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Implications of teleportation for nonlocality
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Adopting an approach similar to that of Zukowski@Phys. Rev. A62, 032101 ~2000!#, we investigate
connections between teleportation and nonlocality. We derive a Bell-type inequality pertaining to the telepor-
tation scenario and show that it is violated in the case of teleportation using a perfect singlet. We also
investigate teleportation using ‘‘Werner states’’ of the formaPs1(12a)I /4, wherePs is the projector corre-
sponding to a singlet state andI is the identity. We find that our inequality is violated, implying nonlocality, if
a.1/A2. In addition, we extend Werner’s local hidden variable model to simulation of teleportation with the
a5

1
2 Werner state. Thus teleportation using this state does not involve nonlocality even though the fidelity

achieved is3
4 , which is greater than the ‘‘classical limit’’ of23 . Finally, we comment on a result of Gisin’s and

offer some philosophical remarks on teleportation and nonlocality generally.
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I. INTRODUCTION

Quantum teleportation, first introduced in@1#, is a quan-
tum mechanical scheme that allows one participant~Alice! to
transmit a quantum state in her possession to another pa
pant~Bob!. In the original version, it is a spin-1

2 state that is
sent and the only resources required are a shared single
the capacity for Alice to send two classical bits to Bob.
this case, Bob ends up with a state identical with the o
Alice begins with. The state in Alice’s possession is rando
ized, so there is no contradiction with the no-cloning the
rem@2#. A notable feature of the scheme is that it works ev
when Alice has no knowledge of the state she is sending

Briefly, the procedure described in@1# ~hereafter referred
to as ‘‘the standard scheme’’! works as follows. Let the state
Alice wants to teleport beux& and the shared state hav
density matrixr. Alice performs a joint measurement on h
half of r and ux&. The measurement projects onto the B
basis. Alice sends two classical bits to Bob informing him
which of the four possible outcomes she got. Bob then p
forms a corresponding unitary transformation. Ifr is maxi-
mally entangled then these four unitary transformations
be chosen such that the state Bob ends up with is iden
with ux&.

If r is not maximally entangled then typically, Bob wi
end up with something that is not identical withux&. Suppose
that at the end Bob is in possession of a state whose de
matrix is M. The ‘‘fidelity’’ of the teleportation is defined as
^xuM ux&. In general, the fidelity will depend onux& but we
can define an average fidelity by averaging over all poss
values ofux&. This average is often referred to as the fidel
for a particular teleportation scheme and shared state.

In Vaidman’s view@3#, quantum teleportation is so calle
because it involves the transfer of an ‘‘object’’ from on
place to another without it ever being located in the interv
ing space. He troubles to argue that teleportation is indee
appropriate name for this process. This might already lea
to entertain rather vague notions that teleportation mus
intrinsically connected with another idea, viz., nonlocality.
particular, in the case in which the fidelity is 1~correspond-
ing to perfect teleportation!, it seems intuitively obvious tha
some sort of nonlocality is at work.
1050-2947/2001/64~4!/042305~9!/$20.00 64 0423
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The purpose of this study is to investigate this idea
more detail~other studies have been undertaken in a sim
spirit by Gisin @4#, Zukowski @5#, Hardy @6#, and Cerfet al.
@7#!. First, in Sec. II, we define more precisely what we me
by ‘‘nonlocal’’ — broadly speaking, we take it to mean ‘‘no
simulable by local hidden variables.’’ In the literature no
nonlocal is often used simply to mean entangled. We emp
size that it is the relation between teleportation and nonlo
ity in our sense that we shall investigate. In Sec. III, w
discuss results of Hardy’s@6# which show that teleportation
and nonlocality are conceptually distinct and which give
an idea of how local hidden variables might simulate a te
portation procedure. This leaves open the question
whether teleportation and nonlocality are physically distin
— this is the question that we turn to in Sec. IV. Here, w
adopt an approach similar to that of Zukowski@5# and derive
an inequality, the violation of which shows that perfect te
portation using a singlet implies nonlocality. In Sec. VI w
consider teleportation using ‘‘Werner states’’ instead of pu
singlets. We extend Werner’s original local hidden variab
model in order to simulate a teleportation scenario with lo
hidden variables. We also consider how high the telepo
tion fidelity can be before teleportation using a Werner st
violates our inequality and therefore implies nonlocality. F
nally, in Sec. VII, we comment on a result of Gisin’s that h
claims has relevance to teleportation and nonlocality.
suggest that his interpretation of his result is slightly m
leading but that the result is still interesting if interpret
differently.

II. WHAT WE MEAN BY ‘‘NONLOCALITY’’

We would do well at the outset to specify precisely wh
we mean by nonlocality. Broadly, we take it to mean no
simulablility by local hidden variables~but see the end o
this section for a qualification!. Consider a bipartite stater
acting onHA^ HB . The two subsystems are spatially sep
rated, one being in the possession of an observer Alice
the other being in the possession of an observer Bob. A
performs a measurementA on her subsystem while Bob pe
forms a measurementB on his; these measurements occur
spacelike separation from one another. This procedure is
©2001 The American Physical Society05-1
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JONATHAN BARRETT PHYSICAL REVIEW A64 042305
peated with a new system in the stater each time. We refer
to this as a ‘‘Bell-type experiment.’’ If measurementA has an
outcomeai and measurementB has an outcomebj , then a
hidden variable model supposes that the probability of g
ting these two outcomes can be given in the form

Pr~ai ,bj uA,B,r!5E dl vr~l! Pr~ai ,bj uA,B,l!, ~1!

wherevr(l) is some distribution over a spaceL of hidden
statesl. A local hidden variable model imposes the ad
tional constraint

Pr~ai ,bj uA,B,l!5Pr~ai uA,l! Pr~bj uB,l!. ~2!

It was Bell who first discovered that some quantum sta
are nonlocal@8#. He derived an inequality involving the
probabilities of measurement outcomes that must be satis
by any local hidden variable model. He then showed that
quantum mechanical predictions for two spin-1

2 particles in a
singlet state violate this inequality. Different versions
Bell’s inequality were derived in@9,10#. We refer to these as
the Clauser-Horne~CH! inequality and the Clauser-Horne
Shimony-Holt~CHSH! inequality, respectively.

These results have since been generalized. In@11#, Peres
considers experimental scenarios in which Alice and B
each choose from an arbitrary finite number of possible m
surements to perform, where each measurement has an
trary finite number of possible outcomes. Peres shows h
to construct a list of inequalities, the idea being that if t
outcomes can be simulated with a local hidden varia
model then all the inequalities must be satisfied. He gi
both a graphical method for the easy construction of th
inequalities and an algorithm that produces a complete se
complete meaning that the satisfaction of all the inequali
is sufficient for the existence of a local hidden variab
model for the particular experimental scenario consider
We refer to these inequalities as ‘‘Bell-type inequalities.’’

Both the formalism developed by Peres and that of E
~1! and~2! above apply only to a scenario in which Alice an
Bob each perform a single measurement on each run o
experiment. In a more complicated scenario, Alice and B
might perform a sequence of measurements. In@12#, Popescu
gives examples of states for which nonlocality can be
vealed in this manner even though local hidden varia
models exist for single measurements that satisfy Eqs.~1!
and~2! — he calls this ‘‘hidden nonlocality’’~we discuss this
briefly again in Sec. V!. A new formalism would be neede
to explain what is meant by a local hidden variable mo
here and what conditions would have to be violated for
nonexistence of such a model~see, e.g.,@13#!. We do not
discuss this further. In what follows, we refrain from callin
a state local unless it is completely local, i.e., has no hid
nonlocality ~and indeed does not display what Teufelet al.
call ‘‘deeply hidden nonlocality’’@13#!. We may, however,
speak of a state having a local hidden variable model me
ing only a model that satisfies Eqs.~1! and~2! — such a state
may still have hidden nonlocality.

Note that in all of this we have been considering on
measurements performed separately on each particle pa
04230
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some cases, nonlocality may be revealed if Alice and Bob
allowed collective measurements on several particle pair
once, even though the state would be local if this possibi
were not allowed. We choose to ignore this possibility wh
classifying states as local or nonlocal — one could arg
that, if collective measurements onn copies of a stater are
needed to reveal nonlocality, then it is the stater ^ n that is
nonlocal rather thanr.

III. CONCEPTUALLY VS PHYSICALLY DISTINCT

In @6#, Hardy shows that teleportation and nonlocality a
conceptually distinct. ‘‘Conceptually distinct’’ means that w
ought to be able to imagine a scenario~not necessarily one
complying with known physical laws but one that is at lea
logically consistent! in which perfect teleportation is realiz
able while locality is demonstrably preserved. Hardy co
structs just such a scenario in the form of a toy theory wh
allows for notions of systems, states, measurements, a
cloning theorem, and teleportation. It is also demonstra
local. Note that this is separate from the question of whet
teleportation and nonlocality are physically distinct —
other words, it still may be the case that teleportation
quantum mechanics implies nonlocality.

In fact, Hardy gives two reasons why we might think th
nonlocality is implied by quantum teleportation. The seco
reason he gives is that entanglement can be teleporte
quantum mechanics. In other words if Alice and Bob sh
particlesC andD in a singlet state, while Alice has particle
A and B in her possession in some entangled stateuc&AB ,
then Alice can teleport particleB to Bob so that at the end o
the protocolA and D are in the stateuc&AD . ~This works
essentially because teleportation is a linear operation app
to particleB @1#.! It is then possible to obtain a violation o
Bell’s inequalities by performing measurements onA andD.
However Hardy also responds to this point: ‘‘We cannot n
essarily assert on the basis of this fact that nonlocality pl
a role in quantum teleportation. It is possible that the ex
information which establishes the nonlocal correlations
only transmitted in the process of measuring the quantitie
Bell’s inequalities, and is not transmitted in the teleportati
process.’’ In recognition of this sense that the subsequ
testing of entanglement that has been teleported is not pa
the teleportation process itself, we will hereafter ignore
possibility of teleporting entanglement. We will consid
teleportation of a single state, not entangled with any oth
and the question of when this might imply nonlocality.

In giving his first reason why teleportation might imp
nonlocality, Hardy notes, following Bennett, that ‘‘th
amount of information needed to specify a general qubi
much greater than the two bits of information which is cla
sically communicated during quantum teleportation. O
might speculate that when a qubit is teleported, the ex
information is being carried by the nonlocal properties of t
entangled state.’’ As well as making this point, howev
Hardy also has a response:

‘‘On the other hand, it is not possible to extract mo
classical information from a qubit than the two classical b
communicated during teleportation and so there must rem
5-2
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IMPLICATIONS OF TELEPORTATION FOR NONLOCALITY PHYSICAL REVIEW A64 042305
questions about the reality of the quantum information
parently transmitted during teleportation.’’

These two quotations, then, provide us with a motivat
for a detailed investigation of the relationship between te
portation and nonlocality in quantum mechanics. This is
dertaken in the next section. We adopt an approach simila
that of Zukowski@5#. We derive a Bell-type inequality an
show that it is violated in the case of teleportation using
shared singlet and the standard scheme.

First, however, Hardy’s toy theory is interesting becaus
provides some insight into how hidden variables might
able to describe a teleportation process, so it is worth ex
ining a few of the details. A particle in Hardy’s theory exis
in one of four states, labeled 0, 1, 2, and 3. The sta
are hidden states because there is no measurement tha
determine the state of a particle unambiguously and
cannot prepare a particle with an unambiguous state.
write the state of two particles as a vector (x1 ,x2), where
x1 ,x2P$0,1,2,3%. Two particles may be correlated — for ex
ample, we can prepare them in such a way that their sta
given by 25% chance of~0,0!, 25% chance of~1,1!, 25%
chance of~2,2!, and 25 % chance of~3,3!.

This is the preparation used to perform teleportation a
is clearly analogous to the maximally entangled quant
state used in the standard quantum mechanical scheme~ex-
cept, of course, it has none of the nonlocal properties p
sessed by a maximally entangled quantum state!. Suppose
Alice and Bob share two particles, called particles 2 and
which have been prepared in this way. Suppose that A
also has another particle, particle 1, in an unknown st
which she wishes to teleport to Bob. Alice can perform
joint measurement on particles 1 and 2 which can be c
acterized by four possible outcomes:

B05S 0 0

1 1

2 2

3 3

D , B15S 0 3

1 0

2 1

3 2

D ,

B25S 0 2

1 3

2 0

3 1

D , B35S 0 1

1 2

2 3

3 0

D .

The notation means that if outcomeB0 was obtained,
for example, then the initial state of the two particles w
either (0,0), (1,1), (2,2), or (3,3). Any possible initial sta
of the two particles leads to a unique measurement outco
After the measurement, if outcomeB0 was obtained, then the
state of the two particles is one of these four with eq
probabilities, i.e., measurement disturbs the system~this
leads to a proof of a no-cloning theorem!. The measuremen
described here is clearly analogous to the Bell measurem
used in the quantum mechanical standard scheme.

Alice now uses two classical bits to inform Bob of h
measurement outcome. Ifx3 is the initial state of particle 3
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and x1 the initial state of particle 1, Bob now knows th
value of i 5(x32x1) mod 4. Bob can perform an operatio
on particle 3 given byUi :x3→(x32 i ) mod 4. These opera
tions are analogous to the unitary operations of quantum
chanics. Teleportation has now been successfully compl
— the final state of particle 3 is identical with the initial sta
of particle 1.

We can take a step back and ask: how exactly has
teleportation been accomplished? No individual particle
been transmitted from Alice to Bob~apart from in the prepa-
ratory stages and those used to transmit classical b!.
Rather, correlations between hidden states have been us
ensure that the final state of the particle in Bob’s posses
is identical with the intial state of the particle that Alic
teleported. Although Alice in this theory is unable to dete
mine the state of a particle directly, it turns out that she
able to do a measurement that tells her thedifferencebe-
tween the states of particles 1 and 2. The correlations
tween the hidden states ensure that particle 3 is initially
the same state as particle 2 and Bob is then able to perf
an operation on particle 3 to make up the difference.

It is clear that this model works in the way it does on
because there are only four different states that a particle
be in — this corresponds to the fact that Alice sends t
classical bits. In this sense it is artificial and it is not mirac
lous that it works. It is, however, quite adequate to estab
Hardy’s claim that teleportation and nonlocality are conce
tually distinct. In subsequent sections we turn to consi
whether, or in what circumstances, teleportation in quant
mechanics could be effected by making use of correlati
between hidden variables in a similar manner.

IV. TELEPORTATION AND NONLOCALITY

Consider the standard scheme for quantum mechan
teleportation. Alice’s first action is to perform a joint me
surement on her half of the shared system and the system
wishes to teleport. The measurement projects onto the
basis. There is another way of looking at this measurem
~described in@14#!. Recall that the most general type o
quantum measurement corresponds to a positive ope
valued decomposition of the identity@2#. We call such a mea-
surement a POV measurement. In the special case tha
measurement corresponds to a projective decompositio
the identity, we refer to it as a projective measurement
POV measurement on some system can always be rea
by attaching an ancilla and performing a projective measu
ment on the combined system@2#. Conversely, any joint pro-
jective measurement performed on the system and an
can be thought of as a POV measurement on just the sys
This is exactly what is happening in the case of teleportat
— we regard Alice’s half of the shared state as the sys
and the state being teleported as the ancilla. If the state b
teleported isux&5(b

a), then Alice is performing a POV mea
surement on her half ofr, the shared state, with elements
follows:
5-3
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JONATHAN BARRETT PHYSICAL REVIEW A64 042305
POV element Bell outcome Bob’s state,
if r5 singlet

A05
1
2S ubu2 2ab*

2a*b uau2 D uc2& S2a

2b
D

A15
1
2S ubu2 ab*

a*b uau2 D uc1& S2a

b
D

A25
1
2S uau2 2a*b

2ab* ubu2 D uf2& Sb
a
D

A35
1
2S uau2 a*b

ab* ubu2 D uf1& S2b

a
D

The first column shows the POV element, the second
corresponding outcome if Alice’s measurement is regar
as a projection onto the Bell basis, and the third the state
Bob ends up with~before he does any unitary transform
tion! assuming thatr is a singlet.

Now suppose that the teleportation procedure is repe
many times but with a modification: Bob does not both
performing unitary transformations. Instead, he wishes to
termine how close the states he receives are to those b
teleported~he can always take into account the fact that
would have performed a unitary transformation had
waited for the two classical bits!. Bob does this by perform
ing ordinary projective measurements. He performs them
spacelike separation from Alice’s POV~or Bell basis! mea-
surements. Also, suppose that Alice does not know each
which state she is teleporting.Someoneknows which states
are being teleported by Alice and she can be called Cl
From the table above, it is clear that Alice is actually p
forming a four-element POV measurement each time
which measurement she is performing is determined byux&
~that is, by the values ofa andb). We have now reduced th
standard teleportation scenario to a typical experimental
nario for testing locality via Bell inequalities. On each run
the experiment, Alice performs one of a selection of inco
patible measurements~although it is Clare who makes th
choice for her! and so does Bob. After many runs, Alice an
Bob can get together and, with Clare’s help, see how th
results are correlated. The point is that, if the teleportatio
being carried out with high fidelity, then Bob’s results will b
strongly correlated with Alice’s and we can expect that so
Bell-type inequality will be violated. If no Bell-type inequa
ity is violated then we can say that the whole proced
could have been simulated with a local hidden varia
model and that no nonlocality is therefore being exhibit
The task now is to derive a Bell-type inequality pertaining
the teleportation scenario and investigate when it might
violated.

In order to look for a Bell-type inequality that may b
violated, we impose some restrictions. Suppose that A
only ever teleports one of two possible states, fed to
randomly by Clare. This means that in the terms of the an
sis above Alice is always performing one from a choice
two possible POV measurements, each of which has
possible outcomes. We restrict Bob to a choice of two p
sible projective measurements, each of which has two p
sible outcomes. If a joint outcome includes both Alice’s a
04230
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Bob’s outcomes, then there are (414)3(212)532 pos-
sible joint outcomes. As discussed in Sec. II, Peres sh
how to construct Bell-type inequalities pertaining to this sc
nario in @11#. Unfortunately, there are a very large number
such inequalities~the number increases very rapidly with th
number of joint outcomes! and it is hard to know where to
start looking if we want to find one that is violated. For th
reason, we impose another restriction. Suppose that,
though Alice’s measurements each have four distinct o
comes, we group them into pairs, so that, for example,A0 or
A2 counts as outcome 1 andA1 or A3 counts as outcome 2
We then have that Alice has a choice of two measureme
each with two possible outcomes, and so does Bob. T
means that we can apply the well known Clauser-Horne
equality @9# ~or something equivalent to it! directly to this
case.

First, some terminology. Alice performs one of two me
surements, which we labelT andU. Alice performing mea-
surementT corresponds to Clare giving her a stateux&5(b

a)
to teleport. Alice performing measurementU, on the other

hand, corresponds to Clare giving her a stateux8&5(b8
a8) to

teleport. MeasurementT has two outcomes, labeledt and t̄ .
Outcomet corresponds to Alice gettingA0 or A2 in her mea-
surement. Outcomet̄ corresponds to her gettingA1 or A3.
Similarly, measurementU has two outcomes,u and ū. u

corresponds to outcomeA0 or A3 while ū corresponds toA1
or A2. Note how the grouping of four possible outcomes in
pairs is done differently according to which measurem
Alice is performing. It turns out that unless we do it like thi
we do not get an inequality that is violated.

Bob’s two measurements are denotedR andS, with out-
comesr, r̄ , s, and s̄. R and S can correspond to spin mea
surements in different directions,r and s to spin up results
and r̄ and s̄ to spin down results.

The inequality we use is

0<Pr~ t,s̄!1Pr~ ū,r !1Pr~u,s!2Pr~ t,r !<1. ~3!

Here, Pr(t,r ) represents the probability of Alice obtainin
outcomet and Bob obtaining outcomer in one run~given
that Alice performs measurementT and Bob measuremen
R). This is seen to be equivalent to the Clauser-Horne
equality by adding and subtracting Pr(t,s)1Pr(u,r ), leaving

0<Pr~ t !1Pr~r !1Pr~u,s!2Pr~ t,s!2Pr~u,r !2Pr~ t,r !<1,

where Pr(t) is the probability of Alice getting outcomet and
Pr(r ) the probability of Bob getting outcomer.

Now we substitute some values to show that this inequ
ity can be violated for teleportation using a singlet. Using t
standard rule for obtaining probabilities in quantum mech
ics, we get

Pr~ t,r !5Tr@r~A01A2! ^ P#,

whereP is the projection operator corresponding to outco
r. We get similar expressions for the other outcomes. Ifr is
a singlet, this gives
5-4
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0< 1
4 @22c~r x1sx!1d~r y2sy!#<1, ~4!

wherec5ab* 1a* b and d52 i (a8b8* 2a8* b8). We also
have that (r x ,r y ,r z)5rW is the direction of spin measureme
R and (sx ,sy ,sz)5sW is the direction of spin measurementS.
If we set

S a

bD 5
1

A2
S 1

1D , S a8

b8
D 5

1

A2
S 1

i D ,

rW5S 1

A2
,

1

A2
,0D , sW5S 1

A2
,
21

A2
,0D ,

then Eq.~4!, and therefore Eq.~3!, is violated„we get 1
4 @2

2c(r x1sx)1d(r y2sy)#5(12A2)/2'20.21,0…. This
corresponds to Alice teleporting one of two states — eit
spin up along thex axis or spin up along they axis. Bob is
performing one of two possible spin measurements, orien
in the xy plane at645° to thex axis.

Thus we see that perfect teleportation using the stand
scheme does imply nonlocality. In the next section, we int
duce Werner states and in Sec. VI we investigate when t
portation using a Werner state might imply nonlocality.

V. WERNER STATES

The Werner states were first introduced by Werner in@15#.
They are states inHd^ Hd , whereHd is a d-dimensional
Hilbert space, which consist of a mixture of an entang
pure state ind3d dimensions and rotationally symmetr
noise represented by the identity. Thed-dimensional Werner
state is given by

Wd5
1

d3
I 1

2

d2
Panti,

wherePanti projects onto the totally antisymmetric subspa
of the product space andI is the identity acting on the prod
uct space. In his original paper, Werner writes this as

Wd5
11d

d3
I 2

1

d3
V,

where V is the operator which, acting on any two-partic
product stateuf& ^ uc&, exchanges it to giveuc& ^ uf&. @Note
that Panti5(12V)/2.#

In particular, the two-dimensional Werner state is giv
by

W25 1
8 I 1 1

2 Ps,

wherePs is the projector onto the singlet state.
In @15#, Werner introduces a local hidden variable mod

for these states. We assume that Alice and Bob share a
ply of d-dimensional Werner states and that both perform
single projective measurement on each run of a Bell-t
experiment. Briefly, the model works as follows. Any give
pair of particles is assigned a hidden stateul&. ul& is a vector
04230
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of unit magnitude ind-dimensional complex space. We d
fine a measurev(l) dl over the possible values oful&
which is unchanged underU(d) rotations. This gives us the
distribution of ul& values obtained over many runs of th
experiment. Suppose Alice performs a measurementA with
possible outcomesak and Bob a measurementB with pos-
sible outcomesbl . ~We assume that both Alice’s and Bob
measurements are maximal projective measurements —
@16# for how to extend the model, fairly trivially, to nonmax
mal projective measurements.! We have that the probability
of obtaining the particular outcomesai andbj is

Pr~ai ,bj uA,B!5E dl v~l!Pr~ai uA,l!Pr~bj uB,l!.

We also have

Pr~ai uA,l!5H 1 if ^luPai
ul&,^luPai 8

ul& ; i 8Þ i

0 otherwise,
~5!

and

Pr~bj uB,l!5^luPbj
ul& ~6!

wherePak
andPbl

are the projection operators correspondi

to measurement outcomesak and bl . It is then reasonably
easy to show that Pr(ai ,bj uA,B)5Tr@ Wd Pai

^ Pbj
#, which

is the required quantum probability~see both Werner’s origi-
nal paper@15# and Mermin@16#!.

It is significant that the Werner states are mixed, entang
states. It might seem surprising that entangled states
have a local hidden variable model, especially in the light
a result that says that all entangled pure states are non
@17,18#. The story became more complicated when Pope
showed that thed-dimensional Werner states exhibit the hi
den nonlocality we spoke of earlier, providedd>5 @12,16#.
By this we mean that for these states nonlocality can
revealed if Alice and Bob each perform a sequence of t
projective measurements on each run of the experimen
note that the local hidden variable model above only pred
the results for single projective measurements.~More pre-
cisely, the only way in which a local theory could account f
the results of the sequential measurments would be for
outcome of Alice’s first measurement to be causally rela
to the choice of which measurement to perform for her s
ond measurement — presumably this is something tha
sensible theory should disallow if Alice is a free observe!
Whether an alternative scheme might show that the We
states withd<4 have hidden nonlocality or whether the u
of POV measurements might show these states to be no
cal are open questions.

Rather than consider these questions here, we wish
restrict attention to the two-dimensional case but genera
slightly so that we consider states of the form

W2
a5

12a

4
I 1a Ps.
5-5
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This corresponds to Werner’s original state in two dime
sions whena5 1

2 . It is entangled ifa. 1
3 . Note that it fol-

lows trivially from Werner’s local hidden variable model fo
the a5 1

2 case that there also exists a local hidden varia
model ~for single projective measurements! for any a, 1

2 .
Rather than consider in full generality which of these sta
may be local or nonlocal, in the next section we consi
what teleportation using Werner states might tell us ab
nonlocality.

VI. WERNER STATES AND TELEPORTATION

A. Local hidden variable models

It has sometimes been argued that the stateW2
a51/2, to

which Werner’s original local hidden variable model applie
must be nonlocal in some sense because, if used for tele
tation, the fidelity achieved is34 , which is greater than the
so-called classical limit of23 ~see, e.g.,@19#!. This classical
limit is obtained as follows. It is in fact the best fidelity th
can be obtained when Alice and Bob do not share any
tangled quantum state and Alice does not know what s
she is teleporting. Fidelity23 is achieved by Alice performing
a measurement of spin along thez axis on her particle and
communicating the result to Bob classically. Bob then p
pares a state that is correspondingly spin up or down al
thez axis. From here on, we refer to teleportation that wo
when Alice is ignorant of the state she is teleporting
‘‘unknown-state teleportation’’~this includes, for example
the standard scheme! and teleportation that requires Alice t
know the state she is teleporting as ‘‘known-state telepo
tion.’’ We can say, then, that unknown-state teleportat
with fidelity . 2

3 requires Alice and Bob to share an e
tangled quantum state. Popescu@19# describes any instanc
of unknown-state teleportation with fidelity. 2

3 as a type of
nonlocality ~presumably in view of the fact that shared e
tanglement is required!. He is well aware, however, that thi
would not necessarily imply violation of a Bell-type inequa
ity and notes therefore that there are two types of nonloca
which are ‘‘inequivalent.’’ In the context of our investigatio
we prefer to reserve the term nonlocality strictly for no
simulability by a local hidden variable model, as explain
in Sec. II. We can say simply that unknown-state telepo
tion with fidelity . 2

3 demonstrates that entanglement
present. The question of whether theW2

a51/2 state might have
hidden nonlocality or nonlocality that can be revealed
POV measurements remains open — what we wish to ar
here is that its ability to teleport with fidelity34 does not bear
on this question.

We do this via a simple modification of Werner’s hidde
variable model. Consider the teleportation scenario abov
which Bob does not bother waiting for Alice’s two classic
bits or performing a unitary transformation but instead p
forms a measurement of some kind. If we can provide a lo
hidden variable model for this scenario, then we have eff
tively described teleportation of fidelity34 using local hidden
variables~even though3

4 is greater than the classical limit!.
Werner’s original model does not immediately apply b

cause it applies to projective measurements on the We
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state only. Here, Alice is performing a Bell-basis measu
ment on her half of the shared Werner state and the sta
be teleported. As described above, however, for our purpo
we can regard this as a POV measurement on Alice’s hal
the shared state alone. Our aim is to adapt Werner’s mode
that we recover the correct quantum mechanical predicti
for POV measurements performed on Alice’s half of t
shared state at spacelike separation from projective meas
ments performed on Bob’s half. We can do this as follow
Suppose that Alice performs an arbitrary POV measurem
A, with elementsAm such that(mAm5I . Then, for a particu-
lar outcomeAn , we can define

Pr~AnuA,l!5^luAnul&, ~7!

where on the right-hand side~RHS! An represents a positive
operator and on the LHS the corresponding experime
outcome.

If we assume that Werner’s original model works, it
easy to show that this modified model works for an arbitra
POV measurement performed by Alice. If a spectral deco
position of An is given by An5( iqi

nQi
n , where 0<qi

n<1
andQi

n is a projector, then

Pr~An ,bj uA,B!5E dl v~l!Pr~AnuA,l!Pr~bj uB,l!

5E dl v~l!^luAnul&Pr~bj uB,l!

5(
i

qi
nE dl v~l!^luQi

nul&Pr~bj uB,l!

5(
i

qi
n Tr @ W2

a51/2Qi
n

^ Pbj
#

5Tr @ W2
a51/2An^ Pbj

#,

which is the required result. We got from the third line to t
fourth line by assuming that Werner’s original model for pr
jective measurements works.

Incidently, the model can also easily be extended to
clude the case where Bob performs a POV measurement
vided Bob’s POV elements commute pairwise. In this ca
there exists a single basis in terms of which we can w
down the spectral decomposition of all of Bob’s POV e

ments. SupposeBn85( jqj
n8Qj where theQj are the projec-

tors onto the elements of this basis~and the point is that they
are independent ofn8). If a projective measurement corre
sponding to a decomposition of the identity( jQj5I is per-
formed, Werner’s original model gives us the outcome pro
abilities via rule~5!. For now, we abuse notation slightly an
write these outcome probabilities as Pr(Qj ul). We can define
the outcome probabilities for Bob’s POV measurement a

Pr~Bn8uB,l!5(
j

qj
n8 Pr~Qj ul!. ~8!
5-6
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IMPLICATIONS OF TELEPORTATION FOR NONLOCALITY PHYSICAL REVIEW A64 042305
Reasoning similar to that above for the extension on Alic
side shows that this will reproduce the correct quantum m
chanical probabilities.

As mentioned above, to our knowledge, no one has
constructed a local hidden variable model forW2

a51/2 which
correctly reproduces the quantum mechanical probabili
for arbitrary POV measurements on both Alice’s and Bo
sides. What we have here is quite adequate for simulatio
our modified teleportation scenario provided Bob is not
lowed arbitrary POV measurements. It seems unlikely t
allowing Bob this freedom would reveal nonlocality whe
there was none before, but we cannot claim to have ruled
out. Thus we conclude that with this slight qualification t
ability of theW2

a51/2 state to teleport with fidelity34 does not
betoken nonlocality.

In the next section we consider Werner states with gen
a. We use the Bell-type inequality derived in Sec. IV
investigate when imperfect teleportation using Werner sta
might imply nonlocality.

B. When does teleportation imply nonlocality?

In this section we use all the same notation as in Sec.
Consider again our Bell-type inequality~3!:

0<Pr~ t,s̄!1Pr~ ū,r !1Pr~u,s!2Pr~ t,r !<1.

If Alice’s and Bob’s shared state isr5aPs1@(12a)/4#I ,
then we get

0< 1
4 $22a@c~r x1sx!1d~r y2sy!#%<1,

again withc5ab* 1a* b andd52 i (a8b8* 2a8* b8). If, as
before, we set

S a

bD 5
1

A2
S 1

1D , S a8

b8
D 5

1

A2
S 1

i D ,

rW5S 1

A2
,

1

A2
,0D , sW5S 1

A2
,
21

A2
,0D ,

then we have a violation if

a.
1

A2
.

Thus teleportation using the standard scheme and a Wer
state witha.1/A2 implies nonlocality. This of course im-
plies that these states are nonlocal.

In fact, it is precisely the Werner states witha.1/A2 that
violate the ordinary CHSH inequality@10# for a suitable
choice of projective measurements, so we did not nee
consider teleportation or derive this inequality merely to fi
out that these states are nonlocal. That they violate
CHSH inequality can be shown using a result of Ref.@20# as
follows. Any density matrix operating onH2^ H2 can be
written as

r5 1
4 ~ I ^ I 1Vi

1s i ^ I 1Vi
2I ^ s i1Ti j s i ^ s j !,
04230
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where thes i are the Paulis matrices,Vi
1 and Vi

2 are real
three-dimensional vectors,Ti j is a real 333 matrix, and re-
peated indices are summed over.~Note that there are othe
conditions thatVW 1, VW 2, and T must satisfy forr to be a
genuine density matrix.! Horodeckiet al. show thatr vio-
lates the CHSH inequality for some choice of measureme
for Alice and Bob if and only ift11t2.1, wheret1 and t2
are the largest two eigenvalues ofTTT.

It is easy to show that, in order to write a generaliz
two-dimensional Werner state in this form, we set

VW 150, VW 250, and Ti j 52a d i j

to get

W2
a5 1

4 ~ I ^ I 2a d i j s i ^ s j !.

This state violates the CHSH inequality if and only ifa
.1/A2, as claimed.

What we have shown in this section, then, is not just t
the Werner states witha.1/A2 are nonlocal — we already
knew this from@20#. We have shown, in addition, that con
sideration of teleportation using these states can also re
them as nonlocal. This can be regarded as in keeping wi
conjecture made by Zukowski@5# who suggests that ‘‘the
quantum component of the teleportation process canno
described in a local and realistic way as long as the ini
@shared# state . . . neither admits such models.’’

To summarize, we have a local hidden variable mode
describe teleportation using any Werner state witha<1/2
~with the slight caveat that we have not included the case
which Bob performs arbitrary POV measurements on
state that he receives!. We have also shown that teleportatio
with the standard scheme and a Werner state witha.1/A2
does imply nonlocality. States with 1/2,a<1/A2 do not
violate the CHSH inequality for any choice of projectiv
measurements but apart from this, questions about their
cality remain open. When used for teleportation, they do
violate our inequality but might violate some other inequ
ity.

Note that a state witha just greater than 1/A2 will tele-
port with a fidelity just greater than12 (111/A2)'0.85. The
teleportation procedure will involve nonlocality even thou
this value for the fidelity is below a bound derived by Gisi
which is ;0.87 @4#. We discuss this further in Sec. VII.

Our investigation has been restricted to teleportation
ing Werner states and the standard scheme. It might be in
esting to try to extend these results and find something m
general such that unknown-state teleportation implies no
cality if the fidelity is F or higher and can otherwise b
described using a local hidden variable model. It may w
be, however, that there is no such result to be found. Th
could exist two statesr and r8 and two teleportation
schemes, which teleport with fidelitiesF and F8, such that
teleportation withr implies nonlocality while teleportation
with r8 does not even thoughF,F8.
5-7
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VII. GISIN’S RESULT

Before concluding we would like to comment on a res
of Gisin’s which he claims has relevance to teleportation a
nonlocality @4#. Gisin derives a value for teleportation fide
ity that is given by

F5
1

2
1A3

2

arctanA2

p
'0.87.

He describes this as an ‘‘upper bound for the fidelity of qu
tum teleportation explainable by local hidden variables.’’ T
value ofF is derived as follows.

First Gisin notes that the shared stateD must be local, and
‘‘hence useless for teleportation.’’ Then, ‘‘within the loc
hidden variable paradigm, Alice could measure the s
cAlice in the classical sense of ‘measuring:’ finding out wh
the statecAlice is.’’ Here, cAlice is the state that Alice is
teleporting~which we earlier calledux&). In the light of this,
to derive the value forF above, we assume that Alice an
Bob share nothing, that Alice knows the quantum state sh
trying to teleport, and that Alice sends two classical bits
Bob. The best they can do is to divide the surface of
Bloch sphere into four regions. Alice uses the two class
bits to let Bob know which region the state she is teleport
lies in. Bob then prepares a state in the center of this reg
The optimal way of doing this is to inscribe a regular tet
hedron in the Bloch sphere. The areas of the surface of
sphere subtended by the faces of the tetrahedron are the
regions used. Calculation then gives the average fidelity
tained asF above.

We feel that the description ofF as an ‘‘upper bound for
the fidelity of quantum teleportation explainable by loc
hidden variables’’ is slightly misleading. On the assumpti
that ‘‘explainable’’ here can be replaced with ‘‘simulable
the fidelity explainable by local hidden variables rather d
pends on what is to count as a simulation of a quant
teleportation procedure. Under our and Zukowski’s a
proach, we are happy if a local theory can predict the res
of Alice’s Bell measurement and of a spacelike-separa
measurement made by Bob~for a completely different ap-
proach which is equally interesting, see@7#!. Using our and
Zukowski’s approach, we found that the ability of the sta
W2

a51/2 to teleport with fidelity3
4 does not betoken any form

of nonlocality. On the other hand, the fact that under
standard scheme a stateW2

a with a just greater than 1/A2
teleports with fidelity just greater than12 (111/A2)'0.85
does betoken nonlocality. This is despite the value of;0.85
being below Gisin’s bound. It is true that, if Alice knows th
state she is trying to teleport, then she can do better than
using only local means — this is what Gisin’s result show
If Alice does not know the state she wants to teleport, ho
ever, then the standard teleportation scheme is the bes
can do and this will involve nonlocality.~Note that the stan-
dard scheme is indeed the optimal scheme for unknown-s
teleportation using a Werner state; see, e.g.,@21#!.

In addition, there is no reason why teleportation with
fidelity greater than Gisin’s bound should not be simula
by local hidden variables in some cases. The key here is
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hidden variable theories are surely only required to rep
duce probabilities for measurement results. In other word
hidden variable model need not specify an actual quan
state to be received by Bob on each run of the experimen
we must assume that Bob does some kind of measurem
and it is only the outcome of this measurement that mus
predicted by the model. So it is not quite correct to say t
a shared state that is local must be ‘‘useless for telepo
tion.’’ The local correlations may be useful in helping Alic
and Bob achieve correlated measurement results.

At the least, we feel that Gisin’s result is less genuinely
do with locality than our own or Zukowski’s@5# or those of
Cerf et al. @7#. This does not mean that Gisin’s result is u
interesting, however. Interpreted as the best fidelity ach
able when Alice and Bob share nothing at the start of
protocol, and Alice knows the state she is trying to telep
and is limited to the sending of two classical bits, it is co
rect. It can be contrasted with the value of2

3 for the fidelity
which is the best Alice and Bob can do when they sh
nothing at the start of the protocol and Alice does not kn
the state she is trying to teleport.

Gisin’s result is also useful. In the case that Alice and B
share a nonmaximally entangled quantum state, they ca
achieve unit fidelity. Gisin’s result shows that if Alice know
the state she is trying to teleport, is limited to the sending
two classical bits to Bob, and the best fidelity achieva
with a quantum scheme is,F'0.87, then they may as we
not bother using the shared quantum state. They would
better to use the purely classical scheme above.

VIII. CONCLUSION

Perfect teleportation~i.e., teleportation with unit fidelity!
initially seems paradoxical because only two classical b
are sent, yet Bob ends up with a quantum system in a s
identical with the state of Alice’s input system — and
would take an infinite amount of classical information
specify precisely a quantum state. It is concluded~rather
vaguely! that some sort of nonlocality must be involved —
the extra ‘‘information’’ must be transmitted nonlocally
Vaidman argues that, correctly interpreted, quantum telep
tation involves the transfer of an object from one place
another without it ever being located in the intervening sp
@3#. This also sounds vaguely paradoxical and might sugg
nonlocality~although Vaidman himself is more concerned
reconcile this view of teleportation with his own belief in
many-worlds type interpretation of quantum mechanic!.
Rather than adopt either of these two viewpoints, we
more inclined to dissolve these paradoxes~at least partially!
by sharing Hardy’s doubts concerning the reality of the
formation apparently transmitted during teleportation~see
the quotations in Sec. III!. We suggest that the paradox
resolved if we consider a quantum state as being a des
tion of an ensemble of systems, rather than a single sys
— Bob can identify the state and any information contain
therein by performing measurements on the whole ensem
But to teleport the whole ensemble, Alice does indeed s
an infinite number of classical bits.

Having said this, teleportation might still involve nonlo
5-8
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cality. If we define nonlocality to mean nonsimulability b
local hidden variables, then to speak meaningfully of telep
tation being local or nonlocal, we must have Bob perform
a measurement of some sort on the state that he rece
~because hidden variable models are required only to re
duce the results of measurements!. Bob’s measurement is a
spacelike separation from Alice’s. We can speak of the te
portation as being nonlocal if Bob’s results are correla
with Alice’s in a way that cannot be simulated with a loc
model.

In investigating this, we have considered perfect telep
tation using a singlet, derived an appropriate Bell-type
equality, and shown that it is violated. So perfect telepo
tion is nonlocal. We have also considered teleportation us
Werner states, of the formr5aPs1@(12a)/4#I . Using the
same inequality, we found that the teleportation is nonlo
precisely for those Werner states that violate the CHSH
equality, i.e., those witha.1/A2. These teleport with fidel-
ity F. 1

2 (111/A2)'0.85. We also extended Werner’s loc
hidden variable model for thea5 1

2 states to give a loca
model describing teleportation using these states~the fidelity
of which is 3

4 ). We concluded that the ability to teleport wit
fidelity 3

4 does not confer nonlocality in this case, with th
qualification that we have not allowed Bob arbitrary PO
measurements.
, a

ic

ev
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Broadly speaking, the status of the~two-dimensional!
Werner states with respect to locality remains unknow
Teleportation shows that those witha.1/A2 are nonlocal —
but we already knew this. Teleportation using thea5 1

2 state
can be simulated locally — but the state may still have
hidden nonlocality to be revealed by other means. We do
know whether ~unknown-state! teleportation using the1

2

,a<1/A2 states can be simulated locally or not, or wheth
they might have nonlocality to be revealed by other mea

Related independent results have been very recently
culated by Clifton and Pope@22#.

Note added in proof. A local hidden variable model al
lowing for POV measurements on Bob’s side has recen
been constructed for thea5 5

12 state, which teleports with
fidelity 17

24 @23#. Thus we can simulate teleportation with fi
delity 17

24 without the qualification that Bob is restricted t
projective measurements.
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