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Single-electron measurements with a micromechanical resonator
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A mechanical electroscope based on a change in the resonant frequency of a cantilever one micron in size in
the presence of charge has recently been fabricated. We derive the decoherence rate of a charge superposition
during measurement with such a device using a master equation theory adapted from quantum optics. We also
investigate the information produced by such a measurement, using a quantum trajectory approach. Such
instruments could be used in mesoscopic electronic systems, and future solid-state quantum computers, so it is
useful to know how they behave when used to measure quantum superpositions of charge.
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I. INTRODUCTION servable of a quantum system. If the system is in a superpo-
sition state, the observable will not have a definite value until

As devices for processing and storing information becomeome sort of measurement is carried out. Any interesting
smaller, the demands on the readout technology become ev@dantum information device will produce such superposi-
greater. This is especially true for proposed solid-state quarfions. The process by which the superposition is reduced so
tum computers that store information in various quantumthat the observable has a certain value imposes a minimum
degrees of freedonfqubits: in quantum dotd1], nuclear level of noise in the measurement, which might be increased
spin [2,3], superconducting islandg}], and persistent cur- by the same sources of technical noise that affect measure-
rents[5], to cite just a small sample. ments of classical systems.

Kane has proposed storing a qubit in the spin of a single In the proposed readout scheme for the Kane computer, a
phosphorous nucleus implanted in silicon. In his originaldonor electron is induced to tunnel between two phosphor-
readout scheme, this was coupled by the hyperfine intera@us nuclei, depending on the state of the nuclear spins. In
tion to the spin of the donor electron bound weakly to thegeneral, the nuclei are in a superposition of a state that would
nucleus. A surface gate would then draw the electron towardgermit tunneling, and one that would prevent it. After this
an adjacent ancilla donor, to which it might tunnel, produc-tunneling has occured, the electron is left in a superpostion
ing a doubly charge® ~ state. Under appropriate bias con- of two position states, each localized on one nucleus. It then
ditions, this transfer can only occur if the nuclear spin of theinteracts with the electroscope, and in general, with other
qubit is oriented opposite the ancilla. degrees of freedom in the crystal lattice, with the result that

A spin measurement is thus reduced to detecting the trangve see it become localized on one nucleus or the other, so
fer of a single-electron charge to the ancilla. This can bdhat the electroscope gives a definite signal that the charge is
done by a sensitive electroscope such as a single-electrgiiesent or absent.
transistor[6]. However, the techniques used for fabricating Note that we are not discussing an ensemble of quantum
microelectronics have recently been adapted to build mesystems subject to a single measurement, but rather a single
chanical structures at micron and even nanometer sfajes guantum system subject to a dynamical measurement pro-
and mechanical electroscopes sensitive to small numbers 6€ss. In such a situation we need to be able to describe the
electrons have been construct@]. We will consider how instantaneous conditional state of the measured system as the
effectively such devices might perform the measurements reneasurement results accumulate. This is quite different from
quired for quantum information processing. the usual situation that prevails in condensed-matter systems,

Classical treatments of measurement sensitivity assumé&here typically, a measurement is made on a large number of
that the observable being measured has a definite valu€dlmos) identical constituents undergoing quantum dynam-
which influences the measuring instrument in a definite wayics, and the measurement results are already an average over
The only question is how much data we must gather to relian ensemble. Fortunately, mathematical techniqkaswn
ably distinguish this effect from other influences on the ap-2s quantum trajectory methgdare available to describe the
paratus, which produce noise. Once we know the size of theonditional dynamics of a single quantum system subject to
effect we wish to distinguish, and the level of noise in themeasurement with added noise, and these methods have been
system, some elementary statistics tell us the integration timapplied with considerable success to experiments in quantum
required for a reliable measurement. optics and ion trap§9]. Recently, such methods have been

This assumption does not hold when we measure an ol@pplied to mesoscopic electronic systeh8—12.

. . . Il. THE MECHANICAL ELECTROSCOPE
*Electronic address: polkinghorne@physics.ug.edu.au; Work sup-

ported by the SRC for Quantum Computing Technology. The operation of a micromechanical electroscope is
"Electronic address: milburn@physics.ug.edu.au; URL: http://shown schematically in Fig. 1. The active part is an elec-
www.physics.ug.edu.au/people/milburn/ trode, mounted on a cantilever no longer thgan, which is
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.- Signal During the readout of a Kane computer, a single-donor
el (7 ety electron may occupy a bound state around either of two ad-
jacent nuclei. We will denote these distinct spatial states by
ly» and |¢). Only one state(suppose|)) couples to the
electroscope—this is how we can distinguish them.

During the readout, the surface gates will be configured to
produce tunneling between the two nuclei, depending on the
state of the nuclear-spin qubits. This entangles the charge
states with the qubit staté$) and||). We will denote the
combined states by0)=|1)®|¢), and|1)=||)®|¥), ac-
cording to the number of electrons interacting with the elec-
troscope, which we will represent by the operator
=|1)(1|. In general, the measured qubit will be in a super-
position state, so the total state will take the form

G -() cnarge | W) =a|0)+b|1). (2.2

Table | gives numerical parameters for a cantilever elec-
FIG. 1. Operation of the mechanical electroscope. A chargeroscope fabricated in 1998. The frequency and operating
trapped near the surface of some material is coupled to a cantilevgemperature of this electroscope meant that themal noise
suspended above the surface, as explained in the text. The cantilgompletely dominated any quantum effects. Besides lower-
ver is driven at a rat& and damped by a combination of mechani- ing the temperature, this could be changed by using a canti-
cal friction and reaction from the electronic readout loop at ayate |ayer with a higher resonant frequency, and such devices
If an excess charge is present on the surface, the frequency of tigyye heen fabricated. However, the sensitivity of the electro-
pendulum is increased byw. For simplicity, the figure shows a g.qhe gepends on the frequency changing significantly when
simple pendulum, but in practice, the cantilever would be a tor'change is present, and this might not be the case in higher-
sional pendulum, oscillating due to strain in the material. frequency cantilevérs

: . We note that the interaction Hamiltonian commutes with
set in motion near the charge to be measured. The electroqRe number operatd, . Furthermore, in the absence of tun-

is held at constant potential, so that its motion with respect tEe”ing’ the free Hamiltonian for the charge state itself is

Induced
Charge

Electrode

Fhe unknown charge induces a flow of charge between it an roportional to the square of the char@apacitive electro-
its voltage source. The induced charge gives the electrosco @atic energy and itself commutes with the charge number

electric potential energy as We_II as elastic, and changes_ itéperator. In the presence of the measurement, the number
resonant frequency. If. We envision the electroscope b_e'”%perator is thus a constant of motion. Such a measurement is
used to readout a qubit in a quantum computer, there will b nown as a quantum nondemolitid®ND) measurement

tvyo charge states we wish to distinguish. We will denotg th 13]. Number eigenstates are not changed by the coupling to
difference between the resonant frequencies of the cantilev e apparatus, and moments of the number operator are con-

in these two states byw; it is determined by geometry and qia¢'in time. On the other hand, any state that is initially a

the mutual capacitance between the electrode and the Me&herent superposition in the number basis will be reduced to
sured charge distribution. . . . . a mixture diagonal in this basis, a process known as deco-

W? will assume the mef:hanlcal motion of the Cant'lever,'%erence. In an ideal quantum nondemolition measurement,
elagtlc and tregt tas a S|mplelz_harmon|c' oscillator. Then $he probability distribution for observed results at the con-
motion, including the capacitive coupling to the target ) sion of the measurement should accurately reflect the in-
charge, is described by a harmonic-oscillator Hamiltonian yingjc probability distributions of the quantum nondemoli-
tion variable in the quantum state at the start of the
measurement.

This model, where the electroscope performs a QND
where wg is the resonant frequency of the cantilever in themeasurement of the coupled charge, is idealized. If such an
absence of surface charge, antthe annihilation operator for electroscope was used to measure any interesting device, the
its oscillation. The observable; will be defined shortly. motion of the cantilever would disrupt the distribution of the

H=7(wy+ dwny)c'c, (2.2

TABLE I. Data for an electroscope fabricated by Cleland and Ro{&ks

Operating temperaturé 42 K kgT=3.6X10 % eV
Resonant frequencyy/2m 2.6 MHz hwe=1.1x10"8 eV
Torsional spring constan 1.1x 107 1°Nm

Amplitude 6,5 30 mrad

Frequency shift per electrofw 0.1 Hz

Quiality factorwq/y 6.5x 10°
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charge being measured. The nature and extent of this disrupsth the master equation methods of quantum optics. These
tion would depend on the electrical properties of the systenmethods assume that the coupling of the resonator to the
being measured; for the Kane computer, determining these dissipative degrees of freedom is sufficiently weéak,16.

an unsolved problem in atomic physics. In general, back acSpecifically, we assume that,<wq,kT/%.

tion (and interference from sources unrelated to the measure- Under these assumptions, the coupling between the oscil-
men) imposes a time limit on the measurement, after whichlator and the thermal mechanical reservoifig]

the charge state will have been disrupted and the results will

be meaningless. The results of this paper determine whether

the electroscope can measure the charge with the necessary Hw=ym[ca'(t)+cla(t)], 2.4
precision within that time.

To detect the change in resonant frequency, we must set T . .
the cantilever in motion with some driving mechanism. mwherea(t), a'(t) are bosonic reservoir operators. The state

the device described in Table I, this was supplied by drivingOf th? reservorr V.V'” be taken t(.) be that of a Planck thermal
quilibrium density operator with temperaturg, .

an alternating current through a wire on the cantilever in the® Wi der i detail th hanism by which
presence of a magnetic field. The current induced by the fiel € now consider in more detail the mechanism by whic
e small changes in resonance frequency induced by the

in another wire was used to monitor the response of th o .
cantilever to the driving proximity of a target charge are transduced. This may be
' done[8] by fabricating a wire loop on the mechanical oscil-

However, the details of the driving are not important. AsI ‘ d placing the whol ws | " "
long as the cantilever is coupled weakly to the driving sys—a or-and placing thé whole apparatus In a strong magnetic

tem and is not damped so strongly that its state changefgeld'/'\s the mechanical oscillator moves, an induced voltage
significantly over the period of its vibratiofin other words, IS set up in the loop and we may measure the induced cur-

it has high finesse the effect can be described by a Hamil- rent. When the current for the driving circuit is such as to
tonian. In the interaction picture, this takes the fohidi(¢ drive the mechanical oscillator at its resonance frequency,

<€), wnere: s the srengih of the crvng in unis of 13 AUCHER SuTert s futof phace wif e drang curent
frequency. If the finess of the cantilever is low, noise from ' 9 9

the driving system affects its motion significantly, and thefrequency of the oscillator, the induced current shifts in

dynamics due to the driving cannot be approximated by é)hase W'Fh respect to the driving current. We can detect this
Hamiltonian. phase shift by an electrical comparison of the driving current

The frequency shift could be detected in a number 01and induction current. This is essentially homodyne detection

ways. We couid Sueep h crivg requency and monior ! VI ' i curent plys he roje of s oca el
amplitude of the oscillations. Or else we could drive the Y

oscillator at a constant frequenay, and then detect the (r:nh:;slﬁ?tlarrr?eor?ton introduces another source of noise for the
change in phase of the oscillation due to the shift in reso- The inductibn current is coupled into an external amplifier
nance frequency when a small charge is coupled; this is the. X P

method analyzed in this paper. We will assume that if thecwcmt that can be treated as a bosonic reservoir, with some

charge state i), the cantilever will be driven on resonance; nglnzero nlcnzet tetrgperatt{lliaS] Te. t‘lr']he readotut cireuit vari-
if it is |1), the changeSw in its resonant frequency will cause able coupled o the cantiever IS thé curren OPGW N
its phase to differ from that of the driving force. The rate of _the readout circuit. We will assume that the coupling is linear

change of the phase of the output current with frequency o | the clljrrgnt atnd é:oc()jrdlnate dﬁgree t%f fretedonll of tget can-
the driving is greatest when the cantilever is driven near it liever. Under standard assumptions, the interaction between

resonant frequency. he mechanical oscillator and the readout circuit is described

We will measure time by the inverse damping rate’. by the interaction picture Hamiltonian,
Then, defining a dimensionless driving strength £/y and
a def[unlngA: 5@/7, the; Ham|l_ton|an for the coherent driv- He=i \/y—E[cTF(t)—cFT(t)], (2.5
ing, in the interaction picture, is

Hp=hE(E+&"h+#AneTe. (2.3  whereT'(t)=b(t)e'“o" with the actual current in the circuit
given byi(t)= Vi wg/2Lzo(b(t) + b'(t)), L being the induc-

In reality of course the mechanical oscillations of the cantance per unit length of the transmission line, andthe
tilever will be subject to frictional damping, and accompany-quantization length. We will assume that the readout circuit
ing mechanical noise. The rate of energy dissipation is specreservoir is bosonic and also in thermal equilibrium at some
fied by the quality factorQ which is the ratio of the temperaturelc.
resonance frequency to the width of the resonance. For linear Using the interaction Hamiltonians for the reservoir cou-
response, this give®= wq/yy , Whereyy, is the decay rate pling [Egs. (2.4 and (2.5], we may obtain the Heisenberg
of energy due to mechanical dissipation. Cleland and Roukesquations of motion for the oscillator and reservoir variables.
[14] have measured quality factors up tex20*. With such  Using standard techniqué&7], the reservoir variables may
quality factors and resonance frequencies approaching gigae eliminated to give a quantum Langevin stochastic differ-
hertz, these devices are approaching low quality optical resential equation describing the dynamics of the oscillator am-
nators. So we will treat the effect of mechanical dampingplitude
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Amplitude Quadrature 104X, where
-0.2 -0.1 0
L 1
N(w,T)= z[coth A w/2kgT)—1]. (2.12
10416 2
3413 ) Note the equation explicitly includes a friction telpropor-
:I'D tional to yg) that arises form the electrical coupling to the
7200 2 readout circuit. The steady-state average amplituge
% =(a(t))_-, is given by
2 :
0.3 5 .= —ae (2.13
03 % " (ymtye) +2id0n;” '
400 £
The actual measured quantity is the current in the readout
oy 0.1 circuit, that is to say the readout variable is an electrical bath
0K variable,b,, at the output from the system interaction. The
0K output amplitudes for both the mechanical and electrical

baths are related to the input variables for these two baths
FIG. 2. The off-diagonal elemez of the density operator is a and the amplitude of the mechanical oscillator[t&]
thermal state displaced by amplitudeandg, which depend on the
temperaturdsee Equation(3.13]. When the cantilever is coupled agut) = Vyma(t) —aj(t), (2.14
to a hot bath, these coherent amplitudes decreaseZ apgroaches
a purely thermal state. The values these amplitudes take in the Cle- [ R
land and Roukes electroscope at temperatures from absolute zero up bou(t) IVyea(t) —bin(t). (2.19
to 10 K are plotted in the complex plane, in units of the ground- . . .
state fluctuations. The amplitudes of the diagonal eleméatsdB The average value of the electrical readout amplitude in the

do not vary with temperature, but remain at the 0 K values. (S;efg)y state is then found using equations Eg$) and

da . . ™M YE

a=—l5wa—l5—73—7a+ main(t)*' \/ﬁbin(t)y (boupd = Vyean, (2.1
(2.6

wherea,, is given in Eq.(2.13. We see that the steady-state
where aj,(t),bi,(t) are the quantum noise sources for theamplitude of the cantilever, and hence, the output electrical
mechanical and electrical reservoirs, respectively. Theseignal undergoes a change in phase and amplitude, see Fig.
noise terms are defined by correlation functions, which ar@. If we monitor the component in the imaginary direction

Fourier transforms of (that is, in quadrature with the driving sigrial we will have
maximum sensitivity to this change in phase. Furthermore, it
(ain(t))=(bin(t))=0, (2.7 is desirable to havé&E as large as possible so that small
. o changes in phase translate into large changes in the quadra-
(ap(w)aip(w))=nlw,Ty)d(o—o'), 2.8 ture.

" o We can now proceed to calculating the noise power spec-
(an(w)ap(w) )=(w,Ty)+1)dw-’), (2.9  trum for the measured current. The calculation is analogous
. o to that for a double-sided cavity given in referedg]. We
(bip(@)bip(w) " y=n(w,Tg)d(w—w’), (210  now do not work in the rotating frame but return to the

. N , laboratory frame. The Fourier component of the output op-
(bin(@)bjp(@)" ) =[N(w,Tg) +1]6(w— '), (2.1)  erator for the current is given by

o e [(ve— ym)/2—i(wo— ®) —i Ny ]bin(®) =i Vye&(®) + Ve ymain(®) -
ouf @) = [(ve+ym)2+i(wyg— w)+idwng] ’ (.17

where&(w) is the Fourier component of the driving ampli- noise in the driving circuit. We will treat this as entirely
tude. If the driving is noiseless and monochromatit) classical.

=E&8(w— wy). However, in reality there would be some  Equations(2.13 and (2.16) suggest that the signal will
noise in the driving amplitude derived from the electrical appear in the quadrature of the current out of phase with the
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driving force, defined by where
X2, 0i ) =1[Bul ) ~boul )], (218
with Fourier component, o, {w). The measured power Blw)= (YE_YM)/Z_f((w_wO)jLéwnl),
spectrum is then given by the correlation function, (vet+ ym)/2+i((w—wo) + dwny)
Sz,ou(wuw,):<X2,oul(w)axz,ou&wl)>- (2.19
Using the specified states for the electronic and mechanical Alw)= {757’"" _
noise operators, we find, (ve+ yml2) +i((0— wg) + dwny)

S0 @, 0")=[|B(w)|*{2N(w,Tg) + 1}
Py o, To estimate the signal-to-noise rati®NR), we evaluate the
HA(@)[H2n(w, Tw) + 1} 80— w"), spectrum at the driving frequendthat is to say, at the cen-
(2.20  tral Fourier component of the coherent driving

{[(ve— ym)/2]1?+ (Swny)?} [ 2n(w,Te) + 1]+ yeym[2N( @, Ty) + 1]
[(ym+ ¥e)/2)°+ (Swn;)? '

Equations(2.13, (2.16, and (2.18 show that the magnitude of the Fourier component of the mean signal at the driving
frequency is given by

S(wo) = (2.21)

« 8 yeown,
|< 2,0U(wD)>|_ (,yM+yE)2+45w2nl'

(2.22

The signal is a sharp peak at= wq= wq, in which there is a noise pow&(w;) per root Hertz. So the SNR per root Hertz
is |<X2,out(wD)>|2/S(wO)i or

16veE28w?n
SNR= YE 1

- [(ym+ ve)*+400 N1 ][ (ve— ym)*+ 430’ N ][ 200, Te) + 1]+ yeyu[2n(w, Ty) + 1] (223

If the SNR required for the measurement is SNhen we  charge and oscillator. First, we can ignore the results of the
must average over noise for a tintesuch that SNR measurement and average over states of the environment
=SNRAL. If we setn; =1, so we are measuring the charge completely. In this case, the evolution of the charge and os-
on one electron, the sensitivity is thent=eSNR /SNR. cillator is described by a master equation. Effectively we are
averaging over the ensemble of partial states distinguished
by different measurement records

Second, we can ask for the conditional states of the charge
and oscillator, given a particular measurement record. Each

When we measure a quantum system, we bring an exnember of the ensemble of partial states is associated with a
tremely large set of independent observables of our instrudistinct measurement record of the instrument. For it to be an
ment and its environment into correlation with the measurecffective measurement, observers must be able to distinguish
system observable. The environment of the electroscope hdise states of the instrument. In other words, the charge must
two distinct components. First, there is the environment asend up correlated with some simple macroscopic quantity,
sociated with the mechanical oscillator, which is responsibldike the current in a wire or the position of a pointer on a
for mechanical damping and noise. Second, there is the erscale. It is then possible to ask for the particular partial state
vironment associated with the electrical readout, which if the measured system that is correlated with a known
responsible for Johnson-Nyquist noise in the electrical cirpointer value. In other words, we need to be able to specify
cuit, and ultimately provides the measured result. Howeverthe conditional state of the system given a readout of the
we are interested in what the measurement tells us about thestrument variable that distinguishes different charge states.
system, not in the exact quantum state of the instrument anthis is the conditional, or selective, description of the mea-
its environment. Useful instruments must operate indepensured system. Of course, if we average over the readout vari-
dently of the detailed state of their environments. ables, we must obtain the unconditional description of the

There are two ways to describe the partial state of thesystem.

III. UNCONDITIONAL DESCRIPTION OF THE
MEASUREMENT
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We begin with the unconditional description of the mea-or A if it were absent. HenceA and B must be density
surement. The dominant sources of excess noise that limgperators, and Eq$3.5) and (3.6) have the form of master

the quality of the measurement are the thermal mechanicalguations for a damped harmonic oscillator. Such equations,
noise and thermal electrical noise on the readout circuit. Ungnd their solutions, are familiar to quantum opticians. The

der certain Markoff and rotating-wave assumpti¢hg,19,

stable solution is a displaced thermal state, which can be

the explicit states of the mechanical and electrical reservoirgritten
may be traced out. This leaves the following master equation

for the density operator of the composite system of charge

and cantilever,

p(H)=—i[u(en)?e'e,p]-i[EE+EN),p]

+ 2 v+ DDlclp+ ynDlcp, (3D

where the superoperat@r is defined by
1
Dlclp=cpct— E(CTCP+PCTC)- (3.2

This can be written in a more standard form
p=—i[u(en)?e'e,p]-i[E(&+E),p]
+y(n+1)D[clp+ynD[c']p, (3.3

where Y=ym+t Ve, and n=[yun(w,Ty)

+7ven(o,Te) 1/ y.

We will begin solving this master equation by separating
the dynamics of the cantilever and the charge. As before, wi
assume there is only one charge in the system, and consid@
the charge statel®) and|1). We can decomposg into a 2

X 2 matrix of cantilever operators

p=Al0)(0] +B|1)(1+Z|0)(1| + ZT|1)(0]. (3.4

Sincep is Hermititan, we need only three cantilever opera-(.3'7)

tors, A, B, andZ. We can now decompose E(B.3) into

three independent equations involving only cantilever opera-

tors:

dA o A
mz—|[E(é+é*),A]+(n+1)D[C]A—I—nD[CT]A,

(3.9
dB N . .
E=—|[E(é+é*)+AéT(“:,B]+(n+1)D[C]B+nD[cT]B,
(3.6
dz A .
a=—|[E(a:+<‘:T),Z]+|Aza:Te
+(M+1)D[c]Z+nD[c]Z. (3.7

p=(1—e )D[a(t)]e M D a(1)], (3.9

whereD(a) is a displacement operator exi{—«*¢), and

in the steady-state=7% wq/k,T. In the limit of low tempera-

ture kT<#hwg, this becomes a coherent staé(a|. In the
steady state, the cantilever has as many thermal phonons as a
resevoir mode with the same frequency, i.e,*=n/(n

+1). Its coherent amplitude reaches a balance with the
driving and damping after a time aroundy2/

2iE
a(t)=age <2— — (- e 2y (3.9
1 n=0
= ) 1
““l1+2ia n=1 (310

During measurement, the cantilever stateand B are dis-
placed thermal states with distinct coherent amplitudes.

As the measurement proceeds, we expect the charge state
to evolve from a coherent superposition|@f and|1) to an
gmoherent mixture; in terms of our decomposition, we ex-
ct the off-diagonal terrd to decay with time. An operator
of the form

Z=z(t)D(a)exp—A&'e)DT(B), (3.11)
where z(t) is a (possibly complex amplitude, solves Eq.
if «, B, \, andz obey the following differential equa-

tions:
dl _ . _
&=(n+1)lz—(2n+1+|A)I+n, (3.12
da_ ) _ _ 1 i
T —|A+(n+1)l—n—§ a—iE(1-1), (3.13
at (n+1)|—n—§ b+iE(1-1), (3.19
dk _
—=—iE(a—b)+(n+1)(I+ab—1)+1. (3.1

dt

Here, | =exp(—\), a=a—I1B, b=g*—la*, and k=logz
+a* —(112)(|a|? +[8).
In general, these equations can be solved numerically.

As before, we are now measuring time relative to the dampHowever, there are some special cases where we can get

ing time 14.

interesting information analytically. First, we consider the

If we measured the state of the charge by means othefero-temperature limit, where the off-diagonal te#ris a
than the cantilever, the state of the cantilever immediatelyyrojectorz|a)(B|. The amplitudesy and B are the ampli-
after the measurement would Beif the charge were present, tudes of the diagonal terms given by H8.10, andz is a
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FIG. 3. The state of the cantilever takes some time to become FIG. 4. When the measurement has been running for a time
entangled with the charge after they begin to interact, as the cantiround 14, and the cantilever amplitudes have reached their steady
lever state moves towards its steady value. After this, the chargstate, any remaining coherence between the two charge states de-
state decoheres rapidly. Here, the coherence between the two charggys exponentially. Here, the rate of this decay is plotted as a func-
states is plotted as a function of time for an array of temperaturegion of temperature, for the device described in Table I. The maxi-
The cantilever is initially in a thermal state at the appropriate tem-mum decay rate of-3.2x10°y occurs at 130 mK. Beyond this
perature. Note the charge state has decohered long before the caigint, the decay rate decreases with temperature, possibly because
tilever reaches its steady amplitude, which occurs after a time 1/ the increased thermal noise makes the coherent amplitude of the

cantilever harder to distinguish.

complex amplitude. Once and 8 have reached their steady o

state, the trace of the off-diagonal term, decays exponentiallfhe extra thermal noise increases the overlap between the

with a rate|a— B|?/2. oscillator states corresponding to the presence and absence of
If we assume the detuning is small, and hence,8|  charge.

~|a|=2E, The difference between the steady-state ampli-

tudes of Eq(3.10 is IV. CONDITIONAL DESCRIPTION
16E2A2 We now turn to the correlations between the charge and
|a—,8|2:1+4A2 ~4|al?A%. (3.16  the reservoir system. These are important because we must

be able to distinguish the results corresponding to different
] ] . _ charges to make a measurement of the charge at all. They
C_Ieland and Roukes give e_nough_ |_nformat|_on about the_lr decan be studied most simply using the quantum trajectory
vices for us to calculate this explicithB]. Using the data in  thegry, which associates charge states with possible observed
Tgbl_e I, we can calculate from the definition of the anni-  gtates of the apparat(i20].
hilation operator for a torsional pendulum We will assume we monitor the current in the electrical
reservoir; this is equivalent to an optical homodyne measure-
R K ment[21]. The inferred state of the charge as such a mea-
a=(C)= Two< Omax) = 5.3 10°. 317 surement proceeds is governed by a Wiener process, which is
generated by a stochastic incremdi. The average oW

. . over the ensemble of possible measurement results is zero.
The normalized detuning can be calculated from the fre- P

. . Since the deviation of the Wiener process representetithy
uency shift per electron and the measured quality factor . .
d y P a y increases proportional tgt, the average ofdW)? is dt. The
simplest way to manipulate such differentials is to modify

A=Swly= 2m5vQ —2.4x10°% (3.18 the chain rule, to give what is known as Ito calculus.
wWo Given a particular measurement result, labeled by a
Wiener incrementlW, the evolution of the charge and can-

The decoherence rate is then 820°y or 8.1x 10°s ™. tilever is

As n increases from zero, the amplitudesind 8 for the

. - - 2
off-diagonal operato?Z are reduced, as shown in Fig. 2. The _ i“ Y i X X
initial decay ofz(t) is shown in Fig. 3, and the steady-decay dly)= i% Hdt 2 ce-2 2 ct 2 dt
rate, i.e., the limit ofz’ (t)/z(t)| whent>1/y, in Fig. 4. At
i X

Iovy temperaturegbelow 1?0 mK, the mcrease@ thermal +y c—<§>)dw}|¢>. @.1)
noise from the bath causesto decay more rapidly as the

temperature of the bath is increased. Contrary to expecta-
tions, the steady decoherence rate of the charge superpositigvhen we insert the charge and cantilever Hamiltonian, and
decreases as the bath temperature increases above 130 nmdrmalize time by the damping rate as before, this becomes

042318-7



R. E. S. POLKINGHORNE AND G. J. MILBURN PHYSICAL REVIEW A4 042318

dt+

d|<//)={—i{E(C+cT)+AnCT}dt—%(CTC—2<2>C d|pq|=—%((x>ﬁ—<x)a)z|pq|dt. (4.9

+<f> 2 . <§> ) w1 4.2 If the difference between the charges associated with
2 2 ' ' states|0) and |1) is e, then in the state|«0)+q|B1), the

uncertainty in the charge is given by

When a particular functionW is selected from the Wiener

ensemble, this can be solved to show the evolution of a pure [((ne)®)—(ne)?]?=¢e|pq|. (4.10

state|¢). These states form an ensemble with density opera-

tor p. Of coursep can be decomposed into many ensemblesFrom Eq.(4.9), this decreases exponentially as the measure-

so the evolution generated by E@.2) is not unique. The ment progresses, at a rate

details are given in Carmichag2Q].

Mixed states of the cantilever and charge must be written 1 ) 8AZE?
in the form of Eq.(3.4). However, pure states can always be g (¥ (x)a) “(1+4A29)72 (4.1
written as

This differs from the square-root decay of classical uncer-

tainty as measurements are averaged over time, but exponen-

. . .. _tial decay is what we would expect for decay of coherence

as before we will assume the state of the cantilever is |n|[l3] For the device described [8], this is almost equal to

tially coherent, so that the decoherence rate. In real devices, thermal noise will
cause the trajectory states to be mixed, however, the evolu-

=p|a0)+ . 4.4 : X : ' ’
|¥)=pla0)+a| 4] .4 tion of such mixed states is much harder to calculate.

() =IA)e|0)+[B)e[1), 4.3

The differential of a scaled coherent staf@)|3(t)) is
V. DISCUSSION

|8)+qpdtct|B). (4.5 To estimate the time required for our measurement, we
have calculated how long it takes for an initially pure super-

. . . . position of charge states to be reduced to a mixture, and how
Comparison with Eq(4.2) gives Egs(3.9) for the evolution long (in some senseit takes us to find out which charge

?r]:actf andg as before. Some Ito calculus manipulations ShOWeigenstate we have been left with. While these questions are

interesting in their own righ{they composed the deepest
dlal2= 2 _ dw, 4.6 mystery of physics for the best part of a cenjuitycould be
lal*=lpal*({x)a (x)p) 4.6 argued that they do not reflect the way measurements would

where(x), is the expectation value of the amplitude quadra-P€ Used in a real computer. _

ture x in a coherent statéw), which is just 2 Rea. The The most that we could do with measurements on pure

normalization ofy) requires thatl]p|2= —d|q|2. states is state preparation. In a coherent quantum computer,
We need to compare the gain in knowledge shown by thighis would be rather pointless though, since if we know the

trajectory picture to the decay of coherence modeled by th#nitial state, we could just rotate it into the eigenstate we

master equation. The results of the measurement are tHgant. We carry out measurements to find out something we

probabilities|p|? and |g|2 the pure state that the observer don't know: in other words, we apply them to mixed states,

1
d(q|B>)=(dq—§c|dIBI2

will infer from these has a density operator with a view to finding out which of the possibilities is real.
Information theory provides tools to quantify this, such as
p=1p|2|0)(0] +|q|?|1)(1|+|pa|(|1)(0| +|0)(1]). conditional entropy and mutual information. Unfortunately,
4. calculating any of these requires knowledge of the ensemble

of trajectories generated by each component of the mixture,
The off-diagonal terms in this have magnituga|; we can  and the overlaps between them. In general, it is hard to find
average ovedW to see the behavior of the density operatorthe probability distribution of trajectories; we usually just

for the ensemble of measurement results. calculate averages. It might be worth doing this numerically,
Some more routine Ito calculus gives the evolution ofhowever.
this: There is a more straightforward limitation to our analysis:

in present-day devices, the thermal effects that we have ne-

1 lected in the trajectory treatment utterly dominate the
dlpal=—[pd §(<X>ﬁ_<x>a)2dt 3acuum noise we r{ave c):)nsidered. Hence,)/the measurement
time will be limited by the need to average classical fluctua-
tions. It is possible that future devices operating at higher
frequencies will reduce the level of thermal noise so that
quantum effects will be important. This presents the remark-
Since the average afW over different measurement results able prospect of a solid cantilever with position and momen-
is zero, on average tum known to the limit allowed by the uncertainty principle.

1
5 (PP A (0= (0 )dW|. (4.8
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