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Adopting an approach similar to that of Zukowdhys. Rev. A62, 032101 (2000], we investigate
connections between teleportation and nonlocality. We derive a Bell-type inequality pertaining to the telepor-
tation scenario and show that it is violated in the case of teleportation using a perfect singlet. We also
investigate teleportation using “Werner states” of the fowR+ (1— «)1/4, wherePy is the projector corre-
sponding to a singlet state ahds the identity. We find that our inequality is violated, implying nonlocality, if
a> 1/\/5. In addition, we extend Werner’s local hidden variable model to simulation of teleportation with the
a:% Werner state. Thus teleportation using this state does not involve nonlocality even though the fidelity
achieved is%, which is greater than the “classical limit” c§ Finally, we comment on a result of Gisin’s and
offer some philosophical remarks on teleportation and nonlocality generally.
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[. INTRODUCTION The purpose of this study is to investigate this idea in
more detail(other studies have been undertaken in a similar

Quantum teleportation, first introduced [ifh], is a quan-  spirit by Gisin[4], Zukowski[5], Hardy[6], and Cerfet al.
tum mechanical scheme that allows one particigAfite) to ~ [7]). First, in Sec. Il, we define more precisely what we mean
transmit a quantum state in her possession to another partiddy “nonlocal” — broadly speaking, we take it to mean “not
pant(Bob). In the original version, it is a spig-state that is simulable by local hidden variables.” In the literature now,
sent and the only resources required are a shared singlet andnlocal is often used simply to mean entangled. We empha-
the capacity for Alice to send two classical bits to Bob. Insize that it is the relation between teleportation and nonlocal-
this case, Bob ends up with a state identical with the ondty in our sense that we shall investigate. In Sec. Ill, we
Alice begins with. The state in Alice’s possession is randomdiscuss results of Hardy{g] which show that teleportation
ized, so there is no contradiction with the no-cloning theo-and nonlocality are conceptually distinct and which give us
rem[2]. A notable feature of the scheme is that it works evenan idea of how local hidden variables might simulate a tele-
when Alice has no knowledge of the state she is sending. portation procedure. This leaves open the question of

Briefly, the procedure described fitr] (hereafter referred Whether teleportation and nonlocality are physically distinct
to as “the standard schemgtvorks as follows. Let the state — this is the question that we turn to in Sec. IV. Here, we
Alice wants to teleport beéy) and the shared state have adopt an approach similar to that of Zukowgk] and derive
density matrixp. Alice performs a joint measurement on her an inequality, the violation of which shows that perfect tele-
half of p and|x). The measurement projects onto the Bellportation using a singlet implies nonlocality. In Sec. VI we
basis. Alice sends two classical bits to Bob informing him ofconsider teleportation using “Werner states” instead of pure
which of the four possible outcomes she got. Bob then persinglets. We extend Werner’s original local hidden variable
forms a corresponding unitary transformationplis maxi- ~ model in order to simulate a teleportation scenario with local
mally entangled then these four unitary transformations cafiidden variables. We also consider how high the teleporta-
be chosen such that the state Bob ends up with is identicdion fidelity can be before teleportation using a Werner state
with | x). violates our inequality and therefore implies nonlocality. Fi-

If p is not maximally entangled then typically, Bob will naI_Iy, in Sec. VI, we comment on a_result of Gisin’s that he
end up with something that is not identical wjtf). Suppose claims has relevance to teleportation and nonlocality. We
that at the end Bob is in possession of a state whose densig¢ggest that his interpretation of his result is slightly mis-
matrix is M. The “fidelity” of the teleportation is defined as leading but that the result is still interesting if interpreted
{(xIM|x). In general, the fidelity will depend oy} but we  differently.
can define an average fidelity by averaging over all possible
values of| x). This average is often referred to as the fidelity
for a particular teleportation scheme and shared state.

In Vaidman’s view[ 3], quantum teleportation is so called  We would do well at the outset to specify precisely what
because it involves the transfer of an “object” from one we mean by nonlocality. Broadly, we take it to mean non-
place to another without it ever being located in the intervensimulablility by local hidden variablegbut see the end of
ing space. He troubles to argue that teleportation is indeed ahis section for a qualification Consider a bipartite state
appropriate name for this process. This might already lead uscting onH,® Hg. The two subsystems are spatially sepa-
to entertain rather vague notions that teleportation must beated, one being in the possession of an observer Alice and
intrinsically connected with another idea, viz., nonlocality. Inthe other being in the possession of an observer Bob. Alice
particular, in the case in which the fidelity is(@orrespond- performs a measuremeAton her subsystem while Bob per-
ing to perfect teleportationit seems intuitively obvious that forms a measuremeton his; these measurements occur at
some sort of nonlocality is at work. spacelike separation from one another. This procedure is re-

Il. WHAT WE MEAN BY “NONLOCALITY”
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peated with a new system in the stat@ach time. We refer some cases, nonlocality may be revealed if Alice and Bob are
to this as a “Bell-type experiment.” If measuremehhas an  allowed collective measurements on several particle pairs at
outcomea; and measuremer8 has an outcomé;, then a  once, even though the state would be local if this possibility
hidden variable model supposes that the probability of getwere not allowed. We choose to ignore this possibility when
ting these two outcomes can be given in the form classifying states as local or nonlocal — one could argue
that, if collective measurements oncopies of a state are

Pr(a; ,bj|A,B,p)=f d\ ©’(\) Pr(a; ,ble,B,)\), 1) Egﬁﬁ)iilt?a:ﬁgf?rl];;nIocallty, then it is the stafd that is

wherew”(\) is some distribution over a spade of hidden
states\. A local hidden variable model imposes the addi- Ill. CONCEPTUALLY VS PHYSICALLY DISTINCT

tional constraint . .
In [6], Hardy shows that teleportation and nonlocality are

Pr(a; ,bj|A,B,\)=Pr(a;|A,\) Pr(bj|B,\). (2)  conceptually distinct._ “Conceptually di_stinct" means that we
ought to be able to imagine a scenafimt necessarily one

It was Bell who first discovered that some quantum stategomplying with known physical laws but one that is at least
are nonlocal[8]. He derived an inequality involving the logically consistentin which perfect teleportation is realiz-
probabilities of measurement outcomes that must be satisfieable while locality is demonstrably preserved. Hardy con-
by any local hidden variable model. He then showed that thetructs just such a scenario in the form of a toy theory which
quantum mechanical predictions for two sgirparticles in a  allows for notions of systems, states, measurements, a no-
singlet state violate this inequality. Different versions of cloning theorem, and teleportation. It is also demonstrably
Bell's inequality were derived ih9,10]. We refer to these as local. Note that this is separate from the question of whether
the Clauser-HornéCH) inequality and the Clauser-Horne- teleportation and nonlocality are physically distinct — in
Shimony-Holt(CHSH) inequality, respectively. other words, it still may be the case that teleportation in

These results have since been generalizedi11h Peres quantum mechanics implies nonlocality.
considers experimental scenarios in which Alice and Bob In fact, Hardy gives two reasons why we might think that
each choose from an arbitrary finite number of possible measonlocality is implied by quantum teleportation. The second
surements to perform, where each measurement has an arbeason he gives is that entanglement can be teleported in
trary finite number of possible outcomes. Peres shows howuantum mechanics. In other words if Alice and Bob share
to construct a list of inequalities, the idea being that if theparticlesC andD in a singlet state, while Alice has particles
outcomes can be simulated with a local hidden variableA and B in her possession in some entangled stateg,
model then all the inequalities must be satisfied. He giveshen Alice can teleport particlB to Bob so that at the end of
both a graphical method for the easy construction of theséhe protocolA and D are in the statéy)ap. (This works
inequalities and an algorithm that produces a complete set —-essentially because teleportation is a linear operation applied
complete meaning that the satisfaction of all the inequalitieso particleB [1].) It is then possible to obtain a violation of
is sufficient for the existence of a local hidden variableBell's inequalities by performing measurementsfAandD.
model for the particular experimental scenario consideredHowever Hardy also responds to this point: “We cannot nec-
We refer to these inequalities as “Bell-type inequalities.” essarily assert on the basis of this fact that nonlocality plays

Both the formalism developed by Peres and that of Egsa role in quantum teleportation. It is possible that the extra
(1) and(2) above apply only to a scenario in which Alice and information which establishes the nonlocal correlations is
Bob each perform a single measurement on each run of thenly transmitted in the process of measuring the quantities in
experiment. In a more complicated scenario, Alice and BolBell's inequalities, and is not transmitted in the teleportation
might perform a sequence of measurement§1®}, Popescu process.” In recognition of this sense that the subsequent
gives examples of states for which nonlocality can be retesting of entanglement that has been teleported is not part of
vealed in this manner even though local hidden variablehe teleportation process itself, we will hereafter ignore the
models exist for single measurements that satisfy Ebjs. possibility of teleporting entanglement. We will consider
and(2) — he calls this “hidden nonlocality{we discuss this teleportation of a single state, not entangled with any others,
briefly again in Sec. Y. A new formalism would be needed and the question of when this might imply nonlocality.
to explain what is meant by a local hidden variable model In giving his first reason why teleportation might imply
here and what conditions would have to be violated for thenonlocality, Hardy notes, following Bennett, that “the
nonexistence of such a modelee, e.g.[13]). We do not amount of information needed to specify a general qubit is
discuss this further. In what follows, we refrain from calling much greater than the two bits of information which is clas-
a state local unless it is completely local, i.e., has no hiddesically communicated during quantum teleportation. One
nonlocality (and indeed does not display what Teuétlal.  might speculate that when a qubit is teleported, the extra
call “deeply hidden nonlocality”[13]). We may, however, information is being carried by the nonlocal properties of the
speak of a state having a local hidden variable model mearentangled state.” As well as making this point, however,
ing only a model that satisfies Eq4) and(2) — such a state Hardy also has a response:
may still have hidden nonlocality. “On the other hand, it is not possible to extract more

Note that in all of this we have been considering onlyclassical information from a qubit than the two classical bits
measurements performed separately on each particle pair. tommunicated during teleportation and so there must remain
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questions about the reality of the quantum information apand x; the initial state of particle 1, Bob now knows the
parently transmitted during teleportation.” value ofi=(X3—x;) mod 4. Bob can perform an operation
These two quotations, then, provide us with a motivationon particle 3 given by, :x;— (X3—i) mod 4. These opera-
for a detailed investigation of the relationship between teletions are analogous to the unitary operations of quantum me-
portation and nonlocality in quantum mechanics. This is Unthanics. Teleportation has now been successfully completed

dertaken in the next section. We adopt an approach similar to_ e final state of particle 3 is identical with the initial state
that of Zukowski[5]. We derive a Bell-type inequality and ¢ particle 1.

show that it is violated in the case of teleportation using a We can take a step back and ask: how exactly has this

shared singlet and the standard scheme. teleportation been accomplished? No individual particle has

First, however, Hardy's toy theory is interesting because i . : : )
provides some insight into how hidden variables might betbeen transmitted from Alice to Bofapart from in the prepa

. ; o ratory stages and those used to transmit classica). bits
able to describe a teleportation process, so it is worth exam-= . .
P P rY]?ather, correlations between hidden states have been used to

ining a few of the details. A particle in Hardy's theory exists . RN i
g P y y gnsure that the final state of the particle in Bob’s possession

in one of four states, labeled 0, 1, 2, and 3. The stateS . ) _ . ;
are hidden states because there is no measurement that Wil /dentical with the intial state of the particle that Alice

determine the state of a particle unambiguously and wdeleported. Although Alice in this theory is unable to deter-
cannot prepare a particle with an unambiguous state. W&lNe the state of a particle directly, it turns. out that she is
write the state of two particles as a vector, (x,), where able to do a measurement that tells her diéerencebe-
Xl,X2€{0,1,2,3. Two partic'es may be correlated — for ex- tween the states of particles 1 and 2. The correlations be-
ample, we can prepare them in such a way that their state fgveen the hidden states ensure that particle 3 is initially in
given by 25% chance of0,0), 25% chance of1,1), 25% the same state as particle 2 and Bob is then able to perform
chance 0f(2,2), and 25 % chance dB,3). an operation on particle 3 to make up the difference.

This is the preparation used to perform teleportation and It is clear that this model works in the way it does only
is clearly analogous to the maximally entangled quantunbecause there are only four different states that a particle can
state used in the standard quantum mechanical scliexae be in — this corresponds to the fact that Alice sends two
cept, of course, it has none of the nonlocal properties posclassical bits. In this sense it is artificial and it is not miracu-
sessed by a maximally entangled quantum steeppose |ous that it works. It is, however, quite adequate to establish
Alice and Bob share two particles, called particles 2 and 3Hardy’s claim that teleportation and nonlocality are concep-
which have been prepared in this way. Suppose that Alicgyaly distinct. In subsequent sections we turn to consider
also has another particle, particle 1, in an unknown statgynether, or in what circumstances, teleportation in quantum

which she wishes to teleport to Bob. Alice can perform amechanics could be effected by making use of correlations
joint measurement on particles 1 and 2 which can be chalsatveen hidden variables in a similar manner.

acterized by four possible outcomes:

IV. TELEPORTATION AND NONLOCALITY

Consider the standard scheme for quantum mechanical
teleportation. Alice’s first action is to perform a joint mea-
surement on her half of the shared system and the system she
wishes to teleport. The measurement projects onto the Bell
basis. There is another way of looking at this measurement
(described in[14]). Recall that the most general type of
quantum measurement corresponds to a positive operator
valued decomposition of the identitg]. We call such a mea-
surement a POV measurement. In the special case that the
measurement corresponds to a projective decomposition of
the identity, we refer to it as a projective measurement. A
POV measurement on some system can always be realized

either (0,0), (1,1), (2.2), or (3,3). Any possible initial state by attaching an ancilla and performing a projective measure-

of the two particles leads to a unique measurement outcom@ent on the combined syste®]. Conversely, any joint pro-

After the measurement, if outconB was obtained, then the J€Ctive measurement performed on the system and ancilla
state of the two particles is one of these four with equaf@n Pe thought of as a POV measurement on just the system.

probabilities, i.e., measurement disturbs the sysiéis This is exactly what is happening in the case of teleportation
leads to a proof of a no-cloning theorgrithe measurement — We regard Alice’s half of the shared state as the system
described here is clearly analogous to the Bell measuremeafld the state being teleported as the ancilla. If the state being
used in the quantum mechanical standard scheme. teleported igx)= (), then Alice is performing a POV mea-

Alice now uses two classical bits to inform Bob of her surement on her half ¢f, the shared state, with elements as
measurement outcome. A§ is the initial state of particle 3 follows:

w N - O
w N+ O
w N B O
N b O W

B2: s 83:

w N - O
= O W N
w N O
O W N -

The notation means that if outcomB, was obtained,
for example, then the initial state of the two particles was
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POV element Bell outcome Bob's state, Bob’s outcomes, then there are {4)Xx(2+2)=32 pos-
if p= singlet sible joint outcomes. As discussed in Sec. I, Peres shows
how to construct Bell-type inequalities pertaining to this sce-
1 b —ab* ) —a> nario in[11]. Unfortunately, there are a very large number of
Po=2 —a*b  |af? N —b such inequalitiesthe number increases very rapidly with the
b2 ab* —a number of joint outcomgsand it is hard to know where to
A= %( . 5 [) ) start looking if we want to find one that is violated. For this
a b2 [ b reason, we impose another restriction. Suppose that, al-
A zl( el —a'b 16 b) though Alice’s measurements each have four distinct out-
272 —ab*  |bP? - a comes, we group them into pairs, so that, for examfaleor
la?  a*b —b A, counts as outcome 1 aml or Az counts as outcome 2.
Ag= %(ab* b2 |- a ) We then have that Alice has a choice of two measurements,

each with two possible outcomes, and so does Bob. This

The first column shows the POV element, the second th&eans that we can apply the well known Clauser-Horne in-

corresponding outcome if Alice’s measurement is regarde@duality [9] (or something equivalent to)itdirectly to this

as a projection onto the Bell basis, and the third the state th&@Se- _ _

Bob ends up with(before he does any unitary transforma- ~ First, some terminology. Alice performs one of two mea-

tion) assuming thap is a singlet. surements, which we labd@l andU. Alice performing mea-
Now suppose that the teleportation procedure is repeategHrementT corresponds to Clare giving her a stgte = (p)

many times but with a modification: Bob does not botherto teleport. Alice performing measuremedt on the other

performing unitary transformations. Instead, he wishes to dehand, corresponds to Clare giving her a sda(té>=(§:) to

termine how close the states he receives are to those be"?gleport Measuremerit has two outcomes. labelddandt.
teleported(he can always take into account the fact that he ' ' .

would have performed a unitary transformation had heOutcomet corresponds to Alice gettingp or A, .|n her mea-
waited for the two classical bitsBob does this by perform- Surement. Outcome corresponds to her getting, or As.
ing ordinary projective measurements. He performs them agimilarly, measurement) has two outcomesy and u. u
spacelike separation from Alice’s POlér Bell basi$ mea-  corresponds to outcom&, or A; while u corresponds t@\;
surements. Also, suppose that Alice does not know each timer A,. Note how the grouping of four possible outcomes into
which state she is teleportingomeonénows which states pairs is done differently according to which measurement
are being teleported by Alice and she can be called Clarelice is performing. It turns out that unless we do it like this,
From the table above, it is clear that Alice is actually per-we do not get an inequality that is violated.
forming a four-element POV measurement each time and Bob’s two measurements are denofR@nd S, with out-
which measurement she is performing is determinedX)y  comesr, 1, s, ands. R andS can correspond to spin mea-
(that is, by the values ai andb). We have now reduced the syrements in different directions,ands to spin up results
standard telgportatlon scenario to a typ_|gal experimental SC&dr ands to spin down results.
nario for testing locality via Bell inequalities. On each run of The inequali ;

) ; . : quality we use is
the experiment, Alice performs one of a selection of incom-
patible measuremeni&lthough it is Clare who makes the
choice for her and so does Bob. After many runs, Alice and

Bob can get together and, Wi_th _Clare’s.help, See hOW_ the_iHere, Pr¢,r) represents the probability of Alice obtaining
results are correlated. The point is that, if the teleportation i$y +~omet and Bob obtaining outcome in one run(given

being carried out with high fidelity, then Bob’s results will be o+ Ajice performs measuremefitand Bob measurement
strongly correlated with Alice’s and we can expect that someh)_ This is seen to be equivalent to the Clauser-Horne in-

Bell-type inequality will be violated. If no Bell-type inequal- lity by addi d subtracting P) + P leavi
ity is violated then we can say that the whole procedureequaly y adding and subtracting Be)+Pr(u,r), leaving

could have been simulated with a local hidden variable g<py(t)+ Pr(r)+Pr(u,s)— Pr(t,s)— Pr(u,r)— Pr(t,r)<1,

model and that no nonlocality is therefore being exhibited.

The task now is to derive a Bell-type inequality pertaining towhere Prf) is the probability of Alice getting outconmteand

the teleportation scenario and investigate when it might ber(r) the probability of Bob getting outconme

violated. Now we substitute some values to show that this inequal-
In order to look for a Bell-type inequality that may be ity can be violated for teleportation using a singlet. Using the

violated, we impose some restrictions. Suppose that Alicgtandard rule for obtaining probabilities in quantum mechan-
only ever teleports one of two possible states, fed to hefcs, we get

randomly by Clare. This means that in the terms of the analy-
sis above Alice is always performing one from a choice of
two possible POV measurements, each of which has four
possible outcomes. We restrict Bob to a choice of two poswhereP is the projection operator corresponding to outcome
sible projective measurements, each of which has two pog- We get similar expressions for the other outcomegp. i
sible outcomes. If a joint outcome includes both Alice’s anda singlet, this gives

0<P1t,s)+Pr(u,r)+Pr(u,s)—Prt,r)<1. (3)

Prit,r)=Tr p(Ag+Ay)®P],
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0<3i[2—c(ry+ s +d(ry—s))]<1, (4) of unit magnitude ind-dimensional complex space. We de-
fine a measuras(\) d\ over the possible values df)
wherec=ab*+a*b andd=—i(a’b’*—a’'*b’). We also  which is unchanged undeéi(d) rotations. This gives us the

have that(x,ry,rz)zf is the direction of spin measurement distripution of [\) vaIue; obtained over many runs of the
Rand (s, ,Sy,sz)zg is the direction of spin measuremesit experiment. Suppose Alice performs a measuremewith

If we set possible outcomesa, and Bob a measuremeBtwith pos-
sible outcomed, . (We assume that both Alice’s and Bob’s
a 1 /1 a’ 1 /1 measurements are maximal projective measurements — see
b —E 1/ b’ —E i [16] for how to extend the model, fairly trivially, to nonmaxi-

mal projective measurementdVe have that the probability
of obtaining the particular outcomes andb; is

>

r=

>

( 11 o) ( 1 -1 o)

= L _! 1 S: = ’ _! 1

V232 2'\2 Pra; ,ble,B)zf d\ @(\)Pr(a|AN)PI(b;[B\).

then Eq.(4), and therefore Eq3), is violated (we get3[2

—c(rets)+d(r,—s,)]1=(1-\2)/2~-0.21<0).  This We also have

corresponds to Alice teleporting one of two states — either

spin up along thes axis or spin up along thg axis. Bob is PrialAN) =

performing one of two possible spin measurements, oriented (@& AN) = 0 otherwise,

in the xy plane at*+45° to thex axis. (5)
Thus we see that perfect teleportation using the standard

scheme does imply nonlocality. In the next section, we intro-and

duce Werner states and in Sec. VI we investigate when tele-

portation using a Werner state might imply nonlocality. Pr(bj|B,)\)=<)\|ij|>\> (6)

{1 if (N[Pa[N)<(M[Pg IN) Vi’ #i

V. WERNER STATES WherePak and Py, are the projection operators corresponding

The Werner states were first introduced by Wernddfj. [0 measurement outcomeg andb;. It is then reason_ably
They are states ifHy®H,, whereHy is a d-dimensional €@y to show that Pa{,b;|A,B)=Ti[ Wq P, Py ], which
Hilbert space, which consist of a mixture of an entangleds the required quantum probabilitgee both Werner’s origi-
pure state indxd dimensions and rotationally symmetric nal papef15] and Mermin[16]).
noise represented by the identity. Tthelimensional Werner It is significant that the Werner states are mixed, entangled
state is given by states. It might seem surprising that entangled states can
have a local hidden variable model, especially in the light of

anti a result that says that all entangled pure states are nonlocal

WF@' + ?P ' [17,18. The story became more complicated when Popescu
showed that the-dimensional Werner states exhibit the hid-

whereP2" projects onto the totally antisymmetric subspaceden nonlocality we spoke of earlier, providee-5 [12,18.
of the product space arids the identity acting on the prod- BY this we mean that for these states nonlocality can be

uct space. In his original paper, Werner writes this as revealed if Alice and Bob each perform a sequence of two
projective measurements on each run of the experiment —
1+d 1 note that the local hidden variable model above only predicts
Wy=—5-1-3V, the results for single projective measuremeiikdore pre-
d d cisely, the only way in which a local theory could account for

the results of the sequential measurments would be for the
outcome of Alice’s first measurement to be causally related
to the choice of which measurement to perform for her sec-
ond measurement — presumably this is something that a
sensible theory should disallow if Alice is a free observer.

whereV is the operator which, acting on any two-particle
product stateé¢)®| ), exchanges it to givey)® | ¢). [Note
that Pa"'=(1-V)/2.]

In particular, the two-dimensional Werner state is given

by Whether an alternative scheme might show that the Werner
W,=1]+21ps states withd=<4 have hidden nonlocality or whether the use
z2oe 2t of POV measurements might show these states to be nonlo-
whereP?® is the projector onto the singlet state. cal are open questions.

In [15], Werner introduces a local hidden variable model ~Rather than consider these questions here, we wish to
for these states. We assume that Alice and Bob share a Sut@strict attention to the two-dimensional case but generalize
ply of d-dimensional Werner states and that both perform &lightly so that we consider states of the form
single projective measurement on each run of a Bell-type
experiment. Briefly, the model works as follows. Any given
pair of particles is assigned a hidden state |\) is a vector

a a S
Ws=—7—1+aP".
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This corresponds to Werner’s original state in two dimen-state only. Here, Alice is performing a Bell-basis measure-
sions whena=3. It is entangled ifa>%. Note that it fol- ment on her half of the shared Werner state and the state to
lows trivially from Werner’s local hidden variable model for be teleported. As described above, however, for our purposes
the «=3 case that there also exists a local hidden variableve can regard this as a POV measurement on Alice’s half of
model (for single projective measurement®r any a<3.  the shared state alone. Our aim is to adapt Werner’s model so
Rather than consider in full generality which of these stateghat we recover the correct quantum mechanical predictions
may be local or nonlocal, in the next section we consideffor POV measurements performed on Alice’s half of the
what teleportation using Werner states might tell us aboushared state at spacelike separation from projective measure-
nonlocality. ments performed on Bob’s half. We can do this as follows.
Suppose that Alice performs an arbitrary POV measurement
A, with elementsA,, such tha ,A,,=1. Then, for a particu-
VI. WERNER STATES AND TELEPORTATION lar outcomeA,,, we can define

A. Local hidden variable models Pr(AL|AN) =(N|ALN), (7)

It has sometimes been argued that the sW§e /2, to

which Werner’s original local hidden variable model applies,where on the right-hand sid®HS) A, represents a positive
must be nonlocal in some sense because, if used for telepasperator and on the LHS the corresponding experimental
tation, the fidelity achieved i§, which is greater than the outcome.

so-called classical limit OE (see, e.g9.[19]). This classical If we assume that Werner’s original model works, it is
limit is obtained as follows. It is in fact the best fidelity that easy to show that this modified model works for an arbitrary
can be obtained when Alice and Bob do not share any enPOV measurement performed by Alice. If a spectral decom-
tangled quantum state and Alice does not know what statgosition of A, is given by A,=2,q'Q", where G=qi's1

she is teleporting. Fidelity is achieved by Alice performing ang Q" is a projector, then

a measurement of spin along thexis on her particle and

communicating the result to Bob classically. Bob then pre-

pares a state that is correspondingly spin up or down along _ _ _

the z axis. From here on, we refer to teleportation that works PrCAn byl A.B) f dX @(MPICAGANPICb|B.L)

when Alice is ignorant of the state she is teleporting as

“unknown-state teleportation’{this includes, for example, =f d\ o(N)(N|ALN)Pr(b|B, )

the standard scherhand teleportation that requires Alice to

know the state she is teleporting as “known-state teleporta-

tion.” We can say, then, that unknown-state teleportation => qi“J d\ o(M)(N|Q'IN)Pr(b;|B,\)

with fidelity >% requires Alice and Bob to share an en- !

tangled quantum state. Popegdi®] describes any instance

of unknown-state teleportation with fidelity 3 as a type of = 2 ar Tr[ We—2Qle ij]
nonlocality (presumably in view of the fact that shared en- !
tanglement is requirgdHe is well aware, however, that this =Tr[ W§:1’2An®Pb]

i

would not necessarily imply violation of a Bell-type inequal-

ity and notes therefore that there are two types of nonlocality

which are “inequivalent.” In the context of our investigation which is the required result. We got from the third line to the

we prefer to reserve the term nonlocality strictly for non-fourth line by assuming that Werner’s original model for pro-

simulability by a local hidden variable model, as explainedjective measurements works.

in Sec. Il. We can say simply that unknown-state teleporta- Incidently, the model can also easily be extended to in-

tion with fidelity >% demonstrates that entanglement isclude the case where Bob performs a POV measurement pro-

present. The question of whether 4~ state might have vided Bob’s POV elements commute pairwise. In this case,

hidden nonlocality or nonlocality that can be revealed bythere exists a single basis in terms of which we can write

POV measurements remains open — what we wish to arguéown the spectral decomposition of all of Bob's POV ele-

here is that its ability to teleport with fidelity does not bear ments. SUppoan,zzquﬂ'Qj where theQ; are the projec-

on this question. tors onto the elements of this bagmd the point is that they
We do this via a simple modification of Werner's hidden are independent af’). If a projective measurement corre-

variable model. Consider the teleportation scenario above i8ponding to a decomposition of the identyQ;=1 is per-

which Bob does not bother waiting for Alice’s two classical formed, Werner’s original model gives us the outcome prob-

bits or performing a unitary transformation but instead per-apilities via rule(5). For now, we abuse notation slightly and

forms a measurement of some kind. If we can provide a locajyrite these outcome probabilities as ®f(\). We can define

hidden variable model for this scenario, then we have effecthe outcome probabilities for Bob’s POV measurement as
tively described teleportation of fidelity using local hidden

variables(even thouglt is greater than the classical limit
Werner’s original model does not immediately apply be- Pr(B,|B )\):2 qf" PrQIN). (®)
cause it applies to projective measurements on the Werner e . !
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Reasoning similar to that above for the extension on Alice’swhere theo; are the Paulic matrices,V: and V? are real
side shows that this will reproduce the correct quantum methree-dimensional vector3;; is a real 3<3 matrix, and re-
chanical probabilities. peated indices are summed ovéMote that there are other
As mentioned above, to our knowledge, no one has yetqngitions thatv?, V2, and T must satisfy forp to be a
constructed a local hidden variable model W6~ which  genuine density matrixHorodeckiet al. show thatp vio-

correctly reproduces the quantum mechanical probabilitiegates the CHSH inequality for some choice of measurements
for arbitrary POV measurements on both Alice’s and Bob'sfor Alice and Bob if and only ift; +t,>1, wheret; andt,

sides. What we have here is quite adequate for simulation ofre the largest two eigenvalues BFT.

our modified teleportation scenario provided Bob is not al- |; js easy to show that, in order to write a generalized

lowed arbitrary POV measurements. It seems unlikely thagyo-dimensional Werner state in this form, we set

allowing Bob this freedom would reveal nonlocality where

there was none before, but we cannot claim to have ruled this

out. Thus we conclude that with this slight qualification the

ability of the W5~ "2 state to teleport with fidelity does not

betoken nonlocality. to get
In the next section we consider Werner states with generaP g

a. We use the Bell-type inequality derived in Sec. IV to

investigate when imperfect teleportation using Werner states

\7120, \7220, and Tijz—a O

i]

Wg=%(|®|—a5ij 0'i®0'j).

might imply nonlocality.

B. When does teleportation imply nonlocality?

This state violates the CHSH inequality if and only df
>1/\/2, as claimed.

In this section we use all the same notation as in Sec. IV. What we have shown in this section, then, is not just that

Consider again our Bell-type inequalitg):
0<Pr(t,s)+Pr(u,r)+Pru,s)—Pr(t,r)<1.

If Alice’s and Bob’s shared state jg= aP3+[(1—«a)/4]l,
then we get

0<i{2—alc(r+s)+d(ry—s)}<1,

again withc=ab* +a*b andd=—i(a’b’* —a’*b’). If, as

before, we set
\l/ (1)
=54/

then we have a violation if

a
b

1
a>—.

V2

the Werner states witkr>1/\/2 are nonlocal — we already
knew this from[20]. We have shown, in addition, that con-
sideration of teleportation using these states can also reveal
them as nonlocal. This can be regarded as in keeping with a
conjecture made by ZukowsKkb] who suggests that “the
quantum component of the teleportation process cannot be
described in a local and realistic way as long as the initial
[shared stak . . . neither admits such models.”

To summarize, we have a local hidden variable model to
describe teleportation using any Werner state witk 1/2
(with the slight caveat that we have not included the case in
which Bob performs arbitrary POV measurements on the
state that he receivedNe have also shown that teleportation
with the standard scheme and a Werner state withl/\2
does imply nonlocality. States with ¥2x<1/\2 do not
violate the CHSH inequality for any choice of projective
measurements but apart from this, questions about their lo-
cality remain open. When used for teleportation, they do not
violate our inequality but might violate some other inequal-
ity.

Note that a state witlx just greater than 32 will tele-
port with a fidelity just greater thah(1+ 1/y/2)~0.85. The
teleportation procedure will involve nonlocality even though

Thusteleportation using the standard scheme and a Wernethis value for the fidelity is below a bound derived by Gisin,

state witha>1/\/2 implies nonlocality This of course im-

plies that these states are nonlocal.
In fact, it is precisely the Werner states with>1/y/2 that

violate the ordinary CHSH inequality10] for a suitable

which is ~0.87[4]. We discuss this further in Sec. VII.

Our investigation has been restricted to teleportation us-
ing Werner states and the standard scheme. It might be inter-
esting to try to extend these results and find something more

choice of projective measurements, so we did not need tgeneral such that unknown-state teleportation implies nonlo-
consider teleportation or derive this inequality merely to findcality if the fidelity is F or higher and can otherwise be
out that these states are nonlocal. That they violate thdescribed using a local hidden variable model. It may well

CHSH inequality can be shown using a result of R2€] as
follows. Any density matrix operating ofi{,® H, can be
written as

P:}T(|®| +Vi10'i®|+Vi2|®0'i+Tij0'i®O'j),

be, however, that there is no such result to be found. There
could exist two statesp and p’ and two teleportation
schemes, which teleport with fidelitigs and F’, such that
teleportation withp implies nonlocality while teleportation
with p’ does not even though<F'.
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VIl. GISIN'S RESULT hidden variable theories are surely only required to repro-
Before concluding we would like to comment on a resultd.uce probgbilities for measurement re;ults. In other words a
S . . . hidden variable model need not specify an actual quantum
of Gisin S which he. cla|m_s has relevance to teleportathn an%tate to be received by Bob on each run of the experiment —
r;or;Lociqllty[4]. Gt;sm derives a value for teleportation fidel- we must assume that Bob does some kind of measurement
'ty that 1S given by and it is only the outcome of this measurement that must be

predicted by the model. So it is not quite correct to say that
Fo EJF \ﬁarctan/imo 87 a shared state that is local must be “useless for teleporta-
2 2 R tion.” The local correlations may be useful in helping Alice

and Bob achieve correlated measurement results.

He describes this as an “upper bound for the fidelity of quan- At the least, we feel that Gisin’s result is less genuinely to
tum teleportation explainable by local hidden variables.” Thedo with locality than our own or Zukowski’g5] or those of
value ofF is derived as follows. Cerf et al.[7]. This does not mean that Gisin’s result is un-

First Gisin notes that the shared stBXenust be local, and interesting, however. Interpreted as the best fidelity achiev-
“hence useless for teleportation.” Then, “within the local able when Alice and Bob share nothing at the start of the
hidden variable paradigm, Alice could measure the stat@rotocol, and Alice knows the state she is trying to teleport
Yalice iN the classical sense of ‘measuring:’ finding out whatand is limited to the sending of two classical bits, it is cor-
the stateyuice iS.” Here, yajice is the state that Alice is rect. It can be contrasted with the value%for the fidelity
teleporting(which we earlier calledly)). In the light of this,  which is the best Alice and Bob can do when they share
to derive the value foF above, we assume that Alice and nothing at the start of the protocol and Alice does not know
Bob share nothing, that Alice knows the quantum state she ithe state she is trying to teleport.
trying to teleport, and that Alice sends two classical bits to  Gisin’s result is also useful. In the case that Alice and Bob
Bob. The best they can do is to divide the surface of theshare a nonmaximally entangled quantum state, they cannot
Bloch sphere into four regions. Alice uses the two classicabchieve unit fidelity. Gisin’s result shows that if Alice knows
bits to let Bob know which region the state she is teleportinghe state she is trying to teleport, is limited to the sending of
lies in. Bob then prepares a state in the center of this regioriwo classical bits to Bob, and the best fidelity achievable
The optimal way of doing this is to inscribe a regular tetra-with a quantum scheme isF~0.87, then they may as well
hedron in the Bloch sphere. The areas of the surface of theot bother using the shared quantum state. They would do
sphere subtended by the faces of the tetrahedron are the foloetter to use the purely classical scheme above.
regions used. Calculation then gives the average fidelity ob-
tained ag~ above.

We feel that the description ¢ as an “upper bound for Viil. CONCLUSION

the fidelity of quantum teleportation explainable by local  perfect teleportatioti.e., teleportation with unit fidelity
hidden variables” is slightly misleading. On the assumptionjnitially seems paradoxical because only two classical bits
that “explainable” here can be replaced with “simulable,” g, sent, yet Bob ends up with a quantum system in a state
the fidelity explai_nable by local hidd_en vayiables rather de4gentical with the state of Alice’s input system — and it
pends on what is to count as a simulation of a quantumyoyig take an infinite amount of classical information to
teleportation procedure. Under our and Zukowski’'s ap-specify precisely a quantum state. It is concludeather
proach, we are happy if a local theory can predict the result§ague|y that some sort of nonlocality must be involved —
of Alice’s Bell measurement and of a spacelike-separateghe extra “information” must be transmitted nonlocally.
measurement made by Bdfor a completely different ap-  viigman argues that, correctly interpreted, quantum telepor-
proach WP'Ch is equally interesting, sgd). Using our and  tation involves the transfer of an object from one place to
Zukowski's approach, we found that the ability of the stategnother without it ever being located in the intervening space
W35~ to teleport with fidelity; does not betoken any form [3]. This also sounds vaguely paradoxical and might suggest
of nonlocality. On the other hand, the fact that under thenonlocality (although Vaidman himself is more concerned to
standard scheme a staté; with « just greater than 42 reconcile this view of teleportation with his own belief in a
teleports with fidelity just greater thah(1+ 1/y/2)~0.85 many-worlds type interpretation of quantum mechanics
does betoken nonlocality. This is despite the value-6f85  Rather than adopt either of these two viewpoints, we are
being below Gisin’s bound. It is true that, if Alice knows the more inclined to dissolve these paradoxasleast partially
state she is trying to teleport, then she can do better than thisy sharing Hardy’s doubts concerning the reality of the in-
using only local means — this is what Gisin’s result shows.formation apparently transmitted during teleportati@ee
If Alice does not know the state she wants to teleport, howthe quotations in Sec. )l We suggest that the paradox is
ever, then the standard teleportation scheme is the best shesolved if we consider a quantum state as being a descrip-
can do and this will involve nonlocalityNote that the stan- tion of an ensemble of systems, rather than a single system
dard scheme is indeed the optimal scheme for unknown-state- Bob can identify the state and any information contained
teleportation using a Werner state; see, ¢2i]). therein by performing measurements on the whole ensemble.
In addition, there is no reason why teleportation with aBut to teleport the whole ensemble, Alice does indeed send
fidelity greater than Gisin’s bound should not be simulablean infinite number of classical bits.
by local hidden variables in some cases. The key here is that Having said this, teleportation might still involve nonlo-
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cality. If we define nonlocality to mean nonsimulability by ~ Broadly speaking, the status of théwo-dimensional
local hidden variables, then to speak meaningfully of teleporWerner states with respect to locality remains unknown.
tation being local or nonlocal, we must have Bob performingTeleportation shows that those wiif> 1/{/2 are nonlocal —

a measurement of some sort on the state that he receivggt we already knew this. Teleportation using the $ state
(because hidden variable models are required only to represan pe simulated locally — but the state may still have a
duce the results of measuremengob’s measurement is at higden nonlocality to be revealed by other means. We do not
spacelike separation from Alice’'s. We can speak of the telegnow whether (unknown-state teleportation using the:
portation as being nonlocal if Bob's results are correlated_ , < 1/,/3 states can be simulated locally or not, or whether
with Alice’s in a way that cannot be simulated with a local they might have nonlocality to be revealed by other means.

mode_l. S . . Related independent results have been very recently cir-
In investigating this, we have considered perfect teleporqated by Clifton and Popk22].

tation using a singlet, derived an appropriate Bell-type in- note added in proofA local hidden variable model al-

equality, and shown that it is violated. So perfect teleportajgying for POV measurements on Bob’s side has recently

tion is nonlocal. We have also considered teleportation usingaen, constructed for the== state, which teleports with
= S —_— i . - . ! B . .

Werner states, of the forp=aP>+[(1—a)/4]l. Using the  qejity 17 [23]. Thus we can simulate teleportation with fi-

same inequality, we found that the teleportation is nonlocagjg|iry,"17 yithout the qualification that Bob is restricted to

precisely for those Werner states that violate the CHSH 'n'projective measurements.

equality, i.e., those witly>1/\/2. These teleport with fidel-

ity F>1(1+1/,/2)~0.85. We also extended Werner’s local

. . T )
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