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Inconclusive rate in quantum key distribution
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After summarizing a recent calculation of the maximum Renyi information (fes<fixed error and incon-
clusive ratesfrom a positive operator valued measyROVM) quantum cryptographic receiver to a general
unitary probe, | calculate the worst inconclusive rate for the legitimate receiver. Disturbed inconclusive rates
are considered which are less, as well as greater, than the unperturbed inconclusive rate. | also demonstrate that
for an optimized individual attack there is a minimum induced error rate which is fixed by the induced
inconclusive rate.
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. INTRODUCTION 5(e)=cog Za{pz(l— p)2csé2acod 2a+[2p(1—p)
Recently the maximum Renyi information gain by a gen- X(1—p—psin’ 2a)cof 2a—2p° cos 2a]e
eral unitary dlsturblng eav_e_sdroppmg probe was calculated +H[(1—p—psit2a)2cs@ 2a— p?]e?
analytically for fixed positive operator valued measure
(POVM)-receiver error and inconclusive rates in the two- +2p(sec2a)ed+ (seé 2a) e}, (8)

state protocol of quantum key distribution in the presence of
an individual attack1,2]. It was demonstrated that the maxi- where « [not to be confused with the functiam(e)] is half
mum allowable information gain by the probe for fixed error the complement of the angkebetween the two nonorthogo-
rate (on sifted bit$ and fixed inconclusive rate is generally nal linear-polarization states of the signal,
less than that for fixed error rate only, and decreases with a
suitably increasing inconclusive rate. Here, information gain 17
by the probe corresponds to information loss from the «= E(E_ 9)' ©)
POVM receiver 3,4].

The maximum Renyi information gain by the eavesdrop-and the inconclusive rate, enters only through the param-

per, at fixed error and inconclusive rates, is given by eterp,

IR =log,(2—Q?), (o - !
e P= (I+sin2a)(1-Ry) (19

whereQ, the minimum overlap of the correlated probe states,

is given by The optimization resulting in Eq$1)—(10) was obtained
by comparing all possible relative extrema of the corre-
1 g(e)| 12 sponding Lagrange function, on the basis of parametric
sz f(e) 1—(1—],(—6)> —1] (2 analysis for inconclusive rates equal to, or exceeding, the

unperturbed value, si2[1]. In the present work, in the
process of determining the so-called worst inconclusive rate,
inconclusive rates less than the unperturbed value are also
by addressed, and the same optimization, E{3—(10), is
shown to apply.
e=1-2E 3 In Sec. Il the worst inconclusive ratérom the point of

) ) ) view of the legitimate receiveris defined and determined
and the following functions, depending on the error rate a”q'numerically. In Sec. Il the optimization given by Ed4)—

Here the parameteris expressed in terms of the error r&e

the inconclusive rate, are defined as (10) is shown to apply for inconclusive rates less than, as
well as greater than, the unperturbed value. A minimum in-

f(e)= @ 4) duced error rate, which is fixed by the induced inconclusive

Ble)’ rate, is also determined. In Sec. IV an analytical expression

is obtained for the worst inconclusive rate. Section V con-

S(€) tains a summary.
g(e)= (o)’ 5
II. WORST INCONCLUSIVE RATE
a(e)=p°cod 2a—p(1-p)(coS 2a)e—(1—psir 2a)€?, In Sec. IV of[1], parametric analysis was presented of the

(6) dependence of the maximum information gain by the eaves-
dropper, at fixed error and inconclusive rates, as a function of
B(e)=p?cog 2a— €, (7)  the inconclusive rate and for various values of the error rate.
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in [1] that forR,=sin 2, Eq.(137) or, equivalently, Eq(76)

sn%a :'gg with the minus sign choicor Eq.(2) abovd, along with Eq.
' (83) of [1] [or Eq.(1) abovd give the minimum overlag of
1.02 correlated probe states and the maximum Renyi information
1.01 gain by the eavesdropper, respectively. It can be shown that
1.00 if one plots the general expression for the nonoptimized
' overlap[Egs. (B1), (B2), and (B4)—(B6) of Appendix B in
0.99 [1]] versus the error rate fdR,=sin 2o, a=/8, and for a
0.98 representative range of values of the nonoptimized probe pa-
0.97 rameters, the nonoptimized values @Qf all lie above the
096 L i Vi corresponding solid curves in Fig. 8 fif], as must be the
0 005 010 015 020 case.(This was shown explicitly in Fig. 6 ofl] for R,

E =sin 2o.) Furthermore, Eq(76) of [1] with the plus sign
choice yields values dp exceeding those for the minus sign
choice. Equation$42) and(104), for R,=sin 2«, also falil to
yield the minimum overlap and maximum information be-
It was pointed out that, as the inconclusive rate increase& 'S¢ they eac_h yiel@=1, Wh'Ch is nonphysical foQ
>1 since, physically, one requiré®|<1, andQ=1 corre-

while the error rate is held constant, the Renyi information nds t rfect information in El). (Here|Q| denot
gain possible for an eavesdropper may first increase and th onas to perfect informatio - (Here|Q| denotes
e absolute value d.)

decrease, in which case there is an inconclusive rate at whic . .

the eavesdropper gains maximum Renyi information for a .lt was alsp argu_ed ifl] t.h‘f"t for R,= S'rlza’ Eqs.(llZ)
fixed error rate. Taking the point of view of the legitimate with (.118) fail to give a m|.n|mum fore,=—1 ande,=
receiver, | call this the “worst inconclusive rate” for a given ~1, S'i"f the_y er|dQ|%l, ind they also fail foe, =1
error rate. Thus in Fig. 14 ¢f], I(Ffpt, plotted as a function of ande,= =1, since they yielE=0. It can also be shown that

R, for fixed E, peaks at a particular inconclusive rate, that is,fqr (R?/s_ln_Za)=1.08, E’lo’ Eq(ll?)_wnh E_q. (118 fail to_
give a minimum fore,=—1 ande,= *=1, since they again

FIG. 1. Worst inconclusive rate, as a function of the error rate
E for a=7/8, and corresponding to the solution of Egl).

"
for R, such that yield |Q|=1.
IR Before considering Eqs117) and (118 of [1] for R,
Pt _, (11) >sin2zande,=1 ande,=*1, it is useful to observe that
IRoE according to Eq(24) of [1], one requires
wherel f;pt is given by Eqs(1)—(10). The solution to Eq(11) cos 29=d<1, (12

determines for a fixed error rate the inconclusive rat®, _ _ _ _
for which 1%, is maximal. If one directly substitutes Eqs. because, trigonometrically, 0sir \<1. But according to
(1)—(10) in Eq. (11), one obtains a rather formidable appear-Eas.(17) and(12) of [1], one has
ing equation to solve for the extremum. | have solved Eq.
(12) numerically, by picking off the peaks while varyirig _ (1-R,)(1—2E)
and the result is shown in Fig. 1, giving the worst inconclu- 1-sin2«a
sive rateR, as a function of error ratg for a=n/8.

In Sec. IV an algebraic expression is obtained which alsd hen substituting Eq(13) in Eq. (12), one obtains
yields the identical curve in Fig. 1, and is an analytical so- ) .
lution to Eq.(11). However, to support the arguments leading sin2¢—R, _ 1/ ~1-sin2a cos 2 (14
to the analytical solution, it is necessary to first reconsider 2(1-R,) 2 1-R, '
the optimization given ifi1] for inconclusive rates less than
the unperturbed value, sim? since explicit parametric [The upper limit in Eq(14) is equivalent to Eq(B4) of [1].]
analysis in[1] was limited to inconclusive rates equaling or Equation(14) is a general constraint on the error rate, which
exceeding the unperturbed valu@ote that inconclusive Mmust be satisfied.
rates less than the unperturbed value are included in Big. 1. For (R,/sin22)=1.08, 1.10, Eq(117) with Eq. (118) of
Generally, the eavesdropping probe can induce inconclusividl] also fail to give a minimum foe, =1 ande,= * 1, since
rates in the POVM receiver, less than, as well as exceedinghe upper limit in Eq(14) [along with Eqs(108) and (109
the unperturbed value. of [1]] must be satisfied, and it can then be shown tQat
exceeds that given by E¢R). Equations(126) and(136) of
[1] also fail to yield the minimum overlap forRj/sin 2a)
=1.00, 1.08, 1.10, since for thekis constant, and the cor-
responding single value @ is nonphysical or exceeds the

Possible extrema for the optimization at fixed error andvalue of Q given by Eq.(137) of [1] [or Eq. (2) abovs.
inconclusive rates are given by Edg42), (76), (104), (117 It should be noted here that [d], negative values o®
with (118), (126), and (136) of [1]. For inconclusive rates were improperly described as nonphysical. Clearly, the over-
equaling or exceeding the unperturbed value, it was argueldp (Dirac bracket Q can be negative providg®@|<1, and

(13

IIl. INCONCLUSIVE RATES LESS THAN THE
UNPERTURBED VALUE
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0 1.0 E=E,, (19
0.97, o=m8 whereE, is given by Eq.(17). One can conclude that in the
0.8 optimized individual attack there is a minimum induced error
0.7 rate Eq which is fixed by the inconclusive rate. According to

Eq. (17), when the inconclusive rate assumes its unperturbed
value, sin 2, the minimum error rat&, is vanishing(as is
to be expected but the minimum error rate increases with
0.85 decreasing inconclusive rate less than the unperturbed value.
Also, from Fig. 8 of[1], it can be seen that the minimum
error rate increases with an increasing inconclusive rate
greater than the unperturbed value.

Next, by parametric analysis, one can demonstrate that for
' 015 - (').20 R,<sin 2z, Eq. (76) with the plus sign choice yields values
of Q exceeding those given by E@). Also, for error rate
satisfying the constraint Eq19), all values ofQ in Eqgs.(42)

FIG. 2. Solid curves are the minimum overl@p Eq. (2), as a  and(104) of [1] for (R,/sin 22)=0.98, 0.95, 0.90, 0.85, and
function of the error rat€ for various values of the inconclusive a=m7/8, exceed) given by Eq.(2) above. Also the values of
rateR, less than the unperturbed value sin&nd fora==/8. The Q in Eq. (1170 with Eq. (118 of [1] for a=/8,
dashed curve is the minimum overlap for the fixed error rate only(R,/sin 22)=0.98, 0.95, 0.90, 0.8%,=*1, ande,= * 1,

(as in Fig. 8 of[1)). and satisfying the constraint E4.9), exceedQ given by Eq.

(2), or |Q|=1. Also, Egs.(126) and (136) of [1], for R,
the maximum Renyi information according to HA) effec-  <sin2x, again fail to yield the minimum overlap, for the
tively depends ofQ|; however, negativ® can generally be same reasons stated above Ry=sin2x. Furthermore, it
effectively ignored if the minimumQ is positive for low  can be shown that if one plots the general expression for the
error rates and decreases with the error Eatsince vanish-  nonoptimized overlagEgs. (B1), (B2), and (B4)—(B6) of
ing Q corresponds to perfect information, according to EQ.Appendix B in[1]) versus the error rate for inconclusive rate
(2). less than the unperturbed value, and for a representative

The parametric analysis ifi] did not explicitly address range of values of the nonoptimized probe parameters, with
inconclusive rates less than the unperturbed value. In Fig. 24=7/8, and enforces the necessary constraint (E€), the
plot Q given by Eq.(2) as a function oE for R,<sin2zand  nonoptimized values of) all lie above the corresponding
a=m/8, and represented by the solid curves fBs{sin2x)  curves given by Eq(2), as must be the case. One concludes
=0.98, 0.95, 0.90, 0.85. Also plotted in Fig. 2 is the dashedhat also for inconclusive rates less than the unperturbed
curve corresponding tQ for fixed error rate only, as given value, Eq.(18), it is true that Eq(2) (plotted in Fig. 2 gives
by Eqgs.(C1)—(C4) of [1] (also the dashed curve in Fig. 8 of the absolute minimum overlap of correlated probe states for
[1]). As in Fig. 8 of[1], the curves in Fig. 2 have a least fixed error and inconclusive rates. The corresponding maxi-
possible valueE, of the error rate. This is the case, since mum Renyi information gain by the eavesdropper is given by
according to Eq(2), for E<Eg, Q becomes complex. This Eq. (1).
occurs forE such that In Fig. 2 it can be seen that the solid curves, correspond-

ing to the optimization for fixed error and inconclusive rates,
g(e)>f(e), (15 all'lie above the dashed curve, corresponding to the optimi-
zation for the fixed error rate onfjas in Fig. 8 ofl 1]). Thus
the Renyi information gain by the eavesdropper for the fixed
(16)  €rror and inconclusive rates is less than that for the fixed
error rate only, for inconclusive rates less, as well as greater,
than the unperturbed value. It is important for the following
to also observe that the solid curves in Fig. 2, corresponding
the fixed error rate and inconclusive rate, approach the
dashed curve, corresponding to the fixed error rate only, but
never fall below it.

0.6
0.5
0.4
0.3
0.2
0.1
0

0 0.05 0.10
E

and the valuee is given by solving forE, such that
g(e)g,=f(e)e,

in which the functionsf(e) andg(e) are both evaluated at

E=E,. But it can be shown numerically that for inconclu-
sive rates less than the unperturbed value, the lower bound
Eq. (14) solves Eq.(16). Therefore one has

E sin2a—R, 1
o 2(1-R,) 17 IV. ANALYTICAL EXPRESSION FOR THE WORST
INCONCLUSIVE RATE

for
In Egs.(1)—(10), and correspondingly in Fig. 2 and Fig. 8

R,<sin 2a. (18 of [1], if the fixed inconclusive rat®, is chosen to be that

given by Egs.(9)—(11) of [1], evaluated at the optimum

Thus for inconclusive rates less than the unperturbed valugrobe parameters, u, 6, ¢ corresponding to the optimiza-
one has tion for fixed error rate only5,6], then the optimum at the
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fixed error rate and inconclusive rate becomes equivalent t8ubstituting Eqs(26)—(32) in Eq. (22), one gets

that at the fixed error rate only. This is corroborated by the
fact that in Fig. 2 here, and in Fig. 8 ff], the solid curves
approach the dashed curve. It is also important to note that
the solid curves never fall below the dashed curve. These

facts enable one to find an exact fit to the curve in Fig. 1 ang\|so, substituting Eqs(26)—(28), and (31) in Eq. (23), one

tany
a=— .
sin 2«

(36)

consequently an analytical solution to EG1). To proceed
then, we recall that if only the error rate is fixédith no
constraint on the inconclusive rat¢hen the minimum over-
lap Q as a function of error ratg, for the POVM receiver, is
given parametrically in terms of a parameteby Eqgs.(11)—
(13) of [5],

_ (atb)—(1+b)si’ 2a+csin2a
- (1+d)+(—d—a)sir* 2a—csin2a’

(20

1 dcof2a

E=o\ 1" 1asi?2a—csin2a)’

(21)

wherea, b, ¢, andd are given in terms of the eavesdropping

probe parameters,, u, 6, and ¢ by

a=sirf \ sin 2u+cog \ cos 26 sin 2¢, (22)
b=sir? \ sin 2u+ cog \ sin 2¢, (23
c=co< \ sin 26 cos 2, (24)
d=sir? A +cos \ cos 20, (25

gets

siny

b= sin 2a

(1+sirf2a)2

(37

Then substituting Eq926) and (28)—(35) in Eq. (24), one
gets

B 1 Sir? y i
C=| 1" A¥siP2a)cod y s 2q (LT SIM2e)
tar? 0% 12
* Sif 2« (38)

Also, substituting Eqs(26), (29), and(32) in Eq. (25), one
gets

1
d= cosy(1+sirf 2a)¥?

(39

Next substituting Eqs(36)—(39) in Eq. (20), it follows
that the minimum overlap of correlated probe states, at the
fixed error rate only, is given by

and for the optimization, the probe parameters are given by

A=0, (26)
n=0, 27
sin2¢= ﬂ (28
siné
Cos 20= &55' (29
cosy
where the parametergand § are defined by
- 8<y<5, (30)
sin 2«
sins= st 2a)™ (31
cosd=(1+sir? 2a) Y2 (32
Here,
0< é< /4, (33
cos 2¢=0, (39
and
sin 26=0. (35)

Q=[coS 2a+fi(y)—fo(y)] H(1+sirf 2a)*?
X (siny csc 2a—cosy sirt 2a) + (1+sirf 2a)

X siny cosy cos 2x cot2a+f,(y)}, (40

expressed in terms of the parameterand the functions
f1(y) andf,(y) are given by

f1(y)=(1+sir? 2a)Y¥cosy—sinysin2a), (41)
and
f,(y)=sin 2a[ co y sir? 2a+sin y csé 2a
—2 sirf ycos y]*?, (42)

respectively. The parameter, appearing in the parametric
Eqgs.(40)—(42), is defined by Eqs.30)—(33). Next substitut-
ing Egs.(36), (38), and(39) in Eqg. (21), one can show that
the corresponding error rate is given by
E=34{1-co¢ 2a[f1(y)—fo()] 1}, (43

also expressed in terms of the parameteEquations(40)—
(43) determine the minimum overla@ (for fixed error rate
only) as a function of error ratg, expressed parametrically
in terms of the parametey.

Next, substituting Eq(39) in Eg. (13), and solving for the
corresponding disturbed inconclusive r&eg, one obtains
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R.—1 coS 2a of 1l da a B 50
7% (1-2E)cosy(1+sin 2a)(1+si?2a)? e Bape BZap (50
(44)
Also, Eq.(5) yields
Furthermore, substituting E@43) in Eq. (44), one obtains
the following expression for the disturbed inconclusive rate 99 195 46 da 51)
for the optimization at the fixed error rate: ple @ dpje a? ple
f1(y)—fa(y) Using Eq.(6), one obtains
R?:l_ . . 1721 (45)
cosy(1+sin 2a)(1+sir 2a) Sa
also expressed in terms of the paramegeEquations(45) Ip|e 3p” cod 2a-+[(2p— 1)c0S' 2a] e+ (Sirf 2a)e
and (43) determine the disturbed inconclusive rdte as a (52

function of the error ratek, expressed parametrically in Also. Ed.(7) vield
terms of the parametey for the case of maximum informa- so, Eq.(7) yields
tion gain by the eavesdropper for the fixed error rate only.

This function is plotted in Fig. 1 and the corresponding curve

is indistinguishable from that corresponding to the numerical

solution of Eq.(11), as discussed in Sec. II. This is remark- Fyrthermore, using Eq8), one can show that
able, since directly attempting to analytically solve Ebfl)
apparently requires that a very complicated equation be do

&pﬁl}:zp cog 2a. (53

=cog 2a{2p(1—p)(1—2p)cog 2a cof 2a+2[(1

solved forR, in terms ofE. ap|e

One can check that the parametric E@E) and (45) do
in fact satisfy Eq(11) for all pertinenty (as they must To —p)(1-3p)cof 2a—2p cos’ 2a]e—2[(1-p)
see this, one first notes that according to E@s, (2), and X(cs@2a+1)— psir 2a]e+2(sel 2a) 3).(54)

(10), the left-hand side of Eq11) is given by

R R
o dlgy 9Q dp
(9R7‘E dQ &plE ﬁR')

Substituting Eqs(47)—(54), (43), and(45) in Eq. (46), and
(46) evaluating the latter numerically for a range of pertinent val-
ues ofy, one can show that Eq1l) is in fact satisfied.

From Eq.(1), it follows that V. CONCLUSION
dlffm Q The worst inconclusive ratR, has been calculated ana-
do —2(log; e) 2-07 (47)  \ytically as a function of the error ratg, and corresponding
to the maximum Renyi information loss by the POVM re-
Also, according to Eq(10), one has ceiver at fixed error and inconclusive rates. The result is
given by the parametric Eq$45) and (43) expressed in
p 1 terms of the parametey. It was argued that the optimization

&_R?: (1+sin2a)(1-R,)?" (48) given by Eqgs.(1)—(10) holds for inconclusive rates less, as
. well as greater, than the unperturbed value. Also, it was
Furthermore, using Eq$2) and(3), one can show that shown that for the optimized individual attack there is a

minimum induced error rate which is fixed by the induced

—-1/2 1/2
9 = o 1— 9 1— 9 + 9_ 1 of inconclusive rate.
Ipe 1+e f f 2f Ip|e
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