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The quantum analogues of classical variable-length coddad@gterminate-lengtiquantum codes, in which
code words may exist in superpositions of different lengths. This paper explores some of their properties. The
length observable for such codes is governed by a quantum version of the Kraft—McMillan inequality.
Indeterminate-length quantum codes also provide an alternate approach to quantum data compression.
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[. INTRODUCTION led to construct their code in an unnecessarily inefficient
way. (See the discussion in Sec. I)Blore recently, Chuang
The development of the quantum information theory is aand Modha have developed a quantum version of ar_i.thmetic
striking example of the fruitful hybridization of two well- coding as a route to quantum data compresggjnBostran
established disciplines. Both quantum mechanics and infoihas also investigated indeterminate-length codes in connec-
mation theory have a rich set of concepts and a powerfulion with lossless quantum coding].
toolbox of mathematical techniques. Their combination is Our aim in this paper is to outline a general theory of
yielding powerful insights into the physical meaning of “in- indeterminate-length quantum codes, including their applica-
formation” [1,2]. tion to quantum data compression. We will first sketch a
One approach to this exploration is to begin with an idedramework for discussing such codes. Each code will have a
of a “classical” information theory and investigate how this “code word length” observable\ with integer eigenvalues;
idea must be reinterpreted or modified to fit into the quantunfllowable code words include not only length eigenstates but
information framework. Ideas of fidelity, quantum data com-arbitrary superpositions of them. The key requirement is that
pression[3], quantum error correcting codp4], and the ca- such codes be “condensable”—that is, that the individual
pacities of various quantum channfg can all be viewed in  code words can be assembled into a string by means of a
this light. unitary operation. This condition leads us to prove a quantum
A basic idea in the classical theory of data compression i¥ersion of the Kraft-McMillan inequality. Among the con-
the idea of a variable-length code. A variable-length codedensable codes are those that satisfy a quantum “prefix-free”
assigns code words consisting of different numbers of symcondition, and we showby giving an explicit condensation
bols to different messages. If shorter code words are used fédgorithm that all such codes are condensable. We also show
more common messages and longer ones for less commd®w classical variable-length codes can be used to construct
messages, the average code word length can be made shofiggntum indeterminate-length codes with analogous proper-
than would be possible using a fixed-length cogéatural  ti€s.
|anguages take advantage of this idea. Common words like We next turn to the use of indeterminate-length codes for
“the” are often very short, while unusual words like “ses- duantum data compression. We achieve quantum data com-
quipedalian” are longer. pression by taking a condensed stringhbtode words(in
However, the original development of quantum data comgeneral, no shorter thak times the largest eigenvalue 4f
pression followed a different route, parallel to the classicand truncating it after the firsd/” qubits, thus using only”
development based on “typical sequences.” This left operflubits per input code word. We show that the averdgeof
the question of whether there was a quantum analog to claghe code word length observableis the necessary and suf-
sical variable-length coding. Because a quantum code muégient value of/” to achieve high fidelity for this process. It
allow superpositions of different code words—including su-turns out thail) is related to the quantum entroi®of the
perpositions of code words different lengths-the quantum  quantum information source, and from this relation we are
version would best be termed amdeterminatdength quan-  able to arrive at the noiseless quantum coding theorem.
tum code.
One of us[6] made a preliminary investigation of this Il. INDETERMINATE-LENGTH CODES
idea several years ago. Subsequently, Braunsted. [7]
presented a quantum analog to classical Huffman coding.
Because a general understanding of indeterminate-length In a quantum code, code words are states of finite strings
guantum codes was not available then, Braunsteald. were  of qubits. Superpositions of code words are also valid code
words, and to maintain high fidelity we must preserve the
coherence of these superpositions in our coding and decod-
*Electronic address: westmoreland@denison.edu ing processes.

A. Zero-extended forms
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We wish to create a code in which different code wordsof the code words. The condensed state in Bgwould be
have differentlengths—that is, they involve different num- of the form
bers of qubits. But how do we make sense of this idea? We
will begin by consideringzero-extended form&EF) of the I‘Ifl"'LOL”“‘N'maX):|¢1""1~ : -whleH”'LOL“‘“N'maX>.
code words. For ZEF code words, we imagine that the code (4)
words are sitting at the beginning of a qubit register of fixed
length, with|0)’s following. These code words span a sub- This special type of condensation is calk&ithple condensa-
space of the Hilbert space of register states. tion, and those codes whose code words can be condensed in
Our first essential requirement is that the code worddhis way are said to beimply condensableodes. Obviously,
carry their own length information. That is, we require thatall simply condensable codes are condensable; but the con-
there is a “length” observable\ on the ZEF code word Verse is not true.

subspace with the following two properties: The condensability condition is phrased as an “encoding”
(a) The eigenvalues of\ are 1, ...l Wherel,,is  requirement, but the unitary character of the packing process
the length of the register, arft) if | /,F) is an eigenstate of automatically yields a decoding condition—we can unpack a
A with eigenvalud, then it has the form condensed string by applying thé™* transformation.
It is interesting to compare the analogous classical situa-
|pzepy =]yt 10! Imayy, (1)  tion. Classical code words in a variable-length code can al-

ways be concatenated into a “packed” string. Only for

In other words, the last,.,—| qubits in the register are in uniquely deciphe_rable cers is this packi_ng reversible. In the
the statel0) for a ZEF code word of length guantum case, since arbitrary superpositions of code words

The length observabld was also considered in R46]. are also legal code words, the concatenation process itself
For eacH = 1 | we letd, be the dimension of the must be unitary. This automatically implies that it can be
y s maxe

subspace spanned by the eigenstates with eigenvalle ~eversed.

Denote the projection onto this subspacedyy Then Tr
=d,. C. Quantum Kraft-McMillan inequality

Given that the code words carry their own length infor-
B. Condensable codes mation and form a condensable code, we next derive a con-

dition on the code word length observable. Fix a valué&of

We want to be able to make use of the comparative shortyng consider all code word strings that have given values of
ness of some code words by “packing” the code words to || These states lie in a subspace of dimension

gether, eliminating the trailing zeroes that “pad” the ends ofdI d,_---d,, and all of them are mapped Hy into some-
he ZEF rds. But this m r hat main- * 2 N’
the code words. But this must be a process that mai ing of the form| W +-LOL +1:* Nimay.

tains quantum coherences in superpositions of code wor Next | . i f cod 4s with diff tlenath
states—that is, it must be described byratary transforma- ,ex ' |m?g|ne strngs of code words with ditierent lengths
di:l2. ... Iy, but whose lengths sum to the same total

tion. Furthermore, we wish to be able to coherently pac ) :
together any number of code words. length: L'=L. The space spanned by these has dimension
We say that a code isondensabléf the following condi- ~ i;di;- - -di; @nd is orthogonal to the previous space. We can

tion holds: For anyN, there is a unitary operatdt (depend- consider all such combinations of lengths that sum to the

ing on N) that maps sameL. Each of these states maps undeto something of
the form |¥1-Lo-"1Nmay so we obtain(dimension of
|1 25y ®@ - - @ty zep)— | W 1. . N 2E8) space containing all code word strings with the same
- — 2 L)<(dimension of space containing all strings
Nl .x qubits Nl .x qubits |\P1...|_O|_+1...N|max>),

with the property that, if the individual code words are all
length eigenstates, thdd maps the code words to a ZEF E d|1-~
string of theNI ., qubits—that is, one witH0)’s after the ot Fiv=t

firstL=1,+---+1y qubits:

-d, =2“.

It follows that

1---1qAl 1l pa 1---Innl 1
[y 2017 @@y NONT ) 27t > dp - -
i+ Fly=L 1

4)|'\I/1"‘LOL+1"'NImax>_ (3)

, , . - 271, )---(27ndy )<1.
This process is calledondensationSince every code word |1+.--§+:|N=L ( 1) W

is a superposition of length eigenstates, it suffices to specify

how the condensation process functions for such code word3here are at mostil,,,,, possible values df. If we sum both
Note that we have made no assumptions about the detai8des of this equation over those values, the resulting sum on

of the condensation process. In the most straightforwarthe left-hand side will include all possible values of

case, condensation would be accomplished by concatenatiop, . . . |y . Therefore,
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O O O N the operatorr, the projection onto the subspace of length
> (27d)- (27 )=( 2 27'd)| <Nlya. eigenstate ZEF code words of lendtthas the form
1 N T

S U [y B P
- . . = 1 max,
This is of the formKN<NI ... If K>1, then this inequality m=mTe ©

must be violated for Sufficiently IargH. Thus, we conclude Of course, actually to measure the code word lengyth

thatK<1. But would be disastrous, because such a real measurement would
destroy the coherence of superpositions of length eigenstates

K= 27'd=> 27!t 7r|=Tr< D 2—|7T|>. without possibility qf restoration. The condensation process

[ [ [ must therefore not include any measurement of length infor-

mation. On the other hand, the process may include interac-
This giVGS us our quantum version of the Kraft—McMillan tions by which, at some intermediate stage, a quantum com-
inequality. For any indeterminate-length quantum code thaputer has become entangled with code word length
is condensable, the length observahl@n ZEF code words  information—provided that, by the end of the computation,

must satisfy this entanglement has been eliminated. In Sec. | E, we dis-
A cuss this in more detail.
Trz-°<1 (5) A particularly simple way of generating a prefix-free

uantum code is to use a classical prefix-free code as a basis

r the ZEF code word subspace. For example, the classical
code words 0, 10, 110, and 111 form a prefix-free set. The
corresponding quantum code can be specified by giving an
D. Prefix-free codes orthogonal basis of length eigenstate ZEF code words, as

An alternate condition that we might impose on our follows:

indeterminate-length quantum code is that the codprbéx
free—informally, that no initial segment of a ZEF code word

(where the trace is taken over the subspace of ZEF co
words.

state length

is itself a code word. In the next Sec. lll, we will show that |000) 1
all prefix-free codes are simply condensable. In this section, 1100 2
we will discuss the meaning of the prefix-free condition and

show that any condensable code can be transformed into a 110 3
prefix-free code with the same length characteristics. |111) 3

Suppose| ;) and |#,) are length eigenstate ZEF code
words with lengthd; andl,, respectively; and further sup- The length observabla for this code is

pose thal,>1,. These states have the form
A =]0001(000 +2|100(100 + 3|110(110 + 3|111)(111.

1---1
[y =|yp; 20'F L Tmay), (10)
1. Of course, any superposition of these is also a ZEF code
|g) =y 2012+ Ima (6) i Hitelt |
2 2 : word, though not necessarily a code word of definitelt is

_ easy to verify that the code defined in this way satisfies the
For the code wordy;), the quantum state ?f the firs{  criterion for a quantum prefix-free code. The procedure illus-
qubits of the register is just the pure stig "'*). For the  trated here may be extended in the obvious way to create a
code word| #,), the firstl,; qubits may be in a mixed state, quantum prefix-free code from any classical prefix-free code.
described by the density operator Suppose we have an indeterminate-length quantum code
that satisfies the quantum Kraft-McMillan inequality. Then,
p;”"lzTr|l+l...|maxl l/fz)(l/lzl:Tr|1+1A..|2|l//;'ulz><17[f;”|2|. the space of ZEF code words of this code is spanned by a
(7) basis of eigenstates of the code’s length observAbtd the
code. Let|zer, ;) be theith such basis vector with length
We say that our code iprefix freeif, for all such pairs of eigenvalud, and letn, be the number of basis vectors that

code words, have lengthl. (Thus, for a given, i ranges from 1 tm,.)
TR, The quantum Kraft-McMillan inequalitfEq. (5)] implies

(wr ey Yy =0, (8  that
In other words, the firdt; qubits of a code word of length E n2-'<1. (11)

have a state that is orthogonal to {pessibly mixedl state of T
the firstl, qubits of a code word of lengthy>1,.

Another way of expressing this condition is to say that a Given values ofl and n, that satisfy Eq.(11), we can
length eigenstate ZEF code word of lendthan be distin- construct a classical prefix-free code with distinct code
guished from a code word of greater length by making awords of lengthl bits. [In this case, Eq(1l) is just the
measurement only on the firbiqubits. Shorter code words classical Kraft inequality.Denote byC, ; theith code word
can be “recognized” from shorter segments. This means thatf lengthl bits in this prefix-free code. We use this classical
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prefix-free code to create a quantum prefix-free code by corentangled with the computer. As a special case of this, we
structing a basis of length eigenstates, whose elements arequire that the computation end after exactly the same num-

|C|,i0'*1' : "max). ber of steps for any input code word. If the computation took
Now consider the mapping more steps for longer code words, the halting time of the
computation would constitute a measurement of code word

|hzers i) —|Cy ;011 Tmas), (12 length, and would destroy the coherence.

(3) Localization of coherence in the outp&or any quasi-
This is a mapping from orthogonal basis vectors to orthogoe€lassical input, at the end of the computation all input regis-
nal basis vectors that can be extended linearly to a unitarters and internal variables in the central processor have been
mappingV on the entire Hilbert spacé/ takes the original reset to fixed values that are independent of the input. Only
code words to prefix-free code words in a length-preservinghe output tape retains any information about the input. This
way—that is, the length observable’ of the prefix-free  will guarantee that a superposition of quasiclassical inputs
code is given byA’=VAV'. In short, any quantum code will not lead to entanglement between the output tape and
that satisfies Eq.5) can be unitarily mapped to a prefix-free the rest of the computer; the coherence will be localized in
guantum code with identical length characteristics. the output tape.

Are all prefix-free quantum codes condensable? As we

shall see in Sec. | E, they are; but in order to show this, weA similar set of conditions is outlined in Ref6], where it is
will have to give an explicit algorithm for a quantum com- used to specify quantum algorithms for data compression
puter to condense the code words of a prefix-free quanturand for quantum arithmetic coding.
code. This algorithm must maintain the coherence of super- The reversibility requirement ensures that an orthogonal
positions of code words of different lengths. Before we de-basis of initial states maps to an orthogonal basis of final
scribe our algorithm, we will first discuss some key charac-states. If the computation is coherent, this map extends by

teristics of coherent information processing. linearity to a unitary evolution for the quantum state of the
computer. The final requirement guarantees that the quantum
E. Coherence and reversibility information initially in the input registers can be recovered

) from the condensed output tape alone. We will discuss each
We adopt a high-level model of a quantum computer, s ihese requirements in turn.

yvhich cou_ld in principle be implemented by a quantum Tur-  consider how our quantum computer acts on quasi-
ing machine or an array of quantum gates. Our quantund|assicallength eigenstajénputs. If we were to map out its
computer contains several registers of qubits, which '”'t'a"yalgorithm as a flowchart, the requirement of reversibility
hold ZEF code words from a prefix-free quantum code. Thgyoyld impose two sorts of requirements. First, each indi-
computer also includes a central processing unit that containgqy,a| operation on the data must be reversible. Second, the

various counters and pointers, each of which can take oBranches and joins in the flowchart must be specified in a
integer valuegor superpositions of thegeA system clock  (ayersible way.

keeps track of the number of machine cycles that have A pranch can be pictured in this way:
passed since the beginning of the computatidtis clock

may be treated as an entirely classical system; its function is l

simply to control the execution of our quantum program.

Finally, the computer contains an output “tape” of qubits brar_lgh false
(initially all in the statel0)) on which the condensed string is conditon = ——
to be written. | true

Our job is to write the input code words onto the output
tape in a way that preserves the coherence of superpositiofixecution of the program enters from the top, and a logical
of different code words, including superpositions of code“branch condition” is evaluated. If the branch condition is
words of different lengths. This means that the operation ofrue, execution proceeds along the downward branch; if
the computer must be unitary. We can guarantee this unitaritialse, along the rightward branch. This is plainly reversible,
if we satisfy certain conditions: as long as the evaluation of the branch condition is done in a
reversible way; there is no ambiguity in the execution of the
r?versed program.
" However, a simple join

(1) Reversibility In a classical code, all code words have
a determinate length. We can choose an orthogonal basis
length eigenstates to be “quasiclassical” input states of our
computer.(These states need not be fully classical—for ex-

ample, the qubits in these code word states may be entangled ) l
with each other. However, each code word in our basis has a — Join
determinate length.We require that distinct quasiclassical !

inputs lead to distinct final states of the computer. This is

essentially a requirement that the computatiorrdersible  is not reversible, since in the reversed program it is not clear

on these quasiclassical inputkd,11]. which of the two paths to take. The point is that a join in the
(2) Coherent computationThe computation includes no flowchart is a reversed branch, and thus must be governed by

measurement or process in which the environment becomeslogical “join condition”:
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| true We could imagine evaluating the condition by making a
false join measurement of the observable representedIbgnd IT*.
But this would destroy the coherence in this superposition,
S0 a less destructive operation is required.
! We join to Q a single qubit(in another part of the quan-

. . - L tum computer, and consider the operatbron joint system:
The program is designed so that the join condition is true putex P J y

whenever the execution approaches from above, and false
whenever execution approaches from the right.

In our program, we will want to use branches and joinsto _ - _ _
create “loops,” like so: U is easily verified to be a unitary operator, and thus it could

represent some coherent quantum evolution of the joint sys-

_ condition *

U=(|0)1]+ |10 @1+ 1®IT*. (14)

tem. If the qubit is initially set to the staf®) and thenU
1 true acts, we obtain
start false

condition U[0)®|¢)=|1)®TI|$)+|0) @I |¢). (15
This is an entangled state of the qubit aQdIf we were to
make a measurement of the qubit in the standard basis, we
would be effectively measuring the observableon Q. That

operations is, the qubit “contains” the value of the observalile How-
ever, the interaction is completely reversible, and in this case
may be undone by a further application dfitself.

The qubit can be used as a switch to instruct the computer
which branch of the computation to follow. Suppose we wish
to specify that, if the qubit i$0), the rest of the computer

stop false performs a computation described by the unitary operator
condition Vo, whereas if the qubit i§1) then we wish to do the com-
putationV,. Then we instruct the entire compui@ncluding
true the switch qubit to perform a coherent computation de-

scribed by the unitary operator
The “start condition” is a logical condition that is only true

at the beginning of the execution of the loop and not there- V=[0)(0|®Vy+|1){1|®V;. (16)
after; the “stop condition” is only true at the end of the
execution of the loop and not before. _ If the overall state of the computer is a superposition of the
We can also conveniently represent the reversible 100Ryo switch states, both branches are followed in different
structure in pseudocode form: branches of the superposition. The computer may become
increasingly entangled, but the coherence of its overall state
loop enter (start condition is preserved.
_ We have shown that any branching condition that can be
operations represented by a projection operakbican be used to control
the execution of the program without any necessary loss of
loop exit (stop condition. coherence. The cost is entanglement among the parts of the
computer.
Both the beginning and the end of the loop are governed by A join point in the algorithm is simply a time-reversed
logical conditions. branch point. Just before the join, the computer is in a state

The requirement that the computation be coherent may dike Eq. (15), in which the qubit is entangled with the system
first seem difficult to achieve, since each branch péamt Q. The operatok) “1=U acts, and we return the qubit to the
join point in the algorithm involves the evaluation of a state|0) and the systen® to a state like Eq(13). We have
condition—apparently a measurement process. Howevetdisentangled”Q from the qubit, so the two branches of the
these conditions can control the execution of the prograncomputation(controlled by the qubjthave merged.
without any irreversible loss of coherence. Our second concern with coherent computation is the syn-

Let us suppose that the quantum sysf@iis some portion  chronization of the computation on different components of
of our computer, and that we wish to branch our progranthe initial superposition. This can be maintained without
based on a condition about the state@fThe condition is much difficulty by introducing appropriate “delay loops”
represented by a projectidih acting on the Hilbert spacK  into the program, so that its execution requires exactly the
describingQ. Any initial state|) of Q can be written as same number of machine cycles for any input.

We will address our final concern, that the output tape
| ) =TI| ) + IT+| ). (13)  should wind up unentangled with the rest of the computer, by
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showing that the final state of the rest of the compultgsut  the question of whether the firgt qubits of the register form
registers and central procesp@ independent of the input a code word of lengthy, can be settled by measuring a
state. projection-type observable on those qubiffhe computer
does not make such a measurement, but instead coherently
F. Prefix-free codes are simply condensable controls its operation as just described.
We also note that, since the procedure is just to copy the

We are at last ready to give our algorithm for simply o qister contents to the output tape, we are doing simple
condensing the code words of a prefix-free quantum code. . qensation

First, we establish our notation and describe the contents of At this stage, the various pointer variables are entangled

our computer in slightly more detail. with the code word length information; furthermore, the time
at which the computer reaches this stage of the computation
is indeterminate. We now resynchronize the program via a

Our computer containd registers, each consistinglof.x  delay loop that causes the computer to “idle” until a fixed
qubits. The th register is denoteR; and thekth qubit of this  time D (chosen large enough so that the first section of the
register is calle®R; . Initially, each register contains a ZEF program has finished even for the longest possible input code
code word from a fixed prefix-free quantum code. words):

1. Registers

2. Tape

loop enter £€=0)
c—c+1

loop exit (time =D).

There is a tapd containing at leasN| ., qubits, all of
which are initially in the stat¢0). Thenth qubit in the tape
is calledT,.

3. Counter . ]
The second half of the program is the reverse of the first

There is a counter variable which can take on integer half, except that the register is uncopied, rather than the tape.
values starting with Qor, of course, superpositions of thgse

The initial state ofc is |0).
loop enter(time =D +1)

4. Pointers c—c—1

There are several pointer variables, which like the counter 100p exit (¢=0)
variable take on integer values and have an initial S@je loop enter (=N) _
These variables point to locations in the memory of the com-  loop enter R ;- - - R, ¢ is a code word of lengtiy,)
puter, but of course they are themselves quantum variables Rrq—Tp®Rrq
and can take on entangled superpositions of values. There is p—p—q
an overall register pointer and, for each register, a qubit q—q,—1
pointerg; (for theith registe). The tape also has a pointer loop exit (g, =0)
variablep. Fer—1

Once again we emphasize that all of these components, |oop exit (r=0).
and the operations they perform, can be simulated by a quan-
tum Turing machine or an array of quantum gates. We dis-
tinguish among them only to make clear the structure of therhe program now ends, after exactlp nachine steps. All
condensation algorithm. pointers and counters have been returned to their initial zero
The first section of the program copies the contents of thgalues, and the input qubit registers have been resgito
registers to the tapes, moving the pointers in the process: ..(0). Only the qubit tape now contains any nonzero data, in
the form of a simply condensed string Nfcode words. In

loop enter (=0) short, the computer at the end retains no code word-length

rer+1 information at all. Superpositions of code words of different
loop energy ¢, =0) length will thus remain coherent in the condensation process.
qr—0q,;+1 Since the algorithm works for any giveM, the prefix-free
p—p+1l quantum code is simply condensable.
To=Tp®R g, We previously proved that every condensable code satis-
loop exit (R, ;- - ‘Req, is a code word of length,) fies the quantum Kraft-McMillan inequality, and then that
loop exit (r =N). every quantum code that satisfies the Kraft-McMillan in-

equality can be unitarily remapped to a prefix-free code. We
(The notationa«<—a® b indicates the “controlled not” opera- now learn that prefix-free quantum codes are simply con-
tion on the qubits, witha as the “target” andb as the “con-  densable. Since unitary remapping might be part of a general
trol” qubit.) Notice that the exit condition for the inner loop condensation process, we have established that a quantum
(which copies the register qubits one by one onto the)tepe code is condensable if and only if it satisfies the quantum
legitimate because the code is prefix free. This means tha€raft-McMillan inequality.
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lll. QUANTUM DATA COMPRESSION state| ) from the location of Alicea to the location of Bob
A. How many qubits? b would be a process like this:
Classical variable-length codes are used fdata |,a)—|,b). 17

compressior-that is, the representation of classical informa-

tion in a compact way, using as few resourceiss) as pos- Although we are phrasing our discussion in terms of the
sible. This is done by encoding more probable messages fiiansmission of quantum information from one spatial loca-
shorter code words, so that the average code word length f&n to another, this analysis would also apply to the storage
minimized. In this section, we will discuss how—and in and retrieval of information in a quantum computer. There,
what sense—quantum indeterminate-length codes may Bbe location degree of freedom might be the reading of a

used for quantum data compression. clock; the information stored at time is to be retrieved at
Suppose Alice is sending classical information to Bob us-some later timeb.
ing the following classical variable-length code: If we have several data qubits, each one will have a loca-
tion degree of freedorfwhich may, of course, be correlated
message code word with the others The number of qubits transmitted from Al-
C, 0 ice to Bob will be the number of location degrees of freedom
that have evolved froma to b. For instance, suppose that
Co 10 three data qubits are in a joint stdt'?), and that Alice
Cs 110 sends the first and third qubits to Bob. The final state would
Cu 111, be | %3 bab), in which Bob has received two qubits.

How could Alice send aindeterminatenumber of qubits

If the messag€, is sent, Bob receives a signal consisting of 0 Bob—in particular, if Alice is representing her quantum
a single bit(0); but if C, is sent, he receives three bitstl).  information using the prefix-free quantum code above, how
In each case, Bob knows how many bits are being used t6an she arrange to send only the flrsubits of a ZEF code
send the message. If a long string of messages is being sedord of lengthl? The transmission of the length eigenstates
Bob at any stage knows how many complete messages halfeeasy to describe:

been received.
Bob learns the length of each code word because he ac- |000aaa) —|000baa)

tually learns which code word was sent. The fact that Bob 1200aaa)—|100bba)
learns the identity of each code word is not a problem in the A

classical situation; indeed, it is the whole point of classical

communication! This contrasts with quantum information |1102aa)—[110bbb)
transfer. If the signals from Alice, for example, are drawn |111aa8)—|111bbb)

from a nonorthogonal set of states, Bob will not be able to
determine reliably which signal was sent, and any attempt t@yt jmagine that Alice is sending a superposition of code
do so would damage the fidelity of the quantum information.yords of different lengths. If this process is unitary, then at
Suppose that Alice wishes to send quantum information tqhe end the data qubits will be entangled with their location
Bob using the quantum analog of the aforementioned prefixyegrees of freedom. The coherence of the superposition
free code. In other words, the length eigenstate ZEF codgould no longer be maintained within the data qubits. In
words are order to restore the coherence, Bob would have to interact
with the location degrees of freedom of the qubits with
state  length which he has indeterminate access. Except for a trivial
|000) 1 case—in which Bob simply returns the qubits from location
1100 2 b back toa—he will not be able to do this.
If the transmission process is not unitary, things are even
110 3 worse. Our conclusion is that it is not possible to send quan-
|112) 3 tum information coherently using an indeterminate number
of qubits. If we are to use indeterminate-length quantum
Arbitrary superpositions of these code words are also aleodes for quantum data compression, we will have to do so
lowed code words. To maintain the coherence of these supein such a way that dixed number of qubits changes hands
positions, therefore, Bob must not obtain any informationfrom Alice to Bob.
about the length of the code word he receives. Perfect fidelity would demand that Alice seadl of the
A guantum system actually used for the transmission ofjubits to Bob—enough qubits so that even the longest com-
information must have at least two degrees of freedom. Thgonent of each code word is transmitted in its entirety. But
first is the “data” degree of freedom, which may for instance this scheme would allow for no data compression at all.
be a qubit. The second degree of freedom is the “location” Our previous discussion of condensability offers some
degree of freedom. This is the physical degree of freedonope. The condensation process took the “information-
which determines whether or not Bob has access to the datzearing” parts ofN ZEF code word<in registers of length
degree of freedom. The faithful transmission of a qubit in al,5,) and unitarily shifted them as far as possible toward the

042304-7



BENJAMIN SCHUMACHER AND MICHAEL D. WESTMORELAND PHYSICAL REVIEW A64 042304

beginning of a tape dfll ., qubits. Although some branches ~ As we shall see, if the ensemble average length of the
of the overall superposition may extend to the end of theZEF code words igl), then we can in the long run maintain
tape, the “typical” branch may be much shortéollowed by  fidelity near to 1 by keeping jusi)+ & qubits per signal,
|0)’s). We therefore might be able to truncate the condensewhere 5 can be made as small as desired. Conversely, in a
string of code words after some numbeof qubits, where ~simple condensation process, we must keep at lgasqu-
L <Nlmay, and still maintain an average fidelity approachingbits per signal to maintain high fidelity—if we keep only
unity. (1) — & per signal, the average fidelity tends toward zero. We
Let us consider a quantum information source that prowill also find that the ensemble average length of the ZEF
duces an ensemble of signal states of some quantum systepede words is related to the von Neumann entropy of the
These signal states are unitarily encoded as ZEF code wordégnal ensemble, making this approach an alternate route to
of some condensable quantum code. For our purposes, theitée noiseless quantum coding theorem. Finally, we will show
fore, we can simply consider the ensemble of ZEF coddhat the relative entropy is a measure of the additional re-
words produced by the quantum information source and thgources(qubits required to represent quantum information
unitary encoding. In this ensemble, the code wiager)  Using a code that is not optimal.
occurs with probabilityp(a), and the average encoded signal
state is described by the density operator B. Enough qubits

In this section we will make use of the fact that a con-
p=>, p(a)|azer)(azed. (18)  densed string ol ZEF code words is itself in ZEF form—in
a other words, we can view the condensed string as a ZEF

Our source produces a sequence of independent, identicalﬁagesyoé?_égsemocrg l\?vri}?%rect?%e'sgg]ec:??ﬁéhlg:sg]w:t?slzrfvo_r
distributed signals, which are encoded as ZEF code words i P 9

; . . ables for theN original code words.
2§%arate registers. The average statd of these registers is Suppose we have a ZEF code wdd) in a register ofn

qubits, and supposé<n. Define » such that a measurement
of the length observabld on the code word yields a result
larger than/” with probability

The average lengttl) of the code word ensemble is

1)=TrpA= Alazer). 19
(H=Trp é p(a){azed Alazeg) (19 P{A>/)=1. (22

The average lengttl) is an ensemble average of quantum|n general|$) will include components of various lengths.
expectation values fok, but no code wordazer) need be a et I1 , be the projection

length eigenstate.

A condensed string o code words is a ZEF string of I,=1%""®0 1 M0 11, (23)
Nl hax qubits, with length observablA. If U is the unitary
operator that maps thd separate ZEF code words to the That is,II . projects onto the subspace of register states that
condensed string, then we can define the overall length okare|0) in the lastn—/ qubits. We can write our ZEF code
servable for the condensed string to be word |¢) as

A=U(Ag+Ay+ - +AYUTL |py=ald=)+Blder)), (24)

The condensed length is just the sum of the individual where o,8=0, and|¢ <)) and |¢ ) are normalized
length observables of the separate, precondensed cod&tes such that

words. This observable will have eigenvalues|,+ - - -

+Iy and an average valyé ). The code words are indepen- I p<)=ld=n)

dent, and so
I,[¢,)=0.

(LYy=N(1). (20 _ . -
Since all A-eigenstate ZEF code words with length no
Since the overall length of the condensed string is definethrger than/” have|0) in the lastn—/" qubits,
to be additive, we can apply the “law of large humbers” to ‘
some measurement &f: For anye, §>0, for large enougN 1-9=PrA=</)<a’. (25)

it is true that ) ) ]
Equality need not hold, however, since some length eigen-

Pr(|A—N(I)|>Né)<e. (22) state code words witth >/ may nevertheless hay@) in
the lastn—/ qubits.(This is analogous to the classical situ-
This means that, for larghl, the probability is very small ation, in which it is perfectly possible to have one or more
that A will be found to be much less thaier much greater 0’s at the end of a code word in a variable-length cpde.
than (L). Of course, we will not in general make such a We now imagine that we truncate the register by discard-
measurement, but Eq21) is still useful in restricting the ing the lastn—/" qubits. Only/" qubits are stored or trans-
typical amplitude of code word string components. mitted. At the end of the receiver of the process,/” qubits
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in the standard sta{®) are appended, yielding a mixed final Our strategy will be to separate the question of the efficiency
stateo for the register. With what fidelitfr =(¢|o| ) has  of a code from the question of how many qubits are neces-
the original code word state been maintained by this processsary. First, we will consider the simple condensation of codes

Direct calculation shows that the mixed statas that may be inefficient, and thém the next sectionwe will
5 ) discuss limits on the efficiency of codes. In this section,
o=a’lp= ) D=nl+BWi 1, (26)  therefore, we describe limits imposed by the structure of our

. ) . particular(possibly suboptimalcode, and in the next we will
wherew(.. ) is the state obtained by truncatipd- ) and  jngicate how optimal or near-optimal codes may be chosen.
appendingn— /" qubits in the stat¢0). Thus Begin with N ZEF code words of a simply condensable

_ 5 2. 2 4 code. The simply condensed string formed from theode
F=(¢lolp)=a’[{$|p=)|*+ B dlW | )= (27)  Words can be built out of two piecegl) the simply con-
densed qubit string obtained from the fikét-k code words,
Therefore, and (2) the simply condensed qubit string obtained from the
last k code words. These two pieces are both ZEF and are
F=a*=(1-p)?=1-2. (28)  simply condensed together to form the complete string. Thus,

we will base our discussion on the simple condensation of
If the code word length\ would be found to be no more jyst two ZEF code words.

than 7~ with probability 17, then we can keep only’ The first ZEF code wordk)) lies in a register om qubits,
qubits and recover the original state with fideliy=1  and the second code worg) lies in a register oh qubits.
—27. The simply condensed paidenoted rather symbolically by

We can now apply this result and the law of large num-| ) is a state of a string ah-+n qubits. We also consider
bers[Eq. (21)] to a condensed string of code words€ld 5 state calledy0), which is the first ZEF code word fol-
>0 andN is sufficiently large, and if we take’=N((l)  |owed byn additional qubits in the stat®).

+6), then the ensemble average probability that the code | et /<m+n. The first ZEF code word can be written
word string is longer than” can be made smaller thai2.

We can therefore truncate the string after ohg(l)+ 6) [y =aly< )+ Bl=n), (30
qubits and later recover the original string with an average
fidelity wherea, =0 and| (- ) (or |~ ,)) is a normalized su-
perposition of length eigenstates that are shorter tharat
(Fy>1-e. (29 least as long as/. If we now simply condense this code

] ) ] word with the code wordy), we obtain
Therefore, if we keep more thafh) qubits per input mes-

sage, in the long run we will be able to retrieve the quantum lx)=alpnx)+ Blb=nx), (31)
information with average fidelity approaching unity. The av- ' '
erage Ien_gtt(l) tells us how many qubits are sufficient for \yith l<x) and [¢=x) being the simply condensed
high fidelity. strings obtained fromy) and the two components o). In
a similar way,
C. Too few qubits

We now turn to the question of how many qubits are |10} = el th(< 0} + Bl = »0)-
necessary to achieve high fidelity after the condensed string . . . . .
is truncated. For this discussion we will restrict our attention O, We imagine Fruncatlng the string afi+n qubits,
to simple condensatiorather than a general condensationKE€PINg only the first” of them to be stored or transmitted.

process. Since any condensable code can be replaced b)ﬂvé(e can denote this process fy.) At the end of the re-

simply condensable code with the same length characteri$€!VEl, we do some unspecified quantum operatiothat
tics. this restriction is not too severe. results in a final state om+n qubits. We know nothing

The reason for making this restriction is pragmatic. Sup-2POULE in general except that it is a trace preserving, com-
pose we havé\ registers containing code words from a con- pletely positive linear map on density operators. The overall

densable code, with an average lengti{Iof A general con-  Process, applied to the two initial stategy) and [¢0),
densation procedure might consist of two stages. In the firs¥/€lds

(32

the code words in theN separate registers are unitarily T ¢
remapped to code words from a more efficient code, that is, lyx)— o—E(w),
one with shorter average length’)<(l). In the second

stage, this more efficient code is condensed. We have estab- T ¢
lished that only abou¥l{l"} qubits will be sufficient to main- |40)— o —E(0).

tain high fidelity. In other words, the original average length
(1) may tell us nothing about the number of qubits necessanat the end of this process, we are interested in the overall

for high fidelity. fidelity of the truncationeum-recovery process:
Of course, we might not choose to condense the code
words in this way, or a more efficient code might not exist. F=(¢x|E(w)|px). (33
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We will show that, under suitable conditions, this fidelity with the maximum taken over all unitary operators acting on

must be small.

For general density operators, the fidelity is defined to be We write

F(p1.p2)=max(1|2)[?, (34)

where the maximum is taken over all purificatidds of p;

and|2) of p,. (Equivalently, we can fix one of the purifica-

tions|1) and maximize over the other purificati¢®).) The

fidelity has the property that it is never decreased by any

guantum operation, so that

F(&(p1),E(p2))=F(p1.p2)

for any trace preserving, completely positive linear ndap

A useful result(shown in Ref[13]) relates the fidelities
among three statgs;, p,, andps;. Let F,=F(pq,p,), etc.
Then

(35

VF =Rt V21— F ).

This implies that, ifF, is nearly equal to one anB,; is
close to zeroF 3 is also close to zero. Recalling tha&®
<1 for all fidelities, we note that + F<1—F, and thus

F13$F23+ 2(1_F12)+2\ 2F23(1_F12)
<Fy3t2(1—Fq)+2y2(1-Fyy
<Fpat2V1-Fp+2V2V1-Fy,,

Fl3$ F23+5\ l_FlZ' (37)

Since this inequality is linear in botR;3 andF,3, it will be

(36)

the lastm+n—/ qubits.

Yx)=a|lp<nx)+BlP=,x) and [40)
=al»0)+BlY=,0), as before, and note that, since
|= ) only contains components ¢§) that are at least as
long as/,

Tr i1 menl b= X)X
=Tt 1 minl Y= 0 ¥(= 10l

In this component, the second code word, whose “starting
address” in the simply condensed string is entangled with the
length of the first code word, lies entirely in the discarded
tail of the qubit string. Therefore, there exists a unitary
v/ FLmEn guch that

|¢(>/)X>:(11'”/®V/+1"'m+n)|¢(>/)0>-

Clearly,

(41)

(42)
Flo,0)=[(gx|(11 7oV ™nyo)P, (43
(x| eV T y0)
=a® (P px|(1Y @V TNy 0)
+aB(nx|(1 7@V TN [y 10)
+Ba( = x| (1Y TRV TNy 0y + B2,
x| (At @V 1m0 y0)|= g7~ o~ 2af3
=1-2a—2a’=>1-4a.

Therefore,

convenient for situations in which we wish to average over

an ensemble op; states.

We apply Eq.(37) to our situation as follows. The state

F(w,0)=(1—4a)?=1—8a. (44)

p1=|¥x) (x|, the original simply condensed string, and the Our overall fidelity must satisfy

statep;=&(w), the final state of the simply condensed string

after the truncatior¥, and the recovery operatiah Playing

the role ofp, is the statef(o), the final state obtained by

using|¢0) as our input. Since the quantum operatibnan
never decrease the fidelity between statesf(w),&(o)]
=F(w,0o). Therefore,

F=<l/f)(|5(w)|i//X><<l//X|5(0)|<//X>+5vl—F(w,ff)(-38)

The initial state$y) and|40) are purifications ofv and
o, respectively. The fidelitf (w, o) is thus

F(w.a>=r|r;a>>4<¢xl¢g>|2.

(39

where the maximum is taken over all purificatidits,) of o

Now, all of the purifications ofr are related to one another

F<(yx|E(o)|gx)+5 8as<wx|6<o->|wx>+15@.(45

Neither the operataf( o) nor the parametex depends on
the second code worgk). We now imagine that the second
code word is drawn from an ensemble—that is, that the code
word | x) occurs with probabilityP (), so that the ensemble
has an average density operator

W=§ POOIx){x!- (46)

The average fidelity after truncatiaf) and recoven€ will
therefore be

F<TrW&(o)+15/a. (47)

by unitary operators that act only on the adjoined system, s&ince&(o) is a positive operator of unit trace, we obtain

that
F(w,0)=ma}(yx|(1* U/ 1 mm|y0)2,
V]
(40)

F<|W[+15/a, (48)

where||W|| is the operator norm ofV, which (since W is
positive is just the largest eigenvalue .
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After all of this, we are in a position to apply the law of The operatow, although a positive operator of unit trace, is
large numbergEq. (21)] again. We will be choosing two generally not the same as the ensemble average density op-
large integersN andk. Our first code word) in the pre- erator p of the code words produced by the information
ceding analysis will be a simply condensed string\Nof k  source.
code words, and the second code wiydl will be a simply The average code word length is
condensed string of the remainikgode words. We assume
that the code words themselves are drawn from an ensemble (I)=TrpA=—Trplog(2 *)=—Trplogw—logK.
with an average state having more than one nonzero
eigenvalue—in other words, the ensemble involves mord herefore,
than one code word state.

Let €,6>0. If A\<1 is the largest eigenvalue @f then
the largest eigenvalue qf®* is \X. Choosek so that\X
<el2. Since the lask code words are unitarily condensed
into a string with average staw®, |W|=|p%X|<e/2.

Now we consider the simply condensed string of the first _
N—k code words, which we have denoted by). The Slp)=—Trplogp ®3

length observable for this string isy_,. Given a value of andD(p||w) is the quantum relative entropy
N, we define/=N((I)— 8). We will restrict our attention to

(1=S(p)+ D(p||w)—logK, (52)

whereS(p) is the von Neumann entropy of the density op-
eratorp

values ofN large enough so that D(p||w)=Trplogp—Trplogw. (54)
(We use base-2 logarithmd&-he relative entropy has a num-
/<(N—k)( (- E)' (49 ber of useful properties. For example, it is positive definite,
so thatD(p||w)>0 if and only if p# w.
Since logK=0,

Applying the law of large numbers, we can now spedify
large enough so that Px(_,</)=a? is as small as we (hY=S(p). (55)
like. In particular, we can guarantee that\ib< e/2. Thus,
The average code word length must always be at least as
Es||W||+15\/E< c (50) great as the von Neumann entropy of the signal ensemble
from the information source.
) . ) We can approach this bound by a suitable code. The ei-
Therefore, if we keep fewer thah) qubits per input mes-  gonyajyes,, of p form a probability distribution\, and the

sage and use simple condgnsation,. in the long run the fidelity,, Neumann entropy is simply the Shannon entropy of the
of the retrieved quantum information must approach Z€M0gigenvalues:

The average lengtll) tells us how many qubits are neces-

sary for high fidelity using simple condensation.
S(p)=HN) == 2 Aylogh. (56)

D. Entropy and average length

The preceding results provide an interpretation for the av "€ probability distributionA can be used to define a

erage length(l) of an indeterminate-length quantum code: Shannon-Fano code, which is a classical prefix-free binary
(1) is just a measure of the resourdesibity that are both ~¢0de whose code words have integer lendifs/log ], so

necessary and sufficient to maintain high fidelity of the quan:‘hat

tum information, in the situations just described. We now

inquire how shortl) can be for a given quantum informa-

tion source. In other words, we will now explore how effi-

cient an indeterminate-length quantum code may be.
Recall the quantum Kraft-McMillan inequalifyEq. (5)].

Any condensable quantum code must have a length observ-

able A on ZEF code words that satisfies (= Mde<H(N)+1. (58)

k

[(<log\+1. (57

This means that the average length of the Shannon-Fano
code words satisfies

Tr2 A=K=<1,
The classical Shannon-Fano code can be used to define a

where the trace is restricted to the ZEF subspace. We céiPrresponding prefix-free indeterminate-length - quantum

construct a density operatar on the ZEF subspace by let- c0de, according to the procedure in E#2). (Such a code
ting was also described by Chuang and Modha in Ré{.)

Eigenstates op are length eigenstate ZEF code words, and
the average code word length satisfies

w= 27" (5D (1)<S(p)+1. (59
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Asymptotically, this code will achieve high fidelity using a quantum code does not saturate the quantum Kraft inequal-
aboutS(p) +1 qubits per signal. ity, it is not length-optimal for any code word ensemble.

An alternate scheme is based on Huffman codes, which Suppose we have a code that is length-optimal for some
are classical prefix free codes that actually minimize averagdensity operatomw; but instead, we use the code for an en-
code word lengtKl). Equations 58 and 59 are also satisfiedsemble of code words described by the density operator
for Huffman codes and their quantum versions. Then the average code word length will be

We can do even better if we create our ZEF code words
from blocksof outputs of the quantum information source.

This amounts to r?:onsideringqa new source that produces (1)=S(p)+Dlpl|w).
blocks of n elementary signals, with an ensemble average

block statep®" having an entropy ohS(p). A quantum  We know that, using block coding, we can asymptotically
Shannon-Fano or Huffman code designed for this blockise as few a$(p) qubits to faithfully represent the quantum
source would have an average length of no more thainformation produced by the source @f We also know that
n(p)+1, so that we will use onlyS(p) +1/n qubits per (1) is the minimum number of qubits we need to retain per
elementary signal. Thus, by coding long blocks of signalscode word to achieve high fidelity in a simply condensed
we can achiev& — 1 with aboutS(p) qubits per elementary string of many code words. Thus, the relative entropy
signal. D(p||w) tells us what additional resourcém qubity are

It can be seen that the theory of indeterminate-lengtmecessary to faithfully represent the quantum information
quantum codes provides an alternate route to the quantufrom thep source, if we use a code that is length optimal for
noiseless coding theoref6]. The von Neumann entropy a different sourcdthe “w source”).

S(p) measures the physical resources necessary to represent
guantum information faithfully.

We now ask: Under what circumstances can we achieve
the entropic bound to the code word length exactly, without In the quantum Huffman code of Braunstaihal, code
resorting to block coding? In other words, for what codesword length information and the code words themselves are

(64)

E. Remarks

and code word ensembles can we have stored separately, in entangled strings of qubits. This means
5 that the average number of qubits used to store the quantum
(1N=S(p)* (60) information from a given source is increased by an amount

logarithmic in the code word lengtfi7]. However, as we

have seen, this separate accounting for code word length

information is unnecessary. The code words of a quantum
(1h'=S(p)+D(p||w)—logK. indeterminate-length codearry their own length informa-

tion.

Both D(p||w) and —logK are non-negative, so they must  This requirement is the basis for E¢p), the quantum

both equal zero for a length-optimal code. In other words, Kraft-McMillan inequality. We have shown that E¢p) is a

necessary and sufficient condition for condensability, and

A code for which this equality holds may be called “length
optimal.” The answer can be seen from E§2):

K=Tr2 *=1 (61)  further, that any code satisfying E@5) can be unitarily
mapped to a prefix-free quantum code with the same length
and characteristics. Prefix-free codes are themselves simply con-
p=w=2"" 62) densable, and obey the quantum Kraft-McMillan inequality.

Classical prefix-free codes are also called “instantaneous

A length-optimal code must saturate the quantum Kraft in-COdes,” since the receiver of a string of code words can
equality[Eq. (5)], and the code word ensemble must equa||dent|fy an individual _code word from the string immedi-
the density operatow constructed from the length obsery- ately, before the remainder of the string is recei/@H But
able A. Two consequences follow: this terminology is inapplicable to the quantum case. Sup-
(a) Whenever the signal ensemblehas only eigenvalues POS€ We have a simply condensed string of code words from
of the form 2™ for integer values ofm, we can find a & prefix-free quantum code. The first code word is generally
condensable quantum codsith length eigenvalues) that "ot @ length eigenstate, and the length of this code word is

is length optimal. Ifp has eigenvalues that are not of this €Ntangled with the locations in the qubit string of all subse-
form, then no length-optimal code exists. quent code words. The phase relationship between the

(b) Some quantum codes saturate the quantum Kraﬁiifferent-length components of the first code word is a global

inequality—for example, those based on classical HuffmarProperty of the state of the entire string. Therefore, in order

codes. These codes will be length-optimal for a code word© coherently recover even the first code word, we will need
ensemble with density operator the entire string(or a sufficiently long initial segment to

achieve high overall fidelity Even prefix-free quantum
p=2"" (63)  codes are not “instantaneous;” the entire transmission must
be completed before any part of it can be “read.”
That is, every quantum code that saturates the quantum Kraft The classical Kraft-McMillan inequalityEq. (11)] arises
inequality is length-optimal for some code word ensemble. Ifwhenever a set of binary strings satisfies the prefix-free con-
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