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Orbital structure of the Kohn-Sham exchange potential and exchange kernel
and the field-counteracting potential for molecules in an electric field

O. V. Gritsenko and E. J. Baerends
Section Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

~Received 19 April 2001; published 13 September 2001!

Exchange-only Kohn-Sham~KS! theory is developed based on a physically motivated common energy
denominator approximation for the orbital Green’s functionGis . An explicit expression for the exchange
potentialvxs in terms of the occupied KS orbitals is obtained via the analytical inverse of the resulting density
response functionxss , with vxs being subdivided into the Slater potentialvSs and the ‘‘response’’ potential
v resps . The latter exhibits a characteristic orbital structure with ‘‘diagonal’’ contributions from the densities
uc isu2 of the occupied KS orbitals as well as ‘‘off-diagonal’’ ones from the occupied-occupied orbital products
c isc j s* . An expression for the response partf resps of the exchange kernel is derived. It is established for the
case of a symmetric molecular chain in an applied electric field that the kernel derived from the Krieger-Li-
Iafrate potential with the Sharp-Horton approximation forGis fails to produce the field-counteracting potential
dv resps , which is lacking in local-density and generalized-gradient approximations but which is required to
obtain realistic~hyper!polarizabilities. On the contrary, as is shown in the case of He2 , the present kernelf resps

generates a field-counteracting potentialdv resps
~fc) . The field-counteracting exchange effect is seen to arise from

the spatial dependence of the cross productcgcur21 of the symmetric and antisymmetric orbitals which is
coupled with an integral over itself timesdr. Similar ‘‘self-coupling’’ terms are indicated in the general case of
a symmetric molecular chain.

DOI: 10.1103/PhysRevA.64.042506 PACS number~s!: 31.15.Ew
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I. INTRODUCTION

The basic quantity of the Kohn-Sham~KS! density-
functional theory~DFT! @1# in the exchange-only approxima
tion is the exchange potentialvxs which, as a component o
the total KS potentialvss

vss~r1!5vext~r1!1vH~r1!1vxs~r1!, ~1.1!

determines the KS spin orbitalsc is

$2 1
2 ¹21vss~r1!%c is~r1!5e isc is~r1! ~1.2!

and the electron spin densityrs of a many-electron system
In Eq. ~1.1! other components ofvss are the external poten
tial vext and the Hartree potentialvH of the electrostatic elec
tron repulsion. The exchange potentialvxs is defined as the
functional derivative of the exchange energy

Ex@$c is%#52
1

2 (
s

(
i j

Ns E nisnj s

3
c is~r1!c j s* ~r1!c is* ~r2!c j s~r2!

ur12r2u
dr1dr2

~1.3!

with respect to the electron spin densityrs ,
1050-2947/2001/64~4!/042506~12!/$20.00 64 0425
vxs~r3!5
dEx@$c is%#

drs~r3!

52
1

2 (
i j

Ns

nisnj s

3E dc is~r1!

drs~r3!

c j s* ~r1!c is* ~r2!c j s~r2!

ur12r2u

3dr1dr22
1

2 (
i j

Ns

nisnj s

3E dc j s~r2!

drs~r3!

c is~r1!c j s* ~r1!c is* ~r2!

ur12r2u

3dr1dr21c.c. ~1.4!

In Eqs.~1.3! and~1.4! the summations run overNs occupied
KS spin orbitalsc is .

An accuratevxs can be obtained with the self-consiste
solution of the integro-differential equations of the so-call
optimized potential method~OPM! @2#. For atomic systems
this can be done with the method of Talman and Shadw
@2# by inverting the static KS linear response functionxss on
a numerical grid. Recently, the OPM has been extende
molecular systems with the exact exchange~EXX! imple-
mentation of Ivanov, Hirata, and Bartlett@3#, in which basis
set expansion@4# is employed to obtain the inversexss

21 and
the subsequentvxs . The functionxss can be inverted on a
subspace of its eigenfunctions, such that the eigenfunct
with zero ~or near zero for practical purposes! eigenvalues
are excluded. To obtainvxs of a high quality with EXX, a
large basis is required, in particular, the KS basis sho
©2001 The American Physical Society06-1
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include all occupied and a large number of unoccupied
bitalsc is . The numerical stability of this inversion becom
a problem, especially for molecular applications. Anoth
EXX method of Go¨rling @5#, which also uses basis set e
pansion, requires no inverse ofxss . Instead,vxs(r1) is ob-
tained with the exchange charge densityrxs(r2) from the
solution of the corresponding Poisson’s equation with a b
set expansion ofrxs(r2). Numerical problems have bee
reported also for this variant of EXX.

It has been demonstrated@6#, however, that in a certain
approximationxss can be inverted analytically, so that th
resultantxss

21 satisfies the relation

E xss~r1 ,r2!xss
21~r2 ,r3!dr25d~r12r3!. ~1.5!

In order to do this, the KS static orbital Green’s functionGis
that enters the expression forxss is broken up in a local~d
function! part and a remainder that is approximated. An e
ample is the admittedly crude Sharp and Horton~SH! @7,8#
approximation forGis , which does not preserve the prop
orbital structure of the response functionxss ~see the next
section for discussion!. Surprisingly, this approximation
yields the good-quality approximatevxs of the Krieger, Li,
and Iafrate~KLI ! method@8#, which is expressed in terms o
only the occupied KS orbitals. Such a compact express
for vxs can serve as a basis for further, simpler approxim
tions, which are required for efficient DFT and tim
dependent DFT calculations. Simple orbital-dependent
proximations to the KLI potential were developed in@9–12#.

Having an explicit expression forvxs , one can obtain an
expression for the exchange kernelf xs , the derivative ofvxs

with respect tors

f xs~r1 ,r2!5
dExs@r#

drs~r1!drs~r2!
5

dvxs~r1!

drs~r2!
. ~1.6!

Within time-dependent density-functional perturbati
theory~TDDFPT! @13–16#, f xs determines the changedvxs

in response to a changing external fielddvext, which in the
static limit is obtained from the static density respon
drs(r )

dvxs~r1!5E dr2f xs~r1 ,r2!drs~r2!. ~1.7!

As was established within the finite-field approach for e
tended@17–22# and molecular@23–25# systems, application
of a uniform electric field, induces in the exchang
correlation potentialvxc and its exchange partvxs character-
istic ultranonlocal termsdvxc anddvxs , which span the en-
tire system and which counteract the external electric field
was recognized that the absence or presence of a fi
counteracting term is a matter of practical importance
DFT calculations. The standard local-density~LDA ! and
generalized-gradient~GGA! approximations, which all fail to
produce the counteracting field, gave quite poor results
the linear and nonlinear polarizabilities of finite polyace
lene chains of varying length and also of the hydrogen cha
04250
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Hn @23,26#. The corresponding LDA/GGA errors are muc
larger ~by orders of magnitude! than those for ‘‘standard
molecules’’ and also much larger than estimates@27# for er-
rors in dielectric constants and nonlinear susceptibilities
solids. Evidently, when in contrast to the LDA and GG
approximations the orbital structure of the exchange fu
tionals ~1.3! and ~1.4! is properly incorporated inf xs , the
response formula~1.7! should produce the same field
counteracting termdvxs as the finite-field approach with th
densitydrs(r ).

It remains to be seen to what extent the failure of LD
GGA is an exchange effect, or also a correlation effect.
this paper the exchange-only Kohn-Sham theory is de
oped based on a physically motivated approximation for
orbital Green’s functionGis , which is presented in Sec. II
An expression for the exchange potentialvxs in terms of the
occupied KS orbitals is derived in Sec. III, withvxs being
subdivided into the Slater potentialvSs and the ‘‘response’’
potentialv resps . The latter will be shown to exhibit a char
acteristic orbital structure with KLI-type ‘‘diagonal’’ contri-
butions from the densitiesuc isu2 of the occupied KS orbitals
as well as with ‘‘off-diagonal’’ ones from orbital product
c isc j s* . In Sec. IV expressions for the response partf resps of
the exchange kernel are derived. It is established for the c
of a symmetric molecular chain in an electric field, that t
kernel derived from the KLI potential with the SH approx
mation forGis fails to produce the field-counteracting ter
dv resps via Eq. ~1.7!. Contrary to this,f resps obtained with
the present approach has a proper spatially nonlocal or
structure with the occupied-occupied orbital productsc isc j s*
and this yields a potentialdv resps with field-counteracting
terms. In Sec. V implications of these results for DFT a
TDDFPT are discussed and the conclusions are drawn.

II. COMMON DENOMINATOR APPROXIMATIONS
FOR THE GREEN’S FUNCTION

In order to obtain from Eq.~1.4! the orbital-dependen
expression forvxs , one has to evaluate the functional d
rivative dc is(r1)/drs(r3) of the KS orbital with respect to
the density. Following Ref.@6#, we evaluate the derivative
with the functional chain rule differentiation

dc is~r1!

drs~r2!
5E dc is~r1!

dvss~r3!

dvss~r3!

drs~r2!
dr3 ~2.1!

through the derivative ofc is with respect to the KS potentia
vss and the derivative ofvss with respect to the densityrs .
The latter derivatives are determined with the KS static
bital Green’s functionGis

Gis~r1 ,r2!5(
j Þ i

c j s~r1!c j s* ~r2!

e j s2e is
, ~2.2!

which yields the change ofc is in response to a variation
dvss ,

dc is~r1!52E dr2Gis~r1 ,r2!c is~r2!dvs~r2!. ~2.3!
6-2
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ORBITAL STRUCTURE OF THE KOHN-SHAM EXCHANGE . . . PHYSICAL REVIEW A 64 042506
The orbital derivative in the right-hand side~RHS! of Eq.
~2.1! follows from Eq.~2.3!,

dc is~r1!

dvs~r3!
52Gis~r1 ,r3!c is~r3!. ~2.4!

The other derivative is just the inverse

dvss~r3!

drs~r2!
5xss

21~r3 ,r2! ~2.5!

of the static KS linear response functionxss ,

xss~r2 ,r3!5
drs~r2!

dvss~r3!
, ~2.6!

which is also determined with the help of the Green’s fun
tion Gis ,

xss~r2 ,r3!52(
i 51

Ns

nisc is* ~r2!Gis~r2 ,r3!c is~r3!1c.c.

52(
i 51

Ns

nisc is* ~r2!c is~r3!

3(
j Þ i

c j s~r2!c j s* ~r3!

e j s2e is
1c.c.

52(
i 51

Ns

nisc is* ~r2!c is~r3!

3 (
c.Ns

ccs~r2!ccs* ~r3!

ecs2e is
1c.c. ~2.7!

Note an important difference between the orbital expansi
~2.2! and~2.7! of the functionsGis andxss . In Eq. ~2.2! all
the orbitals, except the orbitalc is itself, contribute toGis ,
so that there are contributions from other occupied orbi
c j s , j s<Ns . However, in the double sum of Eq.~2.7! the
contributions from the pairs of the occupied orbitalsc is and
c j s cancel each other, since they contain the orbital ene
differencesDe i j s5e j s2e is and De j i s5e is2e j s52De i j s

of the opposite signs. Thus, the occupied-occupied orb
mixing does not contribute to the response functionxss ,
which contains only contributions corresponding to exci
tions from an occupied orbitalc j s to an unoccupied one
ccs . Strictly speaking, the above-mentioned cancellation
possible, if nis of all occupied orbitals are equal to eac
other, for instance,nis51 as for a pure KS state. This can
cellation will be the physical basis for our further derivatio
so that throughout the paper we assume that for all occu
orbitalsnis5nj s .

Finding an explicit expression for the orbital derivativ
~2.1! requires an approximation to the Green’s function~2.2!.
In KLI @8# the simple Sharp-Horton approximation@7# has
been employed, according to which various differenc
De i j s5e j s2e is in Eq. ~2.2! are represented by a single co
stant e j s2e is'Dẽs . With this approximation, summatio
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over the complete spectrum produces ad function and the
functionsGis andxss assume the form

Gis~r1 ,r2!'
1

Dẽs
$d~r12r2!2c is~r1!c is* ~r2!%,

~2.8!

xss~r1 ,r2!'2
2

Dẽs
H d~r12r2!rs~r1!

2(
i 51

Ns

nisUc is~r1!2UUc is~r2!2UJ . ~2.9!

The approximation~2.8! appears to be a crude one. Indeed
levels large energy differencesDe ics for the occupied-
unoccupied orbital pairs and relatively small differenc
De i j s for the occupied-occupied pairs and in the latter cas
neglects the change of the sign when going fromDe i j s to
De j i s . Because of this, in the SH density response funct
~2.9! only the self-interaction is excluded and it effective
contains contributions from mixing of different occupied o
bitals, unlike the exact KS function~2.7!.

In this paper we propose to use a more physically m
vated common energy denominator approximation forGis .
Within the present approximation, only the energy diffe
encesDe ics for the occupied-unoccupied orbital pairs a
approximated with the mean energyDẽs

De ics5ecs2e is'Dẽs , i<Ns , c.Ns , ~2.10!

while the true differencesDe i j s for the occupied-occupied
pairs are retained. This gives forGis

Gis~r1 ,r2!'(
j Þ i

Ns 1

De i j s
c j s~r1!c j s* ~r2!

1
1

Dẽs
(

c.Ns

ccs~r1!ccs* ~r2!. ~2.11!

Adding to and subtracting from the RHS of Eq.~2.11! con-
tributions of the occupied orbitals with the common denom
natorDẽs , we obtain the master expressions forGis ,

Gis~r1 ,r2!'
d~r12r2!

Dẽs
2

1

Dẽs
(

j

Ns

c j s~r1!c j s* ~r2!

1(
j Þ i

Ns 1

De i j s
c j s~r1!c j s* ~r2!, ~2.12!

and for the corresponding density response function
6-3
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xss~r1 ,r2!'2
1

Dẽs
d~r12r2!rs~r1!

1
1

Dẽs
(

i

Ns

nisc is* ~r1!c is~r2!

3(
j

Ns

c j s~r1!c j s* ~r2!

2(
i

Ns

nisc is* ~r1!c is~r2!(
j Þ i

Ns 1

De i j s
c j s~r1!

3c j s* ~r2!1c.c.

52
1

Dẽs
(

i

Ns

nisc is* ~r1!c is~r2!

3 (
c.Ns

ccs~r1!ccs* ~r2!1c.c. ~2.13!

One can see from Eq.~2.13! that, just as for the exact func
tion ~2.7!, the terms with the occupied-occupied mixing a
properly excluded from the approximatexss of Eq. ~2.13!. In
particular, the second sum in the RHS of Eq.~2.13! disap-
pears due to the mutual cancellation of its terms~under the
assumption thatnis5nj s! and the first sum cancels the co
responding contribution to thed function. As a result, only
the terms with the occupied-unoccupied mixing are prope
retained within the common energy denominator approxim
tion. In this sense, the present approximation preserves
proper orbital structure of the density response function
the next section it will be applied to evaluate the orbi
derivative~2.1! and, as a consequence, to obtain an explic
orbital-dependent expression for the exchange potentialvxs .

III. ORBITAL STRUCTURE OF vxs

The form of the approximate density response funct
~2.13! allows us to obtain its inverse with a generalization
the analytical inverse procedure of Ref.@6# after fixing the
long-range asymptotics of the inversexss

21 and the gauge o
the resultant potentialvxs . The problem with the inverse i
that Eq. ~1.5! has no unique solution forxss

21 as adding a
constant toxss

21 gives another solution for Eq.~1.5!. As is
shown in the Appendix,xss

21 ~and, eventually,vxs! can be
forced to go to zero asymptotically by exclusion of the dia
onal term 2nNscNs* (r1)cNs(r2)cNs(r1)cNs* (r2)/Dẽs with
the densitiesucNs(r1)u2 and ucNs(r2)u2 of the highest occu-
pied molecular orbital~HOMO! cNs from the first sum in
Eq. ~2.13!:

xss~r1 ,r2!'2
2

Dẽs
d~r12r2!rs~r1!

1
2

Dẽs
(
i j

8 nisc is* ~r1!c is~r2!c j s~r1!c j s* ~r2!.

~3.1!
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The double summation in Eq.~3.1! goes over all occupied
orbitals and the primed sum indicates the above-mentio
exclusion. Due to the symmetry with respect to the orb
indices and electron coordinates the second term of Eq.~3.1!
is real under our assumptionnis5nj s .

The exact inverse of this function is derived in the Appe
dix and has the following form:

xss
21~r1 ,r2!52

Dẽs

2rs~r1!
d~r12r2!

2
Dẽs

2rs~r1!rs~r2! (i jkl

Ns

nisj i jkl
s c is~r1!

3c j s* ~r1!cks~r2!c ls* ~r2!,

j i jNsNs
s 5jNsNskl

s 50. ~3.2!

Just likexss , its inversexss
21 consists of a locald function

part and a nonlocal orbital-dependent part, the latter be
represented by orbital cross productsc is(r1)c j s* (r1) of elec-
tron coordinater1 coupled with the productscks(r2)c ls* (r2)
of r2 . The coupling coefficientsj i jkl

s are the elements of the
matrix inverse

j i jkl
s 5~ Ī2N̄s! i jkl

21 , ~3.3!

N̄s is the overlap matrix of the orbital productsc isc j s* and
cksc ls*

Ni jkl
s 5nkE c is~r1!c j s* ~r1!cks~r1!c ls* ~r1!

rs~r1!
dr1 , ~3.4!

and Ī is the unit matrix

I i jkl 5d ikd j l . ~3.5!

The terms with at least one HOMO densityucNsu2 are ex-
cluded from the sums in Eq.~3.2!, which provides the zero
asymptotics ofxss

21,

lim
ur1u→`

$xss
21~r1 ,r2!%5 lim

ur2u→`
$xss

21~r1 ,r2!%50. ~3.6!

This is taken into account by zeroing the corresponding
efficients j i jNsNs

s and jNsNskl
s . Inserting Eq.~3.2! in Eq.

~2.5!, Eq. ~2.12! in Eq. ~2.4!, and then Eqs.~2.4! and~2.5! in
Eq. ~2.1!, we determine the orbital derivative

dc is~r1!

drs~r3!
52E Gis~r1 ,r2!c is~r2!xss

21~r2 ,r3!dr2

52E Fd~r12r2!

Dẽs
2(

j

Ns S 1

Dẽs
2

1

De i j s
D

3c j s~r1!c j s* ~r2!Gc is~r2!xss
21~r2 ,r3!dr2
6-4
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52
1

Dẽs
c is~r1!xss

21~r1 ,r3!

1(
j

Ns S 1

Dẽs
2

1

De i j s
Dc j s~r1!

3E c is~r2!c j s* ~r2!xss
21~r2 ,r3!dr2 . ~3.7!

To make Eq.~3.7! more compact, we have combined tw
sums in Eq.~2.12!, extending the last sum of Eq.~2.12! to all
occupied orbitals and formally assumingDe i i s5`, in order
to properly exclude the term withDe i i s from the sums in Eq.
~3.7!. The last integral in Eq.~3.7! can be worked out as
usingjmnkl

s 5jklmn
s ,

E c is~r2!c j s* ~r2!xss
21~r2 ,r3!dr2

52
Dẽs

2rs~r3!
c is~r3!c j s* ~r3!2

Dẽs

2 (
klmn

Ns

nksjklmn
s

3E cms~r2!cns* ~r2!c is~r2!c j s* ~r2!

rs~r2!
dr2

3
cks~r3!c ls* ~r3!

rs~r3!

52
Dẽs

2rs~r3!
c is~r3!c j s* ~r3!2

Dẽs

2 (
klmn

Ns nks

nis

3~ Ī2N̄s!klmn
21 Nmni j

s
cks~r3!c ls* ~r3!

rs~r3!
~3.8!

using the matrix relation

~ Ī2N̄s!21N̄s5N̄s~ Ī2N̄s!215~ Ī2N̄s!212 Ī ~3.9!

and assuming thatnks5nis . Inserting Eq.~3.9! in Eq. ~3.8!,
one obtains

E c is~r2!c j s* ~r2!xss
21~r2 ,r3!dr2

52
Dẽs

2rs~r3! H c is~r3!c j s* ~r3!

1(
kl

Ns

~j i jkl
s 2d ikd j l !cks~r3!c ls* ~r3!J

52
Dẽs

2 (
kl

Ns

j i jkl
s

cks~r3!c ls* ~r3!

rs~r3!
. ~3.10!

Finally, inserting Eqs.~3.10! and~3.2! in Eq. ~3.7!, one finds
the expression for the orbital derivative~2.1!
04250
dc is~r1!

drs~r3!
5

c is~r1!

2rs~r3!
d~r12r3!

1(
mn

Ns H c is~r1!

2rs~r1! (kl

Ns

nksjklmn
s cks~r1!c ls* ~r1!

2(
k

Ns S 12
Dẽs

De iks
D cks~r1!

2
j ikmn

s J
3

cms~r3!cns* ~r3!

rs~r3!
. ~3.11!

Straightforward substitution of this expression for the orbi
derivative in Eq.~1.4! produces the exchange potentialvxs

in our common denominator approximation. The derivativ
of c is(r1) andc j s(r2) yield identical terms, which results in
the following expression:

vxs~r3!52
1

2 (
i j

Ns nisnj s

rs~r3!

3E c is~r1!c j s* ~r1!c is* ~r2!c j s~r2!

ur12r2u

3d~r12r3!dr1dr22
1

2 (
mn

Ns cms~r3!cns* ~r3!

rs~r3!

3(
i j

Ns

nisnj s3H(
kl

Ns

nksjklmn
s E cks~r1!c ls* ~r1!

rs~r1!

3
c is~r1!c j s* ~r1!c is* ~r2!c j s~r2!

ur12r2u
dr1dr2

2(
k

Ns S 12
Dẽs

De iks
D j ikmn

s

3E cks~r1!c j s* ~r1!c is* ~r2!c j s~r2!

ur12r2u
dr1dr2J

1c.c. ~3.12!

As a result,vxs is subdivided naturally into two physically
meaningful components: the first term in the RHS of E
~3.12!, taken together with its complex conjugate, turns af
thed function integration into an attractive long-range Sla
potentialvSs @28#, while the rest represents a repulsive sho
range response potentialv resps @29#

vxs~r3!5vSs~r3!1v resps~r3!. ~3.13!

vSs is the potential of the Fermi~exchange! hole density
distributionrxs(r2ur3),

vSs~r3!5E rxs~r2ur3!

ur22r3u
dr2 , ~3.14!
6-5



i
-

l-
i

d-

E
ce
le

o

e

s
,
bic

he
pa-

e
nc-

ar-
-
KS

e
he
-

tate

ect

in-
for
an
d
ef-

in-
tion

r
ied

the

O. V. GRITSENKO AND E. J. BAERENDS PHYSICAL REVIEW A64 042506
rxs~r2ur3!52(
i j

Ns

nisnj s

c is~r3!c j s* ~r3!c is* ~r2!c j s~r2!

rs~r3!
,

~3.15!

so that the orbital structure ofvSs reflects that of the Ferm
hole functionrxs(r2ur3). The potential has Coulombic long
range asymptoticsvSs(r3)→21/ur3u at ur3u→`.

In turn, the potentialv resps can be expressed in the fo
lowing form by rearrangement of the corresponding terms
Eq. ~3.12!:

v resps~r3!5
1

2 (
mn

Ns cms~r3!cns* ~r3!

rs~r3!

3(
ik

Ns

nisj ikmn
s H v̄ iks

S 2S 12
Dẽs

De iks
D v̄ iks

xi J 1c.c.,

~3.16!

wherev̄ iks
S and v̄ iks

xi are the expectation values for the pro
uct c is* cks of the Slater potential~3.14! and the Hartree-
Fock orbital potentialvxs

i calculated with the KS orbitals

vxs
i ~r3!52

1

c is* ~r3! (j 51

Ns

nj sc j s* ~r3!E c is* ~r2!c j s~r2!

ur22r3u
dr2 ,

~3.17!

i.e.,

v̄ iks
S 5E c is* ~r1!cks~r1!vSs~r1!dr1 ~3.18!

and

v̄ iks
xi 5E c is* ~r1!cks~r1!vxs

i ~r1!dr1 . ~3.19!

Due to the symmetry of the quantities and summations in
~3.16!, the term containing the orbital energy differen
De iks cancels with the corresponding term in the comp
conjugate part withDekis52De iks under our assumption
nks5nis . With this in mind, one can rewrite Eq.~3.16! in a
form that reveals the characteristic orbital step structure
v resps ,

v resps~r3!5(
mn

Ns

wmn
s

cms~r3!cns* ~r3!

rs~r3!
~3.20!

with the step heightswmn
s

wmn
s 5(

ik

Ns

nisj ikmn
s $v̄ iks

S 2 v̄ iks
xi %, wNsNs

s 50, ~3.21!

corresponding to the individual productscmscns* of the oc-
cupied orbitals. It follows from Eq.~3.20! that in the region,
where a particular orbital densityuc isu2 brings a dominant
contribution to the total densityrs , the potentialv resps is
close to the corresponding weightwii

s , thus producing the
step structure ofv resps . As a consequence of the fixing of th
04250
n

q.

x

f

asymptotics~3.6! of xss
21, the last diagonal weightwNsNs

s is
zero, which effectively removes the HOMO densityucNsu2

from the numerator of Eq.~3.20!. SinceucNsu2 is present in
the total densityrs in the denominator and it dominate
the density atur3u→`, v resps is a short-range potential
which decays asymptotically faster than the Coulom
asymptotics.

The derivation presented in this section highlights t
structure of the KS theory at the exchange-only level. Se
ration of thed function within the Green’s function~2.12!
leads to the separation withinvxs of the Slater potential
~3.14!, the latter originates eventually from thed function
part of the orbital derivative~3.11!. Then, the orbital sum in
Eq. ~2.12!, which produces the proper exclusion of th
occupied-occupied mixing from the density response fu
tion ~2.13!, yields the response potential~3.20!, a weighted
sum of the occupied-occupied orbital products. As was
gued in@30#, the repulsive potentialv resps represents the ef
fect of the Pauli repulsion of the occupied orbitals on the
potential.

It is interesting to note that, although both functionsGis
andxss contain the mean energyDẽs of excitation to unoc-
cupied orbitals, the final expressions~3.13!–~3.15!, ~3.20!,
and ~3.21! for vxs contain only occupied orbitals and th
related quantities. A formal explanation for this is that t
expression~3.7! for the orbital derivative contains the prod
uct Gisxss

21 and thenGis is inversely proportional toDẽs ,
while xss

21 is proportional to it, so thatDẽs cancels out for
the product. Note, on a broader view, that the ground-s
exchange energy functional~1.3! itself represents interaction
only between the occupied orbitals. Thus, one can exp
that its derivative, the ground-state exchange potentialvxs ,
can be described in a good approximation just with this
teraction. And our common denominator approximation
Gis appears to be such an approximation. With its me
excitation energyDẽs , it treats the spectrum of unoccupie
orbitals as a structureless entity and these orbitals serve
fectively as intermediate quantities in the description of
teraction between the occupied orbitals. Indeed, summa
in Eq. ~2.11! over unoccupied orbitals contributes to thed
function of Eq. ~2.12!, which eventually yields the Slate
potential of the exchange interaction between occup
orbitals.

At the end of this section, we compare the structure of
present exchange potential~3.13!, ~3.14!, and ~3.20! with
that of the KLI approximation@8#. vxs

KLI can be obtained with
the SH approximation~2.8! for the Green’s function in the
same way as the potential~3.20! is obtained with the Green’s
function ~2.12! ~for the details of thevxs

KLI derivation, see
Refs.@6#, @8#!. Starting from Eq.~2.8! and inverting the cor-
responding response function~2.9!, one can get the KLI SH
expression for the orbital derivativedc is(r1)/drs(r3):

dc is~r1!

drs~r3!
5

c is~r1!

2rs~r3!
d~r12r3!

1(
m

Ns H c is~r1!

2rs~r1! (k

Ns

nksjkm
s ucks~r1!u2

2
j im

s c is~r1!

2 J ucms~r3!u2

rs~r3!
, ~3.22!
6-6
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where the coefficientsjkm
s are the elements of the invers

matrix

j im
s 5~ Ī2N̄s! im

21 ~3.23!

with

Nim
s 5nmE uc is~r1!u2ucms~r1!u2

rs~r1!
dr1 , I im5d im .

~3.24!

Inserting Eq.~3.22! into Eq. ~1.4!, one arrives at the KLI
expression forvxs . Due to separation of thed function in
Eq. ~2.8!, vxs

KLI also contains the Slater and response part

vxs
KLI ~r3!5vSs~r3!1v resps

KLI ~r3!. ~3.25!

However, because of the incomplete exclusion of
occupied-occcupied orbital mixing from Eq.~2.9!, the KLI
response potential contains only ‘‘diagonal steps,’’

v resps
KLI ~r3!5(

m

Ns

wm
s

ucms~r3!u2

rs~r3!
, ~3.26!

wm
s 5(

i

Ns

nisj im
s $v̄ i i s

S 2 v̄ i i s
xi %, wNs

s 50. ~3.27!

Having both diagonal~with wmm
s ! and off-diagonal~with

wmn
s , mÞn! steps the present potential~3.20! provides a

more detailed orbital structure compared to the KLI poten
~3.25!.

The KLI potential already approximates quite well th
exact local KS exchange potential. Still, a qualitative i
provement will result from the use of our response potent
Eq. ~3.20!. Essential differences are introduced by the occ
rence of the occupied-occupied mixing terms when the fu
tional derivative of the potential is required, as is the case
the kernelf xs , in particular its response partf resps , in re-
sponse calculations, notably in time-dependent DFT.
shall analyze this case in the next section.

IV. ORBITAL STRUCTURE OF f resps AND THE
FIELD-COUNTERACTING EFFECT

In this section the orbital structure of the response p
f resps of the exchange kernel is analyzed in connection w
the field-counteracting exchange effect in an external elec
field. We concentrate on the response part, since~as was
established in Refs.@23#, @25# in the finite-field approach! the
field-counteracting term is a part of the field-induced chan
dv resps of the response potential. Straightforward different
tion ~1.6! of the potential~3.20! derived in the previous sec
tion gives for the correspondingf resps the following expres-
sion:
04250
e

l

-
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f resps~r1 ,r2!5dF(
i j

Ns

wi j
s c is~r1!c j s* ~r1!/rs~r1!G

/drs~r2!urs5r0s

5(
i j

Ns c is~r1!c j s* ~r1!

rs~r1!

dwi j
s

drs~r2!

2(
i j

Ns

wi j
s

c is~r1!c j s* ~r1!

rs
2~r1!

d~r12r2!

1H(
i j

Ns

wi j
s

c j s* ~r1!

rs~r1!

dc is~r1!

drs~r2!
1c.c.J .

~4.1!

As indicated in the first equality of Eq.~4.1!, the derivative is
taken at the ground-state density, for which we use just
notationrs throughout the paper. Inserting in Eq.~4.1! the
expression~3.11! for the orbital derivativedc is(r1)/drs(r3)
in Eq. ~4.1!, one obtains forf resps

f resps~r1 ,r2!5(
i j

Ns c is~r1!c j s* ~r1!

rs~r1!

dwi j
s

drs~r2!

2(
i j

Ns

wi j
s

c is~r1!c j s* ~r1!

rs
2~r1!

d~r12r2!

1(
i j

Ns

wi j
s

c is~r1!c j s* ~r1!

rs~r1!rs~r2!
d~r12r2!

1
1

2 H(
i j

Ns

wi j
s

c j s* ~r1!

rs~r1!

3(
mn

Ns Fc is~r1!(
kl

Ns

nksjklmn
s

cks~r1!c ls* ~r1!

rs~r1!

1(
k

Ns Dẽs2De iks

De iks
j ikmn

s cks~r1!G
3

cms~r2!cns* ~r2!

rs~r2!
1c.c.J . ~4.2!

In principle, the derivativedwi j
s /drs(r2) in the first term of

the RHS can be elaborated further through a straightforw
differentiation of Eq.~3.21!; however, for our purposes jus
Eq. ~4.2! suffices. The orbital structure of the nonlocal term
of f resps is characterized by the two-electron ‘‘coupling’’ o
cross productscms(r2)cns* (r2) with cks(r1)c ls* (r1) of the
occupied orbitals, with the coupling coefficientsjklmn

s . Note
that, unlike in the expression~3.16! for v resps , the terms with
the orbital energy differencesDe iks do not cancel each othe
in Eq. ~4.2!. Indeed, the ratioDẽs /De iks with a certain
De iks is attached in Eq.~4.2! to the orbitalcks , while its
counterpartDẽs /Dekis with Dekis52De iks is attached to a
different orbitalc is , so that the corresponding terms do n
cancel each other. Inserting Eq.~4.2! in Eq. ~1.7!, one can get
6-7
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a change of the potentialdv resps for the density changedrs .
After integration overr2 in Eq. ~1.7!, the terms withd func-
tions cancel each other, which gives fordv resps the following
expression:

dv resps~r1!5(
i j

Ns c is~r1!c j s* ~r1!

rs~r1!
E dwi j

s

drs~r2!
drs~r2!dr2

1
1

2 H(
i j

Ns

wi j
s

c j s* ~r1!

rs~r1!

3(
mn

Ns Fc is~r1!(
kl

Ns

nksjklmn
s

cks~r1!c ls* ~r1!

rs~r1!

1(
k

Ns Dẽs2De iks

De iks
j ikmn

s cks~r1!G
3E cms~r2!cns* ~r2!

rs~r2!
drs~r2!dr21c.c.J .

~4.3!

It is instructive to compare Eq.~4.2! with the KLI SH kernel
f resps

KLI SH , which can be obtained via the differentiation of th
KLI response potential~3.26! with the KLI SH approxima-
tion ~3.22! for the orbital derivative. In complete analog
with Eqs.~4.1! and ~4.2!, one obtains forf resps

KLI SH

f resps
KLI SH~r1 ,r2!5(

i

Ns uc is~r1!u2

rs~r1!

dwi
s

drs~r2!

2(
i

Ns

wi
s

uc is~r1!u2

rs
2~r1!

d~r12r2!

1(
i

Ns

wi
s

uc is~r1!u2

rs~r1!rs~r2!
d~r12r2!

1(
i

Ns

wi
s

uc is~r1!u2

rs~r1! (
m

Ns F(
k

Ns

nksjkm
s

3
ucks~r1!u2

rs~r1!
2j im

s G ucms~r2!u2

rs~r2!
. ~4.4!

The difference between the kernelsf resps of Eq. ~4.2! and
f resps

KLI SH resembles that between the corresponding poten
v resps of Eq. ~3.20! and v resps

KLI of Eq. ~3.26!. While f resps
KLI SH

depends on the orbital densitiesuc isu2, f resps includes also
cross productsc isc j s* of different orbitals.f resps

KLI SH produces
the changedv resps

KLI SH

dv resps
KLI SH~r1!5(

i

Ns uc is~r1!u2

rs~r1!
E dwi

s

drs~r2!
drs~r2!dr2

1(
i

Ns

wi
s

uc is~r1!u2

rs~r1!

3(
m

Ns F(
k

Ns

nksjkm
s

04250
ls

3
ucks~r1!u2

rs~r1!
2j im

s G
3E ucms~r2!u2

rs~r2!
drs~r2!dr2 . ~4.5!

The difference between Eqs.~4.2!,~4.3! and Eqs.~4.4!,~4.5!
appears to be of crucial importance for the generation of
field-counteracting term in the KS potential when an exter
electric field is applied over a chainlike molecule. In order
show this, we consider the response of a symmetric mole
lar chainXn with arbitrary fragmentsX, which has a mid-
molecule center of inversion or a mirror plane~or both! as
the symmetry element, to an antisymmetric external fi
dvex(r )52Ez ~z is the main symmetry axis of the chain
with z50 being the molecular midpoint!. Obviously, the
density responsedrs of the chain will also be an antisym
metric function ofz with a positive buildupdrs.0 (z.0)
of the density in the down-field region and with a negati
depletiondrs,0 (z,0) in the up-field region. Then, the
field-counteracting exchange effect should manifest itsel
the appearance of the termdv resps

~fc) in Eq. ~4.3! or Eq. ~4.5!,
which countersdvext(r ), i.e., it should be an antisymmetri
function ofz anddv resps

~fc) should be positive in the down-field
regionz.0 and negative in the up-field regionz,0.

However, the KLI SH kernel~4.4! fails to generate any
field-counteracting term, as can be shown by analyzing
corresponding potential change~4.5!. In particular, the sec-
ond sum in the RHS of Eq.~4.5! vanishes due to the integra
tion over r2 . Indeed, all the orbital-density term
ucms(r2)u2/rs(r2) in the integrands are symmetric function
of z, while drs(r2) is antisymmetric, so that the integral o
the resultant antisymmetric integrand vanishes. Althou
nonzero, the first term of Eq.~4.5! is, clearly, a symmetric
function, since its spatial dependence is represented with
symmetric orbital-density functionsuc is(r1)u2/rs(r1), while
the counterfield term should be an antisymmetric functi
This proves the absence of the field-counteracting term in
KLI SH approach.

In contrast to this, the present kernel~4.2! displays an
orbital structure that is able to generate a field-counterac
term dv resps

~fc) . In order to establish this, we start with th
simplest chain with Pauli repulsion between the fragmen
the four-electron system of two distant He atoms. The oc
pied orbitals of He2 are the symmetric orbitalcg of sg type
and the antisymmetric orbitalcu of su type ~here real orbit-
als are considered and the spin index is suppressed due t
closed-shell character of the system!. Then, the potential
~3.20! consists just of a single step:

v resp~r3!5wgg

2ucg~r3!u2

r~r3!
1wuu

2ucu~r3!u2

r~r3!

12wgu

2cg~r3!cu~r3!

r~r3!

5wgg

2ucg~r3!u2

r~r3!
, ~4.6!
6-8
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ORBITAL STRUCTURE OF THE KOHN-SHAM EXCHANGE . . . PHYSICAL REVIEW A 64 042506
since the weightswuu andwgu in Eq. ~4.6! vanish, the first
due to the conditionwNsNs5wuu50 @cf. Eq.~3.21!#, and the
second due to the symmetry of the orbitals entering
Slater and exchange integrals inwgu , @cf. Eq. ~3.21!#. Thus,
for He2 the potential~3.20! reduces to the KLI potential an
the difference between the present approach and the KLI
one becomes manifest only when the symmetry is brok
due to an applied unsymmetric finite field, or equivalently,
a response calculation through the different express
~3.11! and ~3.22! for the orbital derivatives, which produc
different kernels~4.2! and ~4.4!. Unlike Eq. ~4.4! the kernel
~4.2! contains the cross productcgcu , which transforms asz
under the symmetry operations. Collecting the correspond
terms in Eq.~4.3! applied to He2 , one can obtain the follow-
ing expression:

dv resp
~fc) ~r1!5H 2wgg~jgugu1jguug!

cg~r1!cu~r1!

r~r1!

3F2ucg~r1!u2

r~r1!
1

Dẽ2Degu

Degu
G

3E cg~r2!cu~r2!

r~r2!
dr~r2!dr2J

1
4cg~r1!cu~r1!

r~r1!
E dwgu

dr~r2!
dr~r2!dr2 ,

~4.7!

which represents a potentialdv resps
~fc) counteracting the exter

nal fielddvext(r )52Ez. Indeed, the integrals overr2 in Eq.
~4.7! are nonzero due to the antisymmetry of bo
cg(r2)cu(r2) anddr(r2), thendv resps

~fc) (r1) itself is an anti-
symmetric function because of the productcg(r1)cu(r1).

In order to establish the sign of the term in the cu
brackets of Eq.~4.7! in the down- and up-field regions, not
that apart from the obviously positive first term in the squ
brackets of Eq.~4.7!, the second term is also positive, sin
the energy differenceDegu between the occupied orbitals
smaller for two distant He atoms, than the average oneDē
between the occupied and unoccupied orbitals. In the ro
brackets of Eq.~4.7! the leading term is the elementjgugu of
the inverse matrix, which corresponds to the ‘‘diagona
positive element (12Ngugu) of the four-index matrix~Ī2N̄!
in Eq. ~3.3!. Thus, one can expect thatjgugu and the sum
(jgugu1jguug) will also be positive, and our numerical ex
perience with the inverse matrix~3.3! confirms this expecta
tion. Furthermore, the diagonal weightwgg is also positive.
Since the productcgcu appears twice, forr1 and r2 , the
location of the positive and negative parts of Eq.~4.7! does
not depend on the choice of phase ofcu and it is determined
by that ofdr(r2). So let us choose the sign ofcu positive at
the1z axis, in the down-field region, where alsodr is posi-
tive, then the integral overr2 is positive, and the facto
cg(r1)cu(r1) makesdv resp

~fc) (r1) of Eq. ~4.7! positive in the
down-field region and negative in the up-field region, as
should be for the field-counteracting potential. We have
rived an analytical expression also for the derivat
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dwgu /dr(r2) in the second term of Eq.~4.7!; but it appears
to be too complicated to establish the sign of this antisy
metric term. However, our preliminary calculations sho
that the term with dwgu /dr(r2) adds to the field-
counteracting potential, while the dominant contributi
comes from the term in the curly brackets in Eq.~4.7!.

Considering the orbital structure of the field-counteract
response potentialdv resp

~fc) (r1) of Eq. ~4.7!, we note that a
distinguishing feature is a ‘‘self-coupling’’ in the term in th
curly brackets, in which the orbital productcgcur21 at r1 is
coupled with an integral of itself overr2 , with the coupling
coefficients (jgugu1jguug). Returning to the general case o
a symmetric molecular chain, we collect analogous ‘‘se
coupling’’ terms within the potentialdv resps

~fc-sc)

dv resps
~fc-sc)~r1!5

1

2 H(
i j

Ns

~ss!wi j
s

c is~r1!c j s* ~r1!

rs~r1!

3(
kl

Ns

~gu!nksjklkl
s

cks~r1!c ls* ~r1!

rs~r1!

3E cks* ~r2!c ls~r2!

rs~r2!
drs~r2!dr2

1(
ik

Ns

~gu!wii
s

Dẽs2De iks

De iks

3j ikik
s

c is* ~r1!cks~r1!

rs~r1!

3E c is~r2!cks* ~r2!

rs~r2!
drs~r2!dr21c.c.J .

~4.8!

In Eq. ~4.8! the brackets (ss) in the sum overi and j mean
that only the orbitalsc i and c j of the same symmetry ar
involved in the summation. The brackets (gu) in the sums
overk,l andi ,k mean that in the orbital products involved
the summations one orbital is a symmetric function ofz,
while another is an antisymmetric one. Then, because of
reasons presented above for He2 , one can expect that in th
general casedv resps

~fc-sc) of Eq. ~4.8! also represents a field
counteracting potential.

V. CONCLUSIONS

In this paper the exchange-only Kohn-Sham theory is
veloped based on a physically motivated common ene
denominator approximation for the KS static orbital Gree
function Gis . Within the proposed approximation, contribu
tions from the occupied-occupied orbital mixing are co
rectly excluded from the density response functionxss asso-
ciated withGis . The approximations forGis andxss make
it possible to analytically invert the latter after fixing of th
asymptotics ofxss

21.
An explicit expression for the exchange potentialvxs in

terms of the occupied KS orbitals is derived via the analy
6-9
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cal inverse ofxss . The resultantvxs is naturally subdivided
into the attractive long-range Slater potentialvSs and a re-
pulsive short-range ‘‘response’’ potentialv resps . The present
potentialv resps is compared with the corresponding potent
v resps

KLI of the KLI approximation. In addition to the ‘‘diago
nal’’ structure ofv resps

KLI with contributions from the densitie
uc isu2 of the occupied KS orbitals,v resps possesses also a
‘‘off-diagonal’’ structure with contributions from the
occupied-occupied orbital productsc isc j s* . The difference
betweenv resps and v resps

KLI might be small, in particular, for
atomic systems, for which the diagonal steps represent
atomic shell structure, while the off-diagonal steps produ
the intershell corrections. However,v resps might provide a
definite improvement overv resps

KLI in applications to various
molecular properties. In particular, application within t
finite-field approach ofv resps can improve polarizabilities
and hyperpolarizabilities of molecular chains calculated w
DFT, because, as was shown in Refs.@23#, @25#, the proper
treatment of the occupied-occupied orbital mixing in t
orbital-dependent KS potential is of importance for the
properties. Preliminary results of finite-field calculations f
the hydrogen chains Hn confirm these expectations.

An expression for the response partf resps of the exchange
kernel is derived through a direct differentiation of th
presentv resps . The orbital structure off resps has as a distin-
guishing feature an ‘‘off-diagonal’’ orbital structure with th
two-electron coupling of cross productscms(r2)cns* (r2) and
cks(r1)c ls* (r1) of the occupied orbitals. Unlike this, the ke
nel f resps

KLI SH derived from the KLI potential with the SH ap
proximation forGis depends on the orbital densitiesuc isu2

only.
The difference betweenf resps and f resps

KLI SH is shown to be
crucial for the corresponding potentialsdv resps anddv resps

KLI SH

generated by the kernels in an external electric field. I
established for the case of a symmetric molecular chain
f resps

KLI SH fails to produce any field-counteracting term. Co
trary to this, as is shown in the simple case of He2 , the
presentf resps generates a field-counteracting termdv resps

~fc) .
The mechanism behinddv resps

~fc) is the ‘‘self-coupling’’ of the
cross productcgcu of the symmetric and antisymmetric o
bitals. Similar self-coupling terms are indicated for the ge
eral case of a symmetric molecular chain.

The established spatial nonlocal orbital structure off resps

is expected to be of importance for a proper description
the response properties~polarizabilities, hyperpolarizabili-
ties, excitation energies! of molecular chains with TDDFPT
Evidently, the standard TDDFPT approximation, the ad
batic LDA completely lacks this structure, which is the re
son for the poor results mentioned in the Introduction. Th
the present expression forf resps might serve as a basis fo
improved models and approximations. Another important
rection of further development is an extension of the pres
exchange functionalsvxs and f resps to full exchange-
correlation ones with a proper incorporation of the effects
Coulomb correlation. Work along these directions is
progress.
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APPENDIX

In this appendix the analytical expression for the inver
xss

21 of the density response function is derived with t
technique developed in Ref.@6#. As the term with the orbital
energy differencesDe i j s vanishes in Eq.~2.13!, one can re-
write xss as follows:

xss~r1 ,r2!52
2

Dẽs
d~r12r2!rs~r1!

1
2

Dẽs
(
i j

Ns

nisc is* ~r1!c is~r2!c j s~r1!c j s* ~r2!.

~A1!

Then, our goal is to construct the inversexss
21, which satis-

fies the condition~1.5!. Note, however, that~1.5! determines
xss

21 only up to a constant, i.e., adding a constant toxss
21

gives another solution of Eq.~1.5!. To fix this constant ac-
cording to the procedure of Ref.@6#, we exclude the diagona
term 2nNscNs* (r1)cNs(r2)cNs(r1)cNs* (r2)/Dẽs with the
densitiesucNs(r1)u2 anducNs(r2)u2 of the HOMOcNs from
the sum in Eq.~A1!

xss~r1 ,r2!52
2

Dẽs
d~r12r2!rs~r1!

1
2

Dẽs
(
i j

8 nisc is* ~r1!c is~r2!c j s~r1!c j s* ~r2!

~A2!

and the primed sum in Eq.~A2! indicates the above
mentioned exclusion. As will be shown below,xss

21 corre-
sponding to Eq.~A2! goes to zero asymptotically@cf. Eq.
~3.6!#, which eventually produces the zero long-range
ymptotics of the potentialvxs . To constructxss

21 which,
taken together with Eq.~A2!, would satisfy Eq.~1.5!, we
split xss

21 into a locald function part and a remainder,

xss
21~r1 ,r2!52

Dẽs

2rs~r1!
d~r12r2!1cs~r1 ,r2!. ~A3!

For the functioncs an equation follows from Eqs.~1.5!,
~A2!, and~A3!:

d~r12r2!5E xss~r1 ,r3!xss
21~r3 ,r2!dr3

5d~r12r2!2
1

rs~r2!

3(
i j

8 nisc is* ~r1!c is~r2!c j s~r1!c j s* ~r2!
6-10
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2
2

Dẽs
rs~r1!cs~r1 ,r2!

1
2

Dẽs
(
i j

8 nisc is* ~r1!c j s~r1!

3E c is~r3!c j s* ~r3!cs~r3 ,r2!dr3 , ~A4!

so that

cs~r1 ,r2!52
Dẽs

2rs~r1!rs~r2!

3(
i j

8 nisc is* ~r1!c is~r2!c j s~r1!c j s* ~r2!

1
1

rs~r1! (i j
8 nisc is* ~r1!c j s~r1!

3E c is~r3!c j s* ~r3!cs~r3 ,r2!dr3 . ~A5!

Then, for the functionds defined as

ds~r1 ,r2!5
4rs~r1!rs~r2!

~Dẽs!2 cs~r1 ,r2! ~A6!

one has

ds~r1 ,r2!52
2

Dẽs
(
i j

8 nisc is* ~r1!c is~r2!c j s~r1!c j s* ~r2!

2
2

Dẽs
(
i j

8 nisc is* ~r1!c j s~r1!a i j s~r2!, ~A7!

where

a i j s~r2!52
Dẽs

2 E c is~r3!c j s* ~r3!ds~r3 ,r2!

rs~r3!
dr3 .

~A8!

Inserting Eq.~A7! in Eq. ~A8!, one obtains a system of equ
tions for the functionsa i j s :

a i j s~r2!5(
kl

8 Ni jkl
s @cks~r2!c ls* ~r2!1akls~r2!# ~A9!
hy

04250
with the coefficientsNi jkl
s being defined in Eq.~3.4!. The

prime over the sum means that both the orbital den
ucNsu2 and the functionaNsNs are excluded from the sum
mation. A general solution to Eqs.~A9! can now be found.
As the productscksc ls* are only finite in number, the mos
general expression fora i j s is a linear combination of thes
functions,

a i j s~r2!5(
kl

8 b i jkl
s cks~r2!c ls* ~r2!. ~A10!

This gives an equation for the coefficientsb i jkl
s ,

b i jkl
s 5Ni jkl

s 1(
mn

8 Ni jmn
s bmnkl

s , ~A11!

or in matrix form

b̄s5N̄s~ Ī2N̄s!215~ Ī2N̄s!21N̄s5~ Ī2N̄s!212 Ī ,
~A12!

where Ī is the matrix~3.5!.
From Eqs.~A10!–~A12! it follows for ds that

ds~r1 ,r2!52
2

Dẽs
(
i jkl

Ns

nisj i jkl
s c is~r1!c j s* ~r1!

3cks~r2!c ls* ~r2!,
~A13!

j i jNsNs
s 5jNsNskl

s 50.

We then have our final expression for the inverse den
response function,

xss
21~r1 ,r2!52

Dẽs

2rs~r1!
d~r12r2!2

Dẽs

2rs~r1!rs~r2!

3(
i jkl

Ns

nisj i jkl
s c is~r1!c j s* ~r1!cks~r2!c ls* ~r2!,

j i jNsNs
s 5jNsNskl

s 50. ~A14!

The functionxss
21 has the zero long-range asymptotic beha

ior ~3.6! due to the exclusion of the HOMO orbital densi
ucNsu2 ~which dominates at the asymptoticsur1u→` and
ur2u→`! from the numerator of Eq.~A14!, while it is present
in the densities in the denominator.
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