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Geometric strategy for the optimal quantum search

Akimasa Miyake* and Miki Wadati†
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We explore quantum search from the geometric viewpoint of a complex projective spaceCP, a space of rays.
First, we show that the optimal quantum search can be geometrically identified with the shortest path along the
geodesic joining a target state, an element of the computational basis, and such an initial state as overlaps
equally, up to phases, with all the elements of the computational basis. Second, we calculate the entanglement
through the algorithm for any number of qubitsn as the minimum Fubini-Study distance to the submanifold
formed by separable states in Segre embedding, and find that entanglement is used almost maximally for large
n. The computational time seems to be optimized by the dynamics as the geodesic, running across entangled
states away from the submanifold of separable states, rather than the amount of entanglement itself.
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I. INTRODUCTION

Quantum computers would be more powerful than th
classical counterparts@1,2#. Suppose an oracle functionf (x)
with xP$0,1%n is given such thatf (w)51 for an unknown
single itemw out of N (ª2n) and f (x)50 for xÞw. Our
purpose is to find the ‘‘target’’w with the smallest possible
number of the oracle evaluations, called the query comp
ity. As is often the case with computer science, the wo
case of query complexity is concerned here. If we try with
classical computer, it is readily found that we needN queries
in the worst case. On the other hand, we can obtainw with a
success probability almost 1 in onlyO(AN) queries, regard-
less ofw ~i.e., for evaluation in not only the worst case b
also the average case!, by Grover’s quantum search algo
rithm @3,4#. Furthermore, Zalka@5# proved that Grover’s al-
gorithm is exactly, and not only asymptotically, optimal f
query complexity if quantum computation consists only
unitary transformations and the final measurement.

Grover’s algorithm in then-qubit case (2n5N states! is
constructed as follows. We first introduce an initial ‘‘ave
age’’ state ua&ª(1/AN)(x50

N21ux& where ux& (x50, . . . ,N
21) forms the orthonormal computational basis. Writing t
overlap between the averageua& and the targetuw& by u as

sin
u

2
ª^wua&5

1

AN
, ~1!

we have Grover’s algorithm:

ua&5F cos
u

2
ur &

sin
u

2
uw&

G , ~2!
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Gª2I aI wª2~122ua&^au!~122uw&^wu!

5Fcosu 2sinu

sinu cosu G , ~3!

uc~k!&ªGkua&5F cosS k1
1

2D uur &

sinS k1
1

2D uuw&
G , ~4!

in the orthonormal basis ofur & „ª@1/AN21#(xÞwux&… and
uw&, where1 denotes the 2n32n identity matrix. Note that
as constructed from alternate inversions for the averageua&
and the targetuw& ~i.e., I a and I w), the kernelG in Eq. ~3!
becomes a real two-dimensional rotation. We find in Eq.~4!
that the targetuw& is obtained with a success probability of
when (k1 1

2 )u5p/2, i.e.,k;(p/4)AN by Eq.~1! in the case
of N@1. Because one query is used for everyI w @i.e.,
I wux&5(21) f (x)ux&] of G in Eq. ~3!, we can identify the
query complexity withk;O(AN).

Our motivation is based on the two points below. Fir
while it is quite straightforward to verify Grover’s algorithm
@3,4# and Zalka’s algebraic proof of its optimality@5#, it has
yet to be understood from the geometric aspects why Gr
er’s algorithm works efficiently. Second, although it is ofte
said that entanglement is useful to enhance quantum in
mation processing, this remains obscure in theory@8# as well
as in nuclear magnetic resonance~NMR! experiments@9#,
after, in particular, Lloyd’s proposition of ‘‘quantum searc
without entanglement’’@10,11#. Thus, in this paper, we char
acterize quantum search from the geometric viewpo
which might shed light on the general strategy for constru
ing efficient quantum algorithms, and discuss how entang
ment gives quantum computation its power.

The rest of the paper is organized as follows. In Sec.
after we briefly review geometric aspects of quantum m
chanics such as the complex projective spaceCP and the
Fubini-Study metric on it, we show that Grover’s algorith
corresponds to a geodesic ofCP. In Sec. III we discuss en
tanglement, which can be considered as the minim
Fubini-Study distance to the submanifold formed by se
©2001 The American Physical Society17-1
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rable states inCP. Entanglement in Grover’s algorithm i
calculated for the generaln-qubit case, and is found to b
used almost maximally whenn is large. In Sec. IV, we con-
struct optimal quantum searches, including Grover’s al
rithm, by means of geodesics, and derive the geometric
essary and sufficient condition for the optimal quantu
search. Finally, Sec. V is devoted to conclusions.

II. GEOMETRIC ASPECTS OF QUANTUM MECHANICS

In this section, we first consider, as a preliminary, the p
state space of a quantum mechanical system as a com
projective spaceCP, a space of rays in the associated Hilb
spaceH @12–18#. Because we discuss the geometric char
teristics of the efficient quantum algorithm itself, we c
safely restrict our attention to the pure states. This imp
that we never treat general mixed states~whole states given
by the density matrix! which appear in some realistic situa
tions. After that, we show that Grover’s algorithm is the ho
zontal lift of a geodesic inCP.

A. Ray and complex projective Hilbert spaceCP
Let uc& be a~not necessarily normalized! vector in a com-

plex N-dimensional Hilbert spaceH(CN). The physical state
of the quantum system inH(CN) is given by a ray, an
equivalence class of vectors up to the overall normaliza
and phase. So the ray can be interpreted as a line inCN

passing through the origin. Note that universal quant
computation@6,7# is defined over rays. A set of rays form
the complex projective Hilbert spaceCP N21 with the asso-
ciated projection mapP,

P: H~CN!→CP N21,

uc&°$uc8& such thatuc8&5cuc&, cPC2$0%%. ~5!

Supposeuc& is given by N-tuples of complex amplitude
zj ( j 50, . . . ,N21)PCN2$0% by choosing a basis inH.
According to Eq.~5!, the rayP(uc&) is represented as

P~ uc&)5~z08 ,z18 , . . . ,zN218 !, ~6!

such thatzj85czj for all j with cPC2$0%. We find, however,
that this representation~6!, called the homogeneous coord
nate representation in algebraic geometry, is not unique
obtain a unique one, we also utilize, for any nonzerozj ~say
z0),

z lª
zl8

z08
5

zl

z0
~ l 51, . . . ,N21!, ~7!

called the inhomogeneous coordinates.

B. Fubini-study metric and geodesics inCP
Now we introduce the Fubini-Study metric, a natural R

mannian metric inCP N21. Let uc(s)& be a normalized vec
tor drawing a curveC in H and udc(s)& the tangent vector
alongC. Note that the normalization̂c(s)uc(s)&[1 implies
04231
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Rê c(s)udc(s)&50. Under a global gauge transformatio
uc&°eiguc& with gPR, the projection, orthogonal to th
Hopf fibers, ofudc(s)&,

udc~s!'&ªudc~s!&2^c~s!udc~s!&uc~s!&, ~8!

is gauge covariant ~i.e., udc'&°eigudc'&). Since
^dc(s)'udc(s)'& is gauge invariant, it can be used to defi
the metric inCP N21, called the Fubini-Study metric, be
tween two nearby raysP„uc(s)&… andP„uc(s1ds)&… as

1

4
ds2

ª^dc~s!'udc~s!'&

5^dc~s!udc~s!&2@ Im^c~s!udc~s!&#2. ~9!

By variation of the action*s1

s2ds of the line element in Eq.

~9!, each extremal gives a geodesicC8, which is found to be
an arc of the great circle lying on some submanifoldCP 1 in
CP N21 @13,14#. Any lift of the geodesicC8 becomes, by
definition, a geodesic inH. In particular, a horizontal lift of
C8, which implies the parallel transport Im^c(s)udc(s)&
50, can be described simply as

uc~s!&5cos
s

2
uc1&1sin

s

2
uc2&, ~10!

in terms of some orthonormal basisuc1&,uc2& in H. Thus the
horizontal geodesic~10! is just a real two-dimensional rota
tion on the plane spanned byuc1& and uc2& in H. Further-
more, according to Eq.~10!, we can interpret the transition
probability P as the distances(P@0,p#) along the geodesic
joining uc1& and uc(s)& @13–16#; i.e.,

P„uc~s!&,uc1&…ª z^c~s!uc1& z25cos2
s

2
. ~11!

We also find that the geodesic represents possible super
tions betweenuc1& and uc2&.

C. Grover’s algorithm as a geodesic

If we take uc1&5ur &,uc2&5uw&, ands52(k1 1
2 )u in Eq.

~10!, we readily find that Grover’s dynamics~4! satisfies the
equation of a geodesic in Eq.~10!, and in addition evolves
along the shorter arc of the geodesic. This suggests
Grover’s dynamics corresponds to theshortestpath from the
geometric viewpoint.

It is significant to note that the original Grover’s algo
rithm evolves with discretek, in other words, it skips along
the geodesic. The interval of skip becomes shorter asN be-
comes larger, and it is almost continuous whenN is suffi-
ciently large. Here we can regardG in Eq. ~3! as a one-step
time evolution, because we are concerned with the comp
tional complexity only in terms of the number of querie
called. This might be called ‘‘coarse graining,’’ where th
dynamics driven by the detailed physical operations is
duced to the effective dynamics~i.e., algorithm! of the query
complexity.
7-2
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III. ENTANGLEMENT IN GROVER’S ALGORITHM

In this section, we explore the geometry ofCP in more
detail to consider relationships between Grover’s algorit
and entanglement. As mentioned in Sec. I, it is very intere
ing whether Grover’s algorithm~and general quantum algo
rithms! takes advantage of entanglement to compute faste
was shown in@8# that Grover’s algorithm both in the idea
pure state case and in the pseudopure states in NMR
generate entanglement during the computation, by form
tracing out all but one qubit. Here we show from the ge
metric viewpoint that entanglement is used and calculat
explicitly.

A. Segre embedding and quadric of separable states

Some of the mysterious features of quantum mechan
e.g., entanglement and so on, appear when we consid
composite system. In the bipartite case, by combining
systems with Hilbert spaceH(Cm) and H(Cm8), the com-
bined Hilbert space is taken as the tensor productH(Cm)
^ H(Cm8) and the associated space of states isCP mm821,
which has a much larger dimension than that of the m
Cartesian productCP m213CP m821 ~its dimension is only
m1m822) of the two individual spaces of states. Thus t
mystery seems to lie in the (m21)(m821) relative phases
Here we consider Segre embedding@15–17# in algebraic ge-
ometry, which enables products of projective spaces to
embedded into a projective space again. Then using the
gre embedding we may characterize entanglement geom
cally.

We first illustrate the idea in the two-qubit case.~Segre
embedding in the general case is given in Appendix A.! A
state of a qubit is represented by the homogeneous co
nates (z0 ,z1)PCP 1. In particular, the spin-up and spin-dow
basis statesu0& and u1& correspond to

u0&↔~1,0!, u1&↔~0,1!, ~12!

respectively @precisely speaking, P(u0&)5(1,0) and
P(u1&)5(0,1)#. Then an arbitrary state (z0 ,z1) is a point on
the complex projective line joiningP(u0&) andP(u1&), in-
terpreted as a superposition ofu0& and u1& with the ampli-
tudes proportional toz0 and z1, respectively, as seen i
Sec. II.

We consider a mappingf ~Segre embedding!

f : CP 13CP 1→CP 3

„~a0 ,a1!,~b0 ,b1!…°~a0b0 ,a0b1 ,a1b0 ,a1b1!. ~13!

Note that although (a0 ,a1)5(aa0 ,aa1), (b0 ,b1)
5(bb0 ,bb1) with a,bPC2$0%, the abovef in Eq. ~13!
maps them to the identical point inCP 3, regardless ofa and
b. Now we discuss the condition for the image off, f (CP 1

3CP 1), to satisfy inCP 3. By writing down the homoge-
neous coordinates inCP 3 as (z0 ,z1 ,z2 ,z3), we define a
polynomial of degree 2,

Qªz0z32z1z2 , ~14!
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which satisfiesQ(a0b0 ,a0b1 ,a1b0 ,a1b1)50. On the other
hand, it is readily checked that arbitrary points onQ50 are
included in f (CP 13CP 1). Thus we find

f ~CP 13CP 1!5$~z0 ,z1 ,z2 ,z3!uQ50%. ~15!

Because we can transform any nonsingular quadric into
‘‘normal’’ quadric form Q5z0z32z1z250 by a projective
transformationg,

zj °
g

(
l 50

N21

Ajl zl ~ j 50, . . . ,N21!, ~16!

with an N3N matrix Aª$Ajl PC% such that detAÞ0, we
can also identify the nonsingular quadric withCP 13CP 1.
That is the reason why the algebraic submanifold of se
rable, or nonentangled, states (CP 13CP 1) forms the quad-
ric Q50 in general state space for the two-qubit syst
(CP 3), and the states inCP 3 off the quadricQ50 are en-
tangled states.

B. Usage of entanglement

Let us examine the geometry ofCP 3 in more detail. We
suppose the case where the target stateuw& is u11& without
loss of generality. To draw the behavior aroun
u11& @↔(0,0,0,1)# as in Fig. 1, we introduce the inhomoge
neous coordinatesz05z0 /z3 , z15z1 /z3, andz25z2 /z3 be-
cause ofz3Þ0. Then the quadricQ50 in Eq.~14! is written
as

z05z1z2 . ~17!

In particular, all the states orthogonal tou11&, including
u00&, u01&, u10&, (u01&1u10&)/A2, etc., are located in point
at infinity in Fig. 1. The evolution of Grover’s algorithm in
Eq. ~4! is given by

FIG. 1. The geometry ofCP 3 aroundu11&, the assumed targe
uw&. Note that because three axes ofz1 ,z2 ,andz3 represent com-
plex numbers, this figure is written in the complex dimension
~real dimension 6!. By extracting the real axes ofz1 ,z2, and z3 ,
u11& is found to lie on a saddle point of the quadric. So is each
the other states of the computational basis.
7-3
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uc&↔S cosS k1
1

2D u

A3
,

cosS k1
1

2D u

A3
,

cosS k1
1

2D u

A3
,

sinS k1
1

2D u↔~u,u,u,1!, ~18!

or in terms of inhomogeneous coordinates

z05z15z25u, ~19!

whereuªcot(k11
2)u/A3 changes from 1 to 0. We find tha

Grover’s algorithm starts from the average stateua& (z0
5z15z251) on the quadric, evolves away from the quad
along a ~geodesic! line 0<z05z15z2<1, and finally
reaches the targetuw& at the origin on it. Hence Grover’s
algorithm uses entanglement in the two-qubit case.

Now we treat the generaln-qubit case. Recalling Eq.~4!,
we now representuc(k)& by the homogeneous coordinates
CP N21 (N52n),

zj Þw~k!5

cosS k1
1

2D u

AN21
, zw~k!5sinS k1

1

2D u. ~20!

We discuss whether the states of Grover’s evolution
CP 2n21 are included in the algebraic submanifold of t
completely separable states of CP 13•••3CP 1

@5..(CP 1)3n#. As a first step, we consider the condition th
Eqs. ~20! are included inCP 2n21213CP 1. This is just the
necessary condition for the reductionCP 2n21→(CP 1)3n

and, according to Eq.~A3! in Appendix A (m52n2121 and
m851), is given by

cosS k1
1

2D u sinS k1
1

2D u

AN21
5

cos2S k1
1

2D u

N21
. ~21!

From Eq.~21!, we have two cases:~i! If cos(k11
2)uÞ0, the

condition ~21! becomes tan(k1 1
2 )u51/AN21. The solu-

tions are given as (k1 1
2 )u5u/2,u/21p(mod 2p) by use of

Eq. ~1!. ~ii ! If cos(k11
2)u50, it means that (k1 1

2 )u
5p/2,3p/2(mod 2p). These are also the solutions of E
~21!. The solutions~i! and ~ii ! are also sufficient, i.e., com
pletely separable to (CP 1)3n, and indeed correspond to th
average and target state, respectively. For the states in
~20! with otherk, we cannot reduce them into (CP 1)3n and
thus they are entangled states. In brief, although the in
~average! state and the target state are separable, the inte
diate states through which the system evolves are entan

C. Calculation of entanglement

For the Grover’s evolutionuc&, let us calculate the
amount of entanglementE. EntanglementE in our pure state
space is naturally considered theminimumFubini-Study dis-
tances to the submanifold formed by completely separa
states (CP 1)3n in CP N21, i.e.,
04231
n

t

q.

al
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ed.

E~ uc&)ª min
$uf&u(CP 1)3n%

s~ uc&,uf&)

5
Eq. ~11!

2 arccosA max
$uf&u(CP 1)3n%

P~ uc&,uf&).

~22!

Because the Fubini-Study distance in Eq.~22! can be re-
duced from Bures metric with the parallel transport conn
tion in the case of pure states@19#, it satisfies the require-
ments for a good measure of entanglement, i.e.,~i! it is zero
for any separable state;~ii ! it is invariant under local unitary
transformations;~iii ! it has a nonincreasing expectation val
under local operations, such as classical communication
subselection, as Vedralet al. suggested in@20#.

It should be remarked that in the case of abipartite ~two-
qubit! pure state system, the partial entropy~von Neumann
entropy of the reduced density matrix associated with one
the parties! is widely supposed to be a good measure
entanglement@21#. However, we apply Eq.~22! as the geo-
metric entanglement measure, because~i! the partial entropy
has no apparent geometric meaning inCP; and~ii ! an exten-
sion to the multipartite (n-qubit! case is nontrivial@22#. As a
comparison, we calculate, in Appendix B, the entanglem
by partial entropy in the two-qubit case. We find our meas
of entanglement~22! almost corresponds to ‘‘concurrence
@23# so as to be consistent with the calculation using
partial entropy.

Let us first discuss the two-qubit case and then procee
the generaln-qubit case. To calculate the entanglement of
Grover’s stateuc& @in Eq. ~18!# for the two-qubit case, we
have to look for the point that gives the minimum ofs ~or
maximum ofP) in Eq. ~22! on the submanifold of the quad
ric Q50. Because this point must lie on the planez15z2
~i.e., z15z2) as seen in Fig. 1, we can parametrize its ca
didatesuf& as

uf&↔~v2,v,v,1!, ~23!

with vPC such that 0<uvu<1. Thus we consider

max
v

P~u,v !

5max
v

@u~v11!22u11#@u~v* 11!22u11#

~3u211!~ uvu211!2

5max
(r ,x)

~ur212ur cosx11!214u~u21!r 2 sin2x

~3u211!~r 211!2
,

~24!

wherev* denotes the complex conjugate ofv and we use
v5reix with 0<r<1. For fixedr, P in Eq. ~24! is largest for
the phasex50(mod 2p). This is solely becauseu in Eq.
~18! is a real number. Since (]/]r )P(u,r ,x50)50, we
have, according to Eq.~22!,
7-4
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E~u!52 arccosA u2

3u211
S vM11

vM
D 2

, ~25!

wherevMª@u211A(u21)214u2#/(2u) gives the maxi-
mum of P in Eq. ~24! with respect tor.

Changing the variableu into t by u5cott/A3, we find that
the entanglementE(cott/A3) changes dynamically durin
evolution as shown in Fig. 2. It takes a value of 0 at t
initial average stateua& (t5p/6), attains its maximum
;0.340 at thehalfway state u51/3 (t5p/3), and finally
goes back to 0 at the target stateuw& (t5p/2). Note that
Grover’s algorithm in the two-qubit case uses an entan
ment at most;0.340 although the available maximal e
tanglement isp/2. This implies that, for the halfway stat
(t5p/3), there is a closer state on the quadric than eitherua&
or uw& whose distance from the halfway state is 2(p/6)

FIG. 2. EntanglementE(cot t/A3) in Eq. ~25! during Grover’s
evolution for two-qubit case~solid curve! is drawn, compared with
the approximate estimate of the entanglementE2(cot t/A3) in Eq.
~30! ~two dashed curves!. Note that the approximate~dashed! curve
agrees well with the exact~solid! one except near the halfway sta
(t5p/3).
o

04231
-

.0.34. However, as seen in the following, Grover’s alg
rithm comes to use the entanglement maximally when
number of qubitsn becomes larger.

Now it is straightforward to calculate the entangleme
for the generaln-qubit case. According to Eq.~20!, the Grov-
er’s stateuc& in the n-qubit case is given by (u, . . . ,u,1),
where u @ªcot(k11

2)u/AN21# ranges from 0 to 1. The
statesuf&, candidates closest to the stateuc& on the submani-
fold (CP 1)3n, are ‘‘coherent’’ states@cf. Eq. ~23!# param-
etrized as

~26!

with vPC such that 0<uvu<1. Likewise, by use ofv
5reix with 0<r<1, we have

FIG. 3. Schematic pictures of the extremum condition~28! for
n<6, n5nCª412A2, and n>7 are drawn. uhalfªcot@(p
1u)/4#/AN21 corresponds to the halfway state. Whenn>7
(.nC), the solid parts of the curve give the condition for the ma
mum of Pn .
En~u!52 arccosAmax
v

Pn~u,v !52 arccosAmax
(r ,x)

u2~r 212r cosx11!n12u~12u! (
m50

n S n
mD r mcosmx1~12u!2

@~N21!u211#~r 211!n
.

~27!
,

-
n-
-

he
n.
ym-
we
For a fixed r, the maximum in Eq.~27! is attained at the
phase x50(mod 2p) for the n-qubit case also. From
(]/]r )Pn(u,r ,x50)50, we have the extremum condition

u5
r

~11r !n21~12r !1r
. ~28!

It is hard to solve analytically the extremum condition~28!
for r so as to seek the solution that gives the maximum
 f

Pn . However, we readily find, as seen in Fig. 3, that Eq.~28!
increases monotonically withr for n<6; on the other hand
it has a relative maximum and a relative minimum forn
>7, i.e., for almost alln. Whenu has one-to-one correspon
dence withr in Fig. 3, it soon becomes the maximum co
dition of Pn . In contrast, whenu has one-to-three correspon
dence tor, the point among the three that is included in t
solid line in Fig. 3 indeed gives the maximum conditio
Now it should be noted that because entanglement is s
metric for the halfway state as in the two-qubit case, all
7-5
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AKIMASA MIYAKE AND MIKI WADATI PHYSICAL REVIEW A 64 042317
need to consider is one-half of the whole dynamics, e.g.,
second half here. By reparametrizingu as u5cott/AN21,
the second half, given bytP@(p1u)/4,p/2#, corresponds to
uP†cot@(p1u)/4#/AN21,0‡. Thus whenN is large the sec-
ond half is almostuP@1/AN21,0# by Eq. ~1!, so that it can
be treated as the realm ofu!1 and r !1. Taking the first
order of r in Eq. ~28!, we obtain an approximate maximum
condition for r ,u!1: u;r /@11(n21)r #, or

r Mª
u

12~n21!u
. ~29!

Although Eq.~29! becomes a better approximation for larg
N, it seems to remain valid for smallN because, even in th
two-qubit ~worst approximation! case, the deviation from th
exact result is limited near the halfway state and is small~see
Fig. 2!.

Substitutingr M of Eq. ~29! andx50 in Eq.~27!, we have
the entanglement of then-qubit case:

En~u!;2 arccosA @u~r M11!n1~12u!#2

@~N21!u211#~r M
2 11!n

, ~30!

drawn in Fig. 4 withu5cott/AN21. We find in Fig. 4 that
En(cott/AN21) almost converges to an enveloping triang
E522ut2p/4u1p/2 at n;15. This suggests two points
first, entanglement is maximally used for largen. Second, the
closest separable state during Grover’s algorithm is either
initial average stateua& or the target stateuw&, which implies
that the submanifold of completely separable states is sp
in the large-n-qubit state space.

IV. GEOMETRIC CONSTRUCTION OF OPTIMAL
QUANTUM SEARCH

In Secs. II and III, we found that Grover’s algorithm is
horizontal lift of a geodesic lying away from the submanifo

FIG. 4. Each entanglementEn(cot t/AN21) in Eq. ~30! for the
n52-,3-, . . . ,50-qubit case is drawn from the bottom to the to
Apparent singularities in the halfway states are just due to takin
mirror image of the approximate calculations~30! for the second
half of the dynamics. While the true curves for smalln should be
smooth near the halfway states~cf. Fig. 2!, an intrinsic singularity
appears as the peak of an enveloping triangleE522ut2p/4u
1p/2 whenn goes to infinity.
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of the separable states inCP, which can be interpreted as th
geometric necessary condition for the optimal quant
search. In this section, let us consider, on the contr
whether all the geodesics toward the target stateuw& become
the optimal quantum search. That is to say, we discuss
geometric sufficient condition for the optimal quantu
search, from which the bound of the computational time
also derived naturally.

A. Geometric strategy by means of geodesics

Let us consider a set of all the geodesics through
target stateuw& in CP N21. As seen in Sec. II, its horizonta
geodesic inH is just a real two-dimensional rotation on th
plane spanned byuw& and some arbitrary stateuy& ~denoted
for brevity as thew-y plane!. We can restrictuy& such that
q (ª^wuy&PR) ranges from 0 to 1, by choosing the pre
erable overall phase ofuy& for each rayP(uy&). uw& anduy&
are said to be ‘‘in phase’’ in terms of the Pancharatnan c
nection@14#. By a consequence of an elementary theorem
real Euclidean geometry, a two-dimensional rotation on
w-y plane is constructed by two successive reflections,

Uy8ª2I y8I w , ~31!

whereI y8ª122uy8&^y8u and I wª122uw&^wu denote a re-
flection for the line orthogonal touy8& and uw& in the w-y
plane, respectively. We take an overall21 in Eq. ~31! for
convenience, which simply means that2I y85I y

'8
@24#. Al-

though in generaluy8& can be any state on thew-y plane, we
put uy8&5uy& without loss of generality becauseuy& itself is
any state. By usinghP@0,p# such that sin(h/2)ªq
5^wuy&, Eq. ~31! is represented by

Uy~h!ª2I yI w5Fcosh 2sinh

sinh cosh G , ~32!

in the basis ofur 8& @ª(uy&2quw&)/A12q2], orthogonal to
uw&, and uw&. Two remarks are in order: First, the angle
the rotation in Eq.~32!, which corresponds to the speed of
single query, is determined just byh ~or q). This means that
the speed is faster for largerh ~or q). Second, the direction
of the rotation in Eq.~32! is determined by the order ofI w
and I y . Alternate applications ofI w and I y cause successiv
rotations in the same direction, as can be seen in Fig. 5.

Thus the candidate for the algorithm that gives theopti-
mal quantum search toward the targetuw& is constructed in
terms of the geodesics as

uC~k!&5Uyk
~hk!•••Uy2

~h2!Uy1
~h1!uy0&, ~33!

such that uy0&,uy1&, . . . ,uyk& must lie on thesame two-
dimensional plane includinguw& with h0<h1<•••<hk ,
where sin(hj/2)ª^wuyj&. We find, however, that only the
case of uy0&5uy1&5•••5uyk& ~i.e., h05h15•••5hk) is
possible.

The reason is the following. Suppose the algorithm beg
from a fixeduy0&, thenuC(1)&5Uy1

(h1)uy0& is determined

by selectinguy1& on thew-y0 plane. However, because w

.
a
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never know~only the oracle knows! which is the targetuw&,
the only state we are able to utilize on thew-y0 plane isuy0&.
So uy1&5uy0&. Then to getuC(2)& by the choice ofUy2

(h2),

it might seem possible to applyuC(1)& as well asuy0& to
uy2& on thew-y0 plane. Yet, we must call another oracle as
subroutine to take advantage ofuC(1)& in case no measure
ments are done during the computation. This case is jus
situation where Zalka@5# showed the optimality of Grover’s
algorithm. We restrict our attention here to an algorithm
cluding no subroutines that require another oracle, beca
if needed, we can always embed a no-subroutine algori
into a certain larger algorithm as a subroutine@25#. Hence all
we can do isuy2&5uy0&, again. In the same way, we finall
obtainuy0&5•••5uyk& ~i.e.,h05•••5hk) which can be de-
noted simply byuy& andh, respectively.

Accordingly, Eq. ~33! turns out to be an extension o
Grover’s algorithm where the average stateua& is replaced
with the arbitrary stateuy& @26#. That is, our algorithm is
written as

uy&ªF cos
h

2
ur 8&

sin
h

2
uw&

G ,

~34!

uC~k!&ªUy~h!kuy&5F cosS k1
1

2Dhur 8&

sinS k1
1

2Dhuw&
G .

The speed of the algorithm~34!, considered as the travelin
~Fubini-Study! distance of a single query along the geodes
is given by

V~k!ª
Ds

Dk
52 arccosz^C~k11!uC~k!& z52h54 arcsinq,

~35!

FIG. 5. Each horizontal geodesic toward the targetuw& consists
of two-dimensional successive rotations in the plane includinguw&.
04231
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where, in the third equality, we usêC(k)uUy(h)uC(k)&
5cosh from Eqs. ~32! and ~34!. This corresponds to the
Anandan-Aharonov relation@13# ds/dt52DH/\, which
means that the speed inCP is determined by the energ
uncertaintyDH. Note thatV(k) in Eq. ~35! is constant, in-
dependent ofk, through the algorithm so that it depends on
on h ~or q). The total traveling distance is naturally thoug
to be the statistical distance@27# between the initial state
P(uy&) and the goal stateP(uw&):

swªp2h5p22 arcsinq. ~36!

Consequently, we obtain the time required to reach the ta
uw&:

Twª
sw

V
5

p2h

2h
5

p22 arcsinq

4 arcsinq
. ~37!

As seen in Fig. 6,Tw is shorter for largerq. We also find that
Tw;p/(4q) for q!1, while Tw;A2(12q)/p for q;1.

B. Bound for the computational time

We may ask where the bound of the computational ti
Tw comes from. Remember that we want to extractuw& with
probability 1 in an optimal computational time for the wor
case evaluation. However, because we do not knowa priori
~only the oracle knows! which is the targetuw&, we have to
select uy& independently ofuw&. When uy& is selected as
uy&5(x50

N21zxux& ((x50
N21uzxu251) in the computational basi

ux& ~]uw&!, its smallest overlapqs(:5uzsu) gives the compu-
tational timeTw for the worst case. We find

p22 arcsinqs

4 arcsinqs
>

p22 arcsin~1/AN!

4 arcsin~1/AN!
;

p

4
AN , ~38!

where because ofqs<1/AN , the equality in Eq.~38! is at-
tained for theuy& such thatqs51/AN , i.e, all qx:5uzxu
51/AN . This implies that the ‘‘mixedness’’ of the searchin
state space~in part! bounds the efficiency of the quantum
search as Boseet al. @28# mentioned. Thus, regardless o
which is the target, the optimal computational time
(p/4)AN. This result of course coincides with Grover’s r
sult @3#, first proved optimal by Zalka@5#.

FIG. 6. The computational timeTw in Eq. ~37!.
7-7
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It should be commented that there remains room for re
tive phases inuy&. uy&5ua& in the original Grover’s algo-
rithm is only a choice. In general, any element of the Fou
basis

up&ª
1

AN
(
x50

N21

e(2p i /N)pxux& ~p50,1, . . . ,N21!

~39!

can be taken as auy& among the completely separable stat
This implies that the quantum search takes advantage of
basesux& and up& to run in the optimal computational tim
because its kernel takes the formU52I pI x by Eq. ~32!.

V. CONCLUSIONS

In this paper, we have shown two geometric characte
tics of quantum search: one is related to the geodesic inCP,
the other related to entanglement. First, the geometric ne
sary and sufficient condition for the optimal quantum sea
is given by the horizontal geodesic joining the targetuw& and
a preferable selected initial stateuy& such that it overlaps
equally, up to relative phases, with all the elements of
computational basisux& ({uw&). Second, Grover’s quantum
search uses entanglement for an arbitrary number of the
bits n, in particular, almost maximally for largen. However,
there seems to be no direct relationship between the am
of entanglement~how far the dynamics is away from th
submanifold of separable states! and the optimal, i.e., short
est, computational time. This is because~i! the amount of
entanglement is different for eachn although Grover’s algo-
rithm is exactly optimal regardless ofn @5#; ~ii ! the compu-
tational time is rather determined by the overlapq5^wuy& as
seen in Sec. IV. It is significant that the algorithm consists
the shortest path by means of the geodesic; as a result it
across entangled states away from the submanifold of
separable states.

It is readily found that the multiple target case@4# is also
characterized in completely the same manner. Moreover,
geometric strategy would be useful to construct other e
cient quantum algorithms, as some efficient classical a
rithms are widely known to be geodesics in their parame
spaces. Exploring the geometric viewpoint also seems
pealing toward the realization of quantum computers.
instance,~i! the holonomic approach to quantum compu
tion @29#, where loops by horizontal lifts of the path inCP
construct the logic gates to compute quantum algorithms
supposed to have built-in fault-tolerant features against lo
perturbations; and~ii ! time optimal pulse sequences in NM
quantum computing@30#, given by geodesics on certain cos
spaces, would minimize the effect of relaxation and optim
the sensitivity of the experiments.
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APPENDIX A: SEGRE EMBEDDING
IN THE GENERAL CASE

It is straightforward to extend the mappingf of the Segre
embedding into the general case:

f :CP m3CP m8→CP (m11)(m811)21

„~a0 , . . . ,am!,~b0 , . . . ,bm8!…

°„a0b0 , . . . ,a0bm8 ,a1b0 , . . . ,amb0 , . . . ,ambm8).

~A1!

We find, in the same way as in the text, that the algebr
submanifold given by the image off is the zero locus of all
the homogeneous polynomials of degree 2:

Q( i , j ),(k,l )ªz(m811)i 1kz(m811) j 1 l2z(m811)i 1 lz(m811) j 1k ,

~A2!

where 0< i , j <m, 0<k, l<m8. Hence we have

f ~CP m3CP m8!5$Q( i , j ),(k,l )50%, ~A3!

where a set of quadratic constraints$Q( i , j ),(k,l )50% consists
of m(m11)m8(m811)/4 simultaneous equations.

APPENDIX B: CALCULATION OF ENTANGLEMENT
BY PARTIAL ENTROPY IN TWO-QUBIT CASE

In this Appendix, the entanglement of the two-qubit ca
is calculated in terms of the partial entropy, so as to be co
pared with the results in Sec. III. For the Grover’s stateuc&
5(uu00&1uu01&1uu10&1u11&)/A3u211 in Eq. ~18!, we
obtain a reduced density matrix by tracing out, e.g., the s
ond qubit,

r redªtr2nd~ uc&^cu!5
1

3u211
S 2u2 u~u11!

u~u11! u211 D .

~B1!

FIG. 7. Three entanglement measures:~i! the partial entropy
e(cot t/A3) in Eq.~B2! ~the lower solid curve!; ~ii ! the concurrence
C(cot t/A3) in Eq. ~B4! ~the upper solid curve!; and ~iii ! the mini-
mum Fubini-Study distance to separable statesE(cot t/A3) in Eq.
~25! ~the upper dashed curve!.
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We calculate entanglement as the partial entropy of the
duced density matrix~B1!:

e~u!ª2tr~r redlogr red!52l1 log l12l2 log l2 ,
~B2!

wherel6 , the eigenvalues of the reduced density matrixr red
in Eq. ~B1!, are given by

l6ª
16A12C~u!2

2
, ~B3!

C~u!ª2Udet
1

A3u211
S u u

u 1DU5
2u~12u!

3u211
. ~B4!

As C(u) in Eq. ~B4!, called ‘‘concurrence’’@23#, goes from
on
r

.

on

r-
er

sc

.
.

ch
,

ed

04231
e-0 to 1, the entanglemente(u) in Eq. ~B2! increases mono-
tonically from 0 to 1. SoC(u) as well ase(u) can be re-
garded as a measure of entanglement.

The partial entropye(cott/A3) as well as the concurrenc
C(cott/A3), compared with our entanglementE(cott/A3) in
Eq. ~25!, are drawn in Fig. 7. We note two points in Fig.
First, all three entanglement measures are convex upw
and are maximized at the halfway statet5p/3 (u51/3).
Second, surprisingly enough, our entanglement measuE
almost coincides with the concurrenceC, characterized also
as C52uz0z32z1z2u52uQu @in Eq. ~14!# with normalized
homogeneous coordinateszj . It should be noted, however
that their normalizations are different, i.e.,E is normalized to
p/2, whileC is normalized to 1. In summary, our calculatio
of entanglement by Eq.~22! is consistent with that by partia
entropy.
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@18# M. Kuś and K. Życzkowski, Phys. Rev. A63, 032307~2001!.
@19# D. Petz and C. Suda´r, J. Math. Phys.37, 2662~1996!.
@20# V. Vedral, M.B. Plenio, M.A. Rippin, and P.L. Knight, Phys

Rev. Lett.78, 2275 ~1997!; V. Vedral and M.B. Plenio, Phys
Rev. A57, 1619~1998!.

@21# C.H. Bennett, H.J. Bernstein, S. Popescu, and B. Schuma
Phys. Rev. A53, 2046~1996!; C.H. Bennett, D.P. DiVincenzo
J.A. Smolin, and W.K. Wootters,ibid. 54, 3824~1996!.

@22# To characterize fully the multipartite system, we would ne
,

,

u,

er,

several kinds of entanglement related to arbitrary partitions
the composite system into subsystems as proposed by W.¨r,
J.I. Cirac, and R. Tarrach, Phys. Rev. Lett.83, 3562~1999!; J.
Eisert and H.J. Briegel, Phys. Rev. A64, 022306~2001!, etc.
This corresponds in our scheme to taking into considera
minimum distances to other submanifolds like, e.g.,CP 3

3(CP 1)3n22 as well as Eq.~22!. In the text, we consider only
the principal one ~22! among them because we are interes
here in how entanglement is useful for quantum computat
rather than in the classification of entangled states.

@23# S. Hill and W.K. Wootters, Phys. Rev. Lett.78, 5022 ~1997!;
W.K. Wootters,ibid. 80, 2245~1998!.

@24# R. Jozsa, e-print quant-ph/9901021.
@25# The dynamical improvement ofuyj& in which h j became larger

would make the algorithm faster if another oracle were n
required. In fact, because using other oracles in a subrou
can be found to result in an equivalent algorithm to the origi
Grover’s one for the computational time, it does not lead to
speed-up.

@26# The generalized quantum search for an arbitrary initial st
has already been discussed by L.K. Grover, Phys. Rev. L
80, 4329 ~1998!; E. Biham, O. Biham, D. Biron, M. Grassl
and D.A. Lidar, Phys. Rev. A60, 2742 ~1999!. It should be
emphasized that, in this paper, we consider it as the geom
sufficient condition.

@27# S.L. Braunstein and C.M. Caves, Phys. Rev. Lett.72, 3439
~1994!.

@28# S. Bose, L. Rallan, and V. Vedral, Phys. Rev. Lett.85, 5448
~2000!.

@29# J. Pachos and P. Zanardi, Int. J. Mod. Phys. B15, 1257~2001!,
and references therein.

@30# N. Khaneja, R. Brockett, and S.J. Glaser, Phys. Rev. A63,
032308~2001!.
7-9


