the outermost minim
(R51575) all of the nodes (n21529) are in the angularh
direction. At the next minimum (R51382) there is a single
node in the radialj direction and one less in thej direction.
This pattern of redistributing the nodes from theh direction
to the j direction continues as the internuclear separat
passes through the other minima (R51234,1110, and so on!
in the potential curve.

These are the basic qualitative features that this paper
out to explore. The robust, elliptic nodal structure of t
electronic states suggest that the problem will simplify
elliptic coordinates. Elliptic coordinates have been used
treat a number of other two center problems such as H2

1 @3#
and hydrogen in the presence of a point dipole@4#. From this
standpoint, it is no surprise that elliptic coordinates are u
ful for our current system. However, it is desirable to und
stand both why elliptic coordinates seem to be preferred
our system, and exactly how the description is simplifi
when elliptic coordinates are used.

III. QUANTUM TREATMENT IN ELLIPTIC
COORDINATES

The first method that we use to understand the appa
simplicity of the electronic wave functions is degenerate p
turbation theory. To emphasize the simple nature of the e
tronic wave functions, we neglect the complications of bo
fine structure and the non-hydrogenic Rb ionic core. W
this approximation, the Born-Oppenheimer Hamiltonian is
combination of the Coulomb attraction and a short-range
teraction potential centered on the ground state Rb at
Greene and coworkers@1,5# model this interaction using a
Fermi pseudopotential, a Diracd function of strength
2pAT@k(R)#, whereAT@k(R)# is the triplet scattering length
for an electron-Rb encounter at wavelengthk. The electronic
Hamiltonian then has the particularly simple form

H5
p2

2
2

1

r
12pAT@k~R!#d~rW2RW !. ~3.1!
8-2
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QUANTUM AND SEMICLASSICAL ANALYSIS OF LONG- . . . PHYSICAL REVIEW A 64 042508
At most wavelengths near zero energy, the scattering len
AT@k(R)# is negative. The long-range molecules discusse
this paper depend critically on this net attraction between
Rydberg electron and the ground-state Rb atom. As in R
@1#, the energy-dependentAT@k(R)# is calculated from its
zero energy valueAT@0# @6# and the Rb(5s) polarizability
@7# using a generalized quantum-defect theory@8#. The three-
dimensional delta function potential is known@9# to give
ill-behaved solutions of the Schro¨dinger equation. In spite o
this, treating the delta function using perturbation theory
straightforward and gives sensible results. In the absenc
the ground-state Rb atom, the Hamiltonian is just that
hydrogen, which is separable in a number of coordinate s
tems~spherical, elliptic, parabolic!. Any of these coordinate
systems can be used to define unperturbed eigenstates fo
in perturbation theory. However, nondegenerate eigenst
based on any of these coordinate systems lead to the s
elliptically shaped molecular states~Fig. 2! once the pertur-
bation has been included. In the following sections, we ca
out quantum and semiclassical calculations in elliptic co
dinates to show how the molecular states acquire this ro
elliptic character.

Guided by the elliptically shaped nodal patterns, we int
duce elliptic coordinates, defined with the foci of the ellip
cal coordinate system placed on the ion~at the origin! and
the perturbing Rb atom (r,z)5(0,R). If r 1 and r 2 are the
distances between the Rydberg electron and the two foc
our coordinate system, the elliptic coordinates are define

j5
r 11r 2

R
, ~3.2!

h5
r 12r 2

R
. ~3.3!

These coordinates are constrained to the ranges 1<j
,` and uhu<1. Next, our unperturbed elliptic eigenstat
are introduced.

A. Unperturbed elliptic states

The elliptic eigenstates we construct here are station
eigenstates of the hydrogen atom. These states differ f
the traditional states of hydrogen~eigenstates ofH,LW 2,Lz)
through the replacement ofLW 2 by a constant of the motion
that emerges out of elliptic coordinates. The Schro¨dinger
equation for an electron~in a molecularS state! in a Cou-
lomb potential in elliptic coordinates reads@10,2,11#

F2
1

2

]

]j
~j221!

]

]j
2

1

2

]

]h
~12h2!

]

]h
2

R

2
~j2h!

2
R2

4
E~j22h2!GC~j,h;R!50. ~3.4!

This equation separates into two one-dimensional eigenv
problems for the elliptic separation constantB(R)
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F2
1

2

]

]j
~j221!

]

]j
2

R

2
j2

R2

4
Ej2GF~j,R!5B~R!F~j,R!,

~3.5!

F2
1

2

]

]h
~12h2!

]

]h
1

R

2
h1

R2

4
Eh2GF~h,R!

52B~R!F~h,R!, ~3.6!

whereC(j,h;R)5F(j,R)F(h,R). Given a total energyE
521/2n2 and a distanceR, the separation constantB(R)
becomes quantized when boundary conditions appropr
for bound states are imposed. We label these states by
number of nodes in thej direction,nj5(0, . . . ,n21). The
number of nodes in the angularh direction is then given by
the constraint

nh5n212nj . ~3.7!

While this constraint resembles that of the full molecu
eigenstates~2.1!, at this point,nj and nh are integers char-
acterizing the primitive atomic states and they do not dep
upon the parameterR. However, when we use these primitiv
eigenstates to construct the molecular state, theR-dependent
molecular relationship~2.1! will emerge out of the atomic
one ~3.7!.

Although analytical power series solutions of these E
~3.5!, ~3.6! have been found@2,10,11#, an efficient way of
calculating the solutions is to diagonalize the on
dimensional Hamiltonians in aB-spline basis set. This pro
cedure produces the elliptic Coulomb statesCnj

(j,h;R)
along with the corresponding values of the separation c
stantBnj

(R). In all of the preceding equations, the intern
clear separationR appears as a continuous parameter. Ho
ever, these equations do not yet include the effect of
perturbing Rb atom. So far, the parameterR only gives the
distance between the foci of our elliptic coordinate syste

At least back to Sommerfeld@12#, it has been known tha
the hydrogen atom is separable in elliptic coordinates.
though the separability of the hydrogen atom in elliptic c
ordinates is not widely known, a number of authors ha
investigated the properties of the elliptic eigenstates. Erik
and Hill first @13# showed that the elliptic separation consta
B(R) was related to the orbital angular momentum about
two foci of the coordinate system~see also Refs.@3,14#!. In
Sec. IV, we give a lesser known form@15# of this constant of
the motion in terms of the angular momentumL2 about one
focus, and the projection of the Runge-Lenz vectorAW onto
the internuclear axis. Analytical solutions of the on
dimensional Hamiltonians~3.5!, ~3.6! have been given@2,11#
in terms of the associated Legendre polynomials. A m
recent work of Sung and Herschbach@11# gives a thorough
discussion of the elliptic eigenstates and their relation to
more traditional spherical eigenstates. In spite of this pre
ous work, we feel that the striking nature of the elliptic sta
of hydrogen has not been fully appreciated. For our p
poses, the most important features are elucidated in t
dimensional contour plots of the electron probability dens
of these states. Figure 3 shows contour plots of the elec
8-3
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FIG. 3. Examples of elliptic eigenstates of then530 hydrogen atom defined with an elliptic coordinate system where the dist
between the foci of the coordinate system is 1232 a.u. The foci of the coordinate system have been placed at the origin andr,z)
5(0,1232)~shown by a small circle!. These stationary states of hydrogen have large permanent dipole moments and striking nodal p
While the states are constructed in elliptic coordinates, the probability densityruC(r,z)u2 is shown in cylindrical coordinates for clarity. Th
states are labeled by the numbers of nodes in thej andh directions, (nj , nh). Shown are the (29,0)~upper left!, (25,4) ~upper right!, (5,24)
~lower left!, and (2,27)~lower right! states. While the physics of the perturbing Rb atom is not included in these states, in the next s
the ground-state Rb atom will be placed at the second foci~small circle! of the coordinate system. It is clear that only the states having
elliptically shaped nodal pattern, such as the (2,27) state, will have any overlap with the perturbing Rb atom.
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probability density for four of the degenerate elliptic states
the n530 manifold. The value ofR for the elliptic coordi-
nates underlying these states is 1232 a.u. These contour
show that many of these states have large permanent ele
dipole moments. To our knowledge, the unusual nodal p
terns of these states, which range from elliptical (0,29)
semicircular (14,15) to wedge (29,0) shaped, have not b
reported in the literature thus far. Next, these states are
as zero-order eigenstates in perturbation theory.

B. Degenerate perturbation theory

To include the effect of the perturbing Rb atom, the p
turbation is diagonalized in the basis of elliptic eigenstat
The relevant perturbation matrix is

Vnjn
j8
~R!52pAT@k~R!#^njud~rW2RW !unj8&. ~3.8!

Because this matrix is separable, only one state splits a
from the degeneraten manifold when it is diagonalized. Th
total energy of the state can be found analytically, and
given by the expression

En~R!5
21

2n2
1(

nj

uVnjnj
~R!u2

5
21

2n2
12pAT@k~R!# (

nj

uCnj
~1,1;R!u2, ~3.9!
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which is used in Fig. 1 to calculate the Born-Oppenheim
potential curve. The wave function is then a linear combin
tion of the elliptic eigenstatesCnj

(j,h;R)

Cn~j,h;R!5A2puAT@k~R!#u(
nj

Cnj
~1,1;R!Cnj

~j,h;R!.

~3.10!

It is clear that both the Born-Oppenheimer potential cu
~3.9! and wave function~3.10! are determined by the value
of the primitive elliptic eigenstatesCnj

(1,1;R) at the posi-

tion of the perturbing Rb atom (j,h)5(1,1). In general, the
wave functions and eigenvalues include contributions fr
all n elliptic eigenstates in the degenerate manifold. That
molecular states show a strong elliptic character is seen w
the valuesCnj

(1,1;R) are shown as a function of internu
clear separationR. Figure 4 shows a plot of the values o
uCnj

(1,1;R)u2 (nj50, . . .,10) for an unperturbedn530
state as a function ofR. At certain internuclear separations,
single primitive elliptic state dominates the molecular wa
function ~3.10! and Born-Oppenheimer potential curve~3.9!.
A comparison between the coefficients in Fig. 4 and
Born-Oppenheimer potential curve in Fig. 1 shows that
minima in the potential curve occur precisely where a sin
elliptic state is dominating the molecular wave function. Th
‘‘quasiseparability’’ of the full wave function means that
certain internuclear separations, the full Hamiltonian~includ-
ing the perturbation! is nearly diagonal is the basis of prim
8-4
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QUANTUM AND SEMICLASSICAL ANALYSIS OF LONG- . . . PHYSICAL REVIEW A 64 042508
tive elliptic eigenstates. In some sense, the potential en
is minimized when the amount a nonseparability in ellip
coordinates is the least.

Furthermore, as the internuclear separation is chan
the specific elliptic state that dominates the sums in E
~3.10! and~3.9! changes. This accounts for the redistributi
of the nodes in the molecular wave function from theh to
the j direction as the internuclear separation decreases~see
Figs. 1 and 2!. Thus, at the outermost minimum (R
51575 a.u.), Fig. 4 shows a peak in the contribution of
nj50 state. At the next minimum (R51382 a.u.), thenj

51 state has come to dominate. As the character of the
lecular state evolves from one elliptic state to another
numbers of nodes in the electronic wave function (nj ,nh)
evolve according to the constraint of Eq.~2.1!. While this
quantum analysis give us a qualitative picture as to why
constraint of Eq.~2.1! holds for the molecular states, Sec. I
provides a quantitative semiclassical derivation of the re
tion.

Thus, we have shown how an unexpected ‘‘quasisep
bility’’ in elliptic coordinates emerges at certain internucle
separations. These special internuclear separations are
cisely the minima in the Born-Oppenheimer potential cur
That the Born-Oppenheimer Hamiltonian is nearly diago
in elliptic coordinates at a sequence of internuclear radii is
unexpected simplification that explains why the nodal str
ture of the molecular states is elliptically shaped. The evo
tion of the molecular state with internuclear separation

FIG. 4. The values of the expansion coefficientsuCnj
(1,1;R)u2

for an n530 state. These coefficients determine which ellip
eigenstate of hydrogen~see Fig. 3! dominates the molecular wav
function and Born-Oppenheimer potential curve~Figs. 1 and 2! at a
given radius. Because the Born-Oppenheimer potential curv
simply 2pAT@k(R)# times the sum of all the coefficients in th
figure, the minima in the potential curve coincide with the ra
where the contribution of a single elliptic state is dominant. Ea
peak in the graph is labeled by the elliptic quantum numb
(nj ,nh) of the state the peak represents. The quasiseparability
curs at internuclear separations where the coefficient of a si
elliptic state dominates.
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be viewed as an change in the contributions of the primit
elliptic states that comprise the wave function. Now we tu
to a semiclassical description of these states.

IV. SEMICLASSICAL ANALYSIS

Semiclassical methods permit a simple interpretation
multidimensional quantum systems@16#. In the absence of
the perturbing Rb atom, the long-range dynamics of the
dberg electron are purely Coulombic. Our main challenge
therefore to include the effect of the perturbing Rb atom i
semiclassical treatment. In principle, it would be possible
include the perturbing potential using classical perturbat
theory @17#. Rather than this approach, we focus on a m
qualitative viewpoint in this paper. In two different semicla
sical approaches, we show that the effect of the perturber
be understood in terms of unperturbed Coulomb trajecto
that are constrained to pass through the ground-state
atom. One way of thinking about this, is that the del
function perturbation potential~3.1! can be viewed as a con
straint on the relevant trajectories of the system. First,
give a semiclassical interpretation of the elliptically shap
nodal structure using a semiclassical Green’s function. T
we use ideas from semiclassical Einstein-Brillouin-Kel
~EBK! quantization to show how much of the insight gain
from quantum degenerate perturbation theory can be un
stood and interpreted in terms of classical trajectories
pass through the perturbing Rb atom.

A. Semiclassical Green’s function

The first way of including the effect of the perturbing R
atom semiclassically is to replace its delta-function Fer
potential by an inhomogeneous delta-function source at
perturbing atom. While this is clearly an approximation, w
show that this approximation reproduces the solutions fr
degenerate perturbation@Eq. ~3.10!# theory extremely well.
The resulting object of interest is then the Coulomb Gree
function with the source placed at the position of the grou
state Rb atom. The semiclassical Green’s function can
written @16# as a sum over classical trajectories that pro
gate fromxW8 to xW with energyE

G~xW ,xW8,E!'(
tra j

AuAueiS(xW ,xW8,E)2 imp/2.

For our purposes, the most important quantities in this
pression are the classical actionS(xW ,xW8,E) and the Maslov
indexm of each trajectory, which counts the numbers of si
changes of the amplitudeA. The amplitudeA is a measure of
the stability of each classical path. If the energyE is fixed
and the source coordinate of the Green’s function is set to
at the position of the perturbing atom (xW85RW ) there are only
four classical trajectories that contribute to the Green
function G(xW ,RW ,E). These four paths always lie on two Ke
pler ellipses that intersect the pointsxW and RW and have a
Coulomb potential at one focus. An example of these fo
paths is seen in Fig. 5. The foci of the elliptic coordina
system ~the Coulomb singularity and the perturbing R

is

i
h
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c-
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GRANGER, HAMILTON, AND GREENE PHYSICAL REVIEW A64 042508
atom! are shown as solid circles. The Green’s function
then a coherent sum of the four trajectories that propag
from the ground-state Rb atom to the observation po
marked by a hollow circle.

Figure 6 shows contour plots of both the quantum a
semiclassical Coulomb Green’s function with the sou
point placed at the ground-state Rb atom (r,z)5(0,1232).
The semiclassical Green’s function has been constructe
described above, and shows strong agreement with the
lecular wave function found using degenerate perturba
theory ~Fig. 2! and the quantum Green’s function also p
tured here. The quantum Green’s function shown in Fig.
based on an analytical expression first derived by Hos
@18,19#. The good agreement of these three methods~quan-
tum and semiclassical Green’s function, and degenerate
turbation theory! show that the inclusion of the perturbin
Rb atom through an inhomogeneous source term in
Schrödinger equation is a good approximation for the pro
lem at hand. Additionally, from a semiclassical perspecti
then, the nodal structure of these electronic wave function
governed by two things. First, the long-range Coulomb ph
ics provides the majority of the dynamical evolution. Se
ond, the ground-state Rb atom atRW selects only Coulomb
orbits that pass through this point. From this perspect
constraining the trajectories to pass through the ground-s
Rb atom is a perfectly sensible way of including the effect
the perturbation in a semiclassical treatment. In the next
tion, we include this constraint on the trajectories in an EB
style analysis of the problem.

B. Constrained EBK quantization

For integrable multidimensional Hamiltonians, the traje
tories of the system are constrained to loop around invar

FIG. 5. An example of the four classical trajectories contrib

ing to the semiclassical Green’s functionG(xW ,RW ,E), at the energy
of an n530 Rydberg state. The trajectories lie on two Kepler

lipses intersecting the perturber atRW ~right solid circle! and the

observation pointxW ~hollow circle!. These ellipses are unique whe
one focus is constrained to be at the Coulomb singularity at
origin ~left solid circle!.
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tori in phase space. Semiclassical quantization of these
tems can be carried our through the Einstein-Brillouin-Kel
~EBK! method@17,20#, which quantizes the classical actio
of the trajectories on the tori according to the relation

R
Ci

pW •drW52pS ni1
m i

4 D , ~4.1!

-

-

e

FIG. 6. Contour plot of the semiclassical~upper! and quantum
~lower! Coulomb Green’s function with the source coordina
placed at the ground-state Rb atom (r,z)5(0,1234). The Coulomb
Green’s function is relevant when the delta function perturbat
potential is approximated by an inhomogeneous source term.
strong agreement between the Green’s function and the molec
wave function@see the~2,27! state of Fig. 2# shows that this ap-
proximation is reasonable. The semiclassical Green’s function
every point has been constructed from the coherent sum of
classical trajectories~see Fig. 5! in the Coulomb field. The semi-
classical Green’s function has only been shown up to the class
turning point where it diverges unphysically. The thin dark line
the z axis of the semiclassical Green’s function is due to the
merical difficulty of integrating trajectories through the Coulom
singularity.
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whereCi is any closed loop andm i is an integer that count
the number of conjugate points along the trajectory. At
quantized energies, this procedure selects a subset of a
trajectories in phase space. Every orbit in this subset of
jectories, which we will call the ‘‘EBK orbits,’’ then has th
same quantized classical action. Our semiclassical appr
follows this EBK method with one important modificatio
that is motivated by the success of the Green’s-function
proach in the previous section. Instead of considering
EBK orbits that satisfy Eq.~4.1!, we consider only those tha
pass through the delta function perturbation associated
the ground state Rb atom at the point (r,z)5(0,R). In this
manner, we take the effect of the ground-state Rb atom
account. Put another way, we perform a constrained ver
of EBK quantization and only consider orbits that pa
through the perturbing Rb atom. While this approach will n
yield quantitative wave functions like degenerate pertur
tion theory, many of the qualitative features of the molecu
wave functions will acquire simple semiclassical interpre
tions. Additional insight is also gained into why elliptic co
ordinates provide a simplified treatment of this problem.

A transformation of the classical Hamiltonian to ellipt
coordinates shows why this coordinate system is ideal
describing the molecular Rydberg states. Notice that throu
out this section, the perturbation potential does not appea
the Hamiltonian as we take it into account as a constrain
the trajectories. The Coulomb Hamiltonian in elliptic coord
nates has a fixed pseudoenergy and can be written aH
5Hj1Hh[0, where

Hj5
1

2
pj

2~j221!2
R

2
j2

R2

4
Ej2 , ~4.2!

Hh5
1

2
ph

2~12h2!1
R

2
h1

R2

4
Eh2. ~4.3!

In elliptic coordinates, the perturber is located at the po
(j,h)5(1,1). When we constrain all of the classical traje
tories to go through this point, we see that the value of
elliptic separation constantEj is fixed at the value

Ej52
R

2
2

R2

4
E. ~4.4!

This is a unique property of elliptic coordinates for th
Coulomb Hamiltonian, and gives insight into why the fu
molecular Hamiltonian has a preference for elliptic coor
nates. In the other coordinate systems~spherical, parabolic!
that the Coulomb potential is separable in, each trajec
that is constrained to pass through the perturber has a d
ent value of the constant of the motion appropriate for t
coordinate system. Thus, in spherical coordinates, each C
lomb ellipse that passes through the perturber at a fixed
ergy has a different value of the orbital angular momentu
Figure 7 illustrates this by showing a family of Coulom
ellipses in cylindrical coordinates. Each of the classical
bits has been constrained to pass through the perturb
(r,z)5(0,1234) and it is apparent that every one has a
ferent ellipticity and angular momentum. What is initial
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hidden is that each of these orbits has the same value o
elliptic separation constantEj given by Eq.~4.4!. Classically,
the generator of this rotation plus deformation of the Co
lomb ellipses can be expressed in terms of the orbital ang
momentumLW 2 and Runge-Lenz vectorAW . If RW is a vector
pointing from the origin to the other focus~where the
ground-state Rb atom would be!, the elliptic constant of the
motion Ej is related to the other constants of motio
(E,LW 2,AW ) through the relation

Ej1E5
4

R2
~RW •AW 2LW 2!.

This relationship holds true even for trajectories that do
pass through the perturbing atom. This unique property
elliptic coordinates means that an efficient way of getting
excited electron to the attractive ground-state Rb atom is
fix the value of the elliptic constant of the motion. Th
yields intuitive insight as to why elliptic coordinates are pr
ferred over the other possible coordinate systems for
problem.

To proceed with the semiclassical analysis, class
action variables associated withj and h motion are
defined asJj(E,Ej ,R)5(1/2p)rpjdj and Jh(E,Eh ,R)
5(1/2p)rphdh. The key point is that instead of proceedin
with traditional EBK quantization, we include the effect o
the perturber by requiring that all of the classical trajector
pass through the perturber (j,h)5(1,1). With this con-
straint, the action variables no longer depend independe
on the separation constantEj and the internuclear separatio
R, but only on the internuclear separationR. The constraint is
implemented by setting the elliptic separation constant in
action variable to the constrained value of Eq.~4.4!. Conve-

FIG. 7. A continuous family of elliptical trajectories for th
Coulomb Hamiltonian. Each of these trajectories is an EBK orbi
elliptical coordinates and passes through the second focus o
elliptic coordinate system (r,z)5(0,1234). Even though each tra
jectory has a different value of the angular momentum and ellip
ity, each one has the same value of the elliptic separation cons
of Eq. ~4.4!.
8-7
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niently, the constraint allows analytical expressions for
‘‘constrained’’ action variables to be found,

Jj~E,R!5
1

A22E
2

1

p
A2R~11RE!

2
1

p
A 2

uEu
arcsinAuREu, ~4.5!

Jh~E,R!5
1

p
A2R~11RE!1

1

p
A 2

uEu
arcsinAuREu.

~4.6!

We now use an EBK-type analysis to give two interpre
tions of these constrained action variables. The first interp
tation involves defining effective quantum numbers based
the constrained action variables of Eqs.~4.5!,~4.6!. These
effective quantum numbers then give information about
nodal structure in the molecular wave functions. The sec
interpretation proceeds with fixing the effective quantu
numbers to be integers and finding quantized values of
total energy and internuclear radius. The quantized value
the internuclear radius will coincide with the minima of th
full Born-Oppenheimer potential curves.

In standard EBK quantization, the action variablesJ(E)
are related to the quantum numbersn in each degree of free
dom through the relationJ(E)5n1m/4, where m is the
Maslov index. Thus, in a semiclassical picture we can reg
the quantities

nj~R!5Jj~E,R!2
m

4
, ~4.7!

nh~R!5Jh~E,R!2
m

4
, ~4.8!

as the number of excitations~effective quantum numbers! in
the j andh directions, as functions of the continuous va
ables (E,R). In combination with Eqs.~4.5! and ~4.6!, Eqs.
~4.7! and~4.8! give analytical expressions for the numbers
nodes in the full molecular wave function as functions ofR.
Figure 8 plots the resulting effective quantum numb
nj(R) andnh(R) for ann530 Rydberg state as a function o
internuclear separationR. While it is difficult to obtain pre-
cise values of these effective quantum numbers for the
molecular state, rough estimates show that the semiclas
values shown in Fig. 8 agree well with the values of the f
molecular wave functions of Fig. 2. Additionally, using th
semiclassical values from this constrained EBK analysis,
trivial to show that the molecular constraint (nj1nh5n
21) on the effective quantum numbers is an exact rela
in this semiclassical approximation. This gives a semicla
cal explanation of the observation that the numbers of no
in the angular and radial elliptic directions always add up
the principal quantum number of the unperturbed Rydb
state minus one.

Another way of looking at the semiclassical mechanics
this system, is to proceed with the standard EBK quant
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tion of the constrained action variables. This amounts to
ing the effective quantum numbers to integer values a
solving Eqs.~4.7! and~4.8! for the quantized energiesE and
internuclear separations R. In the standard, unconstra
version of EBK quantization, the internuclear separation
not quantized, but remains a parameter of the elliptic co
dinate system. In some sense, finding quantized valuesR
is artificial and unphysical. However, this constrained v
sion of EBK quantization enables us to find a discrete se
internuclear separations for whichevery EBK orbit passes
through the ground-state Rb atom. There are orbits that p
through the perturber at any value ofR, but only at certain
values ofR are all of these orbitsalsoquantized EBK orbits.
To find the quantized values ofR andE, we specify integer
value (nj ,nh) and then findR andE numerically as the roots
of Eqs. ~4.7! and ~4.8!. This procedure yields the exact hy
drogenic energiesEn5@21/2(nj1nh11)2# as well as a set
of radii Rmin

EBK shown in Table I. Table I also shows the valu
of the minima in the Born-Oppenheimer potential curveRmin

BO

~Fig. 1! and demonstrates that the minima predicted by
constrained EBK quantization agree with the Bor
Oppenheimer minima to within about 10 a.u. We believe t
most of the discrepancy is due to the energy-dependent s
tering length used to calculate the Born-Oppenheimer po
tial curve.

In this section, we have included the effect of the pertu
ing Rb atom in a unusual way. Rather than using the d
function interaction potential in the Hamiltonian, we includ
its effects through a constraint on the classical trajectorie
the system. The advantage of this approach is that

FIG. 8. The semiclassical effective quantum numbersnj(R) and
nh(R) of Eqs. ~4.7! and ~4.8! for an n530 Rydberg state as a
function of internuclear separationR. These effective quantum
numbers characterize the nodal structure of the Born-Oppenhe
molecular states shown in Fig. 2. The underlying classical pictur
that of classical trajectories of the Coulomb Hamiltonian that
constrained to pass through the perturbing Rb atom. This figure
shows that the sum of the effective quantum numbers is fixed a
valuen21.
8-8



th
or
s

h
ls

ive
.

th
en
-

di-
. In

ned
ce,
. In
omb
for
s the
near
end
ac-

ole
ron
m

s of
t at
hy-

ely
ass

he
n-
’s-
c-
ed

S.
he
he
us-

er

rb

B
s

the
-

QUANTUM AND SEMICLASSICAL ANALYSIS OF LONG- . . . PHYSICAL REVIEW A 64 042508
minima in the Born-Oppenheimer potential curves and
‘‘quasiseparability’’ seen in degenerate perturbation the
obtain simple semiclassical interpretations. The qua
separability ~and minima in the potential curves! occurs
wheneveryEBK orbit in elliptic coordinates passes throug
the perturbing Rb atom. Our constrained EBK method a
gives analytical semiclassical formulas for the effect
quantum numbers that characterize the molecular states

V. CONCLUSION

In this paper we have investigated the properties of
electronic wave function and the Born-Oppenheimer pot
tial curve of Rb2 Rydberg molecules. After the Born

TABLE I. Positions of the minima in the Born-Oppenheim
potential curveRmin

BO are compared with separationsRmin
EBK where

every EBK orbit of elliptic coordinates passes through the pertu
ing Rb atom. Shown are the five outermost minima in then530
potential curve. The good agreement~within about 10 a.u.! of the
semiclassical EBK separationsRmin

EBK with the minimaRmin
BO in the

Born-Oppenheimer potential curve shows that our constrained E
analysis gives a reasonable semiclassical interpretation of the o
lations in the potential curve. Namely, that at the minima in
potential curveeveryEBK orbit of elliptic coordinates passes ex
actly through the perturbing Rb atom.

(nj ,nh) Rmin
BO Rmin

EBK

~0,29! 1575 1597
~1,28! 1382 1389
~2,27! 1234 1234
~3,26! 1110 1106
~4,25! 1003 994
y

l-

,

04250
e
y
i-

o

e
-

Oppenheimer Hamiltonian is transformed to elliptic coor
nates, a simple picture of the molecular physics emerges
this picture, the nature of the molecular state is determi
by two ingredients. First, over most of configuration spa
the molecular electron sees a pure Coulomb potential
both our quantum and semiclassical treatments, the Coul
physics in elliptic coordinates provides the starting point
understanding the molecular states. The second feature i
net attraction that the electron experiences when it gets
the ground-state Rb atom. If the Rydberg electron can sp
most of its time nearby the ground-state Rb atom, this attr
tion will lead to a bound molecule.

Both in the quantum and semiclassical analysis, the r
of elliptic coordinates is to concentrate the Rydberg elect
at the position of the perturbing Rb atom. In the quantu
case, we have shown that stationary, elliptic eigenstate
hydrogen accomplish this task efficiently. So much so, tha
certain internuclear separations, a single elliptic state of
drogen dominates the molecular wave function.

In the semiclassical case, we have shown that infinit
many classical Coulomb trajectories can be made to p
through the perturbing Rb atom by fixing the value of t
elliptic constant of the motion. By incorporating these co
strained Coulomb orbits into a semiclassical Green
function and an EBK style analysis, the elliptic nodal stru
ture of the electronic wave function can be predict
semiclassically.
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