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Indeterminate-length quantum coding
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The quantum analogues of classical variable-length codes areindeterminate-lengthquantum codes, in which
code words may exist in superpositions of different lengths. This paper explores some of their properties. The
length observable for such codes is governed by a quantum version of the Kraft–McMillan inequality.
Indeterminate-length quantum codes also provide an alternate approach to quantum data compression.
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I. INTRODUCTION

The development of the quantum information theory i
striking example of the fruitful hybridization of two well
established disciplines. Both quantum mechanics and in
mation theory have a rich set of concepts and a powe
toolbox of mathematical techniques. Their combination
yielding powerful insights into the physical meaning of ‘‘in
formation’’ @1,2#.

One approach to this exploration is to begin with an id
of a ‘‘classical’’ information theory and investigate how th
idea must be reinterpreted or modified to fit into the quant
information framework. Ideas of fidelity, quantum data co
pression@3#, quantum error correcting codes@4#, and the ca-
pacities of various quantum channels@5# can all be viewed in
this light.

A basic idea in the classical theory of data compressio
the idea of a variable-length code. A variable-length co
assigns code words consisting of different numbers of s
bols to different messages. If shorter code words are use
more common messages and longer ones for less com
messages, the average code word length can be made s
than would be possible using a fixed-length code.~Natural
languages take advantage of this idea. Common words
‘‘the’’ are often very short, while unusual words like ‘‘ses
quipedalian’’ are longer.!

However, the original development of quantum data co
pression followed a different route, parallel to the classi
development based on ‘‘typical sequences.’’ This left op
the question of whether there was a quantum analog to c
sical variable-length coding. Because a quantum code m
allow superpositions of different code words—including s
perpositions of code words ofdifferent lengths—the quantum
version would best be termed anindeterminate-length quan-
tum code.

One of us@6# made a preliminary investigation of thi
idea several years ago. Subsequently, Braunsteinet al. @7#
presented a quantum analog to classical Huffman cod
Because a general understanding of indeterminate-le
quantum codes was not available then, Braunsteinet al.were
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led to construct their code in an unnecessarily ineffici
way. ~See the discussion in Sec. II E.! More recently, Chuang
and Modha have developed a quantum version of arithm
coding as a route to quantum data compression@8#. Boström
has also investigated indeterminate-length codes in con
tion with lossless quantum coding@9#.

Our aim in this paper is to outline a general theory
indeterminate-length quantum codes, including their appli
tion to quantum data compression. We will first sketch
framework for discussing such codes. Each code will hav
‘‘code word length’’ observableL with integer eigenvalues
allowable code words include not only length eigenstates
arbitrary superpositions of them. The key requirement is t
such codes be ‘‘condensable’’—that is, that the individu
code words can be assembled into a string by means
unitary operation. This condition leads us to prove a quant
version of the Kraft-McMillan inequality. Among the con
densable codes are those that satisfy a quantum ‘‘prefix-fr
condition, and we show~by giving an explicit condensation
algorithm! that all such codes are condensable. We also sh
how classical variable-length codes can be used to cons
quantum indeterminate-length codes with analogous pro
ties.

We next turn to the use of indeterminate-length codes
quantum data compression. We achieve quantum data c
pression by taking a condensed string ofN code words~in
general, no shorter thanN times the largest eigenvalue ofL)
and truncating it after the firstNl qubits, thus using onlyl
qubits per input code word. We show that the average^ l & of
the code word length observableL is the necessary and su
ficient value ofl to achieve high fidelity for this process.
turns out that̂ l & is related to the quantum entropyS of the
quantum information source, and from this relation we a
able to arrive at the noiseless quantum coding theorem.

II. INDETERMINATE-LENGTH CODES

A. Zero-extended forms

In a quantum code, code words are states of finite stri
of qubits. Superpositions of code words are also valid co
words, and to maintain high fidelity we must preserve t
coherence of these superpositions in our coding and de
ing processes.
©2001 The American Physical Society04-1
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We wish to create a code in which different code wor
have differentlengths—that is, they involve different num
bers of qubits. But how do we make sense of this idea?
will begin by consideringzero-extended forms~ZEF! of the
code words. For ZEF code words, we imagine that the c
words are sitting at the beginning of a qubit register of fix
length, with u0& ’s following. These code words span a su
space of the Hilbert space of register states.

Our first essential requirement is that the code wo
carry their own length information. That is, we require th
there is a ‘‘length’’ observableL on the ZEF code word
subspace with the following two properties:

~a! The eigenvalues ofL are 1, . . . ,l max, where l max is
the length of the register, and~b! if ucZEF& is an eigenstate o
L with eigenvaluel, then it has the form

ucZEF&5uc1••• l0l 11••• l max&. ~1!

In other words, the lastl max2 l qubits in the register are in
the stateu0& for a ZEF code word of lengthl.

The length observableL was also considered in Ref.@5#.
For eachl 51, . . . ,l max, we letdl be the dimension of the

subspace spanned by theL eigenstates with eigenvaluel.
Denote the projection onto this subspace byp l . Then Trp l
5dl .

B. Condensable codes

We want to be able to make use of the comparative sh
ness of some code words by ‘‘packing’’ the code words
gether, eliminating the trailing zeroes that ‘‘pad’’ the ends
the ZEF code words. But this must be a process that m
tains quantum coherences in superpositions of code w
states—that is, it must be described by aunitary transforma-
tion. Furthermore, we wish to be able to coherently pa
together any number of code words.

We say that a code iscondensableif the following condi-
tion holds: For anyN, there is a unitary operatorU ~depend-
ing on N! that maps

~2!

with the property that, if the individual code words are
length eigenstates, thenU maps the code words to a ZE
string of theNlmax qubits—that is, one withu0& ’s after the
first L5 l 11•••1 l N qubits:

uc1
1••• l 10l 111••• l max& ^ •••^ ucN

1••• l N0l N11••• l max&

→uC1•••L0L11•••Nlmax&. ~3!

This process is calledcondensation. Since every code word
is a superposition of length eigenstates, it suffices to spe
how the condensation process functions for such code wo

Note that we have made no assumptions about the de
of the condensation process. In the most straightforw
case, condensation would be accomplished by concaten
04230
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of the code words. The condensed state in Eq.~3! would be
of the form

uC1•••L0L11•••Nlmax&5uc1
1••• l 1

•••cN
L2 l N11•••L0L11•••Nlmax&.

~4!

This special type of condensation is calledsimple condensa-
tion, and those codes whose code words can be condens
this way are said to besimply condensablecodes. Obviously,
all simply condensable codes are condensable; but the
verse is not true.

The condensability condition is phrased as an ‘‘encodin
requirement, but the unitary character of the packing proc
automatically yields a decoding condition—we can unpac
condensed string by applying theU21 transformation.

It is interesting to compare the analogous classical sit
tion. Classical code words in a variable-length code can
ways be concatenated into a ‘‘packed’’ string. Only f
uniquely decipherable codes is this packing reversible. In
quantum case, since arbitrary superpositions of code wo
are also legal code words, the concatenation process i
must be unitary. This automatically implies that it can
reversed.

C. Quantum Kraft-McMillan inequality

Given that the code words carry their own length info
mation and form a condensable code, we next derive a c
dition on the code word length observable. Fix a value oN
and consider all code word strings that have given value
l 1 ,l 2 , . . . ,l N . These states lie in a subspace of dimens
dl 1

dl 2
•••dl N

, and all of them are mapped byU into some-

thing of the formuC1•••L0L11•••Nlmax&.
Next, imagine strings of code words with different lengt

l 18 ,l 28 , . . . ,l N8 , but whose lengths sum to the same to
length: L85L. The space spanned by these has dimens
dl

18
dl

28
•••dl

N8
and is orthogonal to the previous space. We c

consider all such combinations of lengths that sum to
sameL. Each of these states maps underU to something of
the form uC1•••L0L11•••Nlmax&, so we obtain~dimension of
space containing all code word strings with the sa
L!<~dimension of space containing all string
uC1•••L0L11•••Nlmax&),

(
l 11•••1 l N5L

dl 1
•••dl N

<2L.

It follows that

22L (
l 11•••1 l N5L

dl 1
•••dl N

5 (
l 11•••1 l N5L

~22 l 1dl 1
!•••~22 l Ndl N

!<1.

There are at mostNlmax possible values ofL. If we sum both
sides of this equation over those values, the resulting sum
the left-hand side will include all possible values
l 1 , . . . ,l N . Therefore,
4-2
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(
l 1 , . . . ,l max

~22 l 1dl 1
!•••~22 l Ndl N

!5S (
l

22 ldl D N

<Nlmax.

This is of the formKN<Nlmax. If K.1, then this inequality
must be violated for sufficiently largeN. Thus, we conclude
that K<1. But

K5(
l

22 ldl5(
l

22 l Tr p l5TrS (
l

22 lp l D .

This gives us our quantum version of the Kraft–McMilla
inequality. For any indeterminate-length quantum code t
is condensable, the length observableL on ZEF code words
must satisfy

Tr 22L<1 ~5!

~where the trace is taken over the subspace of ZEF c
words!.

D. Prefix-free codes

An alternate condition that we might impose on o
indeterminate-length quantum code is that the code beprefix
free—informally, that no initial segment of a ZEF code wo
is itself a code word. In the next Sec. III, we will show th
all prefix-free codes are simply condensable. In this sect
we will discuss the meaning of the prefix-free condition a
show that any condensable code can be transformed in
prefix-free code with the same length characteristics.

Supposeuc1& and uc2& are length eigenstate ZEF cod
words with lengthsl 1 and l 2, respectively; and further sup
pose thatl 2. l 1. These states have the form

uc1&5uc1
1••• l 10l 111••• l max&,

uc2&5uc2
1••• l 20l 211••• l max&. ~6!

For the code worduc1&, the quantum state of the firstl 1

qubits of the register is just the pure stateuc1
1••• l 1&. For the

code worduc2&, the first l 1 qubits may be in a mixed state
described by the density operator

r2
1••• l 15Trl 111••• l max

uc2&^c2u5Trl 111••• l 2
uc2

1••• l 2&^c2
1••• l 2u.

~7!

We say that our code isprefix freeif, for all such pairs of
code words,

^c1
1••• l 1ur2

1••• l 1uc1
1••• l 1&50. ~8!

In other words, the firstl 1 qubits of a code word of lengthl 1
have a state that is orthogonal to the~possibly mixed! state of
the first l 1 qubits of a code word of lengthl 2. l 1.

Another way of expressing this condition is to say tha
length eigenstate ZEF code word of lengthl can be distin-
guished from a code word of greater length by making
measurement only on the firstl qubits. Shorter code word
can be ‘‘recognized’’ from shorter segments. This means
04230
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the operatorp l , the projection onto the subspace of leng
eigenstate ZEF code words of lengthl, has the form

p l5p1••• l
^ 1l 11••• l max. ~9!

Of course, actually to measure the code word lengthL
would be disastrous, because such a real measurement w
destroy the coherence of superpositions of length eigens
without possibility of restoration. The condensation proce
must therefore not include any measurement of length in
mation. On the other hand, the process may include inte
tions by which, at some intermediate stage, a quantum c
puter has become entangled with code word len
information—provided that, by the end of the computatio
this entanglement has been eliminated. In Sec. I E, we
cuss this in more detail.

A particularly simple way of generating a prefix-fre
quantum code is to use a classical prefix-free code as a b
for the ZEF code word subspace. For example, the class
code words 0, 10, 110, and 111 form a prefix-free set. T
corresponding quantum code can be specified by giving
orthogonal basis of length eigenstate ZEF code words
follows:

state length

u000& 1

u100& 2

u110& 3

u111& 3

The length observableL for this code is

L5u000&^000u12u100&^100u13u110&^110u13u111&^111u.
~10!

Of course, any superposition of these is also a ZEF c
word, though not necessarily a code word of definiteL. It is
easy to verify that the code defined in this way satisfies
criterion for a quantum prefix-free code. The procedure illu
trated here may be extended in the obvious way to crea
quantum prefix-free code from any classical prefix-free co

Suppose we have an indeterminate-length quantum c
that satisfies the quantum Kraft-McMillan inequality. The
the space of ZEF code words of this code is spanned b
basis of eigenstates of the code’s length observableL of the
code. LetucZEF;l ,i& be thei th such basis vector with lengt
eigenvaluel, and letnl be the number of basis vectors th
have lengthl. ~Thus, for a givenl, i ranges from 1 tonl .)
The quantum Kraft-McMillan inequality@Eq. ~5!# implies
that

(
l

nl2
2 l<1. ~11!

Given values ofl and nl that satisfy Eq.~11!, we can
construct a classical prefix-free code withnl distinct code
words of lengthl bits. @In this case, Eq.~11! is just the
classical Kraft inequality.# Denote byCl ,i the i th code word
of length l bits in this prefix-free code. We use this classic
4-3
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prefix-free code to create a quantum prefix-free code by c
structing a basis of length eigenstates, whose elements
uCl ,i0

l 11••• l max&.
Now consider the mapping

ucZEF;l ,i&→uCl ,i0
l 11••• l max&. ~12!

This is a mapping from orthogonal basis vectors to ortho
nal basis vectors that can be extended linearly to a uni
mappingV on the entire Hilbert space.V takes the original
code words to prefix-free code words in a length-preserv
way—that is, the length observableL8 of the prefix-free
code is given byL85VLV†. In short, any quantum cod
that satisfies Eq.~5! can be unitarily mapped to a prefix-fre
quantum code with identical length characteristics.

Are all prefix-free quantum codes condensable? As
shall see in Sec. I E, they are; but in order to show this,
will have to give an explicit algorithm for a quantum com
puter to condense the code words of a prefix-free quan
code. This algorithm must maintain the coherence of su
positions of code words of different lengths. Before we d
scribe our algorithm, we will first discuss some key char
teristics of coherent information processing.

E. Coherence and reversibility

We adopt a high-level model of a quantum comput
which could in principle be implemented by a quantum T
ing machine or an array of quantum gates. Our quan
computer contains several registers of qubits, which initia
hold ZEF code words from a prefix-free quantum code. T
computer also includes a central processing unit that cont
various counters and pointers, each of which can take
integer values~or superpositions of these!. A system clock
keeps track of the number of machine cycles that h
passed since the beginning of the computation.~This clock
may be treated as an entirely classical system; its functio
simply to control the execution of our quantum program!
Finally, the computer contains an output ‘‘tape’’ of qubi
~initially all in the stateu0&) on which the condensed string
to be written.

Our job is to write the input code words onto the outp
tape in a way that preserves the coherence of superposi
of different code words, including superpositions of co
words of different lengths. This means that the operation
the computer must be unitary. We can guarantee this unita
if we satisfy certain conditions:

~1! Reversibility. In a classical code, all code words ha
a determinate length. We can choose an orthogonal bas
length eigenstates to be ‘‘quasiclassical’’ input states of
computer.~These states need not be fully classical—for e
ample, the qubits in these code word states may be entan
with each other. However, each code word in our basis h
determinate length.! We require that distinct quasiclassic
inputs lead to distinct final states of the computer. This
essentially a requirement that the computation bereversible
on these quasiclassical inputs@10,11#.

~2! Coherent computation. The computation includes n
measurement or process in which the environment beco
04230
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entangled with the computer. As a special case of this,
require that the computation end after exactly the same n
ber of steps for any input code word. If the computation to
more steps for longer code words, the halting time of
computation would constitute a measurement of code w
length, and would destroy the coherence.

~3! Localization of coherence in the output. For any quasi-
classical input, at the end of the computation all input reg
ters and internal variables in the central processor have b
reset to fixed values that are independent of the input. O
the output tape retains any information about the input. T
will guarantee that a superposition of quasiclassical inp
will not lead to entanglement between the output tape
the rest of the computer; the coherence will be localized
the output tape.

A similar set of conditions is outlined in Ref.@6#, where it is
used to specify quantum algorithms for data compress
and for quantum arithmetic coding.

The reversibility requirement ensures that an orthogo
basis of initial states maps to an orthogonal basis of fi
states. If the computation is coherent, this map extends
linearity to a unitary evolution for the quantum state of t
computer. The final requirement guarantees that the quan
information initially in the input registers can be recover
from the condensed output tape alone. We will discuss e
of these requirements in turn.

Consider how our quantum computer acts on qua
classical~length eigenstate! inputs. If we were to map out its
algorithm as a flowchart, the requirement of reversibil
would impose two sorts of requirements. First, each in
vidual operation on the data must be reversible. Second,
branches and joins in the flowchart must be specified i
reversible way.

A branch can be pictured in this way:

↓
branch

condition
↓ true

f alse
——→

Execution of the program enters from the top, and a logi
‘‘branch condition’’ is evaluated. If the branch condition
true, execution proceeds along the downward branch
false, along the rightward branch. This is plainly reversib
as long as the evaluation of the branch condition is done
reversible way; there is no ambiguity in the execution of t
reversed program.

However, a simple join

→
↓

join
↓

is not reversible, since in the reversed program it is not cl
which of the two paths to take. The point is that a join in t
flowchart is a reversed branch, and thus must be governe
a logical ‘‘join condition’’:
4-4
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f alse
——→

↓ true
join

condition
↓

.

The program is designed so that the join condition is t
whenever the execution approaches from above, and f
whenever execution approaches from the right.

In our program, we will want to use branches and joins
create ‘‘loops,’’ like so:

The ‘‘start condition’’ is a logical condition that is only tru
at the beginning of the execution of the loop and not the
after; the ‘‘stop condition’’ is only true at the end of th
execution of the loop and not before.

We can also conveniently represent the reversible l
structure in pseudocode form:

loop enter ~start condition!

operations

loop exit ~stop condition!.

Both the beginning and the end of the loop are governed
logical conditions.

The requirement that the computation be coherent ma
first seem difficult to achieve, since each branch point~or
join point! in the algorithm involves the evaluation of
condition—apparently a measurement process. Howe
these conditions can control the execution of the progr
without any irreversible loss of coherence.

Let us suppose that the quantum systemQ is some portion
of our computer, and that we wish to branch our progr
based on a condition about the state ofQ. The condition is
represented by a projectionP acting on the Hilbert spaceH
describingQ. Any initial stateuc& of Q can be written as

uc&5Puc&1P'uc&. ~13!
04230
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We could imagine evaluating the condition by making
measurement of the observable represented byP and P'.
But this would destroy the coherence in this superpositi
so a less destructive operation is required.

We join to Q a single qubit~in another part of the quan
tum computer!, and consider the operatorU on joint system:

U5~ u0&^1u1u1&^0u! ^ P11^ P'. ~14!

U is easily verified to be a unitary operator, and thus it co
represent some coherent quantum evolution of the joint s
tem. If the qubit is initially set to the stateu0& and thenU
acts, we obtain

Uu0& ^ uc&5u1& ^ Puc&1u0& ^ P'uc&. ~15!

This is an entangled state of the qubit andQ. If we were to
make a measurement of the qubit in the standard basis
would be effectively measuring the observableP on Q. That
is, the qubit ‘‘contains’’ the value of the observableP. How-
ever, the interaction is completely reversible, and in this c
may be undone by a further application ofU itself.

The qubit can be used as a switch to instruct the comp
which branch of the computation to follow. Suppose we w
to specify that, if the qubit isu0&, the rest of the compute
performs a computation described by the unitary opera
V0, whereas if the qubit isu1& then we wish to do the com
putationV1. Then we instruct the entire computer~including
the switch qubit! to perform a coherent computation d
scribed by the unitary operator

V5u0&^0u ^ V01u1&^1u ^ V1 . ~16!

If the overall state of the computer is a superposition of
two switch states, both branches are followed in differe
branches of the superposition. The computer may beco
increasingly entangled, but the coherence of its overall s
is preserved.

We have shown that any branching condition that can
represented by a projection operatorP can be used to contro
the execution of the program without any necessary loss
coherence. The cost is entanglement among the parts o
computer.

A join point in the algorithm is simply a time-reverse
branch point. Just before the join, the computer is in a s
like Eq. ~15!, in which the qubit is entangled with the syste
Q. The operatorU215U acts, and we return the qubit to th
stateu0& and the systemQ to a state like Eq.~13!. We have
‘‘disentangled’’Q from the qubit, so the two branches of th
computation~controlled by the qubit! have merged.

Our second concern with coherent computation is the s
chronization of the computation on different components
the initial superposition. This can be maintained witho
much difficulty by introducing appropriate ‘‘delay loops
into the program, so that its execution requires exactly
same number of machine cycles for any input.

We will address our final concern, that the output ta
should wind up unentangled with the rest of the computer,
4-5
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BENJAMIN SCHUMACHER AND MICHAEL D. WESTMORELAND PHYSICAL REVIEW A64 042304
showing that the final state of the rest of the computer~input
registers and central processor! is independent of the inpu
state.

F. Prefix-free codes are simply condensable

We are at last ready to give our algorithm for simp
condensing the code words of a prefix-free quantum co
First, we establish our notation and describe the content
our computer in slightly more detail.

1. Registers

Our computer containsN registers, each consisting ofl max
qubits. Thei th register is denotedRi and thekth qubit of this
register is calledRi ,k . Initially, each register contains a ZE
code word from a fixed prefix-free quantum code.

2. Tape

There is a tapeT containing at leastNlmax qubits, all of
which are initially in the stateu0&. Thenth qubit in the tape
is calledTn .

3. Counter

There is a counter variablec, which can take on intege
values starting with 0~or, of course, superpositions of these!.
The initial state ofc is u0&.

4. Pointers

There are several pointer variables, which like the coun
variable take on integer values and have an initial stateu0&.
These variables point to locations in the memory of the co
puter, but of course they are themselves quantum varia
and can take on entangled superpositions of values. The
an overall register pointerr and, for each register, a qub
pointer qi ~for the i th register!. The tape also has a pointe
variablep.

Once again we emphasize that all of these compone
and the operations they perform, can be simulated by a q
tum Turing machine or an array of quantum gates. We d
tinguish among them only to make clear the structure of
condensation algorithm.

The first section of the program copies the contents of
registers to the tapes, moving the pointers in the proces

loop enter (r 50)
r←r 11
loop energy (qr50)

qr←qr11
p←p11
Tp←Tp% Rr ,qr

loop exit (Rr ,1•••Rr ,qr
is a code word of lengthqr)

loop exit (r 5N).

~The notationa←a% b indicates the ‘‘controlled not’’ opera
tion on the qubits, witha as the ‘‘target’’ andb as the ‘‘con-
trol’’ qubit.! Notice that the exit condition for the inner loo
~which copies the register qubits one by one onto the tape! is
legitimate because the code is prefix free. This means
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the question of whether the firstqr qubits of the register form
a code word of lengthqr can be settled by measuring
projection-type observable on those qubits.~The computer
does not make such a measurement, but instead coher
controls its operation as just described.!

We also note that, since the procedure is just to copy
register contents to the output tape, we are doing sim
condensation.

At this stage, the various pointer variables are entang
with the code word length information; furthermore, the tim
at which the computer reaches this stage of the computa
is indeterminate. We now resynchronize the program vi
delay loop that causes the computer to ‘‘idle’’ until a fixe
time D ~chosen large enough so that the first section of
program has finished even for the longest possible input c
words!:

loop enter (c50)
c←c11

loop exit ~time 5D).

The second half of the program is the reverse of the fi
half, except that the register is uncopied, rather than the t

loop enter~time 5D11)
c←c21

loop exit (c50)
loop enter (r 5N)

loop enter (Rr ,1•••Rr ,qr
is a code word of lengthqr)

Rr ,qr
←Tp% Rr ,qr

p←p2q
qr←qr21

loop exit (qr50)
r←r 21

loop exit (r 50).

The program now ends, after exactly 2D machine steps. All
pointers and counters have been returned to their initial z
values, and the input qubit registers have been reset tou00•
••0&. Only the qubit tape now contains any nonzero data
the form of a simply condensed string ofN code words. In
short, the computer at the end retains no code word-len
information at all. Superpositions of code words of differe
length will thus remain coherent in the condensation proce
Since the algorithm works for any givenN, the prefix-free
quantum code is simply condensable.

We previously proved that every condensable code sa
fies the quantum Kraft-McMillan inequality, and then th
every quantum code that satisfies the Kraft-McMillan i
equality can be unitarily remapped to a prefix-free code.
now learn that prefix-free quantum codes are simply c
densable. Since unitary remapping might be part of a gen
condensation process, we have established that a qua
code is condensable if and only if it satisfies the quant
Kraft-McMillan inequality.
4-6
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III. QUANTUM DATA COMPRESSION

A. How many qubits?

Classical variable-length codes are used fordata
compression—that is, the representation of classical inform
tion in a compact way, using as few resources~bits! as pos-
sible. This is done by encoding more probable message
shorter code words, so that the average code word leng
minimized. In this section, we will discuss how—and
what sense—quantum indeterminate-length codes may
used for quantum data compression.

Suppose Alice is sending classical information to Bob
ing the following classical variable-length code:

message code word

C1 0

C2 10

C3 110

C4 111.

If the messageC1 is sent, Bob receives a signal consisting
a single bit~0!; but if C4 is sent, he receives three bits~111!.
In each case, Bob knows how many bits are being use
send the message. If a long string of messages is being
Bob at any stage knows how many complete messages
been received.

Bob learns the length of each code word because he
tually learns which code word was sent. The fact that B
learns the identity of each code word is not a problem in
classical situation; indeed, it is the whole point of classi
communication! This contrasts with quantum informati
transfer. If the signals from Alice, for example, are draw
from a nonorthogonal set of states, Bob will not be able
determine reliably which signal was sent, and any attemp
do so would damage the fidelity of the quantum informatio

Suppose that Alice wishes to send quantum information
Bob using the quantum analog of the aforementioned pre
free code. In other words, the length eigenstate ZEF c
words are

state length

u000& 1

u100& 2

u110& 3

u111& 3

Arbitrary superpositions of these code words are also
lowed code words. To maintain the coherence of these su
positions, therefore, Bob must not obtain any informat
about the length of the code word he receives.

A quantum system actually used for the transmission
information must have at least two degrees of freedom.
first is the ‘‘data’’ degree of freedom, which may for instan
be a qubit. The second degree of freedom is the ‘‘locatio
degree of freedom. This is the physical degree of freed
which determines whether or not Bob has access to the
degree of freedom. The faithful transmission of a qubit in
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stateuc& from the location of Alicea to the location of Bob
b would be a process like this:

uc,a&→uc,b&. ~17!

Although we are phrasing our discussion in terms of
transmission of quantum information from one spatial loc
tion to another, this analysis would also apply to the stora
and retrieval of information in a quantum computer. The
the location degree of freedom might be the reading o
clock; the information stored at timea is to be retrieved at
some later timeb.

If we have several data qubits, each one will have a lo
tion degree of freedom~which may, of course, be correlate
with the others!. The number of qubits transmitted from A
ice to Bob will be the number of location degrees of freedo
that have evolved froma to b. For instance, suppose tha
three data qubits are in a joint stateuc123&, and that Alice
sends the first and third qubits to Bob. The final state wo
be uc123,bab&, in which Bob has received two qubits.

How could Alice send anindeterminatenumber of qubits
to Bob—in particular, if Alice is representing her quantu
information using the prefix-free quantum code above, h
can she arrange to send only the firstl qubits of a ZEF code
word of lengthl? The transmission of the length eigensta
is easy to describe:

u000,aaa&→u000,baa&

u100,aaa&→u100,bba&

u110,aaa&→u110,bbb&

u111,aaa&→u111,bbb&.

But imagine that Alice is sending a superposition of co
words of different lengths. If this process is unitary, then
the end the data qubits will be entangled with their locat
degrees of freedom. The coherence of the superpos
would no longer be maintained within the data qubits.
order to restore the coherence, Bob would have to inte
with the location degrees of freedom of the qubits w
which he has indeterminate access. Except for a triv
case—in which Bob simply returns the qubits from locati
b back toa—he will not be able to do this.

If the transmission process is not unitary, things are e
worse. Our conclusion is that it is not possible to send qu
tum information coherently using an indeterminate num
of qubits. If we are to use indeterminate-length quant
codes for quantum data compression, we will have to do
in such a way that afixed number of qubits changes hand
from Alice to Bob.

Perfect fidelity would demand that Alice sendall of the
qubits to Bob—enough qubits so that even the longest c
ponent of each code word is transmitted in its entirety. B
this scheme would allow for no data compression at all.

Our previous discussion of condensability offers so
hope. The condensation process took the ‘‘informatio
bearing’’ parts ofN ZEF code words~in registers of length
l max) and unitarily shifted them as far as possible toward
4-7



s
th

se

ng

ro
te
or
he
d
th

a

ca
s

m

f

e
o

l
co

-

ne
to

a

the
n

in a

ly
We
EF
the
e to
ow
re-
n

n-

EF
for
rv-

t
lt

.

that
e

o

en-

u-
re

rd-
-
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beginning of a tape ofNlmax qubits. Although some branche
of the overall superposition may extend to the end of
tape, the ‘‘typical’’ branch may be much shorter~followed by
u0& ’s!. We therefore might be able to truncate the conden
string of code words after some numberL of qubits, where
L!Nlmax, and still maintain an average fidelity approachi
unity.

Let us consider a quantum information source that p
duces an ensemble of signal states of some quantum sys
These signal states are unitarily encoded as ZEF code w
of some condensable quantum code. For our purposes, t
fore, we can simply consider the ensemble of ZEF co
words produced by the quantum information source and
unitary encoding. In this ensemble, the code worduaZEF&
occurs with probabilityp(a), and the average encoded sign
state is described by the density operator

r5(
a

p~a!uaZEF&^aZEFu. ~18!

Our source produces a sequence of independent, identi
distributed signals, which are encoded as ZEF code word
separate registers. The average state ofN of these registers is
r ^ N.

The average lengtĥl & of the code word ensemble is

^ l &5Tr rL5(
a

p~a!^aZEFuLuaZEF&. ~19!

The average lengtĥl & is an ensemble average of quantu
expectation values forL, but no code worduaZEF& need be a
length eigenstate.

A condensed string ofN code words is a ZEF string o
Nlmax qubits, with length observableL. If U is the unitary
operator that maps theN separate ZEF code words to th
condensed string, then we can define the overall length
servable for the condensed string to be

L5U~L11L21•••1LN!U21.

The condensed lengthL is just the sum of the individua
length observables of the separate, precondensed
words. This observable will have eigenvaluesL5 l 11•••

1 l N and an average value^L&. The code words are indepen
dent, and so

^L&5N^ l &. ~20!

Since the overall length of the condensed string is defi
to be additive, we can apply the ‘‘law of large numbers’’
some measurement ofL: For anye,d.0, for large enoughN
it is true that

Pr~ uL2N^ l &u.Nd!,e. ~21!

This means that, for largeN, the probability is very small
that L will be found to be much less than~or much greater
than! ^L&. Of course, we will not in general make such
measurement, but Eq.~21! is still useful in restricting the
typical amplitude of code word string components.
04230
e

d

-
m.
ds
re-
e
e

l

lly
in

b-

de

d

As we shall see, if the ensemble average length of
ZEF code words iŝl &, then we can in the long run maintai
fidelity near to 1 by keeping just̂l &1d qubits per signal,
whered can be made as small as desired. Conversely,
simple condensation process, we must keep at least^ l & qu-
bits per signal to maintain high fidelity—if we keep on
^ l &2d per signal, the average fidelity tends toward zero.
will also find that the ensemble average length of the Z
code words is related to the von Neumann entropy of
signal ensemble, making this approach an alternate rout
the noiseless quantum coding theorem. Finally, we will sh
that the relative entropy is a measure of the additional
sources~qubits! required to represent quantum informatio
using a code that is not optimal.

B. Enough qubits

In this section we will make use of the fact that a co
densed string ofN ZEF code words is itself in ZEF form—in
other words, we can view the condensed string as a Z
code word in a much longer code. The length observable
this super-code-word will be the sum of the length obse
ables for theN original code words.

Suppose we have a ZEF code worduf& in a register ofn
qubits, and supposel <n. Defineh such that a measuremen
of the length observableL on the code word yields a resu
larger thanl with probability

Pr~L.l !5h. ~22!

In generaluf& will include components of various lengths
Let P l be the projection

P l 511•••l
^ u0l 11•••n&^0l 11•••nu. ~23!

That is,P l projects onto the subspace of register states
are u0& in the lastn2l qubits. We can write our ZEF cod
word uf& as

uf&5auf (dl )&1buf (sl )&, ~24!

where a,b>0, and uf (dl )& and uf (sl )& are normalized
states such that

P l uf (dl )&5uf (dl )&,

P l uf (sl )&50.

Since all L-eigenstate ZEF code words with length n
larger thanl haveu0& in the lastn2l qubits,

12h5Pr~L<l !<a2. ~25!

Equality need not hold, however, since some length eig
state code words withL.l may nevertheless haveu0& in
the lastn2l qubits.~This is analogous to the classical sit
ation, in which it is perfectly possible to have one or mo
0’s at the end of a code word in a variable-length code.!

We now imagine that we truncate the register by disca
ing the lastn2l qubits. Onlyl qubits are stored or trans
mitted. At the end of the receiver of the process,n2l qubits
4-8
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INDETERMINATE-LENGTH QUANTUM CODING PHYSICAL REVIEW A64 042304
in the standard stateu0& are appended, yielding a mixed fin
states for the register. With what fidelityF5^fusuf& has
the original code word state been maintained by this proce

Direct calculation shows that the mixed states is

s5a2uf (dl )&^f (dl )u1b2w(sl ) , ~26!

wherew(sl ) is the state obtained by truncatinguf (sl )& and
appendingn2l qubits in the stateu0&. Thus

F5^fusuf&5a2u^fuf (dl )&u21b2^fuw(sl )uf&>a4.
~27!

Therefore,

F>a4>~12h!2>122h. ~28!

If the code word lengthL would be found to be no more
than l with probability 12h, then we can keep onlyl
qubits and recover the original state with fidelityF>1
22h.

We can now apply this result and the law of large nu
bers@Eq. ~21!# to a condensed string of code words. Ife,d
.0 and N is sufficiently large, and if we takel 5N(^ l &
1d), then the ensemble average probability that the c
word string is longer thanl can be made smaller thane/2.
We can therefore truncate the string after onlyN(^ l &1d)
qubits and later recover the original string with an avera
fidelity

^F&.12e. ~29!

Therefore, if we keep more than̂l & qubits per input mes-
sage, in the long run we will be able to retrieve the quant
information with average fidelity approaching unity. The a
erage lengtĥ l & tells us how many qubits are sufficient fo
high fidelity.

C. Too few qubits

We now turn to the question of how many qubits a
necessary to achieve high fidelity after the condensed st
is truncated. For this discussion we will restrict our attent
to simple condensation, rather than a general condensati
process. Since any condensable code can be replaced
simply condensable code with the same length charact
tics, this restriction is not too severe.

The reason for making this restriction is pragmatic. Su
pose we haveN registers containing code words from a co
densable code, with an average length of^ l &. A general con-
densation procedure might consist of two stages. In the fi
the code words in theN separate registers are unitari
remapped to code words from a more efficient code, tha
one with shorter average lengtĥl 8&,^ l &. In the second
stage, this more efficient code is condensed. We have e
lished that only aboutN^ l 8& qubits will be sufficient to main-
tain high fidelity. In other words, the original average leng
^ l & may tell us nothing about the number of qubits necess
for high fidelity.

Of course, we might not choose to condense the c
words in this way, or a more efficient code might not exi
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Our strategy will be to separate the question of the efficie
of a code from the question of how many qubits are nec
sary. First, we will consider the simple condensation of co
that may be inefficient, and then~in the next section! we will
discuss limits on the efficiency of codes. In this sectio
therefore, we describe limits imposed by the structure of
particular~possibly suboptimal! code, and in the next we wil
indicate how optimal or near-optimal codes may be chos

Begin with N ZEF code words of a simply condensab
code. The simply condensed string formed from theN code
words can be built out of two pieces:~1! the simply con-
densed qubit string obtained from the firstN2k code words,
and~2! the simply condensed qubit string obtained from t
last k code words. These two pieces are both ZEF and
simply condensed together to form the complete string. Th
we will base our discussion on the simple condensation
just two ZEF code words.

The first ZEF code worduc& lies in a register ofm qubits,
and the second code wordux& lies in a register ofn qubits.
The simply condensed pair~denoted rather symbolically by
ucx&) is a state of a string ofm1n qubits. We also conside
a state calleduc0&, which is the first ZEF code word fol-
lowed byn additional qubits in the stateu0&.

Let l <m1n. The first ZEF code word can be written

uc&5auc (,l )&1buc (>l )&, ~30!

wherea,b>0 anduc (,l )& ~or uc (>l )&) is a normalized su-
perposition of length eigenstates that are shorter than~or at
least as long as! l . If we now simply condense this cod
word with the code wordux&, we obtain

ucx&5auc (,l )x&1buc (>l )x&, ~31!

with uc (,l )x& and uc (>l )x& being the simply condense
strings obtained fromux& and the two components ofuc&. In
a similar way,

uc0&5auc (,l )0&1buc (>l )0&. ~32!

Now, we imagine truncating the string ofm1n qubits,
keeping only the firstl of them to be stored or transmitted
~We can denote this process byTl .) At the end of the re-
ceiver, we do some unspecified quantum operationE that
results in a final state ofm1n qubits. We know nothing
aboutE in general except that it is a trace preserving, co
pletely positive linear map on density operators. The ove
process, applied to the two initial statesucx& and uc0&,
yields

ucx&→
Tl

v→
E

E~v!,

uc0&→
Tl

s→
E

E~s!.

At the end of this process, we are interested in the ove
fidelity of the truncation–cum–recovery process:

F5^cxuE~v!ucx&. ~33!
4-9
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We will show that, under suitable conditions, this fideli
must be small.

For general density operators, the fidelity is defined to

F~r1 ,r2!5maxu^1u2&u2, ~34!

where the maximum is taken over all purificationsu1& of r1
and u2& of r2. ~Equivalently, we can fix one of the purifica
tions u1& and maximize over the other purificationu2&.! The
fidelity has the property that it is never decreased by
quantum operation, so that

F„E~r1!,E~r2!…>F~r1 ,r2! ~35!

for any trace preserving, completely positive linear mapE.
A useful result~shown in Ref.@13#! relates the fidelities

among three statesr1 , r2, andr3. Let F125F(r1 ,r2), etc.
Then

AF13<AF231A2~12AF12!. ~36!

This implies that, ifF12 is nearly equal to one andF23 is
close to zero,F13 is also close to zero. Recalling that 0<F
<1 for all fidelities, we note that 12AF<12F, and thus

F13<F2312~12F12!12A2F23~12F12!

<F2312~12F12!12A2~12F12!

<F2312A12F1212A2A12F12 ,

F13<F2315A12F12. ~37!

Since this inequality is linear in bothF13 andF23, it will be
convenient for situations in which we wish to average o
an ensemble ofr3 states.

We apply Eq.~37! to our situation as follows. The stat
r15ucx&^cxu, the original simply condensed string, and t
stater35E(v), the final state of the simply condensed stri
after the truncationTl and the recovery operationE. Playing
the role ofr2 is the stateE(s), the final state obtained b
using uc0& as our input. Since the quantum operationE can
never decrease the fidelity between states,F@E(v),E(s)#
>F(v,s). Therefore,

F5^cxuE~v!ucx&<^cxuE~s!ucx&15A12F~v,s!.
~38!

The initial statesucx& anduc0& are purifications ofv and
s, respectively. The fidelityF(v,s) is thus

F~v,s!5max
ufs&

z^cxufs& z2, ~39!

where the maximum is taken over all purificationsufs& of s.
Now, all of the purifications ofs are related to one anothe
by unitary operators that act only on the adjoined system
that

F~v,s!5max
U

z^cxu~11•••l
^ U l 11•••m1n!uc0& z2,

~40!
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with the maximum taken over all unitary operators acting
the lastm1n2l qubits.

We write ucx&5auc (,l )x&1buc (>l )x& and uc0&
5auc (,l )0&1buc (>l )0&, as before, and note that, sinc
uc (>l )& only contains components ofuc& that are at least as
long asl ,

Trl 11•••m1nuc (>l )x&^c (>l )xu

5Trl 11•••m1nuc (>l )0&^c (>l )0u. ~41!

In this component, the second code word, whose ‘‘start
address’’ in the simply condensed string is entangled with
length of the first code word, lies entirely in the discard
tail of the qubit string. Therefore, there exists a unita
Vl 11•••m1n such that

uc (>l )x&5~11•••l
^ Vl 11•••m1n!uc (>l )0&. ~42!

Clearly,

F~v,s!> z^cxu~11•••l
^ Vl 11•••m1n!uc0& z2, ~43!

^cxu~11•••l
^ Vl 11•••m1n!uc0&

5a2^c (,l )xu~11•••l
^ Vl 11•••m1n!uc (,l )0&

1ab^c (,l )xu~11•••l
^ Vl 11•••m1n!uc (>l )0&

1ba^c (>l )xu~11•••l
^ Vl 11•••m1n!uc (,l )0&1b2,

z^cxu~11•••l
^ Vl 11•••m1n!uc0& z>b22a222ab

5122a22a2>124a.

Therefore,

F~v,s!>~124a!2>128a. ~44!

Our overall fidelity must satisfy

F<^cxuE~s!ucx&15A8a<^cxuE~s!ucx&115Aa.
~45!

Neither the operatorE(s) nor the parametera depends on
the second code wordux&. We now imagine that the secon
code word is drawn from an ensemble—that is, that the c
word ux& occurs with probabilityP(x), so that the ensemble
has an average density operator

W5(
x

P~x!ux&^xu. ~46!

The average fidelity after truncationTl and recoveryE will
therefore be

F̄<Tr WE~s!115Aa. ~47!

SinceE(s) is a positive operator of unit trace, we obtain

F̄<iWi115Aa, ~48!

where iWi is the operator norm ofW, which ~since W is
positive! is just the largest eigenvalue ofW.
4-10
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After all of this, we are in a position to apply the law o
large numbers@Eq. ~21!# again. We will be choosing two
large integers,N andk. Our first code worduc& in the pre-
ceding analysis will be a simply condensed string ofN2k
code words, and the second code wordux& will be a simply
condensed string of the remainingk code words. We assum
that the code words themselves are drawn from an ense
with an average stater having more than one nonzer
eigenvalue—in other words, the ensemble involves m
than one code word state.

Let e,d.0. If l,1 is the largest eigenvalue ofr, then
the largest eigenvalue ofr ^ k is lk. Choosek so that lk

,e/2. Since the lastk code words are unitarily condense
into a string with average stateW, iWi5ir ^ ki,e/2.

Now we consider the simply condensed string of the fi
N2k code words, which we have denoted byuc&. The
length observable for this string isLN2k . Given a value of
N, we definel 5N(^ l &2d). We will restrict our attention to
values ofN large enough so that

l <~N2k!S ^ l &2
d

2D . ~49!

Applying the law of large numbers, we can now specifyN
large enough so that Pr(LN2k,l )5a2 is as small as we
like. In particular, we can guarantee that 15Aa,e/2. Thus,

F̄<iWi115Aa,e. ~50!

Therefore, if we keep fewer than^ l & qubits per input mes-
sage and use simple condensation, in the long run the fid
of the retrieved quantum information must approach ze
The average lengtĥl & tells us how many qubits are nece
sary for high fidelity using simple condensation.

D. Entropy and average length

The preceding results provide an interpretation for the
erage lengtĥ l & of an indeterminate-length quantum cod
^ l & is just a measure of the resources~qubits! that are both
necessary and sufficient to maintain high fidelity of the qu
tum information, in the situations just described. We n
inquire how short̂ l & can be for a given quantum informa
tion source. In other words, we will now explore how ef
cient an indeterminate-length quantum code may be.

Recall the quantum Kraft-McMillan inequality@Eq. ~5!#.
Any condensable quantum code must have a length obs
ableL on ZEF code words that satisfies

Tr 22L5K<1,

where the trace is restricted to the ZEF subspace. We
construct a density operatorv on the ZEF subspace by le
ting

v5
1

K
22L. ~51!
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The operatorv, although a positive operator of unit trace,
generally not the same as the ensemble average densit
erator r of the code words produced by the informatio
source.

The average code word length^ l & is

^ l &5Tr rL52Tr r log~22L!52Tr r logv2 logK.

Therefore,

^ l &5S~r!1D~ruuv!2 logK, ~52!

whereS(r) is the von Neumann entropy of the density o
eratorr

S~r!52Tr r logr ~53!

andD(ruuv) is the quantum relative entropy

D~ruuv!5Tr r logr2Tr r logv. ~54!

~We use base-2 logarithms.! The relative entropy has a num
ber of useful properties. For example, it is positive defini
so thatD(ruuv).0 if and only if rÞv.

Since logK<0,

^ l &>S~r!. ~55!

The average code word length must always be at leas
great as the von Neumann entropy of the signal ensem
from the information source.

We can approach this bound by a suitable code. The
genvalueslk of r form a probability distributionl, and the
von Neumann entropy is simply the Shannon entropy of
eigenvalues:

S~r!5H~l!52(
k

lk loglk . ~56!

The probability distributionl can be used to define
Shannon-Fano code, which is a classical prefix-free bin
code whose code words have integer lengthsl k5 d loglke, so
that

l k, loglk11. ~57!

This means that the average length of the Shannon-F
code words satisfies

^ l &5(
k

lkl k,H~lW !11. ~58!

The classical Shannon-Fano code can be used to defi
corresponding prefix-free indeterminate-length quant
code, according to the procedure in Eq.~12!. ~Such a code
was also described by Chuang and Modha in Ref.@6#.!
Eigenstates ofr are length eigenstate ZEF code words, a
the average code word length satisfies

^ l &,S~r!11. ~59!
4-11
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Asymptotically, this code will achieve high fidelity usin
aboutS(r)11 qubits per signal.

An alternate scheme is based on Huffman codes, wh
are classical prefix free codes that actually minimize aver
code word lengtĥ l &. Equations 58 and 59 are also satisfi
for Huffman codes and their quantum versions.

We can do even better if we create our ZEF code wo
from blocksof outputs of the quantum information sourc
This amounts to considering a new source that produ
blocks of n elementary signals, with an ensemble avera
block stater ^ n having an entropy ofnS(r). A quantum
Shannon-Fano or Huffman code designed for this blo
source would have an average length of no more t
nS(r)11, so that we will use onlyS(r)11/n qubits per
elementary signal. Thus, by coding long blocks of signa
we can achieveF̄→1 with aboutS(r) qubits per elementary
signal.

It can be seen that the theory of indeterminate-len
quantum codes provides an alternate route to the quan
noiseless coding theorem@6#. The von Neumann entrop
S(r) measures the physical resources necessary to repr
quantum information faithfully.

We now ask: Under what circumstances can we achi
the entropic bound to the code word length exactly, with
resorting to block coding? In other words, for what cod
and code word ensembles can we have

^ l &5S~r!? ~60!

A code for which this equality holds may be called ‘‘leng
optimal.’’ The answer can be seen from Eq.~52!:

^ l &5S~r!1D~ruuv!2 logK.

Both D(ruuv) and 2 logK are non-negative, so they mu
both equal zero for a length-optimal code. In other words

K5Tr 22L51 ~61!

and

r5v522L. ~62!

A length-optimal code must saturate the quantum Kraft
equality @Eq. ~5!#, and the code word ensemble must eq
the density operatorv constructed from the length obser
ableL. Two consequences follow:

~a! Whenever the signal ensembler has only eigenvalues
of the form 22m for integer values ofm, we can find a
condensable quantum code~with length eigenvaluesm) that
is length optimal. Ifr has eigenvalues that are not of th
form, then no length-optimal code exists.

~b! Some quantum codes saturate the quantum K
inequality—for example, those based on classical Huffm
codes. These codes will be length-optimal for a code w
ensemble with density operator

r522L. ~63!

That is, every quantum code that saturates the quantum K
inequality is length-optimal for some code word ensemble
04230
h
e

s

es
e

k
n

,

h
m

ent

e
t

s

-
l

ft
n
d

aft
If

a quantum code does not saturate the quantum Kraft ineq
ity, it is not length-optimal for any code word ensemble.

Suppose we have a code that is length-optimal for so
density operatorv; but instead, we use the code for an e
semble of code words described by the density operator.
Then the average code word length will be

^ l &5S~r!1D~ruuv!. ~64!

We know that, using block coding, we can asymptotica
use as few asS(r) qubits to faithfully represent the quantum
information produced by the source ofr. We also know that
^ l & is the minimum number of qubits we need to retain p
code word to achieve high fidelity in a simply condens
string of many code words. Thus, the relative entro
D(ruuv) tells us what additional resources~in qubits! are
necessary to faithfully represent the quantum informat
from ther source, if we use a code that is length optimal f
a different source~the ‘‘v source’’!.

E. Remarks

In the quantum Huffman code of Braunsteinet al., code
word length information and the code words themselves
stored separately, in entangled strings of qubits. This me
that the average number of qubits used to store the quan
information from a given source is increased by an amo
logarithmic in the code word length@7#. However, as we
have seen, this separate accounting for code word len
information is unnecessary. The code words of a quan
indeterminate-length codecarry their own length informa-
tion.

This requirement is the basis for Eq.~5!, the quantum
Kraft-McMillan inequality. We have shown that Eq.~5! is a
necessary and sufficient condition for condensability, a
further, that any code satisfying Eq.~5! can be unitarily
mapped to a prefix-free quantum code with the same len
characteristics. Prefix-free codes are themselves simply
densable, and obey the quantum Kraft-McMillan inequali

Classical prefix-free codes are also called ‘‘instantane
codes,’’ since the receiver of a string of code words c
identify an individual code word from the string immed
ately, before the remainder of the string is received@3#. But
this terminology is inapplicable to the quantum case. S
pose we have a simply condensed string of code words f
a prefix-free quantum code. The first code word is gener
not a length eigenstate, and the length of this code wor
entangled with the locations in the qubit string of all subs
quent code words. The phase relationship between
different-length components of the first code word is a glo
property of the state of the entire string. Therefore, in or
to coherently recover even the first code word, we will ne
the entire string~or a sufficiently long initial segment to
achieve high overall fidelity!. Even prefix-free quantum
codes are not ‘‘instantaneous;’’ the entire transmission m
be completed before any part of it can be ‘‘read.’’

The classical Kraft-McMillan inequality@Eq. ~11!# arises
whenever a set of binary strings satisfies the prefix-free c
4-12



nc
ft

-
st

n
n

ess
rk,

K.
ors
da-
ces

INDETERMINATE-LENGTH QUANTUM CODING PHYSICAL REVIEW A64 042304
dition. For example, it governs the set of lengths of disti
programs for a classical Turing machine. The Kra
McMillan inequality therefore plays a central role in theal-
gorithmic information theory, in which the information con
tent of a binary strings is defined to be length of the shorte
halting program that producess as its output@12–14#. We
may hope that the quantum version of the Kraft-McMilla
inequality will serve as a starting point for the developme
of a quantum algorithmic information theory.
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