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Geometric strategy for the optimal quantum search
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We explore quantum search from the geometric viewpoint of a complex projective(Spaaespace of rays.
First, we show that the optimal quantum search can be geometrically identified with the shortest path along the
geodesic joining a target state, an element of the computational basis, and such an initial state as overlaps
equally, up to phases, with all the elements of the computational basis. Second, we calculate the entanglement
through the algorithm for any number of qubiisas the minimum Fubini-Study distance to the submanifold
formed by separable states in Segre embedding, and find that entanglement is used almost maximally for large
n. The computational time seems to be optimized by the dynamics as the geodesic, running across entangled
states away from the submanifold of separable states, rather than the amount of entanglement itself.
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l. INTRODUCTION Gi=—l,ly:=—(1—2la){a])(1—2|w){(w]|)

Quantum computers would be more powerful than their _|cosé  —sind 3
classical counterpar{4,2]. Suppose an oracle functidifx) “|sing cosh | )
with xe{0,1}" is given such thaf(w)=1 for an unknown
single itemw out of N (:=2") and f(x)=0 for x#w. Our 1
purpose is to find the “targetiv with the smallest possible cog k+ 5 olr)
number of the oracle evaluations, called the query complex- |(k)):=GKla)= , (4)
ity. As is often the case with computer science, the worst sinl k+ E) olw)
case of query complexity is concerned here. If we try with a 2

classical computer, it is readily found that we néédueries
in the worst case. On the other hand, we can obtairith a  in the orthonormal basis df) (:=[1/yN—1]2,.,/x)) and
success probab|||ty almost 1 in OI'@( \/N) queries, regard_ |W>, wherel denotes the 2X2n |dent|ty matrix. Note that
less ofw (i.e., for evaluation in not only the worst case but &S constructed from alternate inversions for the avefaye
also the average caseby Grover’s quantum search algo- and the targetw) (i.e., I, andl,,), the kernelG in Eq. (3)
rithm [3,4]. Furthermore, Zalk§5] proved that Grover’s al- becomes a real two-dimensional rotation. We find in &q.
gorithm is exactly, and not only asymptotically, optimal for that the targefw) is obtained with a success probability of 1
query complexity if quantum computation consists only ofwhen K+ 1)6= /2, i.e..k~(m/4)yN by Eq.(1) in the case
unitary transformations and the final measurement. of N>1. Because one query is used for evdyy [i.e.,
Grover’s algorithm in then-qubit case (2=N statesis  l|X)=(—1)"®|x)] of G in Eg. (3), we can identify the
constructed as follows. We first introduce an initial “aver- query complexity withk~O(\/N).
age” state |a):=(1/yN)=_}[x) where |x) (x=0,... N Our motivation is based on the two points below. First,
—1) forms the orthonormal computational basis. Writing thewhile it is quite straightforward to verify Grover’s algorithm

overlap between the averaf@ and the targefw) by # as  [3,4] and Zalka’s algebraic proof of its optimalif$], it has
yet to be understood from the geometric aspects why Grov-

er’s algorithm works efficiently. Second, although it is often

) said that entanglement is useful to enhance quantum infor-
Siny =(wla)y=—, (1 mation processing, this remains obscure in thé8has well

as in nuclear magnetic resonan@MR) experiments 9],
after, in particular, Lloyd’s proposition of “quantum search
without entanglement[10,11]. Thus, in this paper, we char-
acterize quantum search from the geometric viewpoint,
which might shed light on the general strategy for construct-

|~

we have Grover’s algorithm:

0 ing efficient quantum algorithms, and discuss how entangle-
C05§|f> ment gives gquantum computation its power.
la)= , 2) The rest of the paper is organized as follows. In Sec. Il,

after we briefly review geometric aspects of quantum me-

sin 2|W> chanics such as the complex projective spa¢eand the
Fubini-Study metric on it, we show that Grover’s algorithm
corresponds to a geodesic @P. In Sec. Il we discuss en-
*Email address: miyake@monet.phys.s.u-tokyo.ac.jp tanglement, which can be considered as the minimum
"Email address: wadati@phys.s.u-tokyo.ac.jp Fubini-Study distance to the submanifold formed by sepa-
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rable states inCP. Entanglement in Grover's algorithm is Re(y(s)|dy(s))=0. Under a global gauge transformation
calculated for the general-qubit case, and is found to be |#)—€'”|¢) with ye R, the projection, orthogonal to the
used almost maximally whemis large. In Sec. IV, we con- Hopf fibers, of|d(s)),

struct optimal quantum searches, including Grover’s algo-

rithm, by means of geodesics, and derive the geometric nec- |dy(s),):=|di(s)) —(#(s)|dis(9))| (), tS)
essary and sufficient condition for the optimal quantum, . ) i .
search. Finally, Sec. V is devoted to conclusions. is gauge covariant (i.e., |dy,)—e'|dy)). Since

(dy(s), |di(s), ) is gauge invariant, it can be used to define
the metric inCPN"1, called the Fubini-Study metric, be-
tween two nearby rayH (| #(s))) andII(|4(s+ds))) as

In this section, we first consider, as a preliminary, the pure

Il. GEOMETRIC ASPECTS OF QUANTUM MECHANICS

state space of a quantum mechanical system as a complex 1

projective spacé&’P, a space of rays in the associated Hilbert stz’:<d'/’(s)i|d‘/’(s)i>

spaceH [12—18. Because we discuss the geometric charac-

teristics of the efficient quantum algorithm itself, we can =(dy(s)|dy(s)) —[Im(g(s)|dip(s))]?. (9
safely restrict our attention to the pure states. This implies

that we never treat general mixed statesole states given By variation of the aCtiOFdeS of the line element in Eq.

by the density matl’D(WhiCh appear in some realistic situa- (9), each extremal gives a geodegrc which is found to be

zontal lift of a geodesic it CPN-1[13,14. Any lift of the geodesicC’ becomes, by
definition, a geodesic ift{. In particular, a horizontal lift of
A. Ray and complex projective Hilbert spaceCP C’, which implies the parallel transport {##(s)|dy(s))
Let | ) be a(not necessarily normalizedector in a com-  — 0» €an be described simply as
plex N-dimensional Hilbert spacg/(CN). The physical state S S
. ‘ ~N . . .
of the quantum system irH(C") is given by a ray, an |zp(s)):cos§|¢l>+5m5|tﬂ2), (10

equivalence class of vectors up to the overall normalization

and phase. So the ray can be interpreted as a lin€Vin . .

passing through the origin. Note that universal quantunin terms of some orthonormal basi,),|#,) in . Thus the
computation[6,7] is defined over rays. A set of rays forms horizontal geodesi€10) is just a real two-dimensional rota-
the complex projective Hilbert spac&®N~! with the asso- tion on the plane spanned by,) and|y,) in H. Further-

ciated projection mayl, more, according to Eq.10), we can interpret the transition
probability P as the distance( €[0,7]) along the geodesic
I: H(CNy—cpN-L joining | ;) and|y(s)) [13-18; i.e.,

[y—>{[¢’) such that|y")=cly), ceC—{0}}. (5

Suppose|¢) is given by N-tuples of complex amplitudes

z (j=0,...N—1) e C"—{0} by choosing a basis iftt. e also find that the geodesic represents possible superposi-
According to Eq.(5), the rayII(|)) is represented as tions betweer ) and|i,).

() =(z0.21, - - Zy-1), (6

P(lw<s>>,lwl>)=:l<w<s>|¢1>|2=co§; (11)

C. Grover’s algorithm as a geodesic

such thatz; =cz for all j with c e C—{0}. We find, however, If we take|y)=|r),|#,)=|w), ands=2(k+ )6 in Eq.

that this representatiof), called the homogeneous coordi- (10), we readily find that Grover’s dynamic¢d) satisfies the
nate representation in algebraic geometry, is not unique. Tequation of a geodesic in E¢L0), and in addition evolves
obtain a unique one, we also utilize, for any nonzgrésay  along the shorter arc of the geodesic. This suggests that

Zp), Grover’s dynamics corresponds to thleortestpath from the
geometric viewpoint.
z)  z It is significant to note that the original Grover’s algo-
4 ::2_6: Z (I=1,...N-1), (7 rithm evolves with discreté, in other words, it skips along

the geodesic. The interval of skip becomes shorteX de-
called the inhomogeneous coordinates. comes larger, and it is almost continuous whens suffi-
ciently large. Here we can regafdlin Eq. (3) as a one-step
time evolution, because we are concerned with the computa-
tional complexity only in terms of the number of queries

Now we introduce the Fubini-Study metric, a natural Rie-called. This might be called “coarse graining,” where the
mannian metric ilCPN"1, Let|#(s)) be a normalized vec- dynamics driven by the detailed physical operations is re-
tor drawing a curve® in ‘H and|dy(s)) the tangent vector duced to the effective dynamicse., algorithm of the query
alongC. Note that the normalizatiofy(s)|(s))=1 implies  complexity.

B. Fubini-study metric and geodesics inCP
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IIl. ENTANGLEMENT IN GROVER'S ALGORITHM ® |00> o
C Quadic of
In this section, we explore the geometry @P in more 0 separable states
detail to consider relationships between Grover's algorithm (= G
and entanglement. As mentioned in Sec. |, it is very interest- v ,.\1 -
ing whether Grover’s algorithnfand general quantum algo- / \
rithms) takes advantage of entanglement to compute faster. It Grover's /i L C
was shown in 8] that Grover's algorithm both in the ideal dynamics {‘/ »‘71&
pure state case and in the pseudopure states in NMR does |11) o ~
generate entanglement during the computation, by formally “{""zi‘é al; f
tracing out all but one qubit. Here we show from the geo- o \-\_\""'\,\\.\
metric viewpoint that entanglement is used and calculate it \\_:\\\\
explicitly. \\\\\:‘
| | 3 jon)
A. Segre embedding and quadric of separable states C ]

Some of the mysterious features of quantum mechanics,
e.g., entanglement and so on, appear when we consider a FIG. 1. The geometry ofP3 around|11), the assumed target
composite system. In the bipartite case, by combining twgw). Note that because three axesef{,,and; represent com-
systems with Hilbert spacé/(C™ and H(Cm’), the com- plex ngmber_s, this figure is _written in the complex dimension 3
bined Hilbert space is taken as the tensor prodyet™)  (real dimension B By extracting the real axes df, ¢, and{s,

- . o —1 |11) is found to lie on a saddle point of the quadric. So is each of
©H(C™) and the associated space of states:fs" ' the other states of the computational basis.

which has a much larger dimension than that of the mere

Cartesian productP™ *X CP™ ~* (its dimension is only  which satisfiesQ(agho,aqb;,a1b0,2,b5)=0. ON the other
m-+m’—2) of the two individual spaces of states. Thus thepang, it is readily checked that arbitrary points @&-0 are

mystery seems to lie in thev(—1)(m’ —1) relative phases. included inf(CP1x CPY). Thus we find
Here we consider Segre embeddji$—17 in algebraic ge-

ometry, which enables products of projective spaces to be f(CPIXCPYY={(29,21,2,,25)|Q=0}. (15

embedded into a projective space again. Then using the Se-

gre embedding we may characterize entanglement geometBecause we can transform any nonsingular quadric into the

cally. “normal” quadric form Q=zyz;—2,2,=0 by a projective
We first illustrate the idea in the two-qubit cag&egre transformationg,

embedding in the general case is given in AppendixA.

state of a qubit is represented by the homogeneous coordi- .

nates ¢,,z,) € CP2. In particular, the spin-up and spin-down Zj—> |=Eo Apz (j=0,...N-1), (16)

basis statef0) and|1) correspond to

N—-1

with an NXN matrix A:={A;; € C} such that deA#0, we
can also identify the nonsingular quadric withPx CP?L.

; _ That is the reason why the algebraic submanifold of sepa-
speaking, 11(]0))=(1,0) and rable, or nonentangled, state$R*x CP1) forms the quad-
ric Q=0 in general state space for the two-qubit system
(CP3), and the states ifiP? off the quadricQ=0 are en-
tangled states.

0)=(1,0, [1)=(0.D), 12

respectively [precisely
I1(]1))=(0,1)]. Then an arbitrary state,z,) is a point on
the complex projective line joiningl(|0)) andII(|1)), in-
terpreted as a superposition |@) and|1) with the ampli-
tudes proportional tazg, and z;, respectively, as seen in

Sec. Il.
We consider a mappinfy(Segre embedding B. Usage of entanglement
P Let us examine the geometry 6 in more detail. We
fr CP*XCP —CP suppose the case where the target stateis |11) without

loss of generalityy To draw the behavior around
((a9,21),(bo,b1))—>(agbg,a0b1,a1P0,8101).  (13) |11y [-(0,0,0,1) as in Fig. 1, we introduce the inhomoge-
neous coordinate§,=z,/z3, {1=2,/23, and{,=2,/z5 be-
cause ofz;# 0. Then the quadriQ =0 in Eq.(14) is written
as

Note that although dg,a;)=(aag,aay), (bg,b;)
=(Bbgy,Bb;) with a,8eC—{0}, the abovef in Eq. (13
maps them to the identical point i3, regardless ofr and
B. Now we discuss the condition for the imagefpf (CP?* Lo=0145. (17)
X CP1), to satisfy inCP2. By writing down the homoge-

neous coordinates iiP° as (zy,2;,25,25), we define a In particular, all the states orthogonal ta1), including

polynomial of degree 2, |00), |01), |10y, (|01)+|10))/2, etc., are located in points
at infinity in Fig. 1. The evolution of Grover’s algorithm in
Q:=2p23— 2125, (14 Eq. (4) is given by
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1 1 1 E(l):=" min  s(|¢).[¢))
» CO{ k+ > 0 cos{ k+ > 0 co{ k+ > 0 (lEPh*m
lﬂ — 1 1 H

\/§ \/§ \/§ Eq. (1)
= 2 arccos\/ max P(|¢),]9)).
. 1 {le)l(cpy=m
sin k+§ 0« (u,u,u,l), (18 (22)
or in terms of inhomogeneous coordinates Because the Fubini-Study distance in Eg2) can be re-
P duced from Bures metric with the parallel transport connec-
{o={1= =0, (19

tion in the case of pure stat¢s9], it satisfies the require-

whereu:=cot(k+ %)9/\/5 changes from 1 to 0. We find that ments for a good measure of entanglement, (igif is zero

Grover's algorithm starts from the average stéd (¢, for any separable statéj) it is invariant under local unitary
= ¢,={,=1) on the quadric, evolves away from the quadrictransformations(iii) it has a nonincreasing expectation value
anr119 ; (geodesit line Oé {o=01=0,<1, and finally under local operations, such as classical communication and

reaches the targetv) at the origin on it. Hence Grover’s subselection, as Vedrat aI.suggested irﬁ20].. .
algorithm uses entanglement in the two-qubit case. It should be remarked that in the case dfipartite (two-

Now we treat the generai-qubit case. Recalling Eq4), qubit) pure state system, the partial entropn Neumann

we now represerfis(k)) by the homogeneous coordinates in entropy of the reduced density matrix associated with one of
CPN-1 (N=2M) the partiey is widely supposed to be a good measure of

entanglemenf21]. However, we apply Eq22) as the geo-

1 metric entanglement measure, beca(iséhe partial entropy

COE( k+ 5 0 1 has no apparent geometric meanind.i; and(ii) an exten-

Zjsw(K)=—F—=—, 2z,(k)=sin k+ —) 0. (20 sion to the multipartiter§-qubit) case is nontrivial22]. As a
VN-1 2 comparison, we calculate, in Appendix B, the entanglement

We di heth h f G , luti . by partial entropy in the two-qubit case. We find our measure
e discuss whether the states of Grover's evolution Ny onianglement22) almost corresponds to “concurrence”

o n_ . . . .

CP#~* are included in the algebraic submanifold of the[23] so as to be consistent with the calculation using the
completely  separable states of CPX...x(CP? partial entropy.

[=:(CP)*"]. As a first step, we consider the condition that  Let us first discuss the two-qubit case and then proceed to
Egs. (20) are included inCPZn*l‘GCP? This is just the the generah-qubit case. To calculate the entanglement of the

necessary condition for the reductigiP?'~1— (CPY)x" Grover's statd ¢) [in Eq. (18)] for the two-qubit case, we

and. according to EqA3) in Appendix A (m=2""1—1 and have to look for the point that gives the minimum for
m'=1), is giv?an byc{ ) PP ( maximum ofP) in Eq. (22) on the submanifold of the quad-

ric Q=0. Because this point must lie on the plafie={,
1 1 1 (i.e., zy=2,) as seen in Fig. 1, we can parametrize its can-

2 21
N—1 “TNer @

6 sin

|p)(v20,0,1), (23
From Eq.(21), we have two casesi) If cosk+3)6+0, the

condition (21) becomes tarK+3)#=1/JN—1. The solu- with v e C such that 8|v|<1. Thus we consider

tions are given ask(+ 3) 8= 60/2,6/2+ w(mod 27) by use of
Eq. (1). (i) If cosk+3)6=0, it means that K+3)6

i maxP(u,v)
=/2,37/2(mod 277). These are also the solutions of Eq. v
(21). The solutiong(i) and (ii) are also sufficient, i.e., com-
pletely separable to((P*)*", and indeed correspond to the ~ [u(w+1)2-u+1][u(v* + 1)~ u+1]
average and target state, respectively. For the states in Eq. B ) (3uZ+1)(Jv|2+1)2
(20) with otherk, we cannot reduce them int&:p*)*" and
thus they are entangled states. In brief, although the initial (ur?42ur cosy+ 1)%+4u(u—1)r?sirfy
(average state and the target state are separable, the interme- =max 2 > 2 ,
(r.x) (Buc+1)(r°+1)

diate states through which the system evolves are entangled.
(24)
C. Calculation of entanglement
For the Grover's evolution|y), let us calculate the wherev* denotes the complex conjugate wfand we use
amount of entanglemeiit. EntanglemenE in our pure state v =re'X with O<r=<1. For fixedr, P in Eq. (24) is largest for
space is naturally considered thenimumFubini-Study dis- the phasey=0(mod 27). This is solely becausa in Eq.
tances to the submanifold formed by completely separable(18) is a real number. Sinced{dr)P(u,r,x=0)=0, we
states (PL)*"in CPN7L e, have, according to Eq22),
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Uhalf

0 1 r
FIG. 3. Schematic pictures of the extremum conditi@B) for
FIG. 2. EntanglemenE(cott/\/3) in Eq. (25 during Grover's n<®6, n=nc:=4+2y2, and n=7 are drawn. Unyr=cof(m
evolution for two-qubit casésolid curve is drawn, compared with  +6)/4]/\\N—1 corresponds to the halfway state. Whee=7
the approximate estimate of the entanglemgtcott/y3) in Eq.  (>nc), the solid parts of the curve give the condition for the maxi-

(30) (two dashed curvésNote that the approximatglasheg curve mum of P,,.
agrees well with the exa¢solid) one except near the halfway state

X

.2 1.4

(t=13). >0.34. However, as seen in the following, Grover’s algo-
rithm comes to use the entanglement maximally when the
> > number of qubitsx becomes larger.
E(u)=2 arcc05\/ u UM+1) (25) Now it is straightforward to calculate the entanglement
3ul+1\ om | for the generah-qubit case. According to E¢20), the Grov-
er's state|) in the n-qubit case is given byl ... u,1),
wherevy:=[u—1+/(u—1)Z+4u?]/(2u) gives the maxi- where u [:=cot(k+3)¢0/\N—1] ranges from 0 to 1. The
mum of P in Eqg. (24) with respect tar. stated ¢), candidates closest to the stagé on the submani-

Changing the variable into t by u=cott/\/3, we find that ~ fold (CP*)*", are “coherent” stategcf. Eq. (23)] param-
the entanglemenE(cott/\3) changes dynamically during €trized as
evolution as shown in Fig. 2. It takes a value of 0 at the
initial average statela) (t==/6), attains its maximum |¢)<—[v" 0" ' 0" e T 0" L, .,
~0.340 at thehalfway state u=1/3 (t=/3), and finally g o —_
goes back to O at the target stdte) (t=m/2). Note that
Grover’s algorithm in the two-qubit case uses an entangle
ment at most~0.340 although the available maximal en- ()X X (v,1)

tanglement is/2. This implies that, for the halfway state - r (26)
(t=m/3), there is a closer state on the quadric than eier with v e C suth that 6<|v|<1. Likewise, by use ofv
or |w) whose distance from the halfway state is726) =re'Y with 0<r<1, we have

n
(r2+2r cosy+1)"+2u(1— u)E ( rMcosmy+(1—u)?

E,(u)=2 arccos /maxPn(u v)=2 arccos\/max 5
(r.x) [(N=1)u?+1](r2+1)"

(27)

For a fixedr, the maximum in Eq(27) is attained at the P,,. However, we readily find, as seen in Fig. 3, that &8

phase y=0(mod 2r) for the n-qubit case also. From increases monotonically withfor n<6; on the other hand,

(alar)Pq(u,r,x=0)=0, we have the extremum condition it has a relative maximum and a relative minimum for
=7, i.e., for almost alh. Whenu has one-to-one correspon-

r dence withr in Fig. 3, it soon becomes the maximum con-
Y . (28) dition of P, . In contrast, whem has one-to-three correspon-
(140" (A=r)+r dence tor, the point among the three that is included in the

solid line in Fig. 3 indeed gives the maximum condition.
It is hard to solve analytically the extremum conditi#8) Now it should be noted that because entanglement is sym-
for r so as to seek the solution that gives the maximum ometric for the halfway state as in the two-qubit case, all we
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En( C(])\t/;_tl)
1.4
1.2
1
0.8
0.6
0.4
0.2
N t (rad)
0.25 0.5 0.75 1 1.25 1.5
FIG. 4. Each entanglemeft,(cott/\/N—1) in Eq.(30) for the
n=2-3-,...,50-qubit case is drawn from the bottom to the top.
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of the separable states (P, which can be interpreted as the
geometric necessary condition for the optimal quantum
search. In this section, let us consider, on the contrary,
whether all the geodesics toward the target dtajebecome

the optimal quantum search. That is to say, we discuss the
geometric sufficient condition for the optimal quantum
search, from which the bound of the computational time is
also derived naturally.

A. Geometric strategy by means of geodesics

Let us consider a set of all the geodesics through the
target statdw) in CPN"1. As seen in Sec. Il, its horizontal
geodesic inH is just a real two-dimensional rotation on the
plane spanned byw) and some arbitrary statg) (denoted

Apparent singularities in the halfway states are just due to taking 0F brevity as thew-y plang. We can restricty) such that

mirror image of the approximate calculatiof®0) for the second
half of the dynamics. While the true curves for smalshould be
smooth near the halfway statésf. Fig. 2), an intrinsic singularity
appears as the peak of an enveloping triangke —2|t— /4|
+ /2 whenn goes to infinity.

need to consider is one-half of the whole dynamics, e.g., th
second half here. By reparametrizingas u= cott/\'N—1,
the second half, given bye [ (7+ 6)/4,7/2], corresponds to
ue[cof(7+6)/4]/YN—1,0]. Thus whenN is large the sec-
ond half is almosu e[1/\yN—1,0] by Eq. (1), so that it can
be treated as the realm o<1 andr<1. Taking the first
order ofr in Eq. (28), we obtain an approximate maximum
condition forr,u<1: u~r/[1+(n—1)r], or

u

M- Du @9
Although Eq.(29) becomes a better approximation for larger
N, it seems to remain valid for small because, even in the
two-qubit (worst approximationcase, the deviation from the
exact result is limited near the halfway state and is sisak
Fig. 2.

Substitutingry, of Eq.(29) andy=0 in Eq.(27), we have
the entanglement of the-qubit case:

E.(u)~2 arCCOS\/

drawn in Fig. 4 withu=cott/\/N—1. We find in Fig. 4 that
E,(cott/yyN—1) almost converges to an enveloping triangle
E=—2|t—7/4|+ /2 at n~15. This suggests two points:
first, entanglement is maximally used for langeSecond, the

[u(ry+1)"+(1-u)]?
[(N=1)ud+1](r3+1)™

(30

closest separable state during Grover’s algorithm is either the

initial average statga) or the target statpv), which implies

that the submanifold of completely separable states is spar%éJ

in the largen-qubit state space.
IV. GEOMETRIC CONSTRUCTION OF OPTIMAL
QUANTUM SEARCH

In Secs. Il and Ill, we found that Grover’s algorithm is a
horizontal lift of a geodesic lying away from the submanifold

g (:=(wl|y) e R) ranges from 0 to 1, by choosing the pref-
erable overall phase ¢§) for each raylI(]y)). |w) and|y)

are said to be “in phase” in terms of the Pancharatnan con-
nection[14]. By a consequence of an elementary theorem of
real Euclidean geometry, a two-dimensional rotation on the
w-y plane is constructed by two successive reflections,

e
U (31

y”=_|y’|wv

wherel,, :=1-2]y’)(y’| andl,,:=1-2|w)(w| denote a re-
flection for the line orthogonal ty’) and|w) in the w-y
plane, respectively. We take an overalll in Eq.(31) for
convenience, which simply means thalyyzlyi [24]. Al-

though in generdly’) can be any state on the-y plane, we
put|y’)=|y) without loss of generality becaug) itself is
any state. By usingne[0,7] such that sing/2):=q

=(w|y), Eq. (31) is represented by

cosy —siny

Uy( 7]):=_|y|w: ) (32

siny  cosy
in the basis ofr’) [:=(]y)—q|w))/\1—g?], orthogonal to
|w), and|w). Two remarks are in order: First, the angle of
the rotation in Eq(32), which corresponds to the speed of a
single query, is determined just by (or q). This means that
the speed is faster for larger (or q). Second, the direction
of the rotation in Eq(32) is determined by the order of,
andl, . Alternate applications of,, andl, cause successive
rotations in the same direction, as can be seen in Fig. 5.

Thus the candidate for the algorithm that gives tpdi-
mal quantum search toward the target) is constructed in
terms of the geodesics as
|q,(k)>:Uyk(Uk)' : 'Uy2(772)Uy1(771)|YO>7 (33
ch that|yo),|y1), - - . ,|y,) must lie on thesame two-
imensional plane includingw) with no<mn,<---<7,,
where sinf;/2):=(w|y;). We find, however, that only the
case of|lyg)=|y1)="--=[yq) (., mo=m=---=m0) is
possible.

The reason is the following. Suppose the algorithm begins
from a fixed|yo), then|W (1))=Uy (71)|yo) is determined

by selecting|y,) on thew-y, plane. However, because we
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0

FIG. 6. The computational tim€&,, in Eq. (37).

FIG. 5. Each horizontal geodesic toward the tatget consists

of two-dimensional successive rotations in the plane includlivig where, in the third equality, we us(el,(k”U>’(77)|\I,(k)>

=cosyn from Egs. (32) and (34). This corresponds to the
Anandan-Aharonov relatiof13] ds/dt=2AH/#, which

- ? means that the speed itf? is determined by the ener
the only state we are able to utilize on Wy‘? plane isfy). uncertaintyAH. Nopte thatV(k) in Eq. (35) is gonstant, in(‘—]y
_50|)_’1>: |Yo)- Then t_o get(2)) by the choice o), (75), dependent ok, through the algorithm so that it depends only
it might seem possible to apply? (1)) as well as|yo) 10 on 5 (or g). The total traveling distance is naturally thought

ly2) on thew-y, plane. Yet, we must call another oracle as ato pe the statistical distand®7] between the initial state
subroutine to take advantage |df (1)) in case no measure- II(|y)) and the goal statl(|w)):

ments are done during the computation. This case is just the

situation where Zalk§5] showed the optimality of Grover’s Syi=m— = — 2 arcsing. (36)
algorithm. We restrict our attention here to an algorithm in- ) ) )

cluding no subroutines that require another oracle, becausgonsequently, we obtain the time required to reach the target
if needed, we can always embed a no-subroutine aIgorithrJdN):

into a certain larger algorithm as a subroutj@g]. Hence all . w2 arcsi

we can do idy,)=|yg), again. In the same way, we finally TW:ﬁ: m_ : d (37)
obtain|yg)= - - - =|y) (i.e., 7o="- - - = 7) which can be de- V. 2y 4 arcsing

noted simply byly) and 7, respectively. - : i
Accordingly, Eq.(33) turns out to be an extension of As seen in Fig. 6T, is shorter for largeg. We also find that

Grover’s algorithm where the average stédé is replaced Ty~ ml(4q) for q<1, while T,,~y2(1-q)/m for g~1.

with the arbitrary statgy) [26]. That is, our algorithm is _ _
written as B. Bound for the computational time

never know(only the oracle knowswhich is the targetwy),

We may ask where the bound of the computational time
7 T, comes from. Remember that we want to extiact with
cos§|r’> probability 1 in an optimal computational time for the worst
ly):= , case evaluation. However, because we do not kagwiori
(only the oracle knowswhich is the targetw), we have to

5|nE|w) select|y) independently of\w). When |y) is selected as
34 |y)=={2gzdx) (SN 4]zd?=1) in the computational basis
1 |X) (2|w)), its smallest overlap(: =|zg|) gives the compu-

cos( K+ 5 nlr') tational timeT,, for the worst case. We find

W (K))=Uy() y)= m-2arcsings_ m—2 arcsii1/\N)

7|w) 4arcsigs  4arcsiil/yN) 4

IN, (39

sm( k+ >

. . . where because af.<1/\N, the equality in Eq(38) is at-
The speed of the algorithit84), considered as the traveling tained for the|y§qssuch thatde= l(/1\/ﬁ yi.e rﬂl 4 =12,

(Fubini-Study distance of a single query along the geodesic,_ 1/\N. This implies that the “mixedness” of the searching

's given by state space€in par) bounds the efficiency of the quantum
search as Boset al. [28] mentioned. Thus, regardless of
which is the target, the optimal computational time is
(w/4)y/N. This result of course coincides with Grover's re-
(35  sult[3], first proved optimal by Zalké5].

As
V(k) :=H:2 arccof W (k+1)|W(k))|=2»n=4 arcsinq,
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It should be commented that there remains room for rela- e(S%Lt) C(oLt), B(<9Lt)
tive phases iny). |y)=|a) in the original Grover's algo- V3 v3 V3
rithm is only a choice. In general, any element of the Fourier
basis

15
p) =N 2 MNP (p=01,... N=1)
(39

can be taken as|g) among the completely separable states.
This implies that the quantum search takes advantage of dual
basegx) and|p) to run in the optimal computational time
because its kernel takes the foti= —1 1, by Eq.(32). FIG. 7. Three entanglement measuré$:the partial entropy
e(cott/\/3) in Eq.(B2) (the lower solid curvg (i) the concurrence
C(cott/\/§) in Eq. (B4) (the upper solid curye and (iii) the mini-
V. CONCLUSIONS mum Fubini-Study distance to separable stdésott/\3) in Eq.

In this paper, we have shown two geometric characterist2® (the upper dashed cuve
tics of quantum search: one is related to the geodesitin
the other related to entanglement. First, the geometric neces-
sary and sufficient condition for the optimal quantum search
is given by the horizontal geodesic joining the tarjyet and It is straightforward to extend the mappifigf the Segre
a preferable selected initial statg) such that it overlaps embedding into the general case:
equally, up to relative phases, with all the elements of the

APPENDIX A: SEGRE EMBEDDING
IN THE GENERAL CASE

computational basi) (= |w)). Second, Grover's quantum f:CPMX CP™ — CpMmEDMm +1)-1

search uses entanglement for an arbitrary number of the qu-

bits n, in particular, aimost maximally for large However, (ag, - .. am):(bos ... b))

there seems to be no direct relationship between the amount

of entanglementhow far the dynamics is away from the —(@gbo, - .. @bmr,a1bo, - - . ,@mbo, - - . AMDM).
submanifold of separable statemd the optimal, i.e., short- (A1)

est, computational time. This is becauggthe amount of

entanglement is different for eachalthough Grover’s algo- \we find, in the same way as in the text, that the algebraic
rithm is exactly optimal regardless of[5]; (ii) the compu-  sybmanifold given by the image 6fis the zero locus of all

tational time is rather determined by the overtgp(w|y) as  the homogeneous polynomials of degree 2:
seen in Sec. IV. It is significant that the algorithm consists of

the shortest path by means of the geodesic; as a r_esult it TUNSQ (i iy (k1) = Z(m + 1)+ kZ(m? + 1) +1— Z(m? + 1) +1Z(m’ +1)j +K
across entangled states away from the submanifold of the (A2)
separable states.

It is readily found that the multiple target calsy is also ~ where 0<i<j<m, Osk<Il=m'. Hence we have
characterized in completely the same manner. Moreover, our
geometric strategy would be useful to construct other effi- f(CP™XCP™)={Qq j).(k1y=0}, (A3)
cient quantum algorithms, as some efficient classical algo-
rithms are widely known to be geodesics in their parametewhere a set of quadratic constraif; j) =0} consists
spaces. Exploring the geometric viewpoint also seems apf m(m+1)m’(m’+1)/4 simultaneous equations.
pealing toward the realization of quantum computers. For
instance,(i) the holonomic approach to quantum computa- APPENDIX B: CALCULATION OF ENTANGLEMENT
tion [29], where loops by horizontal lifts of the path P BY PARTIAL ENTROPY IN TWO-QUBIT CASE
construct the logic gates to compute quantum algorithms, is ] . .
supposed to have built-in fault-tolerant features against local !N this Appendix, the entanglement of the two-qubit case
perturbations; andi) time optimal pulse sequences in NMR 1S calculgted in terms qf the partial entropy, so as to be com-
quantum computinf30], given by geodesics on certain coset pared with the results in Sec. Ill. For the Grover’s state
spaces, would minimize the effect of relaxation and optimize= (4|00) +u|01) +u[10)+[11))/y3u“+1 in Eq. (18), we

the sensitivity of the experiments. obtain a reduced density matrix by tracing out, e.g., the sec-
ond qubit,
ACKNOWLEDGMENT | ) 1 2u?  u(u+1)
=tr = .
One of the author$A.M.) would like to thank I. Tsutsui Pre=Uand |¥)(¥ 3u2+1\u(u+l)  u?+1
for kind interest in this work. (B1)
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We calculate entanglement as the partial entropy of the red to 1, the entanglemem(u) in Eq. (B2) increases mono-

duced density matrixB1):

e(u) :=—tr(predlog pred) = — N lOg N =N _log A,
(B2)

where\ .., the eigenvalues of the reduced density mairiy
in Eq. (B1), are given by

1+1—C(u)?
N ki (B3)
2
Cu)=2| det— (u u) U170 - gy
u):=2|det———= =—.
3u’+1iu 1 3u?+1

As C(u) in Eqg. (B4), called “concurrence’[23], goes from

tonically from 0 to 1. SoC(u) as well ase(u) can be re-
garded as a measure of entanglement.

The partial entropye(cott/\3) as well as the concurrence
C(cott/\/3), compared with our entangleme®¢cott/\/3) in
Eg. (25), are drawn in Fig. 7. We note two points in Fig. 7:

First, all three entanglement measures are convex upward

and are maximized at the halfway stdte #/3 (u=1/3).
Second, surprisingly enough, our entanglement meaBure
almost coincides with the concurren€e characterized also
as C=2|zyz3—2,2,|=2|Q| [in Eq. (14)] with normalized
homogeneous coordinatgs. It should be noted, however,
that their normalizations are different, i.&js normalized to
/2, while C is normalized to 1. In summary, our calculation
of entanglement by Eq22) is consistent with that by partial
entropy.
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