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Improving quantum secret-sharing schemes
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We propose a protocol that enables a dealer to share a quantum secret withn players using less thann
quantum shares for several access structures. For threshold schemes we derived an expression that shows how
many quantum shares can be saved in this scheme. Also, several features that are available for classical
secret-sharing schemes~and previously not known to be possible for quantum secret-sharing! become available
with this protocol.
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I. INTRODUCTION

Secret-sharing schemes were independently introduce
Shamir @1# and Blakley@2# in 1979. They are fundamenta
building blocks of multiparty computation protocols@3#, un-
conditionally secure key distribution@4#, digital signature
schemes@5#, as well as of key management schemes@6#. In a
classical secret-sharing scheme, a dealer shares a sec
distributing pieces of information among a set of players i
way, that only authorized subsets of the players’ set will
able to recover the secret. Recently, this concept was ge
alized to the quantum scenario. In@7# Hillery et al. proposed
a scheme where an unknown qubit can be shared with
players, such that to recover the original qubit the play
have to put their pieces of quantum information together
@8# Cleve, Gottesman, and Lo presented a more gen
scheme where a dealer can share an unknown quantum
with a set of players in a way that only authorized groups
players can recover the original secret and collusions of
authorized players cannot get any information about it. T
construction in@8# was based on quantum error-correcti
codes. A construction for general access structures base
monotone span programs was presented in@9# by Smith.

Differently than quantum key exchange and other qu
tum cryptographic protocols such as quantum bit comm
ment, the main aim of quantum secret sharing is not
achieve a level of security that is impossible in the class
world. Rather, the aim is to share a different kind of data:
unknown quantum state. If quantum computers becom
reality, quantum secret sharing could possibly play an imp
tant role in distributed quantum secure computations.

In classical secure multiparty computations, several co
puters interconnected by a network want to compute
value of a function, which depends on secret inputs of all
players. Some users might collude to cheat in the protoco
to obtain information about the secret inputs of other play
or to modify the result of the computation. In a quantu
version of a secure multiparty computation, a group of us
would like to compute a quantum state by inputting quant
as well as classical data in a way that no allowed collusion
cheaters can get any information about the inputs of o
players or alter the result of the computation.

A fundamental issue when dealing with secret-shar
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schemes is the amount of data that must be given to the s
players. The smaller the amount of data given to the se
players the better. This issue becomes even more impo
when dealing with quantum secret sharing. As quantum d
is expansive and hard to deal with, it would be desirable
use as little quantum data as possible in order to share
unknown quantum state. In this paper we show that quan
data and classical data can be used together in a hybrid q
tum secret-sharing scheme in order to reduce the amoun
quantum data that has to be distributed to the players.
classical data is much easier to store, transmit, and rece
this result significantly improves the viability of quantu
secret-sharing schemes.

It is interesting to note that, in this case, classical d
help one to perform a completely quantum task. This is
the case with data compression@10# or with the quantum
capacity of a quantum channel@11#. In @11# Adami and Cerf
proved that a classical forward channel connecting two p
ties cannot increase the capacity of a quantum channel
tween them. In@10# Barnumet al. proved that no part of the
quantum-information content of a quantum source can
faithfully replaced by classical information.

This paper is organized as follows. In Sec. II we introdu
our notations and give some preliminaries. In Sec. III
state our main results and in Sec. IV we introduce feature
quantum secret-sharing schemes that become available
our results. Finally, in Sec. V we give our conclusions.

II. PRELIMINARIES

A. Classical secret-sharing schemes

As stated in Sec. I, a secret-sharing scheme is a prot
that enables a dealerD to share a secretS with a set of
playersP so that the members of an authorized group will
able to recoverS, but no other members can get any info
mation about the secretS. The authorized groups will be
defined by an access structureG, a family where each ele
ment is an authorized group. The secret-sharing scheme
be calledperfect if ~1! each set listed inG can recover the
secretS with absolute certainty, and~2! none of the subsets
not listed inG can get any information about the secretS.

When uPu5w and G5$B#P:uBu>t% we say we have a
(t,w)-threshold scheme.
©2001 The American Physical Society11-1
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B. Quantum error-correction codes and quantum secret
sharing

In @8# Cleve, Gottesman, and Lo introduced the notion
quantum threshold schemes. It was based on quantum
sure correction @12–15#. In an @n,k# quantum error-
correcting code, a quantum stateuX&PH k ~whereH k is the
k-dimensional Hilbert space! is associated with another vec
tor uc&PH n called a codeword, wheren>k. The set of all
codewords is a linear subspaceX# H n with dim X5k. Let
U be a unitary transformation that represents the action of
environment introducing errors in a quantum stateuf&
PH n. If these errors are local errors, the action of this u
tary operatorU on the quantum stateuf&PH n can be ex-
panded in terms of$I ,X,Y,Z% ^ n, whereX,Y and Z are the
three Pauli operators.

Therefore, we have that inH n the errors can be repre
sented by tensor-products operators,Ea5 ^ 1< j <na j , where
a5(a1 ,a2 , . . . ,an), a jP$I ,X,Y,Z%. The number ofa j
ÞI in a word a will denote the weight ofa and will be
represented byw(a). A quantum codeX is called E-error
correcting if ; a,b with w(a),w(b)<E and for ;f,c
PX,

^cEauEbf&5^cuEaEbuf&5ba,b^cuf&, ba,bPC

if additionally, ba,b50, unlessa5b, the code is said to be
nondegenerate. It is important to remark thata and b are
independent of̂ cuf&. It is a well-known result that an
E-error-correcting quantum code can correct 2E erasures.

The minimum distance of a code can be defined as
minimum number of undetected errors. An@n,k# code with
minimum distanced is referred as an@n,k,d# code. Cleve,
Gottesman, and Lo exploited the fact that if we trace o
any n2t subset of qubits of a codeworduc&P H n in an
@n,k,d# code withd5t21, we have that

r (t)5tr(n2t)uc&^cu5
1

2t
I

is the complete mixture. Therefore, by measuring any su
of dimension smaller or equal tot21, it is impossible to get
any information about the complete stateuc&. This is a con-
sequence of the fact that any information extracted out o
quantum state implies disturbance of the state. Therefor
we want to protect a quantum state composed ofn qubits
from errors in any subset ofk qubits, we have to ensure tha
any measurement performed~maybe by the environment! on
any subset ofk qubits will get no information about the stat
It follows that in order to implement a (t,w) quantum thresh-
old secret-sharing scheme, we must have a@2t21,1,t# quan-
tum code@8#.

It is interesting to note that not all access structures can
implemented by quantum secret-sharing schemes. This
striction comes from the no-cloning theorem@16#. This theo-
rem states that it is impossible to clone with perfect fide
an unknown quantum state. Therefore, any access stru
that has two disjoints subsets cannot be implemented. In
other paper@17#, Gottesman generalized the results obtain
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for threshold schemes to general access structures. It
stated in@17# that in a quantum secret-sharing scheme,
size of the shares must be at least that of the secret to
shared and all the important players must receive one qu
tum share.

C. Encryption of qubits

In the next section we show how to overcome this lim
tation by use of an interesting tool proposed in@18#: the
encryption of quantum bits, which is briefly reviewed in th
section. The encryption scheme works as follows: supp
we have a quantum stateuc& composed ofn qubits and a
random sequence of 2n classical bits, each pair of classic
bits is associated with a qubit and it determines which tra
formationsP$I ,X,Y,Z% is applied to the respective qubit. I
the pair is 00,I is applied, if it is 01,X is applied, and so on
It is easy to see that ifs is chosen at random from$I ,X,Y,Z%
the resulting stateuc̃& is the complete mixture and no infor
mation can be extracted out of it. However, if someo
knows the classical sequence of bits, the sequence of op
tors that were applied touc& is known and, as they are un
tary transformations, they can be reversed anduc& can be
recovered. Therefore, classical data can be used to enc
quantum data.

III. IMPROVING QUANTUM SECRET-SHARING
SCHEMES

In this section we show how to improve quantum secr
sharing schemes, in terms of reducing the number of ne
sary quantum shares, by using quantum encryption. First
give an example: suppose we want to share a quantum s
uS& with a set of playersP5$A,B,C,D,E% realizing an ac-
cess structureG5$(A,B,C),(A,D),(A,E)%. If we encrypt
the quantum stateuS& ~using a classical keyK) into another
quantum stateuS̃& using the method described in Sec. II
and giveuS̃& to the playerA, we can share the classical ke
by a classical secret-sharing scheme that realizesG. The
player A cannot recoveruS& from uS̃& because he does no
have the key. Only the subsets present inG can recover the
classical key and the encrypted state together. By using
hybrid ~classic-quantum! secret-sharing scheme, we can r
alize the access structureG by giving quantum data plus
some classical data to the playerA, and only classical data to
all the other players. This has some advantageous featu
for example, classical data is much easier to store, trans
and receive than quantum data. However, not all the ac
structures can be improved in this way. For example, if
analyze a (2,3)-secret-sharing scheme, we realize that t
is no way to distribute quantum data to only some memb
of the set of players. We now give a definition of improvab
secret-sharing schemes.

Definition 1.A quantum secret-sharing scheme realizi
an access structureG5$A1 ,A2 , . . . ,Ar% among a set of
playersP5$P1 ,P2 , . . . ,Pn% is improvable if less thann
quantum shares are sufficient to implement it.

The following theorem answers the question of when
1-2
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quantum secret-sharing scheme realizing a given ac
structure can be improved.

Theorem 1.For a conventional quantum secret-shari
scheme realizing an access structureG5$A1 ,A2 , . . . ,Ar%
among a set of playersP5$P1 ,P2 , . . . ,Pn%, it is ‘‘improv-
able’’ if there exists at least onePiPAjPG, 1< j <r such
that GuP2Pi

does not violate the no-cloning theorem, whe

GuP2Pi
denotes the restriction ofG to P2Pi .

Proof. If GuP2Pi
does not violate the no-cloning theorem

there exists a quantum secret-sharing scheme that rea
GuP2Pi

. We can implement a hybrid scheme realizingG in

the following way: we encrypt the shares ofGuP2Pi
with a

classical keyK and share it using a classical secret-shar
scheme realizingG. As G is a monotone access structure, t
existence of a classical secret-sharing scheme implemen
G is easily proved by using any of the well-known constru
tion techniques for monotone access structures present i
literature~such as@19#!. All the sets inGuP2Pi

can recover

the encrypted shares, but only the sets inG can recover the
encrypted shares and the classical key together. j

Now we formalize the notion of minimal and optima
restricted-access structure.

Definition 2.A realizable restriction of an access structu
G5$A1 ,A2 , . . . ,Ar% to a subsetB#P5$P1 ,P2 , . . . ,Pn% is
a family GuB5ˆ$AiùB%:AiPG‰ that satisfies the no-clonin
theorem, andBùAiÞB, ;AiPG. GuB is called minimal if
it is not improvable, and it is optimal if there is no oth
D#P such thatGuD is minimal anduDu,uBu.

We now give a protocol that implements an improv
quantum secret-sharing scheme among a set of playeP
5$P1 ,P2 , . . . ,Pn%, realizing an access structureG when its
realizable minimal restrictionGuB is known. In this improved
scheme onlyuBu quantum shares are needed, instead ofuPu.

Distribution phase.~1! Choose a random classical encry
tion K. Encrypt the quantum secretuS& using the encryption
algorithm described in Sec. II C. The encrypted state will
denoted uS̃&. ~2! Using a normal quantum secret-shari
scheme, shareuS̃& with the set of players realizingGuB . Each
member of B will receive a quantum shareuQi&, 1< i
<uBu. ~3! Using a classical secret-sharing scheme sharK
with the set of players realizingG. Each member ofP
5$P1 ,P2 , . . . ,Pn% will receive a classical shareCj , 1< j
<n.

Reconstruction phase. ~1! Collect the quantum share
from the members ofB. ~2! Collect the classical shares from
the members ofP. ~3! Reconstruct the encrypted quantu
secretuS̃& and the classical keyK. ~4! Decrypt uS̃& by using
K.

It is easy to see that the protocol described above sha
quantum secret with a set of players so that only the gro
of players specified byG will have access to the quantum
secret. However, we have to note that it is not easy to c
pute the minimal access structure for a general access s
ture G. This task can be made easier ifG has certain sym-
metry. This is the case of an important class of acc
structures: the so-called threshold schemes.
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A. Threshold schemes

In order to find out this expression, we first state the f
lowing lemma.

Lemma 1.A restriction of a threshold scheme is always
threshold scheme.

Proof. The proof of this lemma follows from the defini
tion of threshold schemes.

The following lemma gives us the expression for the o
timal restriction of a threshold scheme.

Lemma 2.If a (k,n)-threshold scheme does not viola
the no-cloning theorem, its minimal access structure is eq
to the optimal one. Moreover it is given by the expressi
(k2g,n2g) whereg52k2n21.

Proof. From lemma 1 we know that a restriction of
threshold scheme is always a threshold scheme. Therefo
restriction of a (k,n)-threshold scheme must be of the for
(k2g,n2g) for an integerg. From the no-cloning theorem
we know thatk2g.(n2g)/2⇒2k2n.g, so the minimal
restriction hasg52k2n21. j

Example 1.Suppose a threshold scheme (99,100). In
conventional quantum secret-sharing realization of this
cess structure, all the 100 players must receive a quan
share that is as large as the secret to be shared. How
from lemma 5 we know that its minimal restriction is
(2,3)-threshold scheme. Therefore, we just need three q
tum shares in order to implement a hybrid quantum sec
sharing scheme realizing a quantum (99,100)-thresh
scheme. Following the same logic, we see that
(n,n)-threshold scheme can be realized with only one qu
tum share.

B. General access structures

The analysis for general access structures is more com
cated. We just improve a construction technique that w
presented in@17#. First, we remember a construction of ge
eral access structures from threshold secret-sharing sch
proposed in@19# by Benaloh and Leichter. It is based o
monotonic circuits. With each general access structure,
naloh associated a special kind of boolean circuit cal
monotonic circuit. Suppose we have a boolean circuit w
Boolean inputs, which represent the players, and one ou
y. The basic idea is to have a circuit that recognizes an
thorized group of users. It means that the outputy will be 1
if an authorized group of players is used as the input of
circuit. As the circuit is monotonic, changing one input fro
1 to 0 does not change the output from 0 to 1~excluding
members of an unauthorized group will not change it into
authorized one!. Afterwards, we could build up a secre
sharing scheme from the description of the circuit. To ens
the monotonicity of the circuit we will use onlyAND (`)
andOR (~) gates.

Example 2.Following Benaloh’s representation, an acce
structureG5$(A,B,C),(A,D)% would be represented by th
circuit y5(A`B`C)~(A`D).

In a classical secret-sharing scheme, an access stru
can be realized by associating theAND gates with a
(q,q)-threshold scheme and theOR gates with a
(1,r )-threshold scheme. In the given example, (A`B`C)
1-3
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NASCIMENTO, MUELLER-QUADE, AND IMAI PHYSICAL REVIEW A 64 042311
would be realized by a (3,3)-threshold scheme and theOR

would be realized by a (1,2)-threshold scheme. This c
struction does not directly apply to the quantum scena
because (1,r ) quantum threshold schemes do not exist
r>2 due to the no-cloning theorem.

In @17#, Gottesman proved that the (1,r )-threshold
scheme can be substituted by an (r ,2r 21)-threshold scheme
~a majority function!. We earlier saw that an
(r ,2r 21)-threshold scheme cannot be improved. Howev
all the (q,q)-threshold schemes used to implement the lo
cal AND can be substituted by a (1,1)-quantum secret-sha
scheme plus a (q,q)-classical secret-sharing scheme. The
fore, we see that a large group of general access struc
can also be improved. However, it is clear that the improv
access structure achieved by this construction is not mini
in general.

IV. FEATURES

Besides reducing the amount of quantum data that m
be given to the set of players in order to share a quan
secret, another advantage of the hybrid quantum sec
sharing schemes is that they make possible a straightforw
application of several features that are available for class
secret-sharing schemes and are not yet known to be val
the quantum scenario. We briefly explain these feature
this section.

The security of an (k,n)-threshold scheme is ensured
an adversary is restricted to compromise less thank players
during the whole lifetime of the secret. This is a quite stro
assumption for long-term secrets. In order to cope with t
problem, Herzberget al. proposed in@20# a scheme where
the shares are periodically renewed without changing the
cret. It is easy to see that this construction applies to
hybrid secret-sharing scheme, therefore creating a proac
quantum secret-sharing scheme. To do so, we just use a
active secret-sharing scheme to share the classical keyK, and
we periodically change the classical shares among the p
ers. It is important to note that we still do not know wheth
such a protocol exists or not in a pure quantum sec
sharing scheme.

Another interesting scheme that becomes available in
S

lt
me
h/
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hybrid scheme is secret sharing with prevention. In
(k,n,p)-secret sharing with prevention scheme, any group
p users can avoid all the other users to reconstructing
secret. Obviously, this scheme supposes that the players
their shares to a center in order to reconstruct it. This sche
was proposed in@21#. It becomes available in the quantu
scenario in the same way as the proactive scheme, by ap
ing it to the classical scheme used to share the key.

As a final example, we cite secret-sharing schemes w
disenrollment@22#. In this scheme, a player can be exclud
without setting a new scheme. We see that this scheme
not directly apply to our hybrid scheme. However, if w
regard the players who will hold quantum shares as h
reliable ones and that they will not be excluded of t
scheme, it becomes implantable. However, only the play
who hold only classical data can be excluded. Other va
tions, like nonperfect secret-sharing schemes, gradual dis
sure of a secret, among others can be achieved in the s
way.

V. CONCLUSIONS

We proposed a hybrid classical-quantum secret-sha
scheme that shares a quantum secret among a set of pl
such that only authorized groups can recover the secret
unauthorized groups have no information about it. W
proved that for several access structures, this scheme ca
implemented with less quantum shares than in a conv
tional quantum secret-sharing scheme. Additionally, so
features of classical secret-sharing schemes, whose avai
ity was not even known in the quantum domain, beca
available. We did not address the robustness against n
and/or cheating in the proposed protocol. Clearly, there
trade-off between the improvability of an access struct
and its robustness. If only one player holds the quant
shares and if anything happens to this state, the secret wi
destroyed forever. We state the analysis of this problem
future research topic.
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