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Spin-based quantum computation in multielectron quantum dots
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~Received 8 January 2001; published 17 September 2001!

In a quantum computer the hardware and software are intrinsically connected because the quantum Hamil-
tonian~or more precisely its time development! is the code that runs the computer. We demonstrate this subtle
and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in
semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the
outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied.
Our work compellingly demonstrates that a delicate synergy between theory and experiment~between software
and hardware! is essential for constructing a quantum computer.
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Ever since the pioneering work on quantum computat
and quantum error correction@1–4#, there have been many
proposed quantum computer~QC! hardware architecture
based on different quantum systems@5#, such as trapped ion
@6#, cavity QED@7#, liquid-state nuclear magnetic resonan
~NMR! @8#, nuclear spins in solids@9#, electron spins@10–
12#, superconducting Josephson junctions@13#, and electrons
on He surface@14#, etc. Currently, experimental progress h
mostly occurred in proposals based on atomic, optical,
NMR physics. Many solid-state proposals have remained
the model stage because of the immense experimental
culties. To help overcome these difficulties, more theoret
work is needed to explore the optimal operating regim
figure out the operational constraints and tolerances, and
cover potential sources of errors, just to name a few dir
tions @15–18#. While the optical and atomic physics bas
architectures have been crucial in demonstrating the proo
principle for quantum computation, it is generally believ
that solid-state QC architectures, with their obvious adv
tage of controllable scale-up possibilities, offer the m
promising potential for realistic large-scale QC hardwar
The fundamental problem plaguing the solid-state QC ar
tectures has been the fact that the basic quantum bit~qubit!,
the QC building block, has not been compellingly demo
strated in any solid-state QC architectures, although ther
no reason to doubt that they exist in nature. Thus, the c
struction of successful QC hardwares has faced the so
what embarrassing dichotomy: the architectures~ion traps,
etc.! demonstrating the existence of quantum bits canno
easily scaled up, while the architectures~solid-state QCs!
that may be easily scaled up have not yet experiment
demonstrated quantum bits.

Quantum computation with fermionic spins is consider
to be a potentially promising prospect for solid-state qu
tum computers@9–12,19#. Among the many proposed solid
state QC architectures the spin quantum computer has
eral intrinsic advantages:~1! A fermionic spin, being a
quantum two-level system, is a natural qubit with its spin-
and spin-down states;~2! it is fairly straightforward to carry
out single-qubit operations on spin-up and spin-down lev
by applying suitable magnetic fields~or through a purely
exchange-based scheme@15#!; ~3! two-qubit operations can
in principle, be carried out rather easily~in theory, at least!
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by using the exchange interaction between two neighbo
spins; and~4! quantum spin is fairly robust and does n
decohere easily~typical electron spin relaxation times in so
ids are many orders of magnitude longer@20# than the mo-
mentum relaxation time!—in particular, electron spin relax
ation times could be microseconds in semiconductors@21#.

Our work presented in this paper deals with a crucial
pect of solid-state spin qubits that has so far been negle
in the literature. The intrinsic advantages of spin-based so
state quantum computation have led to several concrete
posals for using electron spins@in semiconductor quantum
dots~QD! or in donor impurity atoms# as qubits in semicon-
ductor based solid-state QC architectures@9–12#. One excit-
ing proposal@10# deals with one electron spin per quantu
dot working as a qubit, with two coupled spins on two neig
boring dots ~forming a QD molecule@22–24#! providing
two-qubit operations through the interdot electronic e
change coupling. The electron spin on shallow donor sta
in semiconductors, while differing in some details with th
QD spin-qubit architecture, still exploits the idea of only o
effective spin-1/2 fermion~i.e., one electron! per donor state
participating in the quantum computation@12#. At first sight
this idea of a single electron in a dot may seem far fetch
because an array of semiconductor QDs, even under the
advanced growth and nanofabrication constraints, is likely
have more than a single electron on each dot@25#. However,
the idea of one effective electron spin per quantum dot wo
ing as a qubit is not as crazy as it may seem at first sight
particular, QD electronic states are, similar to real atom
electronic states, naturally divided into quantized shells~i.e.,
S, P, D, F, etc.! corresponding to the quantization of th
orbital motion @25#. Furthermore, the orbital excitation en
ergy in a small QD is much higher than the spin-flip ener
for realistic fields. The single electron spin per quantum
idea is therefore based on the closed-shell principle, wh
what is required is just one ‘‘valence’’ electron per quantu
dot in the outermost ‘‘open’’ shell. The underlying idea he
is that the closed-shell electrons~equivalent to the core elec
trons in atoms! are ‘‘inert’’ and could be ignored as far a
qubit dynamics goes, and the unoccupied states are ene
cally too unfavorable to be involved as well. This princip
in a different context has, in fact, worked for trapped-i
quantum computation@2# where
©2001 The American Physical Society12-1
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‘‘valence’’-type ionic orbital states are manipulated as qub
and the filled inner-shell states are inert and are ignored

The all-important question for quantum dot electron s
quantum computation is therefore the extent to which t
same scenario applies, i.e., both theinert filled core of a
quantum dot and the outer-shell unoccupied orbital states
be ignored for quantum computation because they do
affect the qubit dynamics either for single qubit or f
exchange-mediated two-qubit operations. The answer to
question is nontrivial and non-obvious because the confi
ment potential in quantum dots is very different from a
much softer than that for real atoms. In addition, the ga
circular QDs are essentially two dimensional and the Fo
Darwin states~two-dimensional electron eigenstates in
magnetic field and a harmonic confinement! are isotropic,
unlike the three-dimensional anisotropic atomic states.
address this crucial issue of electron-spin-based QD quan
computation by accurately calculating the energy levels
exchange couplings in multielectron QD molecules wh
two semiconductor~GaAs! quantum dots, each with thre
electrons, are used as the fundamental building block of
quantum computer architecture~Fig. 1!. We perform a
configuration-interaction~CI! calculation with a Hartree-
Fock basis. Specifically, we expand the single-electron st
in a basis including all 12S, P, andD Fock-Darwin states
located at the two potential minima. This leads to 1232
524 Hartree-Fock spin orbitals~each spatial orbital has two
spin orientation!. We include both singly and doubly excite
six-electron states in the CI basis, and solve the Schro¨dinger
equation by expanding on the six-electron Slater basis~Zee-
man coupling has been neglected in this calculation!:

H~1, . . . ,6!(
i

ciC i~1, . . . ,6!5E(
i

ciC i~1, . . . ,6! ,

~1!

where H is the six-electron Hamiltonian including kineti
and potential energy and electron Coulomb interaction.
our theory is based on a sophisticated quantum-chem
approach@26#, our results should have general qualitati
and semiquantitative validity. There have been several re
theoretical calculations of the ground-state spin polariza
properties of multielectron quantum dot systems using
density-functional theory@27–29#. For the purpose of quan

FIG. 1. Here we show a schematic of six electrons in a dou
dot. Four of the electrons will occupy the four lowest spin orbit
~two S orbitals with two spin orientations!, and thus fill up the
S-shell states. The other two electrons can be in any one of
remaining tenP andD spin orbitals in our calculations.
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tum computation of interest to us in this paper, however,
knowledge of the excited states is crucial in determin
whether a particular number of electrons can serve as
effective qubit—in particular, we need an accurate evaluat
of the singlet-triplet energy splitting in the system. Su
excited-state information is beyond the scope of dens
functional theories that are restricted to ground states o
The quantum-chemical CI calculations we present in this
per are particularly well suited in dealing with the low-lyin
excited states and in providing information about the e
change splitting in the system~in contrast to ground-state
density-functional theories!.

Our findings, shown in Fig. 2~a!, are rather striking: we
find that the six-electron Hilbert space~i.e., energy-level
spectra of the two-dot system! is qualitatively different from
the two-electron double quantum dot case@17# shown in Fig.
2~b! ~included here for comparison!, and the multielectron
system~with one electron in the outermost open ‘‘valence
shell! does not necessarily behave as a simple one-effec
spin per dot model. We find that quantum computation us
quantum-dot spin qubits and exchange gates will most pr
ably require the application of an external magnetic field
other means to ensure a well-defined sub-Hilbert spa
which is an essential QC requirement@19#, in the exchange-
based two-qubit operations.

In the representative energy spectra presented in Fig.~a!
~with parameters in the figure caption!, the S electrons are
tightly confined to the individual QDs. We include~for com-
parison! results of our restricted Hartree-Fock ground-st
energies as dotted thick black lines. Notice that the CI c
culation produces a 3 –4 meV improvement in the grou
state energy, mostly by introducing electron correlations
minimize Coulomb repulsion. The lowest lines at each fie
in Fig. 2~a! actually consist of two lines corresponding to th
lowest singlet and triplet states. As their energy splitting is
the range 0.01–0.05 meV, the difference is too small
show up in this figure. Since this energy difference~singlet-
triplet or exchange splitting! is crucial in two-qubit opera-
tions, we plot the magnetic-field dependence of the sing
triplet splitting in the insets of Fig. 2. Notice that the hig
magnetic-field part of the inset of Fig. 2~a! is quite similar to
that for the two-electron double-dot case shown in the in
of Fig. 2~b!. Here both triplet and singlet states cons
mainly of the lower-energyP orbitalscLP2 andcRP2 ; the
first subscript refers to the left or right QD, the second ref
to the orbital quantum number~S, P, or D! of the Fock-
Darwin state sequence, and the third is the orbital magn
quantum number. Strong magnetic fields tightly squeeze
radii of theseP states so that their overlap originates entire
from their exponentially vanishing tails, leading to the sim
lar high field behavior in Figs. 2~a! and 2~b!. At low fields
the exchange splitting in the multielectron system has
much more complicated behavior than its single-elect
counterpart. At zero field the splitting is close to zero, imp
ing a delicate balance between electron kinetic energy
Coulomb interaction. The splitting quickly increases f
lower central barriers as the outer-shell Hartree-Fock st
change quickly from an even superposition ofcP2 andcP1
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e
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FIG. 2. In ~a! we plot the energy spectra~lowest 40 states! of a particular six-electron horizontal double dot as a function of an app
magnetic field along thez direction. The quantum dot widths~Gaussian confinement widths! are 30 nm in radius. The distance between t
two confinement potential minima is 40 nm. The central barrier height is 30 meV~with an effective height of 19.28 meV!. For a more
detailed description of the Gaussian confinement and barrier we use here, and a description of the horizontal quantum dots we stud@17#.
The thick dotted black lines with risers are the ground-state energies of our restricted Hartree-Fock self-consistent states, plotted
starting point to compare our CI results with. The inset shows how the splitting of the lowest singlet and triplet states varies with the
magnetic field~at three different effective barrier heights of 15.10, 19.28, and 23.65 meV!. For the purpose of comparison, in~b! we plot the
energy spectra~lowest 36 states! of a particular two-electron horizontal double dot as a function of an applied magnetic field alongz
direction. Here the interdot distance is 30 nm, the dot Gaussian confinement radius is 30 nm, and the effective central barrier is 9
Again, the inset shows the magnetic-field dependence of the splitting between the lowest singlet and triplet states at three effect
heights of 3.38, 6.28, and 9.61 meV.
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states to mainlycP2 states. For large barriers the triplet sta
is the ground state even at zero field, in analogy to, for
ample, the oxygen molecule.

A crucial feature of our results, not obviously appare
from Fig. 2, is the constituency of the lowest two states.
zero magnetic field, the ground singlet is an equal supe
sition of the singlet states formed from the core and fo
different pairs of Fock-Darwin states:cPL2 and cPR2 ,
cPL2 and cPR1 , cPL1 and cPR2 , and cPL1 and cPR1 .
Therefore, if initially in the single QD the outermost electro
is in an arbitrary superposition of orbitalP states, then as th
barrier between the two neighboring QDs is lowered, sev
low-lying excited states will inevitably get involved as w
project the initial state into a superposition of all th
double-QD eigenstates. Indeed, using the fourP states listed
above one can form four singlet and four triplet states,
that there are seven energy parameters~neglecting the split-
ting of any triplet state due to external fields!. Therefore, in
the most general case one has to manipulate seven diffe
phases to produce a swap—a formidable~if not completely
intractable! task. As the magnitude of the external magne
field increases, the lowest singlet and triplet states bec
simpler, consisting mainly thecPL2 andcPR2 states. Thus
if the initial single-QD outer-shell electron state is pure
cP2 , then only the lowest two states get involved as
interdot barrier is lowered, and the electron dynamics is
rectly analogous to the original proposal of a single elect
confined in each QD. In other words, the orbital degrees
freedom for the outermost electrons are essentially frozen
that the electron dynamics can be described by a simple
Hamiltonian—the Heisenberg Hamiltonian, and importa
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two-qubit operations such as swap can be easily realized
Another important feature of the spectra in Fig. 2~a! is the

splitting between the lowest two states and the higher exc
states~defining the sharpness of the exchange sub-Hilb
space!. This splitting is relatively small at zero and low
fields, increases with the field for a few Tesla, then gradua
decreases again at higher fields. This means that there e
an optimal intermediate magnetic-field regime where
adiabatic condition necessary for quantum computation
be most easily satisfied. Indeed, this optimal field regime
defined close to theP1 and D2 crossing of the Fock-
Darwin state sequence.

Our results show that certain multielectron cases, suc
the situation of three electrons in each quantum dot in
two-QD system, can be mapped on to the effective sing
electron picture only at intermediate external magnetic fie
Essentially, the field lifts theP-state degeneracy so that
sufficiently large energy gap opens up between the st
involved in the exchange process and higher excited sta
and the six-electron ground state is formed from the sing
dot three-electron ground states. The energy gap is\vC
wherevC is the cyclotron frequency and is linearly propo
tional to the magnetic field. Thus, a 1-T field will lead to
1.5-meV splitting, a large energy considering that the
change constantJ is typically of the order of 0.1 meV or
smaller. On the other hand, at low~or zero! fields, there
exists a multitude of low-lying excited states due to theP-
state degeneracy, and the ground-state electronic wave f
tions are quite complicated. At high fields, there are ag
relatively low energy excited states coming from the low
energyD states. Thus the adiabatic condition dictates t
2-3
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XUEDONG HU AND S. DAS SARMA PHYSICAL REVIEW A64 042312
intermediate external fields near theP-D crossing provide
the optimal operating condition for a multielectron quantu
computer.

There are other means~not involving the application of an
external magnetic field! one can employ to break the dege
eracy in theP and higher excited states. For example, def
mation of a circular quantum dot can lift the degeneracy
the P ~and presumably all the higher excited! states, thus
facilitating a more reliable and accurate two-qubit operati
If a circular parabolic well is slightly deformed into an ellip
tical well, the energy splitting between the two newP levels
is 1

2 \v0e wheree is the ellipticity. Alternatively, spin-orbit
coupling can lift the orbital degeneracy, although it would
quite small in our system, as we have only a few conduct
electrons at the bottom of the GaAs conduction band@16,17#,
and it mixes the orbital and spin states, which is what we
to avoid.

If we examine the physical picture underlying the effe
tive qubit behavior of the multielectron scenario closely, it
clear that a crucial point is that the extra unpaired elect
should not have access to low-energy excited orbital sta
Thus, in general, multielectron coupled quantum-dot syste
do not reduce to a simple Heisenberg exchange Hamilto
in zero magnetic fields. One might speculate that a multie
tron case may be analogous to the single-electron case w
the number of electrons in a single dot is a full shell min
one: 1,5,11, . . . , n(n11)21, etc. However, particle-hole
symmetry determines that in these cases pair breaking e
tations in the outer shell will affect the low energy dynam
so that these multielectron systems would actually be sim
to the three-electron~in a single dot! case we study here~and
on
r
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not to single electron systems!. We therefore conclude tha
multielectron circularly symmetric quantum dot systems
zero external magnetic fields may not be suitable as so
state spin qubits. Thus one should either use single-elec
quantum dots as in the original Loss-DiVincenzo propo
~which may be a difficult task in practice! or apply external
magnetic fields~or break the circular symmetry using con
trolled deformation! as we show in this paper. The unde
standing of multielectron systems as carried out in this pa
may be an important step in the realistic fabrication of sp
based QD-QC architecture.

We conclude by emphasizing a general principle tha
explicitly demonstrated by the theoretical results presente
this paper. Quantum computation, in contrast to regular d
tal Boolean classical computation, is analog, and the a
rithm is defined by the system Hamiltonian. One must kn
the quantum Hamiltonian~e.g., the exchange Hamiltonian i
our QD-QC example! controlling the qubit dynamics in the
system accurately in order to carry out meaningful quant
computation. Our multielectron QD calculations comp
lingly demonstrate the potential problems that may arise
the effective single-electron Heisenberg exchange Ham
tonian seems an eminently reasonable choice for QD-
until one looks carefully at the multielectron situation as w
do here, finding important qualitative differences with t
effective single-electron approach that can only be remed
through detailed theoretical calculations. We believe that
important lesson presented in our example in this pape
quite generic: Know your Hamiltonian well before you bui
your quantum computer.
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