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Orbital structure of the Kohn-Sham exchange potential and exchange kernel
and the field-counteracting potential for molecules in an electric field
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Exchange-only Kohn-ShartKS) theory is developed based on a physically motivated common energy
denominator approximation for the orbital Green’s functi@p,. An explicit expression for the exchange
potentialv,,, in terms of the occupied KS orbitals is obtained via the analytical inverse of the resulting density
response functiory, , with v, being subdivided into the Slater potentia), and the “response” potential
Vrespr - The latter exhibits a characteristic orbital structure with “diagonal” contributions from the densities
| i,]% of the occupied KS orbitals as well as “off-diagonal” ones from the occupied-occupied orbital products
1//i(,¢1*0. An expression for the response pég,, of the exchange kernel is derived. It is established for the
case of a symmetric molecular chain in an applied electric field that the kernel derived from the Krieger-Li-
lafrate potential with the Sharp-Horton approximation @y, fails to produce the field-counteracting potential
OV espy » Which is lacking in local-density and generalized-gradient approximations but which is required to
obtain realistidhypeppolarizabilities. On the contrary, as is shown in the case of lfee present kerndl,,
generates a field-counteracting potentia| fggp,. The field-counteracting exchange effect is seen to arise from
the spatial dependence of the cross prodkg])‘/up’l of the symmetric and antisymmetric orbitals which is
coupled with an integral over itself time%. Similar “self-coupling” terms are indicated in the general case of
a symmetric molecular chain.
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I. INTRODUCTION SEJ{i 1]
Uxoll3)= oo (ra)
The basic quantity of the Kohn-ShartkKS) density- Polls
functional theory(DFT) [1] in the exchange-only approxima- 1 No
tion is the exchange potential,, which, as a component of == 52 NiNjo
the total KS potentiab,, B

j Sio(r1) Wio(r)Plo(12) P4(12)

Uso(M1) =vexd(F1) +op(ry) +ovy.(ry), (1.0 op(ra) ra=rel

137
X drdr,— EE NigNjo
determines the KS spin orbital, i]

f OYio(r2) Yig(ry) lﬁj*g(rl) Piy(r2)
0ps(ra) [ri—rol
x dr,dr,+c.c. (1.4

{_%V2+Usa(rl)}¢io’(rl):eiolpia—(rl) (12)

and the electron spin densipy, of a many-electron system. . )
In Eq. (1.1) other components af,,, are the external poten- In Egs.(1.3) and(1.4) the summations run ové, occupied
tial v oy and the Hartree potential, of the electrostatic elec- KS spin orbitalsy;; .

tron repulsion. The exchange potentig|, is defined as the AN accuratev,, can be obtained with the self-consistent
functional derivative of the exchange energy solution of the integro-differential equations of the so-called

optimized potential metho@OPM) [2]. For atomic systems
this can be done with the method of Talman and Shadwick
1 N, [2] by inverting the static KS linear response functjgy on
E{¢i,t]=— EE Z f NigNj o a numerical grid. Recently, the OPM has been extended to
o molecular systems with the exact exchan@xX) imple-
‘ * * , mentation of lvanov, Hirata, and Bartl¢®], in which basis
X Violr) Vo) ¥io{r2) Yo(T2) dr,dr, set expansiofi4] is employed to obtain the invergg,* and
[ra=ra the subsequent,, . The functionys, can be inverted on a
(1.3  subspace of its eigenfunctions, such that the eigenfunctions
with zero (or near zero for practical purpogesigenvalues
are excluded. To obtain,, of a high quality with EXX, a
with respect to the electron spin density, large basis is required, in particular, the KS basis should
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include all occupied and a large number of unoccupied orH, [23,26. The corresponding LDA/GGA errors are much
bitals ¢;,,. The numerlcal stability of this inversion becomes |arger (by orders of magnitudethan those for “standard
a problem, especially for molecular applications. Anothermolecules” and also much larger than estimdtg| for er-

EXX method of Galing [5], which also uses basis set ex-
pansion, requires no inverse f, . Insteady,,(r,) is ob-
tained with the exchange charge density(r,) from the

rors in dielectric constants and nonlinear susceptibilities of
solids. Evidently, when in contrast to the LDA and GGA
approximations the orbital structure of the exchange func-

solution of the corresponding Poisson’s equation with a basigionals (1.3) and (1.4) is properly incorporated ir,,, the

set expansion op,,(r,). Numerical problems have been
reported also for this variant of EXX.

It has been demonstrat¢@d], however, that in a certain
approximationy., can be inverted analytically, so that the
resultanty.,’ satisfies the relation

f Xso(F1,72) Xag (12, T3)dr o= 8(r;—r3). (1.9

In order to do this, the KS static orbital Green’s functi®y,
that enters the expression fgg, is broken up in a locals

response formula(1.7) should produce the same field-
counteracting terndv,,, as the finite-field approach with the
density 5p(r).

It remains to be seen to what extent the failure of LDA/
GGA is an exchange effect, or also a correlation effect. In
this paper the exchange-only Kohn-Sham theory is devel-
oped based on a physically motivated approximation for the
orbital Green’s functiorG;,, which is presented in Sec. II.
An expression for the exchange potentig). in terms of the
occupied KS orbitals is derived in Sec. lll, with,, being
subdivided into the Slater potentiak, and the “response”

function) part and a remainder that is approximated. An ex-potentialv sy, . The latter will be shown to exhibit a char-

ample is the admittedly crude Sharp and Hort&i) [7,8]

acteristic orbital structure with KLI-type “diagonal” contri-

approximation forG;,,, which does not preserve the proper putions from the densitiels);,|? of the occupied KS orbitals

orbital structure of the response functign, (see the next
section for discussion Surprisingly, this approximation
yields the good-quality approximate, of the Krieger, Li,
and lafrate(KLI ) method[8], which is expressed in terms of

as well as with “off-diagonal” ones from orbital products
z,/;i(,z,/fj*(,. In Sec. IV expressions for the response pa,, of

the exchange kernel are derived. It is established for the case
of a symmetric molecular chain in an electric field, that the

only the occupied KS orbitals. Such a compact expressioRernel derived from the KLI potential with the SH approxi-
for vy, can serve as a basis for further, simpler approximamation forG;,, fails to produce the field-counteracting term
tions, which are requirgd for .efficient _DFT and time- 8V espy Vi Eq. (1.7). Contrary to this,f e, obtained with
dependent DFT calculations. Simple orbital-dependent apthe present approach has a proper spatially nonlocal orbital

proximations to the KLI potential were developed 8+-12].

Having an explicit expression far,,, one can obtain an
expression for the exchange kerfig}, the derivative ob,,,
with respect top,,

OBy, SU (T
foo(ryfy)= xolP] _ xo 1). (1.6
5pa'(rl)§pa'(r2) 5pu'(r2)
Within  time-dependent density-functional perturbation

theory (TDDFPT) [13-1§, f,, determines the chang®,,,
in response to a changing external fiéld,,;, which in the

structure with the occupied-occupied orbital produ,tql;;«//fo
and this yields a potentiabv s,, With field-counteracting
terms. In Sec. V implications of these results for DFT and
TDDFPT are discussed and the conclusions are drawn.

I. COMMON DENOMINATOR APPROXIMATIONS
FOR THE GREEN’'S FUNCTION

In order to obtain from Eq(1.4) the orbital-dependent
expression fow,,, one has to evaluate the functional de-
rivative di;,(r1)/ dp,(r3) of the KS orbital with respect to

static limit is obtained from the static density responsethe density. Following Ref[6], we evaluate the derivative

Op4(T)

5vxo(rl)=J erfxa'(rler)ap(r(rZ)- (17)

with the functional chain rule differentiation

Othi(r1) :f Othig(r1) SUs(13)
5p0(r2) 5vsu(r3) 5pa'(r2)

drg (2.1

As was established within the finite-field approach for ex-through the derivative ofs;, with respect to the KS potential

tended[17-22 and moleculaf23-253 systems, application

of a uniform electric field, induces in the exchange-

correlation potentiab,. and its exchange patt,, character-
istic ultranonlocal term&uv,. and év,,,, which span the en-

tire system and which counteract the external electric field. It
was recognized that the absence or presence of a field- Ex

Vs, and the derivative of ¢, with respect to the density,, .
The latter derivatives are determined with the KS static or-
bital Green’s functiorG

io

(ﬂja(rl)wfa(rz), 2.2

~ €ig

Gilr(rler):E

Ejo’

counteracting term is a matter of practical importance for

DFT calculations. The standard local-densityDA) and
generalized-gradiefGGA) approximations, which all fail to

which yields the change of;, in response to a variation
OVsy,

produce the counteracting field, gave quite poor results for
the linear and nonlinear polarizabilities of finite polyacety- B
lene chains of varying length and also of the hydrogen chains OYig(r1)=— | draGig(r1,r2) $ig(ra)dvs(ra). (2.3
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The orbital derivative in the right-hand sid®HS) of Eq.

(2.1) follows from Eq.(2.3),
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over the complete spectrum produces &unction and the
functionsG;, and x, assume the form

OYig(ry)
&)—(r)Z—Gig(fle)lﬂm(rs)- 2.4 1 .
s\’ 3 Gio(rl,rz)*E{&rl_rz)_¢io(r1)¢io(r2)}a
The other derivative is just the inverse (2.8
Ovse(ra)
Sy " Ker (raT2) 25 2
o2 Xs(r(rlirz)“—ﬁ O(ri=ra)py(ry)
of the static KS linear response functigg, , N
_ Op,(Tp) 2.6 _;1 Nie ‘ﬂio(rl)z‘lﬁia(rz)z } 29
Xso(l2,13)= S0e(rs)’ .

which is also determined with the help of the Green’s func-The approximatiori2.8) appears to be a crude one. Indeed, it
tion G, levels large energy differencede;., for the occupied-
unoccupied orbital pairs and relatively small differences

_ Ne . G A€, for the occupied-occupied pairs and in the latter case it
Xso(T2:73) = = 2, Miothio(12)Gig(r2.13)dhig(rs) +c.C. neglects the change of the sign when going fram,,, to
N A€j,. Because of this, in the SH density response function

q

(2.9 only the self-interaction is excluded and it effectively

) N5 (12) Yig(r3) contains contributions from mixing of different occupied or-
bitals, unlike the exact KS functiof®.7).
;4(T2) w;fg(%) In this paper we propose tq use a more_phy_s;ically moti-
X 2, TJrc.c. vated common energy denominator approximationGoy .
17 lo He Within the present approximation, only the energy differ-
N, encesAce, for the occupied-unoccupied orbital pairs are
=—> N () Yin(r3) approximated with the mean energ,,
=1
* ~ .
X E l’bca(rZ)l/lC(’(rs) +c.C. (27) AEiCU': €co ei(r%AEa'v ISNo'y C>Na’1 (21@
c>N,

€co™ €io

Note an important difference between the orbital expansion#hile the true differenced ¢;;,, for the occupied-occupied
(2.2 and(2.7) of the functionsG;, andxs, . In Eq.(2.2) all ~ pairs are retained. This gives G,

the orbitals, except the orbital . itself, contribute toG;,,,

so that there are contributions from other occupied orbitals N,
U0y jo=<N,. However, in the double sum of ER.7) the ‘ - ' *
C(])ntributions from the pairs of the occupied orbitas and GiolrL.r2) ,E#. A€ij, Yio(r)¥jo(r2)
¥;, cancel each other, since they contain the orbital energy
diﬁerenceSAEij o= EJ'O.— €is and AejiU: €io— Ejo.: - Aeija’

of the opposite signs. Thus, the occupied-occupied orbital
mixing does not contribute to the response functjyy,
which contains only contributions corresponding to excita- _
tions from an occupied orbitap;, to an unoccupied one Adding to and subtracting from the RHS of E@.11) con-
., . Strictly speaking, the above-mentioned cancellation igributions of the occupied orbitals with the common denomi-
possible, ifn;, of all occupied orbitals are equal to each hatorAe,, we obtain the master expressions @, ,

other, for instancen;,=1 as for a pure KS state. This can-
cellation will be the physical basis for our further derivation,

1
t g & VeolTOUE (1) (219

N(T
so that throughout the paper we assume that for all occupied _ - o(ry— r2)_ i _ *
orbitalsn,,—n.. Ginlr1.12)~ =3z xz 2 Vo1 ¥}(r2)
Finding an explicit expression for the orbital derivative N
(2.1) requires an approximation to the Green'’s functi@r®). 3 .
In KLI [8] the simple Sharp-Horton approximati¢n] has +§i Aeijg‘ﬂia(rlwio(rZ)' (212

been employed, according to which various differences
A€ij,=€j,— €, In EQ.(2.2) are represented by a single con-
stant €j,— €,~A€,. With this approximation, summation and for the corresponding density response function
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1 The double summation in E¢3.1) goes over all occupied
XsolT1.72)~ = 3= (11— r2)py(ra) orbitals and the primed sum indicates the above-mentioned
7 exclusion. Due to the symmetry with respect to the orbital
Ny indices and electron coordinates the second term of Ef).
oo (1) Yig(r2) is real under our assumption, =nj,, .
The exact inverse of this function is derived in the Appen-
Ng dix and has the following form:
X2 ol T UAT2) A~
N, No 4 X;Jl(rler): p(re )6(r1 2)
—E n.frw.(,m)w.,,(rz)E 1o Vo) . N
e G AT
NPV n-(T ij -(7'
Xy, (ry)+c.c. 2p,(r)py(rp) ffd ook
No X (1) Yo (1 2) (1 2),
1 (r) ¥is(rp)
fﬁNoNo: gﬁo’Na’kI:O' (32)
*
XC;\]” Yeo(T1)Yeo(r2) +C.C. (213 Just like x,, its inverse)(;,l consists of a locab function

part and a nonlocal orbital-dependent part, the latter being

One can see from E@2.13) that, just as for the exact func- represented by orbital cross produgis(r1) 7,(r1) of elec-
tion (2.7), the terms with the occupied-occupied mixing aretron coordinate ; coupled with the productg,(r,) ¢, (r»)
properly excluded from the approximags, of Eq.(2.13.In  of r,. The coupling coefficientsj;, are the elements of the
particular, the second sum in the RHS of ER.13 disap- matrix inverse

pears due to the mutual cancellation of its termsder the L

assumption tham;,=n;,) and the first sum cancels the cor- Ea=(1— Nv)ﬁkll, (3.3
responding contribution to thé function. As a result, only

the terms with the occupied-unoccupied mixing are properI)Na
retained within the common energy denominator approxima-
tion. In this sense, the present approximation preserves thlék"'ﬁ"f

proper orbital structure of the density response function. In . N

the next section it will be applied to evaluate the orbital NTA— f Yio(r)¥io(r1) ‘/’ko(rl)‘lflo(rl)d (3.4
derivative(2.1) and, as a consequence, to obtain an explicitly 1kl po(rq) b=
orbital-dependent expression for the exchange potengjal

is the overlap matrix of the orbital produc&sgwfg and

andl_is the unit matrix

ll. ORBITAL STRUCTURE OF wv,,
. . i I|]k| 5|k51I (35)
The form of the approximate density response function
(2.13 allows us to obtain its inverse with a generalization of The terms with at least one HOMO densityy,|? are ex-
the analytical inverse procedure of Réﬁl after fixing the  cluded from the sums in Eq3.2), which provides the zero
long-range asymptotics of the mverx;g, and the gauge of asymptotics OszU ,

the resultant potential,,.. The problem with the inverse is
that Eq.(1.5 has no unique solution fox.,! as adding a lim {xs, (r1,r2)}= lim {x5,'(r1,rp)}=0. (3.6
constant toy,, ! gives another solution for Eq1.5). As is Irq|—oo [r o —o0
shown in the Appendlx;(sg (and, eventuallyp,,) can be
forced to go to zero asymptotically by exclusion of the diag-This is taken into account by zeroing the corresponding co-
onal term Dy, i, (1) ¥no(r2) Yo (1) YR, (r2) /A€, with  efficients &y, and & nqw - Inserting Eq.(3.2) in Eq.
the densitiegyy,(r1)|? and| ¢y, (r,)|? of the highest occu- (2.9, Eq.(2.12 in Eq.(2.4), and then Eqsi2.4) and(2.5) in
pied molecular orbitalHOMO) i, from the first sum in  EQ.(2.1), we determine the orbital derivative
Eqg. (2.13:

5¢’i(r(rl)

5p.(Ta) :_j Gig(r1,T2) Yig(r2) Xeg(I2,T3)dr

- S(ri—ry <7 1 1
_—j|: AE(T _; (ATEO'_ AEijo’)

(3.9 X ¢ja(r1)¢r(r(rz)} Yio(12) X (T2,73)dr

042506-4
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1 -1
== ATe(rl//i(T(rl)XS(T (ry,ra)

N, 1

1
+§j: (Ef— A€jj,

Xf Uio(1) (1) X (2,1 3)dN 5.

) lvbjcr(rl)

3.7

To make Eq.(3.7) more compact, we have combined two

sums in Eq(2.12), extending the last sum of E.12) to all
occupied orbitals and formally assumidg;; ,=, in order
to properly exclude the term with ¢;;, from the sums in Eq.

(3.7). The last integral in Eq(3.7) can be worked out as,

USing g%nklz gglmn’

| tteaveaeargr,

B A€,
- 2p (r )wlo( 3)¢]U(r3)

> f wmo(rZ) wr‘lo’(rZ) ¢Ia(r2) lﬁ]g—(rZ)
p(r(rZ)

l/’ku(rs) Pro(r3)
ps(r3)
~ AT N,

A€,
= 2p (r )¢I0(r3)¢]o’(r3) k%n Niy

!~ N,,.
2 n <r§
k

ra

Nke

Do (T3) P (13)

X NDwmaNmni ™ (75

mnij

(3.9

using the matrix relation

(I__N(r) lN(r N(r(I_N(r) 1_ ( (r) 1 |_ (39)

and assuming that,,=n,, . Inserting Eq(3.9) in Eq.(3.8),
one obtains

f wio(rZ)wra(rZ)Xgol(rZvr3)dr2

B A€,
- Zpg(r ) wla( 3)$Ja(r3)

N(T

+§ (50— O d51) Yo (13) (1 3)

A%, &, kaTP(13)
IR ey o

(3.10

Finally, inserting Egs(3.10 and(3.2) in Eq. (3.7), one finds
the expression for the orbital derivative.1)

PHYSICAL REVIEW A 64 042506

Sig(ry)
Opy(r3)

_ ‘ﬂi o'(rl)
2p,(r3)

Nu’ l,b (r ) N(r
ioc\!1 o *
2 [2 oty 2 Meobimntio{ 1) (1)

A€, | iol(ry)
) k2 : gikmn}

A€,

o(ri—rs)

NO’
_2 (1_
K
o r ) *(r r )
X'J/m(alﬂn(s_ (3.11
po’(rS)
Straightforward substitution of this expression for the orbital
derivative in Eq.(1.4) produces the exchange potentig|,
in our common denominator approximation. The derivatives

of i,(r1) andy;,(r,) yield identical terms, which results in
the following expression:

B 1N" NigN;j,
vX(J’(rS)_ E ] pa(rs)

flﬁia(fl)¢?a(f1)¢ra(fz)¢jo(r2)
X
[ri—ryl
Ne Pmo(r3) o (T3)

1
r3)dr1dr2—52

>< —
olry mn ps(r3)

N
< (pka(rl)lplo'(rl)
X;j: nion]a [E nkofklan prr(rl

« Yio(T D) Ul (1 ) Y75 (12) Y4(1 2)

=1, dr,dr,
N, ~
_; (1_ Ae; )glkmn
Xf lﬂk(r(rl)l//,*g(fl)‘//r‘g(rz)ll/jo(rz)drldr2
[ri—rol
+c.c. (3.12

As a result,, is subdivided naturally into two physically
meaningful components: the first term in the RHS of Eq.
(3.12, taken together with its complex conjugate, turns after
the & function integration into an attractive long-range Slater
potentialv g, [28], while the rest represents a repulsive short-
range response potentiales,, [29]

UXU(r3):USa(r3)+Urespr(r3)- (3.13
vs, IS the potential of the Fermiexchangg hole density
distribution p,,(r,|r3),

xol 2|l
USU(rS)szM

[P dr,, (3.19
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Ny Bio (1) (1) Y (12) (1 2) asymptotics3.6) of x.,}, the last diagonal weighwy,,,, is

Pro(T2|r3) = —Z NigNjo ) , zero, which effectively removes the HOMO densiipy,|?
g Palls from the numerator of Eq3.20. Since|y,|? is present in
(3.15 the total densityp, in the denominator and it dominates

so that the orbital structure ofg, reflects that of the Fermi thﬁ. ﬂer&sity at|r3|—>oo,t ’{.fesrﬁ is}; at shct)rr]t—rant%e pcote?tialt,)_
hole functionp,,(r,|r3). The potential has Coulombic long- which decays asymptotically faster than the Loulombic

. - asymptotics.
range asymptoticss, (rs)— Urg| at|rg| —ce. : The derivation presented in this section highlights the
In turn, the potentiab g, can be expressed in the fol-

. . . structure of the KS theory at the exchange-only level. Sepa-
lowing form by rearrangement of the corresponding terms ifaiion of the 6 function within the Green's functionfi2.12

Eq. (3.12: leads to the separation within,, of the Slater potential
N, * (3.14), the latter originates eventually from thfunction
_ 12 Ymo(r3) ¥no(T'3) part of the orbital derivativé3.11). Then, the orbital sum in
Urespr(rs) 2

mn py(rs) Eq. (2.12, which produces the proper exclusion of the
occupied-occupied mixing from the density response func-
. Ne, \ tion (2.13, yields the response potentid.20, a weighted
Vike | 1 Aey Vike [ TC-C.y sum of the occupied-occupied orbital products. As was ar-
e gued in[30], the repulsive potential s, represents the ef-
(3.16  fect of the Pauli repulsion of the occupied orbitals on the KS
—5 i ) potential.
wherevj, andvjy,, are the expectation values for the prod- |t js interesting to note that, although both functiadds,
uct 7, ¢, of the Slater potentia(3.14 and the Hartree- and y., contain the mean energye, of excitation to unoc-
Fock orbital potentiab} calculated with the KS orbitals cupied orbitals, the final expressiof3.13—(3.19, (3.20,
and (3.2 for vy, contain only occupied orbitals and the
(r2)¢i,(r2) related quantities. A formal explanation for this is that the
=14l ra, expressior;(S.?) for the orbital derivative contains the~prod—
(3.17) uct Gj, x5, and thenG;, is inversely proportional ta\ ¢, ,
while X;,l is proportional to it, so thad’e, cancels out for
ie., the product. Note, on a broader view, that the ground-state
exchange energy functionél.3) itself represents interaction

N(f
X Ek ni(r‘fiol-(mn
I

N(T

Wy
2 nj(rlp}ko-(r3) f

el G

—s . only between the occupied orbitals. Thus, one can expect
Uika_J P11 Pieo(N)vs,(r)drs (318 hat its derivative, the ground-state exchange potentjal
can be described in a good approximation just with this in-
and teraction. And our common denominator approximation for

G;, appears to be such an approximation. With its mean
—i _ * i excitation energye, ., it treats the spectrum of unoccupied
v‘k‘f_J Vio(11) Pio(V1)Uy(F)dry. (319 orbitals as a st?u%:tureless entity ang these orbitals seFr)ve ef-
fectively as intermediate quantities in the description of in-
Due to the symmetry of the quantities and summations in Eqteraction between the occupied orbitals. Indeed, summation
(3.16, the term containing the orbital energy differencein Eg. (2.11) over unoccupied orbitals contributes to the
A€, cancels with the corresponding term in the complexfunction of Eq.(2.12, which eventually yields the Slater
conjugate part withA €,;,= — A€y, under our assumption potential of the exchange interaction between occupied
Nke="Ni, . With this in mind, one can rewrite E¢3.16) ina  orbitals.

form that reveals the characteristic orbital step structure of Atthe end of this section, we compare the structure of the
present exchange potentié3.13), (3.14), and (3.20 with

that of the KLI approximatiofig]. vX:' can be obtained with
No Dne(T3) Pk (13) the SH approximatiorf2.8) for the Green’s function in the
Urespr(l3) = % Wi (3.20  same way as the potenti@.20) is obtained with the Green’s

Urespr

Polls) function (2.12 (for the details of thev:' derivation, see
- - o Refs.[6], [8]). Starting from Eq(2.8) and inverting the cor-
with the step heights/, responding response functi@®.9), one can get the KLI SH
N, expression for the orbital derivativ@y;.(r)/ 5p,(r3):
Wg‘lnz % ni(rgiol;mn ;ﬁ((r_;ixkl(r}' WKl-(rN(rz 0, (32]) 5¢/I (r(rl) U, (r(rl)
= o(ri—r
5po(13)  2p,(r5) 11

corresponding to the individual produats,, 3, of the oc- N

cupied orbitals. It follows from Eq(3.20) that in the region, 2" Yig(r1)
where a particular orbital density;,|? brings a dominant m | 2p(r1)
contribution to the total density,, the potential gy, is

close to the corresponding weight], thus producing the Emtic(r) | 1¥ma(ra)]?
step structure of g, . As @ consequence of the fixing of the - 2 ps(rs)

NlT

2 il (1) |2

: (3.22
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where the coefficientgy,, are the elements of the inverse Ny
matrix fresm(11.,72) =8 20 Wi g (1) W7 (1) py(11)
£ =(1—N°); L (3.23 16p6(r2)lp, =po,

N (TP, (ry) oWy

with =
] Po(r1) Ops(r2)
_ | 10(r D1 o (T 1)1 B Ne o g (r) W (ry)
Nim_nmf pu—(rl) drli Iim_5im- _Zj Wﬁ#&(rl_rz)
(3.24 ' 4

N

q pu l/fj?\-a-(rl) Ewi(r(rl)
12 W Boutry)

Inserting Eq.(3.22 into Eqg. (1.4), one arrives at the KLI
expression fow,,. Due to separation of thé function in
Eq. (2.8), vk also contains the Slater and response parts: 4.9

KL As indicated in the first equality of E¢4.1), the derivative is
(r3)=vg,(r3)+vie (rg). (3.25 - i i i
Uxo ('3 soll'3 respr 3 taken at the ground-state density, for which we use just the
notationp,, throughout the paper. Inserting in E@.1) the
However, because of the incomplete exclusion of theexpression(3.11) for the orbital derivativeSy; ,(r1)/ dp,(r3)
occupied-occcupied orbital mixing from E.9), the KLI  in Eq. (4.1), one obtains foff g,
response potential contains only “diagonal steps,”
lﬂla(rl)lﬂ]g(rl) oW

frespr(r1,12) = Z

N
v ST i po(ra) Op,(ro)
Urespr(r3) 2 |¢m ( 3)| ) (326)
po(rs3) No io(F) §(ry)
2 o Yio(ry lr//ja' 1
- T Wij pZ(rl) 5(rl_r2)
N(T 7
=2 migfhvi, vl Wi,=0. (3.27 +”2‘f VoW1
i] J p(r(rl)prr(rZ) ! 2
Having both diagonalwith wy,.) and _off-diagonall(with 1(Ns d,w ry)
wp,, Mm#n) steps the present potentiéd.20 provides a 5 2 PSS
more detailed orbital structure compared to the KLI potential ! ot
(3.25. 4 Do (T ) Yo (T 1)

‘/II (r(rl)z nkrrgklmn

The KLI potential already approximates quite well the

exact local KS exchange potential. Still, a qualitative im- Po(ra)

(7
mn
provement will result from the use of our response potential, N, _Ae
2 iko
K

glkm n¢ka( r 1)

Eq. (3.20. Essential differences are introduced by the occur-
rence of the occupied-occupied mixing terms when the func-
tional derivative of the potential is required, as is the case for U (E) 05 (1)
the kernelf,,, in particular its response paftesy,, i re- s Mot 2V Fnat 2 +ect. 4.2
sponse calculations, notably in time-dependent DFT. We Po(r2)

shall analyze this case in the next section.

ik

In principle, the derivativeswjj/ 5p,(r») in the first term of
the RHS can be elaborated further through a straightforward
IV. ORBITAL STRUCTURE OF frespy AND THE differentiation of Eq.(3.21; however, for our purposes just
FIELD-COUNTERACTING EFFECT Eq. (4.2 suffices. The orbital structure of the nonlocal terms

In this section the orbital structure of the response parff fresp: is characterized by the two-electron “coupling” o
frespr OF the exchange kernel is analyzed in connection withCross products/m,(r) ¥, (r2) With i, (r1) ¥i,(rs) of the
the field-counteracting exchange effect in an external electrioccupied orbitals, with the coupling coefficierd§,,,. Note
field. We concentrate on the response part, sifeewas that, unlike in the expressidl.16) for v ey, , the terms with
established in Ref$23], [25] in the finite-field approadithe  the orbital energy differencese;,, do not cancel each other
field-counteracting term is a part of the field-induced changén Eq. (4.2). Indeed, the ratidAs, /A€, with a certain
v resp, OF the response potential. Straightforward differentia-A €, is attached in Eq(4.2) to the orbital i, , while its
tion (1.6) of the potential3.20 derived in the previous sec- counterpart\e, /A e, with A€, = — A€y, is attached to a
tion gives for the correspondinge,, the following expres-  different orbital ;. , so that the corresponding terms do not
sion: cancel each other. Inserting E4.2) in Eq.(1.7), one can get

042506-7
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a change of the potentiab s, for the density changép,, .
After integration over, in Eq. (1.7), the terms withé func-
tions cancel each other, which gives fr g, the following
expression:

5\N0'
Op,(r2)

bio(r)i(rq)
5Urespr(r1) E =ad 1] Op,(ra)dry

i pPs(r1)

1[& W)
+§|; WI] p(r(rl)

zZ

o

« E ‘//k(r(rl) Wra(rl)

wi(r(rl)% nku'é:(krlmn pg—(rl)

=}

Ne —Ae€
§ v 'k"f.kmnmrl)}

Umo(2) o (T2)

op,(ro)dro+c.c.p.
P(r(rz) po’( 2) 2 ]

4.3

It is instructive to compare Ed4.2) with the KLI SH kernel
A
p)- L

KLI response potential3.26 with the KLI SH approxima-

which can be obtained via the differentiation of the which counterséve,(r), i.e.,

PHYSICAL REVIEW &4 042506

|¢ko’(r1)|
pu’(rl)

|¢'m0'(r2)|2
p(r(rZ)

—— ———&im

5p0(r2)dl’2. (45)

The difference between Eqg&t.2),(4.3) and Eqgs.(4.4),(4.5)
appears to be of crucial importance for the generation of the
field-counteracting term in the KS potential when an external
electric field is applied over a chainlike molecule. In order to
show this, we consider the response of a symmetric molecu-
lar chain X,, with arbitrary fragmentsX, which has a mid-
molecule center of inversion or a mirror plater both as

the symmetry element, to an antisymmetric external field
Ove(r)=—Ez (z is the main symmetry axis of the chain,
with z=0 being the molecular midpoint Obviously, the
density responsép,, of the chain will also be an antisym-
metric function ofz with a positive buildupsp,>0 (z>0)

of the density in the down-field region and with a negative
depletion 6p,<0 (z<0) in the up-field region. Then, the
field-counteracting exchange effect should manifest itself in
the appearance of the terfiv,, in Eq. (4.3) or Eq. (4.5,

it should be an antisymmetric

() _should be positive in the down-field

function ofzand ov reg,,

tion (3.22 for the orbital derivative. In complete analogy regionz>0 and negative in the up-field regi@<0.

with Egs.(4.1) and(4.2), one obtains forf jg>"

N, 2
KLI SH _ |¢io‘(r1)|
frespr (r11r2)—2i po(rD)
N

J (rllrlfl(r( l)|2
2i (rl)

owy”
3p4(r2)

o(ry—rp)

N

o . 2
+2 W |wlo(r1)| 5(r1_r2)

i : p(r(rl)p(r(rZ)
N N,
L 9 | G
+ n
St (¥ o
|¢ko’(rl)|2_§_o- |¢ma(r2)|2 (4 4)
po(ry) Mp(ra) '
The difference between the kerndigg,, of Eg. (4.2) and
fream  resembles that between the corresponding potentlal
Vrespr O EQ. (3.20 and vy, of Eq. (3 26. While figi>"
depends on the orbital densitigsg;,|?, fresp, iNCludes also
cross products); %, of different orbitals.f,cd>" produces
the changesu gy
N
S lioro)? [ ow!
KLI SH _ g
P (V=2 L ] Bty P2
N
3 |¢Io’(rl |
> w—
2i po'(rl)
ND' NU'
XE Z nko'gf(rm
m k

However, the KLI SH kernel4.4) fails to generate any
field-counteracting term, as can be shown by analyzing the
corresponding potential changé.5). In particular, the sec-
ond sum in the RHS of Ed4.5) vanishes due to the integra-
tion over r,. Indeed, all the orbital-density terms
| hmo(r2)|?/ p,(r5) in the integrands are symmetric functions
of z, while 6p,(r,) is antisymmetric, so that the integral of
the resultant antisymmetric integrand vanishes. Although
nonzero, the first term of Ed4.5) is, clearly, a symmetric
function, since its spatial dependence is represented with the
symmetric orbital-density functior}s; ,(r1)|%/p,(r1), while
the counterfield term should be an antisymmetric function.
This proves the absence of the field-counteracting term in the
KLI SH approach.

In contrast to this, the present kerndl.2) displays an
orbital structure that is able to generate a field-counteracting
term v, In order to establish this, we start with the
simplest chain with Pauli repulsion between the fragments,
he four-electron system of two distant He atoms. The occu-
pied orbitals of He are the symmetric orbital, of o, type
and the antisymmetric orbita#, of o, type (here real orbit-
als are considered and the spin index is suppressed due to the
closed-shell character of the sysferThen, the potential
(3.20 consists just of a single step:

2|l/’g(r3)|2+ 2|¢u(r3)|2
p(rs) p(ra)

24h4(r3) hy(r3)
au p(rs)
2| yg(r3)|?

:ngw, (46)

Ures;{r3) =Wygg

+ 2w
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since the weightsv,, andwy, in Eq. (4.6) vanish, the first SWqy/ 8p(ry) in the second term of Ed4.7); but it appears
due to the conditiomvy,,n,=W,,=0 [cf. Eq.(3.21)], and the  to be too complicated to establish the sign of this antisym-
second due to the symmetry of the orbitals entering thenetric term. However, our preliminary calculations show
Slater and exchange integralsviy,,, [cf. Eq.(3.2D)]. Thus, that the term with owgy/8p(rp) adds to the field-
for He, the potential3.20 reduces to the KLI potential and counteracting potential, while the dominant contribution
the difference between the present approach and the KLI Sidomes from the term in the curly brackets in F4.7).
one becomes manifest only when the symmetry is broken, Considering the orbital structure of the field-counteracting
due to an applied unsymmetric finite field, or equivalently, inresponse potentiaﬁuﬁgcs),{rl) of Eq. (4.7), we note that a
a response calculation through the different expressiongistinguishing feature is a “self-coupling” in the term in the
(3.12) and (3.22 for the orbital derivatives, which produce curly brackets, in which the orbital produ¢5<//up’1 atry is
different kernels(4.2) and(4.4). Unlike Eq.(4.4) the kernel  coupled with an integral of itself ovar,, with the coupling
(4.2) contains the cross produgti,, which transforms a8 coefficients €.+ £quug)- Returning to the general case of
under the symmetry operations. Collecting the corresponding symmetric molecular chain, we collect analogous “self-
terms in Eq.(4.3) applied to Hg, one can obtain the follow- coupling” terms within the potentiaﬁvg—;ﬁ)
ing expression:

N

11 & i (T Uf,(r1)
(r))y(ra) SvesOr )= = sowl———— 17 2
30412~ | 2t s g T | & )
1
N *
2 Ae— J o Uka(T)¥o(r1)
X 2|l/lg(r1)| +A6 Acgu XE QU E—————
p(rqy) Aegy Kl polri)
lr//g(rZ) l/’u(rz) > J lﬁ’k‘a’(rZ) wla(rZ)
= = ———————— dp,(ry)dr
Xf p(rz) 5p(r2)dr2 pg'(r2) P ( 2) 2
N ~
4¢g(rl)lpu(rl) é\Ngu J O-AGO'_AGika'
i p(r) op(r3) op(rz)drz, +% (guw; A€o
@D o VT YD)
ikik— o,y
which represents a potentidb |, counteracting the exter- Polls)
nal field v o, (r) = —Ez Indeed, the integrals oves in Eq. Ui (T2) Y (T5)
(4.7) are nonzero due to the antisymmetry of both XJTfSPo(rz)dfer C.C.{.
o\!2

g(r2) y(r2) and 8p(r,), then svii, (r4) itself is an anti-
symmetric function because of the produgf(r,) ¢, (r). (4.9

In order to establish the sign of the term in the curly
brackets of Eq(4.7) in the down- and up-field regions, note In Eq. (4.8) the brackets £s) in the sum ovei andj mean
that apart from the obviously positive first term in the squarethat only the orbitals/; and ¢; of the same symmetry are
brackets of Eq(4.7), the second term is also positive, since involved in the summation. The bracketgu) in the sums
the energy differencé ey, between the occupied orbitals is overk,| andi,k mean that in the orbital products involved in
smaller for two distant He atoms, than the average &ee the summations one orbital is a symmetric functionzpf
between the occupied and unoccupied orbitals. In the roundhile another is an antisymmetric one. Then, because of the
brackets of Eq(4.7) the leading term is the elemeéy,q,0f  reasons presented above for,lHene can expect that in the
the inverse matrix, which corresponds to the “diagonal” general case$v§§s‘§f) of Eq. (4.8 also represents a field-
positive element (+ Ng,q,) Of the four-index matriX] —N)  counteracting potential.
in Eg. (3.3). Thus, one can expect thd},q, and the sum
(égugu™ guug) Will also be positive, and our numerical ex-
perience with the inverse matri8.3) confirms this expecta-
tion. Furthermore, the diagonal weigiw,q is also positive. In this paper the exchange-only Kohn-Sham theory is de-
Since the product)yy, appears twice, for,; andr,, the veloped based on a physically motivated common energy
location of the positive and negative parts of E4.7) does  denominator approximation for the KS static orbital Green’s
not depend on the choice of phaseygfand it is determined function G;,, . Within the proposed approximation, contribu-
by that of 5p(r,). So let us choose the sign ¢f, positive at  tions from the occupied-occupied orbital mixing are cor-
the + z axis, in the down-field region, where algp is posi-  rectly excluded from the density response functiQp asso-
tive, then the integral over, is positive, and the factor ciated withG;,. The approximations foG;, and x., make
Wg(r1) hy(r1) makesduisafry) of Eq. (4.7 positive in the it possible to analytically invert the latter after fixing of the

V. CONCLUSIONS

res
down-field region and negative in the up-field region, as itasymptotics of)(s_(,l.

should be for the field-counteracting potential. We have de- An explicit expression for the exchange potentigl, in
rived an analytical expression also for the derivativeterms of the occupied KS orbitals is derived via the analyti-
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cal inverse ofys,,. The resultanb,,, is naturally subdivided ACKNOWLEDGMENTS

|nt<|) _the arllttractlve IoPg-range S later potenv@#hand are- The authors express their gratitude to Robert van Leeu-
pulsive short-range “response” potentigksy, . The present wen for his contributions, and to Stan van Gisbergen and

pcK’Lemialvrespr is compared with the corresponding potential \yyrta Grining for inspiring and fruitful discussions.
Urespy Of the KLI approximation. In addition to the “diago-

KLI

nal” structure ofv g, With contributions from the densities APPENDIX
|i,]% of the occupied KS orbitals; esp, POSSesses also an _ _ ) ) )
“off-diagonal” structure with contributions from the In this appendix the analytical expression for the inverse

71 . . . . .
occupied-occupied orbital productg, ¢, . The difference  Xso of the density response function is derived with the
betweeny s, andvyeg,, Might be small, in particular, for tenchrnlql:jtiaﬁd(revslo;;eq.|anifi5]HAs it:(i,zte(;mlévlthr;che o:]b:tal
atomic systems, for which the diagonal steps represent the cTdy dilierences &;, vanishnes qle.19, one can re-

atomic shell structure, while the off-diagonal steps producé’vrlte Xso 8s follows:

the intershell corrections. Howevar,s,, might provide a 2
definite improvement ovep /o, in applications to various — Xse{I1,72) == 1= 8(r1=T2)ps(ra)
molecular properties. In particular, application within the 7

finite-field approach ofv es,, can improve polarizabilities Ny . .

and hyperpolarizabilities of molecular chains calculated with + AT%% NiaPio(T) Yio(r2) Pjolra) ¥io(ra).
DFT, because, as was shown in R3], [25], the proper

treatment of the occupied-occupied orbital mixing in the (A1)

orbital-dependent KS potential is of importance for these].hen, our goal is to construct the invergg}, which satis-

properties. Preliminary results of finite-field calculations forfies the conditior(1.5). Note, however, thatl.5) determines
the hydrogen chains Hconfirm these expectations. - e L i ' -
Anyexp?ession forthrHZ response pagspof the exchange X-S"l only up to a constant, i.e,, adding a constantyfg
' i X r e gives another solution of Eq1.5). To fix this constant ac-
kernel is derived thrpugh a direct differentiation _of_ the cording to the procedure of Ré6], we exclude the diagonal
presentv ey, . The orbital structure of sy, has as a distin- o, Pt (1) Yo (7 2) Yo (F1) W2,(12) /AT, with the
guishing feature an “off-diagonal” orbital structure with the densitie ¥y ("rl)lz and| g, (1) |2 of the HOMO ¢y, from
two-electron coupling of cross produats,,(r2) ¥%,(r2) and  the sum in I(ETq(Al) 7 7
o (r1) ¥, (r1) of the occupied orbitals. Unlike this, the ker-
nel fiean" derived from the KLI potential with the SH ap-
proximation forG;, depends on the orbital densitigs; |2
only. 5
The difference betweefies,, and ficd>" is shown to be o 2 i () W01 (T ) (1)
crucial for the corresponding potentiats sy, and v gy A€, ]
generated by the kernels in an external electric field. It is (A2)
established for the case of a symmetric molecular chain that _ _ o
fKLISH £ails to produce any field-counteracting term. Con-and the primed sum in Eq(A2) indicates the above-

trr;srg,' to this, as is shown in the simple case of,Hehe Mentioned exclusion. As will be shown beloy," corre-
presentf,.,, generates a field-counteracting temﬁgm. sponding to Eq(A2) goes to zero asymptoticallict. Eq.

. o) “ . (3.6)], which eventually produces the zero long-range as-
The mechanism behindv .5, is the “self-coupling” of the 1 \which

; ; . ymptotics of the potentiab,,. To constructy,
cross productyyi, of the symmetric and antisymmetric or- ken her with Ea(A2). woul sy Eq(15). W
bitals. Similar self-coupling terms are indicated for the gen taken together with Eq(A2), would satisfy Eq.(1.5, we

. . “split X;,l into a local é function part and a remainder,
eral case of a symmetric molecular chain.

The established spatial nonlocal orbital structurd gf,, o
is expected to be of importance for a proper description of Xoo (I1,72)=— 2—“)6(r1—r2)+c0(r1,r2). (A3)
the response propertigpolarizabilities, hyperpolarizabili- Patla
ties, excitation energié&f molecular chains with TDDFPT. For the functioncg an equation follows from qu15),
Evidently, the standard TDDFPT approximation, the adia{A2), and(A3):
batic LDA completely lacks this structure, which is the rea-
son for the poor results mentioned in the Introduction. Thus, _1
the present expression fdfs,, Might serve as a basis for 5(r1—r2):J Xso(F1,13) Xs (13,12)dr3
improved models and approximations. Another important di-
rection of further development is an extension of the present

2
XSU(rler): - Ea(rl_r2)p0'(rl)

i =6(ri—ry))———~
exchange functionalw,, and f.s, to full exchange- (r1=r2) Po(r2)
correlation ones with a proper incorporation of the effects of
Coulomb correlation. Work along these directions is in XZ/ Mo (1 ) 10 (12) (T 1) U5 (1)
ij

progress.
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2
- Epa(rl)ca(rler)

+

2 <
A E nialpiko(rl) lpj o—(rl)

o 1]

Xf Pio(ra) ¥, (r3)Cy(rs,ro)drs, (A4)
so that
) AT,
R PR (AT ()

E Nio W (P ) Wi o (F2) (T ) (1 2)

> (1) (1)

pa’(rl) 1]
Xf Pio(r3) i, (r3)C,(rs,rp)drs. (A5)
Then, for the functiord,, defined as
4p,(r1)py(ra)
do(rr)= =5z 2 Cfnrd)  (AO)

one has

2
Q(1.12)= = 3 2 Moty (1) Uiol12) o) U, (12)

2 )
_AT%; Nigl(F) Yjo(r) aijo(ra), (A7)
where
bio(13) U5, (r3)do(r3,rp)
@ijo(ra)=— 5 S I]J(f33) 32 drs.
' (A8)

PHYSICAL REVIEW A 64 042506

with the coefficientsN{j,, being defined in Eq(3.4). The
prime over the sum means that both the orbital density
|no|? and the functionay,y, are excluded from the sum-
mation. A general solution to Eq§A9) can now be found.
As the productsj i, are only finite in number, the most
general expression fag;;,, is a linear combination of these
functions,

@jo(1)= 2" Blats(rD¥ly(ra). (AL0)
This gives an equation for the coefficiergg,, ,
Bljk|_NIJk|+E N|]mnﬁmnk|! (All)
or in matrix form
IBO'_ No‘(l_Na') 1_ (l_N(r) 1N<r ( (r) 1_|
(A12)
wherel is the matrix(3.5).
From Egs.(A10)—(A12) it follows for d, that
2 Y
Qo(r1.12)= = gz 2 Mokl biol 1) 9o(12)
X wko(rZ) (Mko'(rZ)!
(A13)

o _ O —
gierrN(r_ gNo’No’kl =0.

We then have our final expression for the inverse density
response function,

“1 ) Ae, 5 ) A€,
M,[o))=—7——F——o(l{—Iy)—
Xso (1512 zpu(rl) 1 2

2pu’( r 1)p0’(r2)
N[f

X I% Ni o€kt Ui (T ) P16 (F ) Yo (12) Y5 (1 2),

fﬁN oNo ™ gﬁo’NUkI: 0. (Al4)

Inserting Eq(A7) in Eq.(A8), one obtains a system of equa- The functiony_,* has the zero long-range asymptotic behav-

tions for the functionsy;,, :

E Nl Yo (12) U1 2) + o (12) ] (A9)

ajj(ry)=

ior (3.6 due to the exclusion of the HOMO orbital density
|¥nol? (Which dominates at the asymptotifs;|—o and
|r,|— o) from the numerator of EQA14), while it is present
in the densities in the denominator.
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