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Quantum and semiclassical analysis of long-range Rydberg molecules
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A recent study suggests the existence of highly polar and nonpolar long-range Rydberg molecules under
temperature and density conditions representative of those found in atomic Bose-Einstein condensates. The
electronic wave functions of these Rydberg molecules are characterized by an elliptically shaped nodal struc-
ture. We use a combination of quantum and semiclassical methods to explore this unique nodal structure and
its correlations with the Born-Oppenheimer potential curves of the molecules. We demonstrate a special
“quasiseparability” that arises in elliptic coordinates at certain internuclear separations and give a semiclassical
interpretation of this in terms of quantized Einstein-Brillouin-Keller orbits.
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I. INTRODUCTION curves. The relevant physics is that of a highly excited Rb
atom (h~30) in the presence of a second, ground-state Rb
Rydberg states of long-range Rimolecules predicted ina atom a distancerk (we use atomic units unless otherwise
recent study[1] exhibit several striking features. First, the stated away. The main features discussed in this paper are
Born-Oppenheimer potential curves oscillate as a function o§hown in Figs. 1 and 2, which show the Born-Oppenheimer
internuclear separatioR out to distances of at least 20 potential curve and electronic wave function as a function of
—10* Bohr radii. Second, some of these molecular Rydbergnternuclear separation.
states possess large electric dipole moments of magnitude Most importantly, the nodal pattern of the electronic wave
D~R—(1/2)n* a.u., wherenis the principal quantum num- fynction is elliptically shaped. More specifically, the approxi-
ber of the Rydberg state. Third, the electronic wave functiongnate nodal lines lie on confocal ellipses and hyperbolas
of these Rydberg molecules have elliptically shaped nodainaracteristic of elliptic coordinate@]. This is surprising
patterns, V\_/hose evo_lut|0n witR is highly correlated with  |,o.quse the Born-Oppenheimer Hamilton[&y. (3.1)] is
the oscillating potential curve. . approximately separable in a number of coordinate systems
These long-range molecules stand in contrast to more fa(spherical, parabolic, elliptjcWhy a strong elliptic character

miliar homonuclear diatomic molecules having bond length . . : )
of a few Bohr radii and no permanent electric-dipole mo_s(ratherthan spherical, parabolic, or othenyismerges in the

ments. Given these differences, it is desirable to have a more
complete understanding of the physics of these molecules
The current paper focuses on one aspect of the molecula
physics, namely, the electronic wave function and its relation =30
to the oscillations in the Born-Oppenheimer potential curves.w

We develop a simple picture of these molecules using two@
ingredients: Rydberg states of atomic hydrogen, and the at>-
traction between a slow electron and a ground-state Rb atont
At first glance, the molecular states seem to have little inF
common with atomic Rydberg states. However, a transforma<
tion to elliptic coordinates shows that most of the molecularg
physics is governed by highly excited atomic states. Thisg
transformation to elliptic coordinates also allows for semi- &

-5 | i

classical interpretations of these states. 629 N ©.29)
Section Il discusses the qualitative features of the elec- ©.28) 5,27y (1.28)
tronic wave function and Born-Oppenheimer potential
. . 15 s s
curves of these Rydberg molecules. Particular emphasis i 500 1000 1500 2000
placed on the evolution of the electronic states as the inter- INTERNUCLEAR SEPARATION R (a.u.)

nuclear separation is changed. Section Ill shows how many

of the qualitative features can be understood by solving the FIG. 1. Born-Oppenheimer potential curve for a highly polar
relevant Schidinger equation in elliptic coordinates. In Sec. N=30 Rydberg state of BbThe electronic wave function associ-
IV, the underlying simplicity of the quantum-mechanical so-2ated with this potentialsee Fig. 2 shows striking elliptically

lutions is reproduced and interpreted using semiclassicah@ped nodal patterns. The approximate numbers of nodes in the
methods electronic wave functioni,,v,) are shown below each minima.

Note that the effective quantum numbeus: (v,) evolve continu-
Il. QUALITATIVE FEATURES ously as a function of internuclear separation, but are integer valued
at the minima. This paper gives quantum and semiclassical inter-
We begin by recapitulating the qualitative features of thepretations of the oscillating potential curve and associated wave
electronic wave functions and Born-Oppenheimer potentiafunction.
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19001575 a0 (0,29) 1500

1000¢ ER FIG. 2. Contour plots ofp|¥(p,2)|? of the
Born-Oppenheimer wave functions of a long-
range Rb molecule at the energy of am=30
Rydberg state. Four internuclear separations are
shown R=1575,1382,1234,1110) correspond-
ing to the outermost minima in the oscillating po-
tential curve(see Fig. L These states are labeled
by the approximate numbers of nodeg (v,) in

the two elliptic directions. Although the nodal
lines are not exact, the strong antinodes make this
labeling useful. The characteristic elliptically
shaped nodal pattern is preserved as the nuclei
get closer together, but the number of nodes in
the two elliptic directions get redistributed from
the angulary direction to the radiaf direction as
the internuclear separation is decreased.
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molecular states is not initially obvious. Notice, secondly,elliptically shaped nodal structure is maintained as the inter-
that the numbers of approximate nodes in the two ellipticnuclear separation is changed. At the outermost minimum
directions(radiuslike ¢ and angleliker) are constrained by (R=1575) all of the nodesn—1=29) are in the angulan

the principal quantum numberof the unperturbed electron. direction. At the next minimumR=1382) there is a single
We use effective quantum numbers in elliptic coordinatgs ( node in the radiaf direction and one less in thgdirection.
andv,) to count the approximate numbers of nodes in theThis pattern of redistributing the nodes from thedirection
molecular wave function. These effective quantum numberso the £ direction continues as the internuclear separation
are then constrained by the principal quantum number passes through the other mininfa=1234,1110, and so 9n

through the relation in the potential curve.
These are the basic qualitative features that this paper sets
ve(R)+v,(R)=n—1. (2.1 out to explore. The robust, elliptic nodal structure of the

electronic states suggest that the problem will simplify in

We think of v,(R) andv,(R) aseffectivequantum numbers elliptic coordinates. Elliptic coordinates have been used to
because they depend continuously on the internuclear sepaeat a number of other two center problems such g5 [13]
rationR. Again, this relationship is surprising becaugeand  and hydrogen in the presence of a point digdle From this
v, characterize the full molecular state, whereasontains  standpoint, it is no surprise that elliptic coordinates are use-
information only about the unperturbed atomic Rydberg statéul for our current system. However, it is desirable to under-
of Rb. A third observation is that the nodal structure evolvesstand both why elliptic coordinates seem to be preferred in
in a highly constrained manner as the internuclear separatiosur system, and exactly how the description is simplified
is changed. As the internuclear distance decreases, the nodeken elliptic coordinates are used.
in the angular elliptic direction; disappear one by one, and
are replaced by new nodes in the radial eIIiptic directfoA lIl. QUANTUM TREATMENT IN ELLIPTIC
final observation is that the nodal structure of the electronic COORDINATES
wave function is strongly correlated to the oscillations in the
Born-Oppenheimer potential curve. At the minima in the os- The first method that we use to understand the apparent
cillating potential curve, the nodal structure separatesimplicity of the electronic wave functions is degenerate per-
cleanly, although still only approximately, into an integral turbation theory. To emphasize the simple nature of the elec-
number of excitations in the angular and radial elliptic coor-tronic wave functions, we neglect the complications of both
dinates. In other words, at the minima of the potential curvefine structure and the non-hydrogenic Rb ionic core. With
v andv, are integers. this approximation, the Born-Oppenheimer Hamiltonian is a

As stated previously, Figs. 1 and 2 demonstrate theseombination of the Coulomb attraction and a short-range in-
qualitative observations by showing the potential curve anderaction potential centered on the ground state Rb atom.
electronic wave function for an=30 Rydberg state of Rb  Greene and coworkers,5] model this interaction using a
as a function of internuclear separatién Figure 1 shows Fermi pseudopotential, a Dirag function of strength
how the Born-Oppenheimer potential curve oscillates dra27A7[K(R)], whereA[k(R)] is the triplet scattering length
matically out to 1000's of a.u. The values of the effectivefor an electron-Rb encounter at wavelengtfThe electronic
quantum numbersi;,v,) of the molecular state are shown Hamiltonian then has the particularly simple form
below each minima in the curve. Figure 2 shows contour )

lots of the electron probability density at selected minima pr 1 - =

b P y y H= +27A{[K(R)]8(r—R). (3.1

(R=1575,1382,1234,1110 a.u.) in the potential curve. The 2
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At most wavelengths near zero energy, the scattering length 1 4 9 R R?

A+[k(R)] is negative. The long-range molecules discussed if— > 5—5(52— 1)8—5 —56- ZESZ}F(S’ R)=B(R)F(¢,R),

this paper depend critically on this net attraction between th (3.5
Rydberg electron and the ground-state Rb atom. As in Ref.

[1], the energy-dependert{[k(R)] is calculated from its 19 9 R R2

zero energy valué\;[0] [6] and the Rb(S) polarizability [— > %(1— 7]2)% tont ZEﬂz}q)( 7,R)

[7] using a generalized quantum-defect thg@ly The three-

dimensional delta function potential is knowA] to give =—B(R)®(75,R), (3.6)
ill-behaved solutions of the Schiimger equation. In spite of

this, treating the delta function using perturbation theory iswhere¥ (¢, 7;R)=F(£,R)®(#,R). Given a total energy
straightforward and gives sensible results. In the absence of —1/2n? and a distanceR, the separation constai(R)

the ground-state Rb atom, the Hamiltonian is just that ofoecomes quantized when boundary conditions appropriate
hydrogen, which is separable in a number of coordinate sygor bound states are imposed. We label these states by the
tems(spherical, elliptic, paraboljc Any of these coordinate number of nodes in thé direction,n.=(0, ... n—1). The
systems can be used to define unperturbed eigenstates for uggmber of nodes in the angulagrdirection is then given by

in perturbation theory. However, nondegenerate eigenstatdése constraint

based on any of these coordinate systems lead to the same

elliptically shaped molecular statéBig. 2) once the pertur- n,=n—1-n;. 3.7
bation has been included. In the following sections, we carry, , . . .

out quantum and semiclassical calculations in elliptic coor)—(/\./hlle this constraint resembles that of the full molecular

dinates to show how the molecular states acquire this robu&lgen.s.tateﬁ.l), 'at.t.hls p0|n'§,n§ andn, are integers char-
elliptic character. acterizing the primitive atomic states and they do not depend

Guided by the elliptically shaped nodal patterns, we intro-4PON tr:etpartametéi.t Ho;/vt(;ver, V\fhenlwe lthte these prlgutl;/e
duce elliptic coordinates, defined with the foci of the ellipti- eigenstates to construct the molecular stateRitependen

cal coordinate system placed on the i@t the origin and molecular relationshig2.1) will emerge out of the atomic
the perturbing Rb atomp(z)=(OR). If r, andr, are the °"€(3-7- _ _ _
distances between the Rydberg electron and the two foci o Although analytical power series solutions of these Egs.

our coordinate system, the elliptic coordinates are defined a -9, (3.'6) have been _foun(ﬂ_z,lo,ll], an eff|c_|ent way of
calculating the solutions is to diagonalize the one-

dimensional Hamiltonians in B-spline basis set. This pro-

_ ry+r; (3.2 cedure produces the elliptic Coulomb staﬂ?gf(g,n;R)
R ' along with the corresponding values of the separation con-
stantBnE(R). In all of the preceding equations, the internu-
ri{—ro clear separatiofR appears as a continuous parameter. How-
"R - 33 ever, these equations do not yet include the effect of the

perturbing Rb atom. So far, the parameeonly gives the
distance between the foci of our elliptic coordinate system.
At least back to Sommerfeld 2], it has been known that

the hydrogen atom is separable in elliptic coordinates. Al-
though the separability of the hydrogen atom in elliptic co-
ordinates is not widely known, a number of authors have
A. Unperturbed elliptic states investigated the properties of the elliptic eigenstates. Erikson
nd Hill first[13] showed that the elliptic separation constant
(R) was related to the orbital angular momentum about the

These coordinates are constrained to the ranges 1
<o and|#n|<1. Next, our unperturbed elliptic eigenstates
are introduced.

The elliptic eigenstates we construct here are stationar

e|genst§tfas of the hydrogen atom. These statesegilffer fro Tvo foci of the coordinate systefsee also Refg3,14). In
the traditional states of hydrogeeigenstates oH,L%L,)  gec. |v, we give a lesser known forf5] of this constant of
through the replacement & by a constant of the motion the motion in terms of the angular momentirh about one
that emerges out of el!iptic coordinates. The_ Sdimger focus, and the projection of the Runge-Lenz vedoonto
equation for an electrofin a molecular>. statg in a Cou-  {he internuclear axis. Analytical solutions of the one-
lomb potential in elliptic coordinates reafs0,2,1] dimensional Hamiltonian.5), (3.6) have been givef2,11]

19 9 14 s R in terms of the associated Legendre polynomials. A more
— == (1) —=——1—-7P)——=(&—7n) recent work of Sung and Herschbalct] gives a thorough

2 9§ o9& 2.dm an 2 discussion of the elliptic eigenstates and their relation to the

2 more traditional spherical eigenstates. In spite of this previ-

- ZE(fz— 7?) | W (& 7;R)=0. (3.4  ous work, we feel that the striking nature of the elliptic states

of hydrogen has not been fully appreciated. For our pur-

poses, the most important features are elucidated in two-
This equation separates into two one-dimensional eigenvaludgimensional contour plots of the electron probability density
problems for the elliptic separation const&@{iR) of these states. Figure 3 shows contour plots of the electron
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FIG. 3. Examples of elliptic eigenstates of the=30 hydrogen atom defined with an elliptic coordinate system where the distance
between the foci of the coordinate system is 1232 a.u. The foci of the coordinate system have been placed at the origimznd at (
=(0,1232)(shown by a small circle These stationary states of hydrogen have large permanent dipole moments and striking nodal patterns.
While the states are constructed in elliptic coordinates, the probability denditip,z)|? is shown in cylindrical coordinates for clarity. The
states are labeled by the numbers of nodes irgthed » directions, @, n,). Shown are the (29,Qupper lef}, (25,4) (upper righy, (5,24)

(lower left), and (2,27)(lower righy states. While the physics of the perturbing Rb atom is not included in these states, in the next section,
the ground-state Rb atom will be placed at the second(fsnall circle of the coordinate system. It is clear that only the states having an
elliptically shaped nodal pattern, such as the (2,27) state, will have any overlap with the perturbing Rb atom.

probability density for four of the degenerate elliptic states inwhich is used in Fig. 1 to calculate the Born-Oppenheimer
the n=30 manifold. The value oR for the elliptic coordi- potential curve. The wave function is then a linear combina-
nates underlying these states is 1232 a.u. These contour pldisn of the elliptic eigenstate¥ , (5 7:R)
show that many of these states have large permanent electric-
dipole moments. To our knowledge, the unusual nodal pat-
terns of these states, which range from elliptical (0,29) to
semicircular (14,15) to wedge (29,0) shaped, have not beef¥V (£, 7;R)=\27|A{[k(R)]] 2 Vo (LLR)W, (€ 7:R).
reported in the literature thus far. Next, these states are used

(3.10
as zero-order eigenstates in perturbation theory.

It is clear that both the Born-Oppenheimer potential curve
(3.9 and wave functior3.10 are determined by the values
To include the effect of the perturbing Rb atom, the per-of the primitive elliptic eigenstate¥, (L.LR) at the posi-

turbation is diagonalized in the basis of elliptic e|genstates,[Ion of the perturbing Rb atomé() = (1 1. In general, the
The relevant perturbation matrix is . . ' o

wave functions and eigenvalues include contributions from
all n elliptic eigenstates in the degenerate manifold. That the
molecular states show a strong elliptic character is seen when
the values¥,, (1 1;R) are shown as a function of internu-

Because this matrix is separable, only one state splits aweﬂfar separaztlorR Figure 4 shows a plot of the values of
from the degenerate manifold when it is diagonalized. The (LLR)* (ng=0,...,10) for an unperturbech=30
total energy of the state can be found analytically, and |§tate as a function dR. At certain internuclear separations, a
given by the expression single primitive elliptic state dominates the molecular wave
function (3.10 and Born-Oppenheimer potential curia9).

A comparison between the coefficients in Fig. 4 and the
Born-Oppenheimer potential curve in Fig. 1 shows that the
minima in the potential curve occur precisely where a single
elliptic state is dominating the molecular wave function. This
“guasiseparability” of the full wave function means that at
certain internuclear separations, the full Hamiltonjexclud-

ing the perturbationis nearly diagonal is the basis of primi-

B. Degenerate perturbation theory

Vo (R)=2mALKR) (ne 8r=R)[nj). (3.9

7+n2 | ngn
:;12+27TAT['<(R)]E ¥, (1L,1R)|? (3.9
2n ne £
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8 - . - . - be viewed as an change in the contributions of the primitive
x10 elliptic states that comprise the wave function. Now we turn
T to a semiclassical description of these states.

IV. SEMICLASSICAL ANALYSIS

(4,25) 1 Semiclassical methods permit a simple interpretation of
(3,26) multidimen_sional guantum system$6]. In the a_bsence of

2,27) the perturbing Rb atom, the long-range dynamics of the Ry-

(1,28) dberg electr(_)n are purely Coulombic. Our main challeng.e is

(0,29) ] therefore to include the effect of the perturbing Rb atom in a

semiclassical treatment. In principle, it would be possible to
include the perturbing potential using classical perturbation
theory[17]. Rather than this approach, we focus on a more

qualitative viewpoint in this paper. In two different semiclas-
0 sical approaches, we show that the effect of the perturber can
500 1000 1500 2000 be understood in terms of unperturbed Coulomb trajectories
INTERNUCLEAR SEPARATION R (a.u.) that are constrained to pass through the ground-state Rb

_ - ., atom. One way of thinking about this, is that the delta-

FIG. 4. The values of the expansion coefficient, (LLR)|®  nction perturbation potentidB.1) can be viewed as a con-

fqr an n=30 state. These _coefflmen_ts determine which elliptic 54 5int on the relevant trajectories of the system. First, we

eigenstate of hydrogefsee Fig. 3 dominates the molecular wave ;e 5 semiclassical interpretation of the eliiptically shaped
“!“C“O“ a.nd Born-Oppenheimer potential Cqmﬁgs' L anq pata .nodal structure using a semiclassical Green’s function. Then

given radius. Because the Born-Oppenheimer potential curve 'We use ideas from semiclassical Einstein-Brillouin-Keller

simply 27A:[k(R)] times the sum of all the coefficients in this (EBK) quantization to show how much of the insight gained
figure, the minima in the potential curve coincide with the radii from quantum degenerate perturbation theory can be under-

where the contribution of a single elliptic state is dominant. Each d and i di f el ical . - h
peak in the graph is labeled by the elliptic quantum numbersStoo and interpreted In terms of classical trajectories that

(n¢,n,) of the state the peak represents. The quasiseparability o35S through the perturbing Rb atom.
curs at internuclear separations where the coefficient of a single
elliptic state dominates. A. Semiclassical Green’s function

S
T
1

EXPANSION COEFFICIENTS
no

The first way of including the effect of the perturbing Rb
tive elliptic eigenstates. In some sense, the potential energytom semiclassically is to replace its delta-function Fermi
is minimized when the amount a nonseparability in elliptic potential by an inhomogeneous delta-function source at the
coordinates is the least. perturbing atom. While this is clearly an approximation, we

Furthermore, as the internuclear separation is changeghow that this approximation reproduces the solutions from
the specific elliptic state that dominates the sums in Eqsdegenerate perturbatidiEq. (3.10] theory extremely well.
(3.10 and(3.9) changes. This accounts for the redistribution The resulting object of interest is then the Coulomb Green’s
of the nodes in the molecular wave function from thgo  function with the source placed at the position of the ground-
the & direction as the internuclear separation decreéses state Rb atom. The semiclassical Green’s function can be
Figs. 1 and 2 Thus, at the outermost minimumR( written [16] as a sum over classical trajectories that propa-
=1575 a.u.), Fig. 4 shows a peak in the contribution of theyate fromx’ to x with energyE
ng,=0 state. At the next minimumR=1382 a.u.), then;
=1 state has come to dominate. As the character of the mo- - - T ey
lecular state evolves from one elliptic state to another the G(X'X,'E)”;aj \/Wels(x'x BTiem,
numbers of nodes in the electronic wave function,@,)

evolve according to the constraint of E@.1). While this  For our purposes, the most important quantities in this ex-
guantum analysis give us a qualitative picture as to why th%ression are the classical actiﬁ(&,i’,E) and the Maslov

congt(jralnt of Eq(2..1).holds fqr lthe T“O:eg“'?f s_tates% Shec. IY index w of each trajectory, which counts the numbers of sign
provides a quantitative semiclassical derivation of the re 8zhanges of the amplitude The amplitudeA is a measure of

tion. the stability of each classical path. If the enefgys fixed

. _TQ‘JS’ we have sh_own how an unexpectepl quasISeparay,  the source coordinate of the Green'’s function is set to be
bility” in elliptic coordinates emerges at certain internuclear L . S, =
“the position of the perturbing atom’=R) there are only

separations. These special internuclear separations are p]c lassical traiectories that tribute to the G ,
cisely the minima in the Born-Oppenheimer potential curve/OUr classical trajectories that contribute to he toreens-

That the Born-Oppenheimer Hamiltonian is nearly diagonafunction G(x,R,E). These four paths always lie on two Ke-
in elliptic coordinates at a sequence of internuclear radii is apler ellipses that intersect the poimtsand R and have a
unexpected simplification that explains why the nodal strucCoulomb potential at one focus. An example of these four
ture of the molecular states is elliptically shaped. The evolupaths is seen in Fig. 5. The foci of the elliptic coordinate
tion of the molecular state with internuclear separation carsystem (the Coulomb singularity and the perturbing Rb
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FIG. 5. An example of the four classical trajectories contribut-

ing to the semiclassical Green’s functi@®(x,R,E), at the energy 1500 T T T T

of an n=30 Rydberg state. The trajectories lie on two Kepler el-

lipses intersecting the perturber ét(right solid circlg and the 1000 - B
observation poinﬁ (hollow circle). These ellipses are unique when [

one focus is constrained to be at the Coulomb singularity at the 500 L ]
origin (left solid circle. r

atom are shown as solid circles. The Green’s function is 3 oF ]

then a coherent sum of the four trajectories that propagat(:
from the ground-state Rb atom to the observation point L
marked by a hollow circle. —-500
Figure 6 shows contour plots of both the quantum and i
semiclassical Coulomb Green’s function with the source  _jg00
point placed at the ground-state Rb atomz)=(0,1232).
The semiclassical Green’s function has been constructed a
described above, and shows strong agreement with the mc
lecular wave function found using degenerate perturbation
theory (Fig. 2 and the quantum Green’s function also pic-
tured here. The quantum Green'’s function shown in Fig. 6 is FIG. 6. Contour plot of the semiclassicalppe) and quantum
based on an analytical expression first derived by Hostleflower) Coulomb Green's function with the source coordinate
[18,19. The good agreement of these three methggdsn-  placed at the ground-state Rb atom2)=(0,1234). The Coulomb
tum and semiclassical Green’s function, and degenerate pe@reen’s function is relevant when the delta function perturbation
turbation theory show that the inclusion of the perturbing potential is approximated by an inhomogeneous source term. The
Rb atom through an inhomogeneous source term in thétrong agreement between the Green's function and the molecular
Schralinger equation is a good approximation for the prob-wave function[see the(2,27 state of Fig. 2 shows that this ap-
lem at hand. Additionally, from a semiclassical perspectivePrOXimaﬁF’n is reasonable. The semiclassical Green’s function at
then, the nodal structure of these electronic wave functions i€V€rY Point has been constructed from the coherent sum of four
governed by two things. First, the long-range Coulomb physg:lasswal trajectorieg¢see Fig. % in the Coulomb field. The semi-

ics provides the majority of the dynamical evolution. Sec—das.s'cal Qreen’s fupctpn has only begn shown up to the C.lass'cal
turning point where it diverges unphysically. The thin dark line on

ond, the ground-state Rb atom Rtselects only Coulomb  he ; axis of the semiclassical Green's function is due to the nu-

orbits that pass through this point. From this perspectivemerical difficulty of integrating trajectories through the Coulomb

constraining the trajectories to pass through the ground-statgngularity.

Rb atom is a perfectly sensible way of including the effect of

the perturbation in a semiclassical treatment. In the next sederi in phase space. Semiclassical quantization of these sys-

tion, we include this constraint on the trajectories in an EBKtems can be carried our through the Einstein-Brillouin-Keller

style analysis of the problem. (EBK) method[17,20, which quantizes the classical action
of the trajectories on the tori according to the relation

15000 o0
-1000 -500 0 500 1000 1500 2000
z (a.u.)

B. Constrained EBK quantization

N+ Mi), 4.1)

For integrable multidimensional Hamiltonians, the trajec- § p-dr=2m 2
G

tories of the system are constrained to loop around invariant
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whereC; is any closed loop ang; is an integer that counts 1500 T T T T T T T T T
the number of conjugate points along the trajectory. At the I
guantized energies, this procedure selects a subset of all th 1000 L -

trajectories in phase space. Every orbit in this subset of tra-
jectories, which we will call the “EBK orbits,” then has the
same quantized classical action. Our semiclassical approac
follows this EBK method with one important modification = I
that is motivated by the success of the Green’s-function ap- 5 oF
proach in the previous section. Instead of considering aIIZ I
EBK orbits that satisfy Eq4.1), we consider only those that
pass through the delta function perturbation associated witt
the ground state Rb atom at the poiptZ)=(0,R). In this .
manner, we take the effect of the ground-state Rb atom intc  —1000 | .
account. Put another way, we perform a constrained versior i ]
of EBK quantization and only consider orbits that pass  _y500l. . . ., . .. . .. .. . ...
through the.pe_rturblng Rb atqm. Wr_nle this approach will not —1000 =500 0 500 1000 1500 2000
yield quantitative wave functions like degenerate perturba- z (a.u.)
tion theory, many of the qualitative features of the molecular
wave functions will acquire simple semiclassical interpreta- FIG. 7. A continuous family of elliptical trajectories for the
tions. Additional insight is also gained into why elliptic co- Coulomb Hamiltonian. Each of these trajectories is an EBK orbit in
ordinates provide a simplified treatment of this problem.  elliptical coordinates and passes through the second focus of the
A transformation of the classical Hamiltonian to elliptic elliptic coordinate systemp(z)=(0,1234). Even though each tra-
coordinates shows why this coordinate system is ideal fO}ectory has a different value of the angular momentum a_md elliptic-
describing the molecular Rydberg states. Notice that througHEy' each one has the same value of the elliptic separation constant
out this section, the perturbation potential does not appear iAf EQ. (4.4).

the Hamiltonian as we take it into account as a constraint orP]_dd i< th h of th bits h h | f th
the trajectories. The Coulomb Hamiltonian in elliptic coordi- Ndden is that each of these orbits has the same value of the

nates has a fixed pseudoenergy and can be writteHl as elliptic separation constali, given by Eq.(4.4). Classically,
—H.+H.=0. where the generator of this rotation plus deformation of the Cou-
- & n— Y . . .

lomb ellipses can be expressed in terms of the orbital angular

500

~500 |

2

1, R , momentumL? and Runge-Lenz vectoh. If R is a vector
He=5pe(&"—1) - 56— EE, (42 pointing from the origin to the other focuéwhere the
ground-state Rb atom would hehe elliptic constant of the
1, R R2 motion E, is related to the other constants of motion
Hy=5p5(1- 7°)+ >0t ZEﬁZ- (4.3  (E,L2A) through the relation
In elliptic coordinates, the perturber is located at the point 4 - =

. ; ; +E=—(R-A-L?).
(¢,7)=(1,1). When we constrain all of the classical trajec- E+E RZ(R A-LY

tories to go through this point, we see that the value of the

elliptic separation constarf; is fixed at the value This relationship holds true even for trajectories that do not
pass through the perturbing atom. This unique property of

R R? elliptic coordinates means that an efficient way of getting the

Ee=— 2 2= (44 excited electron to the attractive ground-state Rb atom is to

fix the value of the elliptic constant of the motion. This

This is a unique property of elliptic coordinates for the yields intuitive insight as to why elliptic coordinates are pre-
Coulomb Hamiltonian, and gives insight into why the full ferred over the other possible coordinate systems for this
molecular Hamiltonian has a preference for elliptic coordi-problem.
nates. In the other coordinate systefapherical, paraboljc To proceed with the semiclassical analysis, classical
that the Coulomb potential is separable in, each trajectoraction variables associated witf and » motion are
that is constrained to pass through the perturber has a diffedefined asJ.(E,E;,R)=(1/2m)$p.dé and J,(E,E,,R)
ent value of the constant of the motion appropriate for that=(1/27)$p,d». The key point is that instead of proceeding
coordinate system. Thus, in spherical coordinates, each Cowith traditional EBK quantization, we include the effect of
lomb ellipse that passes through the perturber at a fixed erthe perturber by requiring that all of the classical trajectories
ergy has a different value of the orbital angular momentumpass through the perturbek,;) =(1,1). With this con-
Figure 7 illustrates this by showing a family of Coulomb straint, the action variables no longer depend independently
ellipses in cylindrical coordinates. Each of the classical oron the separation constaa} and the internuclear separation
bits has been constrained to pass through the perturber B but only on the internuclear separatiBnThe constraint is
(p,2)=(0,1234) and it is apparent that every one has a difimplemented by setting the elliptic separation constant in the
ferent ellipticity and angular momentum. What is initially action variable to the constrained value of E44). Conve-
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niently, the constraint allows analytical expressions for the 32 ——mm—————————————————————
“constrained” action variables to be found, 30 Vetv,=n-1

28 f ="

1 1 = 26 i -
R)=———~ —\2R(1+RE) -~
J«E,R) \/—_2E p 2R(1+RE) n§a 24 \ -
2 22 r N\ /// Vi
2 s 20 | "\._\ e
Earcsin/|RE|, (4.5 E BN e
< 16 | \\//
1 1 [2 SN
. 12 + .
J,(E.R)= —V2R(1+RE)+ — Earcsn/||:eE|. % ol // \.\\
(4.9 st // Sy
_ _ _ 6 f/ ™~
We now use an EBK-type analysis to give two interpreta- A -

tions of these constrained action variables. The first interpre- 5 1’ '''''' o
tation involves defining effective quantum numbers based on 4 . T o,
the constrained action variables of Ed4.5),(4.6). These 0 500 1000 1500
effective quantum numbers then give information about the INTERNUCLEAR SEPARATION R (a.u.)

_n(:dal sttrutpture n thedmole_fﬁlz}l_r yvav?hfuncgflonf. The se::ond FIG. 8. The semiclassical effective quantum numbg(f) and
Interpretation proceeds wi IXing the efiective quan umv,](R) of Egs. (4.7) and (4.8) for an n=30 Rydberg state as a

numbers to be mtegers and flnd_lng quantized .values of th(smction of internuclear separatioR. These effective quantum
tota! energy and mtgrnuc!ear r.ad_|us. T.he qua”t!z?d values umbers characterize the nodal structure of the Born-Oppenheimer
the internuclear radius will coincide with the minima of the mqjecular states shown in Fig. 2. The underlying classical picture is
full Born-Oppenheimer potential curves. that of classical trajectories of the Coulomb Hamiltonian that are
In standard EBK quantization, the action variabl§&)  constrained to pass through the perturbing Rb atom. This figure also
are related to the quantum numbers each degree of free- shows that the sum of the effective quantum numbers is fixed at the
dom through the relatiodd(E)=n+ u/4, where o is the  valuen—1.
Maslov index. Thus, in a semiclassical picture we can regard

the quantities tion of the constrained action variables. This amounts to fix-

ing the effective quantum numbers to integer values and
ve(R)=J(E,R)— % (4.7  solving Egs(4.7) and(4.8) for the quantized energiésand

internuclear separations R. In the standard, unconstrained
version of EBK quantization, the internuclear separation is
not quantized, but remains a parameter of the elliptic coor-
dinate system. In some sense, finding quantized valu&s of
is artificial and unphysical. However, this constrained ver-
as the number of excitatiorieffective quantum numbersn sion of EBK quantization enables us to find a discrete set of
the ¢ and » directions, as functions of the continuous vari- internuclear separations for whigvery EBK orbit passes
ables E,R). In combination with Eqs(4.5) and (4.6), Eqs.  through the ground-state Rb atom. There are orbits that pass
(4.7) and(4.8) give analytical expressions for the numbers ofthrough the perturber at any value Rf but only at certain
nodes in the full molecular wave function as functiondof Values ofR are all of these orbitalso quantized EBK orbits.
Figure 8 plots the resulting effective quantum numbersTo find the quantized values & andE, we specify integer
v¢(R) andv,(R) for ann=230 Rydberg state as a function of value (¢,n,) and then fincRandE numerically as the roots
internuclear separatioR. While it is difficult to obtain pre- of Egs.(4.7) and (4.8). This procedure yields the exact hy-
cise values of these effective quantum numbers for the fulfirogenic energieE,=[ —1/2(n;+n,+1)?] as well as a set
molecular state, rough estimates show that the semiclassicaf radii REBK shown in Table I. Table | also shows the values
values shown in Fig. 8 agree well with the values of the fullof the minima in the Born-Oppenheimer potential cuRE,
molecular wave functions of Fig. 2. Additionally, using the (Fig. 1) and demonstrates that the minima predicted by our
semiclassical values from this constrained EBK analysis, it isonstrained EBK quantization agree with the Born-
trivial to show that the molecular constrainv+»v,=n  Oppenheimer minima to within about 10 a.u. We believe that
—1) on the effective quantum numbers is an exact relatioomost of the discrepancy is due to the energy-dependent scat-
in this semiclassical approximation. This gives a semiclassitering length used to calculate the Born-Oppenheimer poten-
cal explanation of the observation that the numbers of nodesal curve.
in the angular and radial elliptic directions always add up to In this section, we have included the effect of the perturb-
the principal quantum number of the unperturbed Rydbergng Rb atom in a unusual way. Rather than using the delta
state minus one. function interaction potential in the Hamiltonian, we include

Another way of looking at the semiclassical mechanics ofits effects through a constraint on the classical trajectories of

this system, is to proceed with the standard EBK quantizathe system. The advantage of this approach is that the

v,(RI=J,(ER—7, 4.8

n
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TABLE |. Positions of the minima in the Born-Oppenheimer Oppenheimer Hamiltonian is transformed to elliptic coordi-
potential curveRES, are compared with separatiof,« where  nates, a simple picture of the molecular physics emerges. In
every EBK orbit of elliptic coordinates passes through the perturbthis picture, the nature of the molecular state is determined
ing Rb atom. Shown are the five outermost minima in 30 by two ingredients. First, over most of configuration space,
potential curve. The good agreeméniithin about 10 a.y.of the  the molecular electron sees a pure Coulomb potential. In
semiclassical EBK separatiof&>F with the minimaRE?, in the  both our quantum and semiclassical treatments, the Coulomb
Born-Oppenheimer potential curve shows that our constrained EBKphysics in elliptic coordinates provides the starting point for
analysis gives a reasonable semiclassical interpretation of the osciinderstanding the molecular states. The second feature is the
lations in the potential curve. Namely, that at the minima in thenet attraction that the electron experiences when it gets near
potential curveevery EBK orbit of elliptic coordinates passes ex- the ground-state Rb atom. If the Rydberg electron can spend

actly through the perturbing Rb atom.

(ng.n,) R REn
(0,29 1575 1597
(1,29 1382 1389
(2,27 1234 1234
(3,26 1110 1106
(4,25 1003 994

minima in the Born-Oppenheimer potential curves and th
“quasiseparability” seen in degenerate perturbation theor
interpretations. The quas

obtain simple semiclassical
separability (and minima in the potential curvesccurs

wheneveryEBK orbit in elliptic coordinates passes through
the perturbing Rb atom. Our constrained EBK method als
gives analytical semiclassical formulas for the effective

guantum numbers that characterize the molecular states.

V. CONCLUSION

Q

most of its time nearby the ground-state Rb atom, this attrac-
tion will lead to a bound molecule.

Both in the quantum and semiclassical analysis, the role
of elliptic coordinates is to concentrate the Rydberg electron
at the position of the perturbing Rb atom. In the quantum
case, we have shown that stationary, elliptic eigenstates of
hydrogen accomplish this task efficiently. So much so, that at
certain internuclear separations, a single elliptic state of hy-
drogen dominates the molecular wave function.

In the semiclassical case, we have shown that infinitely
many classical Coulomb trajectories can be made to pass

%hrough the perturbing Rb atom by fixing the value of the

i}ielliptic constant of the motion. By incorporating these con-

strained Coulomb orbits into a semiclassical Green’s-
function and an EBK style analysis, the elliptic nodal struc-
ture of the electronic wave function can be predicted
Semiclassically.
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